* config/alpha/tm-fbsd.h (FRAME_CHAIN_VALID): Remove.
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "obstack.h"
32 #include "language.h"
33 #include "annotate.h"
34 #include "valprint.h"
35 #include "floatformat.h"
36 #include "doublest.h"
37
38 #include <errno.h>
39
40 /* Prototypes for local functions */
41
42 static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
43 int len, int *errnoptr);
44
45 static void print_hex_chars (struct ui_file *, unsigned char *,
46 unsigned int);
47
48 static void show_print (char *, int);
49
50 static void set_print (char *, int);
51
52 static void set_radix (char *, int);
53
54 static void show_radix (char *, int);
55
56 static void set_input_radix (char *, int, struct cmd_list_element *);
57
58 static void set_input_radix_1 (int, unsigned);
59
60 static void set_output_radix (char *, int, struct cmd_list_element *);
61
62 static void set_output_radix_1 (int, unsigned);
63
64 void _initialize_valprint (void);
65
66 /* Maximum number of chars to print for a string pointer value or vector
67 contents, or UINT_MAX for no limit. Note that "set print elements 0"
68 stores UINT_MAX in print_max, which displays in a show command as
69 "unlimited". */
70
71 unsigned int print_max;
72 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
73
74 /* Default input and output radixes, and output format letter. */
75
76 unsigned input_radix = 10;
77 unsigned output_radix = 10;
78 int output_format = 0;
79
80 /* Print repeat counts if there are more than this many repetitions of an
81 element in an array. Referenced by the low level language dependent
82 print routines. */
83
84 unsigned int repeat_count_threshold = 10;
85
86 /* If nonzero, stops printing of char arrays at first null. */
87
88 int stop_print_at_null;
89
90 /* Controls pretty printing of structures. */
91
92 int prettyprint_structs;
93
94 /* Controls pretty printing of arrays. */
95
96 int prettyprint_arrays;
97
98 /* If nonzero, causes unions inside structures or other unions to be
99 printed. */
100
101 int unionprint; /* Controls printing of nested unions. */
102
103 /* If nonzero, causes machine addresses to be printed in certain contexts. */
104
105 int addressprint; /* Controls printing of machine addresses */
106 \f
107
108 /* Print data of type TYPE located at VALADDR (within GDB), which came from
109 the inferior at address ADDRESS, onto stdio stream STREAM according to
110 FORMAT (a letter, or 0 for natural format using TYPE).
111
112 If DEREF_REF is nonzero, then dereference references, otherwise just print
113 them like pointers.
114
115 The PRETTY parameter controls prettyprinting.
116
117 If the data are a string pointer, returns the number of string characters
118 printed.
119
120 FIXME: The data at VALADDR is in target byte order. If gdb is ever
121 enhanced to be able to debug more than the single target it was compiled
122 for (specific CPU type and thus specific target byte ordering), then
123 either the print routines are going to have to take this into account,
124 or the data is going to have to be passed into here already converted
125 to the host byte ordering, whichever is more convenient. */
126
127
128 int
129 val_print (struct type *type, char *valaddr, int embedded_offset,
130 CORE_ADDR address, struct ui_file *stream, int format, int deref_ref,
131 int recurse, enum val_prettyprint pretty)
132 {
133 struct type *real_type = check_typedef (type);
134 if (pretty == Val_pretty_default)
135 {
136 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
137 }
138
139 QUIT;
140
141 /* Ensure that the type is complete and not just a stub. If the type is
142 only a stub and we can't find and substitute its complete type, then
143 print appropriate string and return. */
144
145 if (TYPE_STUB (real_type))
146 {
147 fprintf_filtered (stream, "<incomplete type>");
148 gdb_flush (stream);
149 return (0);
150 }
151
152 return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
153 stream, format, deref_ref, recurse, pretty));
154 }
155
156 /* Print the value VAL in C-ish syntax on stream STREAM.
157 FORMAT is a format-letter, or 0 for print in natural format of data type.
158 If the object printed is a string pointer, returns
159 the number of string bytes printed. */
160
161 int
162 value_print (struct value *val, struct ui_file *stream, int format,
163 enum val_prettyprint pretty)
164 {
165 if (val == 0)
166 {
167 printf_filtered ("<address of value unknown>");
168 return 0;
169 }
170 if (VALUE_OPTIMIZED_OUT (val))
171 {
172 printf_filtered ("<value optimized out>");
173 return 0;
174 }
175 return LA_VALUE_PRINT (val, stream, format, pretty);
176 }
177
178 /* Called by various <lang>_val_print routines to print
179 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
180 value. STREAM is where to print the value. */
181
182 void
183 val_print_type_code_int (struct type *type, char *valaddr,
184 struct ui_file *stream)
185 {
186 if (TYPE_LENGTH (type) > sizeof (LONGEST))
187 {
188 LONGEST val;
189
190 if (TYPE_UNSIGNED (type)
191 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
192 &val))
193 {
194 print_longest (stream, 'u', 0, val);
195 }
196 else
197 {
198 /* Signed, or we couldn't turn an unsigned value into a
199 LONGEST. For signed values, one could assume two's
200 complement (a reasonable assumption, I think) and do
201 better than this. */
202 print_hex_chars (stream, (unsigned char *) valaddr,
203 TYPE_LENGTH (type));
204 }
205 }
206 else
207 {
208 #ifdef PRINT_TYPELESS_INTEGER
209 PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
210 #else
211 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
212 unpack_long (type, valaddr));
213 #endif
214 }
215 }
216
217 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
218 The raison d'etre of this function is to consolidate printing of
219 LONG_LONG's into this one function. Some platforms have long longs but
220 don't have a printf() that supports "ll" in the format string. We handle
221 these by seeing if the number is representable as either a signed or
222 unsigned long, depending upon what format is desired, and if not we just
223 bail out and print the number in hex.
224
225 The format chars b,h,w,g are from print_scalar_formatted(). If USE_LOCAL,
226 format it according to the current language (this should be used for most
227 integers which GDB prints, the exception is things like protocols where
228 the format of the integer is a protocol thing, not a user-visible thing).
229 */
230
231 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
232 static void print_decimal (struct ui_file * stream, char *sign,
233 int use_local, ULONGEST val_ulong);
234 static void
235 print_decimal (struct ui_file *stream, char *sign, int use_local,
236 ULONGEST val_ulong)
237 {
238 unsigned long temp[3];
239 int i = 0;
240 do
241 {
242 temp[i] = val_ulong % (1000 * 1000 * 1000);
243 val_ulong /= (1000 * 1000 * 1000);
244 i++;
245 }
246 while (val_ulong != 0 && i < (sizeof (temp) / sizeof (temp[0])));
247 switch (i)
248 {
249 case 1:
250 fprintf_filtered (stream, "%s%lu",
251 sign, temp[0]);
252 break;
253 case 2:
254 fprintf_filtered (stream, "%s%lu%09lu",
255 sign, temp[1], temp[0]);
256 break;
257 case 3:
258 fprintf_filtered (stream, "%s%lu%09lu%09lu",
259 sign, temp[2], temp[1], temp[0]);
260 break;
261 default:
262 internal_error (__FILE__, __LINE__, "failed internal consistency check");
263 }
264 return;
265 }
266 #endif
267
268 void
269 print_longest (struct ui_file *stream, int format, int use_local,
270 LONGEST val_long)
271 {
272 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
273 if (sizeof (long) < sizeof (LONGEST))
274 {
275 switch (format)
276 {
277 case 'd':
278 {
279 /* Print a signed value, that doesn't fit in a long */
280 if ((long) val_long != val_long)
281 {
282 if (val_long < 0)
283 print_decimal (stream, "-", use_local, -val_long);
284 else
285 print_decimal (stream, "", use_local, val_long);
286 return;
287 }
288 break;
289 }
290 case 'u':
291 {
292 /* Print an unsigned value, that doesn't fit in a long */
293 if ((unsigned long) val_long != (ULONGEST) val_long)
294 {
295 print_decimal (stream, "", use_local, val_long);
296 return;
297 }
298 break;
299 }
300 case 'x':
301 case 'o':
302 case 'b':
303 case 'h':
304 case 'w':
305 case 'g':
306 /* Print as unsigned value, must fit completely in unsigned long */
307 {
308 unsigned long temp = val_long;
309 if (temp != val_long)
310 {
311 /* Urk, can't represent value in long so print in hex.
312 Do shift in two operations so that if sizeof (long)
313 == sizeof (LONGEST) we can avoid warnings from
314 picky compilers about shifts >= the size of the
315 shiftee in bits */
316 unsigned long vbot = (unsigned long) val_long;
317 LONGEST temp = (val_long >> (sizeof (long) * HOST_CHAR_BIT - 1));
318 unsigned long vtop = temp >> 1;
319 fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
320 return;
321 }
322 break;
323 }
324 }
325 }
326 #endif
327
328 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
329 switch (format)
330 {
331 case 'd':
332 fprintf_filtered (stream,
333 use_local ? local_decimal_format_custom ("ll")
334 : "%lld",
335 val_long);
336 break;
337 case 'u':
338 fprintf_filtered (stream, "%llu", val_long);
339 break;
340 case 'x':
341 fprintf_filtered (stream,
342 use_local ? local_hex_format_custom ("ll")
343 : "%llx",
344 val_long);
345 break;
346 case 'o':
347 fprintf_filtered (stream,
348 use_local ? local_octal_format_custom ("ll")
349 : "%llo",
350 val_long);
351 break;
352 case 'b':
353 fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
354 break;
355 case 'h':
356 fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
357 break;
358 case 'w':
359 fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
360 break;
361 case 'g':
362 fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
363 break;
364 default:
365 internal_error (__FILE__, __LINE__, "failed internal consistency check");
366 }
367 #else /* !CC_HAS_LONG_LONG || !PRINTF_HAS_LONG_LONG */
368 /* In the following it is important to coerce (val_long) to a long. It does
369 nothing if !LONG_LONG, but it will chop off the top half (which we know
370 we can ignore) if the host supports long longs. */
371
372 switch (format)
373 {
374 case 'd':
375 fprintf_filtered (stream,
376 use_local ? local_decimal_format_custom ("l")
377 : "%ld",
378 (long) val_long);
379 break;
380 case 'u':
381 fprintf_filtered (stream, "%lu", (unsigned long) val_long);
382 break;
383 case 'x':
384 fprintf_filtered (stream,
385 use_local ? local_hex_format_custom ("l")
386 : "%lx",
387 (unsigned long) val_long);
388 break;
389 case 'o':
390 fprintf_filtered (stream,
391 use_local ? local_octal_format_custom ("l")
392 : "%lo",
393 (unsigned long) val_long);
394 break;
395 case 'b':
396 fprintf_filtered (stream, local_hex_format_custom ("02l"),
397 (unsigned long) val_long);
398 break;
399 case 'h':
400 fprintf_filtered (stream, local_hex_format_custom ("04l"),
401 (unsigned long) val_long);
402 break;
403 case 'w':
404 fprintf_filtered (stream, local_hex_format_custom ("08l"),
405 (unsigned long) val_long);
406 break;
407 case 'g':
408 fprintf_filtered (stream, local_hex_format_custom ("016l"),
409 (unsigned long) val_long);
410 break;
411 default:
412 internal_error (__FILE__, __LINE__, "failed internal consistency check");
413 }
414 #endif /* CC_HAS_LONG_LONG || PRINTF_HAS_LONG_LONG */
415 }
416
417 #if 0
418 void
419 strcat_longest (int format, int use_local, LONGEST val_long, char *buf,
420 int buflen)
421 {
422 /* FIXME: Use buflen to avoid buffer overflow. */
423 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
424 long vtop, vbot;
425
426 vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT);
427 vbot = (long) val_long;
428
429 if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX))
430 || ((format == 'u' || format == 'x') && (unsigned long long) val_long > UINT_MAX))
431 {
432 sprintf (buf, "0x%lx%08lx", vtop, vbot);
433 return;
434 }
435 #endif
436
437 #ifdef PRINTF_HAS_LONG_LONG
438 switch (format)
439 {
440 case 'd':
441 sprintf (buf,
442 (use_local ? local_decimal_format_custom ("ll") : "%lld"),
443 val_long);
444 break;
445 case 'u':
446 sprintf (buf, "%llu", val_long);
447 break;
448 case 'x':
449 sprintf (buf,
450 (use_local ? local_hex_format_custom ("ll") : "%llx"),
451
452 val_long);
453 break;
454 case 'o':
455 sprintf (buf,
456 (use_local ? local_octal_format_custom ("ll") : "%llo"),
457 val_long);
458 break;
459 case 'b':
460 sprintf (buf, local_hex_format_custom ("02ll"), val_long);
461 break;
462 case 'h':
463 sprintf (buf, local_hex_format_custom ("04ll"), val_long);
464 break;
465 case 'w':
466 sprintf (buf, local_hex_format_custom ("08ll"), val_long);
467 break;
468 case 'g':
469 sprintf (buf, local_hex_format_custom ("016ll"), val_long);
470 break;
471 default:
472 internal_error (__FILE__, __LINE__, "failed internal consistency check");
473 }
474 #else /* !PRINTF_HAS_LONG_LONG */
475 /* In the following it is important to coerce (val_long) to a long. It does
476 nothing if !LONG_LONG, but it will chop off the top half (which we know
477 we can ignore) if the host supports long longs. */
478
479 switch (format)
480 {
481 case 'd':
482 sprintf (buf, (use_local ? local_decimal_format_custom ("l") : "%ld"),
483 ((long) val_long));
484 break;
485 case 'u':
486 sprintf (buf, "%lu", ((unsigned long) val_long));
487 break;
488 case 'x':
489 sprintf (buf, (use_local ? local_hex_format_custom ("l") : "%lx"),
490 ((long) val_long));
491 break;
492 case 'o':
493 sprintf (buf, (use_local ? local_octal_format_custom ("l") : "%lo"),
494 ((long) val_long));
495 break;
496 case 'b':
497 sprintf (buf, local_hex_format_custom ("02l"),
498 ((long) val_long));
499 break;
500 case 'h':
501 sprintf (buf, local_hex_format_custom ("04l"),
502 ((long) val_long));
503 break;
504 case 'w':
505 sprintf (buf, local_hex_format_custom ("08l"),
506 ((long) val_long));
507 break;
508 case 'g':
509 sprintf (buf, local_hex_format_custom ("016l"),
510 ((long) val_long));
511 break;
512 default:
513 internal_error (__FILE__, __LINE__, "failed internal consistency check");
514 }
515
516 #endif /* !PRINTF_HAS_LONG_LONG */
517 }
518 #endif
519
520 /* This used to be a macro, but I don't think it is called often enough
521 to merit such treatment. */
522 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
523 arguments to a function, number in a value history, register number, etc.)
524 where the value must not be larger than can fit in an int. */
525
526 int
527 longest_to_int (LONGEST arg)
528 {
529 /* Let the compiler do the work */
530 int rtnval = (int) arg;
531
532 /* Check for overflows or underflows */
533 if (sizeof (LONGEST) > sizeof (int))
534 {
535 if (rtnval != arg)
536 {
537 error ("Value out of range.");
538 }
539 }
540 return (rtnval);
541 }
542
543 /* Print a floating point value of type TYPE (not always a
544 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
545
546 void
547 print_floating (char *valaddr, struct type *type, struct ui_file *stream)
548 {
549 DOUBLEST doub;
550 int inv;
551 const struct floatformat *fmt = NULL;
552 unsigned len = TYPE_LENGTH (type);
553
554 /* If it is a floating-point, check for obvious problems. */
555 if (TYPE_CODE (type) == TYPE_CODE_FLT)
556 fmt = floatformat_from_type (type);
557 if (fmt != NULL && floatformat_is_nan (fmt, valaddr))
558 {
559 if (floatformat_is_negative (fmt, valaddr))
560 fprintf_filtered (stream, "-");
561 fprintf_filtered (stream, "nan(");
562 fprintf_filtered (stream, local_hex_format_prefix ());
563 fprintf_filtered (stream, floatformat_mantissa (fmt, valaddr));
564 fprintf_filtered (stream, local_hex_format_suffix ());
565 fprintf_filtered (stream, ")");
566 return;
567 }
568
569 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
570 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
571 needs to be used as that takes care of any necessary type
572 conversions. Such conversions are of course direct to DOUBLEST
573 and disregard any possible target floating point limitations.
574 For instance, a u64 would be converted and displayed exactly on a
575 host with 80 bit DOUBLEST but with loss of information on a host
576 with 64 bit DOUBLEST. */
577
578 doub = unpack_double (type, valaddr, &inv);
579 if (inv)
580 {
581 fprintf_filtered (stream, "<invalid float value>");
582 return;
583 }
584
585 /* FIXME: kettenis/2001-01-20: The following code makes too much
586 assumptions about the host and target floating point format. */
587
588 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
589 not necessarially be a TYPE_CODE_FLT, the below ignores that and
590 instead uses the type's length to determine the precision of the
591 floating-point value being printed. */
592
593 if (len < sizeof (double))
594 fprintf_filtered (stream, "%.9g", (double) doub);
595 else if (len == sizeof (double))
596 fprintf_filtered (stream, "%.17g", (double) doub);
597 else
598 #ifdef PRINTF_HAS_LONG_DOUBLE
599 fprintf_filtered (stream, "%.35Lg", doub);
600 #else
601 /* This at least wins with values that are representable as
602 doubles. */
603 fprintf_filtered (stream, "%.17g", (double) doub);
604 #endif
605 }
606
607 void
608 print_binary_chars (struct ui_file *stream, unsigned char *valaddr,
609 unsigned len)
610 {
611
612 #define BITS_IN_BYTES 8
613
614 unsigned char *p;
615 unsigned int i;
616 int b;
617
618 /* Declared "int" so it will be signed.
619 * This ensures that right shift will shift in zeros.
620 */
621 const int mask = 0x080;
622
623 /* FIXME: We should be not printing leading zeroes in most cases. */
624
625 fprintf_filtered (stream, local_binary_format_prefix ());
626 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
627 {
628 for (p = valaddr;
629 p < valaddr + len;
630 p++)
631 {
632 /* Every byte has 8 binary characters; peel off
633 * and print from the MSB end.
634 */
635 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
636 {
637 if (*p & (mask >> i))
638 b = 1;
639 else
640 b = 0;
641
642 fprintf_filtered (stream, "%1d", b);
643 }
644 }
645 }
646 else
647 {
648 for (p = valaddr + len - 1;
649 p >= valaddr;
650 p--)
651 {
652 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
653 {
654 if (*p & (mask >> i))
655 b = 1;
656 else
657 b = 0;
658
659 fprintf_filtered (stream, "%1d", b);
660 }
661 }
662 }
663 fprintf_filtered (stream, local_binary_format_suffix ());
664 }
665
666 /* VALADDR points to an integer of LEN bytes.
667 * Print it in octal on stream or format it in buf.
668 */
669 void
670 print_octal_chars (struct ui_file *stream, unsigned char *valaddr, unsigned len)
671 {
672 unsigned char *p;
673 unsigned char octa1, octa2, octa3, carry;
674 int cycle;
675
676 /* FIXME: We should be not printing leading zeroes in most cases. */
677
678
679 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
680 * the extra bits, which cycle every three bytes:
681 *
682 * Byte side: 0 1 2 3
683 * | | | |
684 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
685 *
686 * Octal side: 0 1 carry 3 4 carry ...
687 *
688 * Cycle number: 0 1 2
689 *
690 * But of course we are printing from the high side, so we have to
691 * figure out where in the cycle we are so that we end up with no
692 * left over bits at the end.
693 */
694 #define BITS_IN_OCTAL 3
695 #define HIGH_ZERO 0340
696 #define LOW_ZERO 0016
697 #define CARRY_ZERO 0003
698 #define HIGH_ONE 0200
699 #define MID_ONE 0160
700 #define LOW_ONE 0016
701 #define CARRY_ONE 0001
702 #define HIGH_TWO 0300
703 #define MID_TWO 0070
704 #define LOW_TWO 0007
705
706 /* For 32 we start in cycle 2, with two bits and one bit carry;
707 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
708 */
709 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
710 carry = 0;
711
712 fprintf_filtered (stream, local_octal_format_prefix ());
713 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
714 {
715 for (p = valaddr;
716 p < valaddr + len;
717 p++)
718 {
719 switch (cycle)
720 {
721 case 0:
722 /* No carry in, carry out two bits.
723 */
724 octa1 = (HIGH_ZERO & *p) >> 5;
725 octa2 = (LOW_ZERO & *p) >> 2;
726 carry = (CARRY_ZERO & *p);
727 fprintf_filtered (stream, "%o", octa1);
728 fprintf_filtered (stream, "%o", octa2);
729 break;
730
731 case 1:
732 /* Carry in two bits, carry out one bit.
733 */
734 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
735 octa2 = (MID_ONE & *p) >> 4;
736 octa3 = (LOW_ONE & *p) >> 1;
737 carry = (CARRY_ONE & *p);
738 fprintf_filtered (stream, "%o", octa1);
739 fprintf_filtered (stream, "%o", octa2);
740 fprintf_filtered (stream, "%o", octa3);
741 break;
742
743 case 2:
744 /* Carry in one bit, no carry out.
745 */
746 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
747 octa2 = (MID_TWO & *p) >> 3;
748 octa3 = (LOW_TWO & *p);
749 carry = 0;
750 fprintf_filtered (stream, "%o", octa1);
751 fprintf_filtered (stream, "%o", octa2);
752 fprintf_filtered (stream, "%o", octa3);
753 break;
754
755 default:
756 error ("Internal error in octal conversion;");
757 }
758
759 cycle++;
760 cycle = cycle % BITS_IN_OCTAL;
761 }
762 }
763 else
764 {
765 for (p = valaddr + len - 1;
766 p >= valaddr;
767 p--)
768 {
769 switch (cycle)
770 {
771 case 0:
772 /* Carry out, no carry in */
773 octa1 = (HIGH_ZERO & *p) >> 5;
774 octa2 = (LOW_ZERO & *p) >> 2;
775 carry = (CARRY_ZERO & *p);
776 fprintf_filtered (stream, "%o", octa1);
777 fprintf_filtered (stream, "%o", octa2);
778 break;
779
780 case 1:
781 /* Carry in, carry out */
782 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
783 octa2 = (MID_ONE & *p) >> 4;
784 octa3 = (LOW_ONE & *p) >> 1;
785 carry = (CARRY_ONE & *p);
786 fprintf_filtered (stream, "%o", octa1);
787 fprintf_filtered (stream, "%o", octa2);
788 fprintf_filtered (stream, "%o", octa3);
789 break;
790
791 case 2:
792 /* Carry in, no carry out */
793 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
794 octa2 = (MID_TWO & *p) >> 3;
795 octa3 = (LOW_TWO & *p);
796 carry = 0;
797 fprintf_filtered (stream, "%o", octa1);
798 fprintf_filtered (stream, "%o", octa2);
799 fprintf_filtered (stream, "%o", octa3);
800 break;
801
802 default:
803 error ("Internal error in octal conversion;");
804 }
805
806 cycle++;
807 cycle = cycle % BITS_IN_OCTAL;
808 }
809 }
810
811 fprintf_filtered (stream, local_octal_format_suffix ());
812 }
813
814 /* VALADDR points to an integer of LEN bytes.
815 * Print it in decimal on stream or format it in buf.
816 */
817 void
818 print_decimal_chars (struct ui_file *stream, unsigned char *valaddr,
819 unsigned len)
820 {
821 #define TEN 10
822 #define TWO_TO_FOURTH 16
823 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
824 #define CARRY_LEFT( x ) ((x) % TEN)
825 #define SHIFT( x ) ((x) << 4)
826 #define START_P \
827 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
828 #define NOT_END_P \
829 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
830 #define NEXT_P \
831 ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? p++ : p-- )
832 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
833 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
834
835 unsigned char *p;
836 unsigned char *digits;
837 int carry;
838 int decimal_len;
839 int i, j, decimal_digits;
840 int dummy;
841 int flip;
842
843 /* Base-ten number is less than twice as many digits
844 * as the base 16 number, which is 2 digits per byte.
845 */
846 decimal_len = len * 2 * 2;
847 digits = xmalloc (decimal_len);
848
849 for (i = 0; i < decimal_len; i++)
850 {
851 digits[i] = 0;
852 }
853
854 fprintf_filtered (stream, local_decimal_format_prefix ());
855
856 /* Ok, we have an unknown number of bytes of data to be printed in
857 * decimal.
858 *
859 * Given a hex number (in nibbles) as XYZ, we start by taking X and
860 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
861 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
862 *
863 * The trick is that "digits" holds a base-10 number, but sometimes
864 * the individual digits are > 10.
865 *
866 * Outer loop is per nibble (hex digit) of input, from MSD end to
867 * LSD end.
868 */
869 decimal_digits = 0; /* Number of decimal digits so far */
870 p = START_P;
871 flip = 0;
872 while (NOT_END_P)
873 {
874 /*
875 * Multiply current base-ten number by 16 in place.
876 * Each digit was between 0 and 9, now is between
877 * 0 and 144.
878 */
879 for (j = 0; j < decimal_digits; j++)
880 {
881 digits[j] = SHIFT (digits[j]);
882 }
883
884 /* Take the next nibble off the input and add it to what
885 * we've got in the LSB position. Bottom 'digit' is now
886 * between 0 and 159.
887 *
888 * "flip" is used to run this loop twice for each byte.
889 */
890 if (flip == 0)
891 {
892 /* Take top nibble.
893 */
894 digits[0] += HIGH_NIBBLE (*p);
895 flip = 1;
896 }
897 else
898 {
899 /* Take low nibble and bump our pointer "p".
900 */
901 digits[0] += LOW_NIBBLE (*p);
902 NEXT_P;
903 flip = 0;
904 }
905
906 /* Re-decimalize. We have to do this often enough
907 * that we don't overflow, but once per nibble is
908 * overkill. Easier this way, though. Note that the
909 * carry is often larger than 10 (e.g. max initial
910 * carry out of lowest nibble is 15, could bubble all
911 * the way up greater than 10). So we have to do
912 * the carrying beyond the last current digit.
913 */
914 carry = 0;
915 for (j = 0; j < decimal_len - 1; j++)
916 {
917 digits[j] += carry;
918
919 /* "/" won't handle an unsigned char with
920 * a value that if signed would be negative.
921 * So extend to longword int via "dummy".
922 */
923 dummy = digits[j];
924 carry = CARRY_OUT (dummy);
925 digits[j] = CARRY_LEFT (dummy);
926
927 if (j >= decimal_digits && carry == 0)
928 {
929 /*
930 * All higher digits are 0 and we
931 * no longer have a carry.
932 *
933 * Note: "j" is 0-based, "decimal_digits" is
934 * 1-based.
935 */
936 decimal_digits = j + 1;
937 break;
938 }
939 }
940 }
941
942 /* Ok, now "digits" is the decimal representation, with
943 * the "decimal_digits" actual digits. Print!
944 */
945 for (i = decimal_digits - 1; i >= 0; i--)
946 {
947 fprintf_filtered (stream, "%1d", digits[i]);
948 }
949 xfree (digits);
950
951 fprintf_filtered (stream, local_decimal_format_suffix ());
952 }
953
954 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
955
956 static void
957 print_hex_chars (struct ui_file *stream, unsigned char *valaddr, unsigned len)
958 {
959 unsigned char *p;
960
961 /* FIXME: We should be not printing leading zeroes in most cases. */
962
963 fprintf_filtered (stream, local_hex_format_prefix ());
964 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
965 {
966 for (p = valaddr;
967 p < valaddr + len;
968 p++)
969 {
970 fprintf_filtered (stream, "%02x", *p);
971 }
972 }
973 else
974 {
975 for (p = valaddr + len - 1;
976 p >= valaddr;
977 p--)
978 {
979 fprintf_filtered (stream, "%02x", *p);
980 }
981 }
982 fprintf_filtered (stream, local_hex_format_suffix ());
983 }
984
985 /* Called by various <lang>_val_print routines to print elements of an
986 array in the form "<elem1>, <elem2>, <elem3>, ...".
987
988 (FIXME?) Assumes array element separator is a comma, which is correct
989 for all languages currently handled.
990 (FIXME?) Some languages have a notation for repeated array elements,
991 perhaps we should try to use that notation when appropriate.
992 */
993
994 void
995 val_print_array_elements (struct type *type, char *valaddr, CORE_ADDR address,
996 struct ui_file *stream, int format, int deref_ref,
997 int recurse, enum val_prettyprint pretty,
998 unsigned int i)
999 {
1000 unsigned int things_printed = 0;
1001 unsigned len;
1002 struct type *elttype;
1003 unsigned eltlen;
1004 /* Position of the array element we are examining to see
1005 whether it is repeated. */
1006 unsigned int rep1;
1007 /* Number of repetitions we have detected so far. */
1008 unsigned int reps;
1009
1010 elttype = TYPE_TARGET_TYPE (type);
1011 eltlen = TYPE_LENGTH (check_typedef (elttype));
1012 len = TYPE_LENGTH (type) / eltlen;
1013
1014 annotate_array_section_begin (i, elttype);
1015
1016 for (; i < len && things_printed < print_max; i++)
1017 {
1018 if (i != 0)
1019 {
1020 if (prettyprint_arrays)
1021 {
1022 fprintf_filtered (stream, ",\n");
1023 print_spaces_filtered (2 + 2 * recurse, stream);
1024 }
1025 else
1026 {
1027 fprintf_filtered (stream, ", ");
1028 }
1029 }
1030 wrap_here (n_spaces (2 + 2 * recurse));
1031
1032 rep1 = i + 1;
1033 reps = 1;
1034 while ((rep1 < len) &&
1035 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1036 {
1037 ++reps;
1038 ++rep1;
1039 }
1040
1041 if (reps > repeat_count_threshold)
1042 {
1043 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1044 deref_ref, recurse + 1, pretty);
1045 annotate_elt_rep (reps);
1046 fprintf_filtered (stream, " <repeats %u times>", reps);
1047 annotate_elt_rep_end ();
1048
1049 i = rep1 - 1;
1050 things_printed += repeat_count_threshold;
1051 }
1052 else
1053 {
1054 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1055 deref_ref, recurse + 1, pretty);
1056 annotate_elt ();
1057 things_printed++;
1058 }
1059 }
1060 annotate_array_section_end ();
1061 if (i < len)
1062 {
1063 fprintf_filtered (stream, "...");
1064 }
1065 }
1066
1067 /* Read LEN bytes of target memory at address MEMADDR, placing the
1068 results in GDB's memory at MYADDR. Returns a count of the bytes
1069 actually read, and optionally an errno value in the location
1070 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1071
1072 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1073 function be eliminated. */
1074
1075 static int
1076 partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
1077 {
1078 int nread; /* Number of bytes actually read. */
1079 int errcode; /* Error from last read. */
1080
1081 /* First try a complete read. */
1082 errcode = target_read_memory (memaddr, myaddr, len);
1083 if (errcode == 0)
1084 {
1085 /* Got it all. */
1086 nread = len;
1087 }
1088 else
1089 {
1090 /* Loop, reading one byte at a time until we get as much as we can. */
1091 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1092 {
1093 errcode = target_read_memory (memaddr++, myaddr++, 1);
1094 }
1095 /* If an error, the last read was unsuccessful, so adjust count. */
1096 if (errcode != 0)
1097 {
1098 nread--;
1099 }
1100 }
1101 if (errnoptr != NULL)
1102 {
1103 *errnoptr = errcode;
1104 }
1105 return (nread);
1106 }
1107
1108 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1109 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1110 stops at the first null byte, otherwise printing proceeds (including null
1111 bytes) until either print_max or LEN characters have been printed,
1112 whichever is smaller. */
1113
1114 /* FIXME: Use target_read_string. */
1115
1116 int
1117 val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
1118 {
1119 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1120 int errcode; /* Errno returned from bad reads. */
1121 unsigned int fetchlimit; /* Maximum number of chars to print. */
1122 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1123 unsigned int chunksize; /* Size of each fetch, in chars. */
1124 char *buffer = NULL; /* Dynamically growable fetch buffer. */
1125 char *bufptr; /* Pointer to next available byte in buffer. */
1126 char *limit; /* First location past end of fetch buffer. */
1127 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1128 int found_nul; /* Non-zero if we found the nul char */
1129
1130 /* First we need to figure out the limit on the number of characters we are
1131 going to attempt to fetch and print. This is actually pretty simple. If
1132 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1133 LEN is -1, then the limit is print_max. This is true regardless of
1134 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1135 because finding the null byte (or available memory) is what actually
1136 limits the fetch. */
1137
1138 fetchlimit = (len == -1 ? print_max : min (len, print_max));
1139
1140 /* Now decide how large of chunks to try to read in one operation. This
1141 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1142 so we might as well read them all in one operation. If LEN is -1, we
1143 are looking for a null terminator to end the fetching, so we might as
1144 well read in blocks that are large enough to be efficient, but not so
1145 large as to be slow if fetchlimit happens to be large. So we choose the
1146 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1147 200 is way too big for remote debugging over a serial line. */
1148
1149 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1150
1151 /* Loop until we either have all the characters to print, or we encounter
1152 some error, such as bumping into the end of the address space. */
1153
1154 found_nul = 0;
1155 old_chain = make_cleanup (null_cleanup, 0);
1156
1157 if (len > 0)
1158 {
1159 buffer = (char *) xmalloc (len * width);
1160 bufptr = buffer;
1161 old_chain = make_cleanup (xfree, buffer);
1162
1163 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1164 / width;
1165 addr += nfetch * width;
1166 bufptr += nfetch * width;
1167 }
1168 else if (len == -1)
1169 {
1170 unsigned long bufsize = 0;
1171 do
1172 {
1173 QUIT;
1174 nfetch = min (chunksize, fetchlimit - bufsize);
1175
1176 if (buffer == NULL)
1177 buffer = (char *) xmalloc (nfetch * width);
1178 else
1179 {
1180 discard_cleanups (old_chain);
1181 buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
1182 }
1183
1184 old_chain = make_cleanup (xfree, buffer);
1185 bufptr = buffer + bufsize * width;
1186 bufsize += nfetch;
1187
1188 /* Read as much as we can. */
1189 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1190 / width;
1191
1192 /* Scan this chunk for the null byte that terminates the string
1193 to print. If found, we don't need to fetch any more. Note
1194 that bufptr is explicitly left pointing at the next character
1195 after the null byte, or at the next character after the end of
1196 the buffer. */
1197
1198 limit = bufptr + nfetch * width;
1199 while (bufptr < limit)
1200 {
1201 unsigned long c;
1202
1203 c = extract_unsigned_integer (bufptr, width);
1204 addr += width;
1205 bufptr += width;
1206 if (c == 0)
1207 {
1208 /* We don't care about any error which happened after
1209 the NULL terminator. */
1210 errcode = 0;
1211 found_nul = 1;
1212 break;
1213 }
1214 }
1215 }
1216 while (errcode == 0 /* no error */
1217 && bufptr - buffer < fetchlimit * width /* no overrun */
1218 && !found_nul); /* haven't found nul yet */
1219 }
1220 else
1221 { /* length of string is really 0! */
1222 buffer = bufptr = NULL;
1223 errcode = 0;
1224 }
1225
1226 /* bufptr and addr now point immediately beyond the last byte which we
1227 consider part of the string (including a '\0' which ends the string). */
1228
1229 /* We now have either successfully filled the buffer to fetchlimit, or
1230 terminated early due to an error or finding a null char when LEN is -1. */
1231
1232 if (len == -1 && !found_nul)
1233 {
1234 char *peekbuf;
1235
1236 /* We didn't find a null terminator we were looking for. Attempt
1237 to peek at the next character. If not successful, or it is not
1238 a null byte, then force ellipsis to be printed. */
1239
1240 peekbuf = (char *) alloca (width);
1241
1242 if (target_read_memory (addr, peekbuf, width) == 0
1243 && extract_unsigned_integer (peekbuf, width) != 0)
1244 force_ellipsis = 1;
1245 }
1246 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1247 {
1248 /* Getting an error when we have a requested length, or fetching less
1249 than the number of characters actually requested, always make us
1250 print ellipsis. */
1251 force_ellipsis = 1;
1252 }
1253
1254 QUIT;
1255
1256 /* If we get an error before fetching anything, don't print a string.
1257 But if we fetch something and then get an error, print the string
1258 and then the error message. */
1259 if (errcode == 0 || bufptr > buffer)
1260 {
1261 if (addressprint)
1262 {
1263 fputs_filtered (" ", stream);
1264 }
1265 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1266 }
1267
1268 if (errcode != 0)
1269 {
1270 if (errcode == EIO)
1271 {
1272 fprintf_filtered (stream, " <Address ");
1273 print_address_numeric (addr, 1, stream);
1274 fprintf_filtered (stream, " out of bounds>");
1275 }
1276 else
1277 {
1278 fprintf_filtered (stream, " <Error reading address ");
1279 print_address_numeric (addr, 1, stream);
1280 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1281 }
1282 }
1283 gdb_flush (stream);
1284 do_cleanups (old_chain);
1285 return ((bufptr - buffer) / width);
1286 }
1287 \f
1288
1289 /* Validate an input or output radix setting, and make sure the user
1290 knows what they really did here. Radix setting is confusing, e.g.
1291 setting the input radix to "10" never changes it! */
1292
1293 /* ARGSUSED */
1294 static void
1295 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1296 {
1297 set_input_radix_1 (from_tty, input_radix);
1298 }
1299
1300 /* ARGSUSED */
1301 static void
1302 set_input_radix_1 (int from_tty, unsigned radix)
1303 {
1304 /* We don't currently disallow any input radix except 0 or 1, which don't
1305 make any mathematical sense. In theory, we can deal with any input
1306 radix greater than 1, even if we don't have unique digits for every
1307 value from 0 to radix-1, but in practice we lose on large radix values.
1308 We should either fix the lossage or restrict the radix range more.
1309 (FIXME). */
1310
1311 if (radix < 2)
1312 {
1313 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1314 value. */
1315 error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
1316 radix);
1317 }
1318 input_radix = radix;
1319 if (from_tty)
1320 {
1321 printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
1322 radix, radix, radix);
1323 }
1324 }
1325
1326 /* ARGSUSED */
1327 static void
1328 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1329 {
1330 set_output_radix_1 (from_tty, output_radix);
1331 }
1332
1333 static void
1334 set_output_radix_1 (int from_tty, unsigned radix)
1335 {
1336 /* Validate the radix and disallow ones that we aren't prepared to
1337 handle correctly, leaving the radix unchanged. */
1338 switch (radix)
1339 {
1340 case 16:
1341 output_format = 'x'; /* hex */
1342 break;
1343 case 10:
1344 output_format = 0; /* decimal */
1345 break;
1346 case 8:
1347 output_format = 'o'; /* octal */
1348 break;
1349 default:
1350 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1351 value. */
1352 error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
1353 radix);
1354 }
1355 output_radix = radix;
1356 if (from_tty)
1357 {
1358 printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
1359 radix, radix, radix);
1360 }
1361 }
1362
1363 /* Set both the input and output radix at once. Try to set the output radix
1364 first, since it has the most restrictive range. An radix that is valid as
1365 an output radix is also valid as an input radix.
1366
1367 It may be useful to have an unusual input radix. If the user wishes to
1368 set an input radix that is not valid as an output radix, he needs to use
1369 the 'set input-radix' command. */
1370
1371 static void
1372 set_radix (char *arg, int from_tty)
1373 {
1374 unsigned radix;
1375
1376 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1377 set_output_radix_1 (0, radix);
1378 set_input_radix_1 (0, radix);
1379 if (from_tty)
1380 {
1381 printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
1382 radix, radix, radix);
1383 }
1384 }
1385
1386 /* Show both the input and output radices. */
1387
1388 /*ARGSUSED */
1389 static void
1390 show_radix (char *arg, int from_tty)
1391 {
1392 if (from_tty)
1393 {
1394 if (input_radix == output_radix)
1395 {
1396 printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
1397 input_radix, input_radix, input_radix);
1398 }
1399 else
1400 {
1401 printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
1402 input_radix, input_radix, input_radix);
1403 printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
1404 output_radix, output_radix, output_radix);
1405 }
1406 }
1407 }
1408 \f
1409
1410 /*ARGSUSED */
1411 static void
1412 set_print (char *arg, int from_tty)
1413 {
1414 printf_unfiltered (
1415 "\"set print\" must be followed by the name of a print subcommand.\n");
1416 help_list (setprintlist, "set print ", -1, gdb_stdout);
1417 }
1418
1419 /*ARGSUSED */
1420 static void
1421 show_print (char *args, int from_tty)
1422 {
1423 cmd_show_list (showprintlist, from_tty, "");
1424 }
1425 \f
1426 void
1427 _initialize_valprint (void)
1428 {
1429 struct cmd_list_element *c;
1430
1431 add_prefix_cmd ("print", no_class, set_print,
1432 "Generic command for setting how things print.",
1433 &setprintlist, "set print ", 0, &setlist);
1434 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1435 /* prefer set print to set prompt */
1436 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1437
1438 add_prefix_cmd ("print", no_class, show_print,
1439 "Generic command for showing print settings.",
1440 &showprintlist, "show print ", 0, &showlist);
1441 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1442 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1443
1444 add_show_from_set
1445 (add_set_cmd ("elements", no_class, var_uinteger, (char *) &print_max,
1446 "Set limit on string chars or array elements to print.\n\
1447 \"set print elements 0\" causes there to be no limit.",
1448 &setprintlist),
1449 &showprintlist);
1450
1451 add_show_from_set
1452 (add_set_cmd ("null-stop", no_class, var_boolean,
1453 (char *) &stop_print_at_null,
1454 "Set printing of char arrays to stop at first null char.",
1455 &setprintlist),
1456 &showprintlist);
1457
1458 add_show_from_set
1459 (add_set_cmd ("repeats", no_class, var_uinteger,
1460 (char *) &repeat_count_threshold,
1461 "Set threshold for repeated print elements.\n\
1462 \"set print repeats 0\" causes all elements to be individually printed.",
1463 &setprintlist),
1464 &showprintlist);
1465
1466 add_show_from_set
1467 (add_set_cmd ("pretty", class_support, var_boolean,
1468 (char *) &prettyprint_structs,
1469 "Set prettyprinting of structures.",
1470 &setprintlist),
1471 &showprintlist);
1472
1473 add_show_from_set
1474 (add_set_cmd ("union", class_support, var_boolean, (char *) &unionprint,
1475 "Set printing of unions interior to structures.",
1476 &setprintlist),
1477 &showprintlist);
1478
1479 add_show_from_set
1480 (add_set_cmd ("array", class_support, var_boolean,
1481 (char *) &prettyprint_arrays,
1482 "Set prettyprinting of arrays.",
1483 &setprintlist),
1484 &showprintlist);
1485
1486 add_show_from_set
1487 (add_set_cmd ("address", class_support, var_boolean, (char *) &addressprint,
1488 "Set printing of addresses.",
1489 &setprintlist),
1490 &showprintlist);
1491
1492 c = add_set_cmd ("input-radix", class_support, var_uinteger,
1493 (char *) &input_radix,
1494 "Set default input radix for entering numbers.",
1495 &setlist);
1496 add_show_from_set (c, &showlist);
1497 set_cmd_sfunc (c, set_input_radix);
1498
1499 c = add_set_cmd ("output-radix", class_support, var_uinteger,
1500 (char *) &output_radix,
1501 "Set default output radix for printing of values.",
1502 &setlist);
1503 add_show_from_set (c, &showlist);
1504 set_cmd_sfunc (c, set_output_radix);
1505
1506 /* The "set radix" and "show radix" commands are special in that they are
1507 like normal set and show commands but allow two normally independent
1508 variables to be either set or shown with a single command. So the
1509 usual add_set_cmd() and add_show_from_set() commands aren't really
1510 appropriate. */
1511 add_cmd ("radix", class_support, set_radix,
1512 "Set default input and output number radices.\n\
1513 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1514 Without an argument, sets both radices back to the default value of 10.",
1515 &setlist);
1516 add_cmd ("radix", class_support, show_radix,
1517 "Show the default input and output number radices.\n\
1518 Use 'show input-radix' or 'show output-radix' to independently show each.",
1519 &showlist);
1520
1521 /* Give people the defaults which they are used to. */
1522 prettyprint_structs = 0;
1523 prettyprint_arrays = 0;
1524 unionprint = 1;
1525 addressprint = 1;
1526 print_max = PRINT_MAX_DEFAULT;
1527 }
This page took 0.061565 seconds and 4 git commands to generate.