[ARC] Add checking for LP_COUNT reg usage, improve error reporting.
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include "typeprint.h"
38 #include <ctype.h>
39 #include <algorithm>
40
41 /* Maximum number of wchars returned from wchar_iterate. */
42 #define MAX_WCHARS 4
43
44 /* A convenience macro to compute the size of a wchar_t buffer containing X
45 characters. */
46 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
47
48 /* Character buffer size saved while iterating over wchars. */
49 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
50
51 /* A structure to encapsulate state information from iterated
52 character conversions. */
53 struct converted_character
54 {
55 /* The number of characters converted. */
56 int num_chars;
57
58 /* The result of the conversion. See charset.h for more. */
59 enum wchar_iterate_result result;
60
61 /* The (saved) converted character(s). */
62 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
63
64 /* The first converted target byte. */
65 const gdb_byte *buf;
66
67 /* The number of bytes converted. */
68 size_t buflen;
69
70 /* How many times this character(s) is repeated. */
71 int repeat_count;
72 };
73
74 typedef struct converted_character converted_character_d;
75 DEF_VEC_O (converted_character_d);
76
77 /* Command lists for set/show print raw. */
78 struct cmd_list_element *setprintrawlist;
79 struct cmd_list_element *showprintrawlist;
80
81 /* Prototypes for local functions */
82
83 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
84 int len, int *errptr);
85
86 static void show_print (char *, int);
87
88 static void set_print (char *, int);
89
90 static void set_radix (char *, int);
91
92 static void show_radix (char *, int);
93
94 static void set_input_radix (char *, int, struct cmd_list_element *);
95
96 static void set_input_radix_1 (int, unsigned);
97
98 static void set_output_radix (char *, int, struct cmd_list_element *);
99
100 static void set_output_radix_1 (int, unsigned);
101
102 static void val_print_type_code_flags (struct type *type,
103 const gdb_byte *valaddr,
104 struct ui_file *stream);
105
106 void _initialize_valprint (void);
107
108 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
109
110 struct value_print_options user_print_options =
111 {
112 Val_prettyformat_default, /* prettyformat */
113 0, /* prettyformat_arrays */
114 0, /* prettyformat_structs */
115 0, /* vtblprint */
116 1, /* unionprint */
117 1, /* addressprint */
118 0, /* objectprint */
119 PRINT_MAX_DEFAULT, /* print_max */
120 10, /* repeat_count_threshold */
121 0, /* output_format */
122 0, /* format */
123 0, /* stop_print_at_null */
124 0, /* print_array_indexes */
125 0, /* deref_ref */
126 1, /* static_field_print */
127 1, /* pascal_static_field_print */
128 0, /* raw */
129 0, /* summary */
130 1 /* symbol_print */
131 };
132
133 /* Initialize *OPTS to be a copy of the user print options. */
134 void
135 get_user_print_options (struct value_print_options *opts)
136 {
137 *opts = user_print_options;
138 }
139
140 /* Initialize *OPTS to be a copy of the user print options, but with
141 pretty-formatting disabled. */
142 void
143 get_no_prettyformat_print_options (struct value_print_options *opts)
144 {
145 *opts = user_print_options;
146 opts->prettyformat = Val_no_prettyformat;
147 }
148
149 /* Initialize *OPTS to be a copy of the user print options, but using
150 FORMAT as the formatting option. */
151 void
152 get_formatted_print_options (struct value_print_options *opts,
153 char format)
154 {
155 *opts = user_print_options;
156 opts->format = format;
157 }
158
159 static void
160 show_print_max (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file,
164 _("Limit on string chars or array "
165 "elements to print is %s.\n"),
166 value);
167 }
168
169
170 /* Default input and output radixes, and output format letter. */
171
172 unsigned input_radix = 10;
173 static void
174 show_input_radix (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file,
178 _("Default input radix for entering numbers is %s.\n"),
179 value);
180 }
181
182 unsigned output_radix = 10;
183 static void
184 show_output_radix (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186 {
187 fprintf_filtered (file,
188 _("Default output radix for printing of values is %s.\n"),
189 value);
190 }
191
192 /* By default we print arrays without printing the index of each element in
193 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
194
195 static void
196 show_print_array_indexes (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
200 }
201
202 /* Print repeat counts if there are more than this many repetitions of an
203 element in an array. Referenced by the low level language dependent
204 print routines. */
205
206 static void
207 show_repeat_count_threshold (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
211 value);
212 }
213
214 /* If nonzero, stops printing of char arrays at first null. */
215
216 static void
217 show_stop_print_at_null (struct ui_file *file, int from_tty,
218 struct cmd_list_element *c, const char *value)
219 {
220 fprintf_filtered (file,
221 _("Printing of char arrays to stop "
222 "at first null char is %s.\n"),
223 value);
224 }
225
226 /* Controls pretty printing of structures. */
227
228 static void
229 show_prettyformat_structs (struct ui_file *file, int from_tty,
230 struct cmd_list_element *c, const char *value)
231 {
232 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
233 }
234
235 /* Controls pretty printing of arrays. */
236
237 static void
238 show_prettyformat_arrays (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240 {
241 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
242 }
243
244 /* If nonzero, causes unions inside structures or other unions to be
245 printed. */
246
247 static void
248 show_unionprint (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file,
252 _("Printing of unions interior to structures is %s.\n"),
253 value);
254 }
255
256 /* If nonzero, causes machine addresses to be printed in certain contexts. */
257
258 static void
259 show_addressprint (struct ui_file *file, int from_tty,
260 struct cmd_list_element *c, const char *value)
261 {
262 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
263 }
264
265 static void
266 show_symbol_print (struct ui_file *file, int from_tty,
267 struct cmd_list_element *c, const char *value)
268 {
269 fprintf_filtered (file,
270 _("Printing of symbols when printing pointers is %s.\n"),
271 value);
272 }
273
274 \f
275
276 /* A helper function for val_print. When printing in "summary" mode,
277 we want to print scalar arguments, but not aggregate arguments.
278 This function distinguishes between the two. */
279
280 int
281 val_print_scalar_type_p (struct type *type)
282 {
283 type = check_typedef (type);
284 while (TYPE_CODE (type) == TYPE_CODE_REF)
285 {
286 type = TYPE_TARGET_TYPE (type);
287 type = check_typedef (type);
288 }
289 switch (TYPE_CODE (type))
290 {
291 case TYPE_CODE_ARRAY:
292 case TYPE_CODE_STRUCT:
293 case TYPE_CODE_UNION:
294 case TYPE_CODE_SET:
295 case TYPE_CODE_STRING:
296 return 0;
297 default:
298 return 1;
299 }
300 }
301
302 /* See its definition in value.h. */
303
304 int
305 valprint_check_validity (struct ui_file *stream,
306 struct type *type,
307 LONGEST embedded_offset,
308 const struct value *val)
309 {
310 type = check_typedef (type);
311
312 if (type_not_associated (type))
313 {
314 val_print_not_associated (stream);
315 return 0;
316 }
317
318 if (type_not_allocated (type))
319 {
320 val_print_not_allocated (stream);
321 return 0;
322 }
323
324 if (TYPE_CODE (type) != TYPE_CODE_UNION
325 && TYPE_CODE (type) != TYPE_CODE_STRUCT
326 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
327 {
328 if (value_bits_any_optimized_out (val,
329 TARGET_CHAR_BIT * embedded_offset,
330 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
331 {
332 val_print_optimized_out (val, stream);
333 return 0;
334 }
335
336 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
337 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
338 {
339 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
340 int ref_is_addressable = 0;
341
342 if (is_ref)
343 {
344 const struct value *deref_val = coerce_ref_if_computed (val);
345
346 if (deref_val != NULL)
347 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
348 }
349
350 if (!is_ref || !ref_is_addressable)
351 fputs_filtered (_("<synthetic pointer>"), stream);
352
353 /* C++ references should be valid even if they're synthetic. */
354 return is_ref;
355 }
356
357 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
358 {
359 val_print_unavailable (stream);
360 return 0;
361 }
362 }
363
364 return 1;
365 }
366
367 void
368 val_print_optimized_out (const struct value *val, struct ui_file *stream)
369 {
370 if (val != NULL && value_lval_const (val) == lval_register)
371 val_print_not_saved (stream);
372 else
373 fprintf_filtered (stream, _("<optimized out>"));
374 }
375
376 void
377 val_print_not_saved (struct ui_file *stream)
378 {
379 fprintf_filtered (stream, _("<not saved>"));
380 }
381
382 void
383 val_print_unavailable (struct ui_file *stream)
384 {
385 fprintf_filtered (stream, _("<unavailable>"));
386 }
387
388 void
389 val_print_invalid_address (struct ui_file *stream)
390 {
391 fprintf_filtered (stream, _("<invalid address>"));
392 }
393
394 /* Print a pointer based on the type of its target.
395
396 Arguments to this functions are roughly the same as those in
397 generic_val_print. A difference is that ADDRESS is the address to print,
398 with embedded_offset already added. ELTTYPE represents
399 the pointed type after check_typedef. */
400
401 static void
402 print_unpacked_pointer (struct type *type, struct type *elttype,
403 CORE_ADDR address, struct ui_file *stream,
404 const struct value_print_options *options)
405 {
406 struct gdbarch *gdbarch = get_type_arch (type);
407
408 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
409 {
410 /* Try to print what function it points to. */
411 print_function_pointer_address (options, gdbarch, address, stream);
412 return;
413 }
414
415 if (options->symbol_print)
416 print_address_demangle (options, gdbarch, address, stream, demangle);
417 else if (options->addressprint)
418 fputs_filtered (paddress (gdbarch, address), stream);
419 }
420
421 /* generic_val_print helper for TYPE_CODE_ARRAY. */
422
423 static void
424 generic_val_print_array (struct type *type,
425 int embedded_offset, CORE_ADDR address,
426 struct ui_file *stream, int recurse,
427 struct value *original_value,
428 const struct value_print_options *options,
429 const struct
430 generic_val_print_decorations *decorations)
431 {
432 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
433 struct type *elttype = check_typedef (unresolved_elttype);
434
435 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
436 {
437 LONGEST low_bound, high_bound;
438
439 if (!get_array_bounds (type, &low_bound, &high_bound))
440 error (_("Could not determine the array high bound"));
441
442 if (options->prettyformat_arrays)
443 {
444 print_spaces_filtered (2 + 2 * recurse, stream);
445 }
446
447 fputs_filtered (decorations->array_start, stream);
448 val_print_array_elements (type, embedded_offset,
449 address, stream,
450 recurse, original_value, options, 0);
451 fputs_filtered (decorations->array_end, stream);
452 }
453 else
454 {
455 /* Array of unspecified length: treat like pointer to first elt. */
456 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
457 options);
458 }
459
460 }
461
462 /* generic_val_print helper for TYPE_CODE_PTR. */
463
464 static void
465 generic_val_print_ptr (struct type *type,
466 int embedded_offset, struct ui_file *stream,
467 struct value *original_value,
468 const struct value_print_options *options)
469 {
470 struct gdbarch *gdbarch = get_type_arch (type);
471 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
472
473 if (options->format && options->format != 's')
474 {
475 val_print_scalar_formatted (type, embedded_offset,
476 original_value, options, 0, stream);
477 }
478 else
479 {
480 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
481 struct type *elttype = check_typedef (unresolved_elttype);
482 const gdb_byte *valaddr = value_contents_for_printing (original_value);
483 CORE_ADDR addr = unpack_pointer (type,
484 valaddr + embedded_offset * unit_size);
485
486 print_unpacked_pointer (type, elttype, addr, stream, options);
487 }
488 }
489
490
491 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
492
493 static void
494 generic_val_print_memberptr (struct type *type,
495 int embedded_offset, struct ui_file *stream,
496 struct value *original_value,
497 const struct value_print_options *options)
498 {
499 val_print_scalar_formatted (type, embedded_offset,
500 original_value, options, 0, stream);
501 }
502
503 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
504
505 static void
506 print_ref_address (struct type *type, const gdb_byte *address_buffer,
507 int embedded_offset, struct ui_file *stream)
508 {
509 struct gdbarch *gdbarch = get_type_arch (type);
510
511 if (address_buffer != NULL)
512 {
513 CORE_ADDR address
514 = extract_typed_address (address_buffer + embedded_offset, type);
515
516 fprintf_filtered (stream, "@");
517 fputs_filtered (paddress (gdbarch, address), stream);
518 }
519 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
520 }
521
522 /* If VAL is addressable, return the value contents buffer of a value that
523 represents a pointer to VAL. Otherwise return NULL. */
524
525 static const gdb_byte *
526 get_value_addr_contents (struct value *deref_val)
527 {
528 gdb_assert (deref_val != NULL);
529
530 if (value_lval_const (deref_val) == lval_memory)
531 return value_contents_for_printing_const (value_addr (deref_val));
532 else
533 {
534 /* We have a non-addressable value, such as a DW_AT_const_value. */
535 return NULL;
536 }
537 }
538
539 /* generic_val_print helper for TYPE_CODE_REF. */
540
541 static void
542 generic_val_print_ref (struct type *type,
543 int embedded_offset, struct ui_file *stream, int recurse,
544 struct value *original_value,
545 const struct value_print_options *options)
546 {
547 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
548 struct value *deref_val = NULL;
549 const int value_is_synthetic
550 = value_bits_synthetic_pointer (original_value,
551 TARGET_CHAR_BIT * embedded_offset,
552 TARGET_CHAR_BIT * TYPE_LENGTH (type));
553 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
554 || options->deref_ref);
555 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
556 const gdb_byte *valaddr = value_contents_for_printing (original_value);
557
558 if (must_coerce_ref && type_is_defined)
559 {
560 deref_val = coerce_ref_if_computed (original_value);
561
562 if (deref_val != NULL)
563 {
564 /* More complicated computed references are not supported. */
565 gdb_assert (embedded_offset == 0);
566 }
567 else
568 deref_val = value_at (TYPE_TARGET_TYPE (type),
569 unpack_pointer (type, valaddr + embedded_offset));
570 }
571 /* Else, original_value isn't a synthetic reference or we don't have to print
572 the reference's contents.
573
574 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
575 cause original_value to be a not_lval instead of an lval_computed,
576 which will make value_bits_synthetic_pointer return false.
577 This happens because if options->objectprint is true, c_value_print will
578 overwrite original_value's contents with the result of coercing
579 the reference through value_addr, and then set its type back to
580 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
581 we can simply treat it as non-synthetic and move on. */
582
583 if (options->addressprint)
584 {
585 const gdb_byte *address = (value_is_synthetic && type_is_defined
586 ? get_value_addr_contents (deref_val)
587 : valaddr);
588
589 print_ref_address (type, address, embedded_offset, stream);
590
591 if (options->deref_ref)
592 fputs_filtered (": ", stream);
593 }
594
595 if (options->deref_ref)
596 {
597 if (type_is_defined)
598 common_val_print (deref_val, stream, recurse, options,
599 current_language);
600 else
601 fputs_filtered ("???", stream);
602 }
603 }
604
605 /* Helper function for generic_val_print_enum.
606 This is also used to print enums in TYPE_CODE_FLAGS values. */
607
608 static void
609 generic_val_print_enum_1 (struct type *type, LONGEST val,
610 struct ui_file *stream)
611 {
612 unsigned int i;
613 unsigned int len;
614
615 len = TYPE_NFIELDS (type);
616 for (i = 0; i < len; i++)
617 {
618 QUIT;
619 if (val == TYPE_FIELD_ENUMVAL (type, i))
620 {
621 break;
622 }
623 }
624 if (i < len)
625 {
626 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
627 }
628 else if (TYPE_FLAG_ENUM (type))
629 {
630 int first = 1;
631
632 /* We have a "flag" enum, so we try to decompose it into
633 pieces as appropriate. A flag enum has disjoint
634 constants by definition. */
635 fputs_filtered ("(", stream);
636 for (i = 0; i < len; ++i)
637 {
638 QUIT;
639
640 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
641 {
642 if (!first)
643 fputs_filtered (" | ", stream);
644 first = 0;
645
646 val &= ~TYPE_FIELD_ENUMVAL (type, i);
647 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
648 }
649 }
650
651 if (first || val != 0)
652 {
653 if (!first)
654 fputs_filtered (" | ", stream);
655 fputs_filtered ("unknown: ", stream);
656 print_longest (stream, 'd', 0, val);
657 }
658
659 fputs_filtered (")", stream);
660 }
661 else
662 print_longest (stream, 'd', 0, val);
663 }
664
665 /* generic_val_print helper for TYPE_CODE_ENUM. */
666
667 static void
668 generic_val_print_enum (struct type *type,
669 int embedded_offset, struct ui_file *stream,
670 struct value *original_value,
671 const struct value_print_options *options)
672 {
673 LONGEST val;
674 struct gdbarch *gdbarch = get_type_arch (type);
675 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
676
677 if (options->format)
678 {
679 val_print_scalar_formatted (type, embedded_offset,
680 original_value, options, 0, stream);
681 }
682 else
683 {
684 const gdb_byte *valaddr = value_contents_for_printing (original_value);
685
686 val = unpack_long (type, valaddr + embedded_offset * unit_size);
687
688 generic_val_print_enum_1 (type, val, stream);
689 }
690 }
691
692 /* generic_val_print helper for TYPE_CODE_FLAGS. */
693
694 static void
695 generic_val_print_flags (struct type *type,
696 int embedded_offset, struct ui_file *stream,
697 struct value *original_value,
698 const struct value_print_options *options)
699
700 {
701 if (options->format)
702 val_print_scalar_formatted (type, embedded_offset, original_value,
703 options, 0, stream);
704 else
705 {
706 const gdb_byte *valaddr = value_contents_for_printing (original_value);
707
708 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
709 }
710 }
711
712 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
713
714 static void
715 generic_val_print_func (struct type *type,
716 int embedded_offset, CORE_ADDR address,
717 struct ui_file *stream,
718 struct value *original_value,
719 const struct value_print_options *options)
720 {
721 struct gdbarch *gdbarch = get_type_arch (type);
722
723 if (options->format)
724 {
725 val_print_scalar_formatted (type, embedded_offset,
726 original_value, options, 0, stream);
727 }
728 else
729 {
730 /* FIXME, we should consider, at least for ANSI C language,
731 eliminating the distinction made between FUNCs and POINTERs
732 to FUNCs. */
733 fprintf_filtered (stream, "{");
734 type_print (type, "", stream, -1);
735 fprintf_filtered (stream, "} ");
736 /* Try to print what function it points to, and its address. */
737 print_address_demangle (options, gdbarch, address, stream, demangle);
738 }
739 }
740
741 /* generic_val_print helper for TYPE_CODE_BOOL. */
742
743 static void
744 generic_val_print_bool (struct type *type,
745 int embedded_offset, struct ui_file *stream,
746 struct value *original_value,
747 const struct value_print_options *options,
748 const struct generic_val_print_decorations *decorations)
749 {
750 LONGEST val;
751 struct gdbarch *gdbarch = get_type_arch (type);
752 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
753
754 if (options->format || options->output_format)
755 {
756 struct value_print_options opts = *options;
757 opts.format = (options->format ? options->format
758 : options->output_format);
759 val_print_scalar_formatted (type, embedded_offset,
760 original_value, &opts, 0, stream);
761 }
762 else
763 {
764 const gdb_byte *valaddr = value_contents_for_printing (original_value);
765
766 val = unpack_long (type, valaddr + embedded_offset * unit_size);
767 if (val == 0)
768 fputs_filtered (decorations->false_name, stream);
769 else if (val == 1)
770 fputs_filtered (decorations->true_name, stream);
771 else
772 print_longest (stream, 'd', 0, val);
773 }
774 }
775
776 /* generic_val_print helper for TYPE_CODE_INT. */
777
778 static void
779 generic_val_print_int (struct type *type,
780 int embedded_offset, struct ui_file *stream,
781 struct value *original_value,
782 const struct value_print_options *options)
783 {
784 struct gdbarch *gdbarch = get_type_arch (type);
785 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
786
787 if (options->format || options->output_format)
788 {
789 struct value_print_options opts = *options;
790
791 opts.format = (options->format ? options->format
792 : options->output_format);
793 val_print_scalar_formatted (type, embedded_offset,
794 original_value, &opts, 0, stream);
795 }
796 else
797 {
798 const gdb_byte *valaddr = value_contents_for_printing (original_value);
799
800 val_print_type_code_int (type, valaddr + embedded_offset * unit_size,
801 stream);
802 }
803 }
804
805 /* generic_val_print helper for TYPE_CODE_CHAR. */
806
807 static void
808 generic_val_print_char (struct type *type, struct type *unresolved_type,
809 int embedded_offset,
810 struct ui_file *stream,
811 struct value *original_value,
812 const struct value_print_options *options)
813 {
814 LONGEST val;
815 struct gdbarch *gdbarch = get_type_arch (type);
816 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
817
818 if (options->format || options->output_format)
819 {
820 struct value_print_options opts = *options;
821
822 opts.format = (options->format ? options->format
823 : options->output_format);
824 val_print_scalar_formatted (type, embedded_offset,
825 original_value, &opts, 0, stream);
826 }
827 else
828 {
829 const gdb_byte *valaddr = value_contents_for_printing (original_value);
830
831 val = unpack_long (type, valaddr + embedded_offset * unit_size);
832 if (TYPE_UNSIGNED (type))
833 fprintf_filtered (stream, "%u", (unsigned int) val);
834 else
835 fprintf_filtered (stream, "%d", (int) val);
836 fputs_filtered (" ", stream);
837 LA_PRINT_CHAR (val, unresolved_type, stream);
838 }
839 }
840
841 /* generic_val_print helper for TYPE_CODE_FLT. */
842
843 static void
844 generic_val_print_float (struct type *type,
845 int embedded_offset, struct ui_file *stream,
846 struct value *original_value,
847 const struct value_print_options *options)
848 {
849 struct gdbarch *gdbarch = get_type_arch (type);
850 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
851
852 if (options->format)
853 {
854 val_print_scalar_formatted (type, embedded_offset,
855 original_value, options, 0, stream);
856 }
857 else
858 {
859 const gdb_byte *valaddr = value_contents_for_printing (original_value);
860
861 print_floating (valaddr + embedded_offset * unit_size, type, stream);
862 }
863 }
864
865 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */
866
867 static void
868 generic_val_print_decfloat (struct type *type,
869 int embedded_offset, struct ui_file *stream,
870 struct value *original_value,
871 const struct value_print_options *options)
872 {
873 struct gdbarch *gdbarch = get_type_arch (type);
874 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
875
876 if (options->format)
877 val_print_scalar_formatted (type, embedded_offset, original_value,
878 options, 0, stream);
879 else
880 {
881 const gdb_byte *valaddr = value_contents_for_printing (original_value);
882
883 print_decimal_floating (valaddr + embedded_offset * unit_size, type,
884 stream);
885 }
886 }
887
888 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
889
890 static void
891 generic_val_print_complex (struct type *type,
892 int embedded_offset, struct ui_file *stream,
893 struct value *original_value,
894 const struct value_print_options *options,
895 const struct generic_val_print_decorations
896 *decorations)
897 {
898 struct gdbarch *gdbarch = get_type_arch (type);
899 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
900 const gdb_byte *valaddr = value_contents_for_printing (original_value);
901
902 fprintf_filtered (stream, "%s", decorations->complex_prefix);
903 if (options->format)
904 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
905 embedded_offset, original_value, options, 0,
906 stream);
907 else
908 print_floating (valaddr + embedded_offset * unit_size,
909 TYPE_TARGET_TYPE (type), stream);
910 fprintf_filtered (stream, "%s", decorations->complex_infix);
911 if (options->format)
912 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
913 embedded_offset
914 + type_length_units (TYPE_TARGET_TYPE (type)),
915 original_value, options, 0, stream);
916 else
917 print_floating (valaddr + embedded_offset * unit_size
918 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
919 TYPE_TARGET_TYPE (type), stream);
920 fprintf_filtered (stream, "%s", decorations->complex_suffix);
921 }
922
923 /* A generic val_print that is suitable for use by language
924 implementations of the la_val_print method. This function can
925 handle most type codes, though not all, notably exception
926 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
927 the caller.
928
929 Most arguments are as to val_print.
930
931 The additional DECORATIONS argument can be used to customize the
932 output in some small, language-specific ways. */
933
934 void
935 generic_val_print (struct type *type,
936 int embedded_offset, CORE_ADDR address,
937 struct ui_file *stream, int recurse,
938 struct value *original_value,
939 const struct value_print_options *options,
940 const struct generic_val_print_decorations *decorations)
941 {
942 struct type *unresolved_type = type;
943
944 type = check_typedef (type);
945 switch (TYPE_CODE (type))
946 {
947 case TYPE_CODE_ARRAY:
948 generic_val_print_array (type, embedded_offset, address, stream,
949 recurse, original_value, options, decorations);
950 break;
951
952 case TYPE_CODE_MEMBERPTR:
953 generic_val_print_memberptr (type, embedded_offset, stream,
954 original_value, options);
955 break;
956
957 case TYPE_CODE_PTR:
958 generic_val_print_ptr (type, embedded_offset, stream,
959 original_value, options);
960 break;
961
962 case TYPE_CODE_REF:
963 generic_val_print_ref (type, embedded_offset, stream, recurse,
964 original_value, options);
965 break;
966
967 case TYPE_CODE_ENUM:
968 generic_val_print_enum (type, embedded_offset, stream,
969 original_value, options);
970 break;
971
972 case TYPE_CODE_FLAGS:
973 generic_val_print_flags (type, embedded_offset, stream,
974 original_value, options);
975 break;
976
977 case TYPE_CODE_FUNC:
978 case TYPE_CODE_METHOD:
979 generic_val_print_func (type, embedded_offset, address, stream,
980 original_value, options);
981 break;
982
983 case TYPE_CODE_BOOL:
984 generic_val_print_bool (type, embedded_offset, stream,
985 original_value, options, decorations);
986 break;
987
988 case TYPE_CODE_RANGE:
989 /* FIXME: create_static_range_type does not set the unsigned bit in a
990 range type (I think it probably should copy it from the
991 target type), so we won't print values which are too large to
992 fit in a signed integer correctly. */
993 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
994 print with the target type, though, because the size of our
995 type and the target type might differ). */
996
997 /* FALLTHROUGH */
998
999 case TYPE_CODE_INT:
1000 generic_val_print_int (type, embedded_offset, stream,
1001 original_value, options);
1002 break;
1003
1004 case TYPE_CODE_CHAR:
1005 generic_val_print_char (type, unresolved_type, embedded_offset,
1006 stream, original_value, options);
1007 break;
1008
1009 case TYPE_CODE_FLT:
1010 generic_val_print_float (type, embedded_offset, stream,
1011 original_value, options);
1012 break;
1013
1014 case TYPE_CODE_DECFLOAT:
1015 generic_val_print_decfloat (type, embedded_offset, stream,
1016 original_value, options);
1017 break;
1018
1019 case TYPE_CODE_VOID:
1020 fputs_filtered (decorations->void_name, stream);
1021 break;
1022
1023 case TYPE_CODE_ERROR:
1024 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1025 break;
1026
1027 case TYPE_CODE_UNDEF:
1028 /* This happens (without TYPE_STUB set) on systems which don't use
1029 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1030 and no complete type for struct foo in that file. */
1031 fprintf_filtered (stream, _("<incomplete type>"));
1032 break;
1033
1034 case TYPE_CODE_COMPLEX:
1035 generic_val_print_complex (type, embedded_offset, stream,
1036 original_value, options, decorations);
1037 break;
1038
1039 case TYPE_CODE_UNION:
1040 case TYPE_CODE_STRUCT:
1041 case TYPE_CODE_METHODPTR:
1042 default:
1043 error (_("Unhandled type code %d in symbol table."),
1044 TYPE_CODE (type));
1045 }
1046 gdb_flush (stream);
1047 }
1048
1049 /* Print using the given LANGUAGE the data of type TYPE located at
1050 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1051 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1052 stdio stream STREAM according to OPTIONS. VAL is the whole object
1053 that came from ADDRESS.
1054
1055 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1056 further helper subroutines as subfields of TYPE are printed. In
1057 such cases, VAL is passed down unadjusted, so
1058 that VAL can be queried for metadata about the contents data being
1059 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1060 buffer. For example: "has this field been optimized out", or "I'm
1061 printing an object while inspecting a traceframe; has this
1062 particular piece of data been collected?".
1063
1064 RECURSE indicates the amount of indentation to supply before
1065 continuation lines; this amount is roughly twice the value of
1066 RECURSE. */
1067
1068 void
1069 val_print (struct type *type, LONGEST embedded_offset,
1070 CORE_ADDR address, struct ui_file *stream, int recurse,
1071 struct value *val,
1072 const struct value_print_options *options,
1073 const struct language_defn *language)
1074 {
1075 int ret = 0;
1076 struct value_print_options local_opts = *options;
1077 struct type *real_type = check_typedef (type);
1078
1079 if (local_opts.prettyformat == Val_prettyformat_default)
1080 local_opts.prettyformat = (local_opts.prettyformat_structs
1081 ? Val_prettyformat : Val_no_prettyformat);
1082
1083 QUIT;
1084
1085 /* Ensure that the type is complete and not just a stub. If the type is
1086 only a stub and we can't find and substitute its complete type, then
1087 print appropriate string and return. */
1088
1089 if (TYPE_STUB (real_type))
1090 {
1091 fprintf_filtered (stream, _("<incomplete type>"));
1092 gdb_flush (stream);
1093 return;
1094 }
1095
1096 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1097 return;
1098
1099 if (!options->raw)
1100 {
1101 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1102 address, stream, recurse,
1103 val, options, language);
1104 if (ret)
1105 return;
1106 }
1107
1108 /* Handle summary mode. If the value is a scalar, print it;
1109 otherwise, print an ellipsis. */
1110 if (options->summary && !val_print_scalar_type_p (type))
1111 {
1112 fprintf_filtered (stream, "...");
1113 return;
1114 }
1115
1116 TRY
1117 {
1118 language->la_val_print (type, embedded_offset, address,
1119 stream, recurse, val,
1120 &local_opts);
1121 }
1122 CATCH (except, RETURN_MASK_ERROR)
1123 {
1124 fprintf_filtered (stream, _("<error reading variable>"));
1125 }
1126 END_CATCH
1127 }
1128
1129 /* Check whether the value VAL is printable. Return 1 if it is;
1130 return 0 and print an appropriate error message to STREAM according to
1131 OPTIONS if it is not. */
1132
1133 static int
1134 value_check_printable (struct value *val, struct ui_file *stream,
1135 const struct value_print_options *options)
1136 {
1137 if (val == 0)
1138 {
1139 fprintf_filtered (stream, _("<address of value unknown>"));
1140 return 0;
1141 }
1142
1143 if (value_entirely_optimized_out (val))
1144 {
1145 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1146 fprintf_filtered (stream, "...");
1147 else
1148 val_print_optimized_out (val, stream);
1149 return 0;
1150 }
1151
1152 if (value_entirely_unavailable (val))
1153 {
1154 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1155 fprintf_filtered (stream, "...");
1156 else
1157 val_print_unavailable (stream);
1158 return 0;
1159 }
1160
1161 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1162 {
1163 fprintf_filtered (stream, _("<internal function %s>"),
1164 value_internal_function_name (val));
1165 return 0;
1166 }
1167
1168 if (type_not_associated (value_type (val)))
1169 {
1170 val_print_not_associated (stream);
1171 return 0;
1172 }
1173
1174 if (type_not_allocated (value_type (val)))
1175 {
1176 val_print_not_allocated (stream);
1177 return 0;
1178 }
1179
1180 return 1;
1181 }
1182
1183 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1184 to OPTIONS.
1185
1186 This is a preferable interface to val_print, above, because it uses
1187 GDB's value mechanism. */
1188
1189 void
1190 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1191 const struct value_print_options *options,
1192 const struct language_defn *language)
1193 {
1194 if (!value_check_printable (val, stream, options))
1195 return;
1196
1197 if (language->la_language == language_ada)
1198 /* The value might have a dynamic type, which would cause trouble
1199 below when trying to extract the value contents (since the value
1200 size is determined from the type size which is unknown). So
1201 get a fixed representation of our value. */
1202 val = ada_to_fixed_value (val);
1203
1204 val_print (value_type (val),
1205 value_embedded_offset (val), value_address (val),
1206 stream, recurse,
1207 val, options, language);
1208 }
1209
1210 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1211 is printed using the current_language syntax. */
1212
1213 void
1214 value_print (struct value *val, struct ui_file *stream,
1215 const struct value_print_options *options)
1216 {
1217 if (!value_check_printable (val, stream, options))
1218 return;
1219
1220 if (!options->raw)
1221 {
1222 int r
1223 = apply_ext_lang_val_pretty_printer (value_type (val),
1224 value_embedded_offset (val),
1225 value_address (val),
1226 stream, 0,
1227 val, options, current_language);
1228
1229 if (r)
1230 return;
1231 }
1232
1233 LA_VALUE_PRINT (val, stream, options);
1234 }
1235
1236 /* Called by various <lang>_val_print routines to print
1237 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
1238 value. STREAM is where to print the value. */
1239
1240 void
1241 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
1242 struct ui_file *stream)
1243 {
1244 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1245
1246 if (TYPE_LENGTH (type) > sizeof (LONGEST))
1247 {
1248 LONGEST val;
1249
1250 if (TYPE_UNSIGNED (type)
1251 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
1252 byte_order, &val))
1253 {
1254 print_longest (stream, 'u', 0, val);
1255 }
1256 else
1257 {
1258 /* Signed, or we couldn't turn an unsigned value into a
1259 LONGEST. For signed values, one could assume two's
1260 complement (a reasonable assumption, I think) and do
1261 better than this. */
1262 print_hex_chars (stream, (unsigned char *) valaddr,
1263 TYPE_LENGTH (type), byte_order);
1264 }
1265 }
1266 else
1267 {
1268 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
1269 unpack_long (type, valaddr));
1270 }
1271 }
1272
1273 static void
1274 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1275 struct ui_file *stream)
1276 {
1277 ULONGEST val = unpack_long (type, valaddr);
1278 int field, nfields = TYPE_NFIELDS (type);
1279 struct gdbarch *gdbarch = get_type_arch (type);
1280 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1281
1282 fputs_filtered ("[", stream);
1283 for (field = 0; field < nfields; field++)
1284 {
1285 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1286 {
1287 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1288
1289 if (field_type == bool_type
1290 /* We require boolean types here to be one bit wide. This is a
1291 problematic place to notify the user of an internal error
1292 though. Instead just fall through and print the field as an
1293 int. */
1294 && TYPE_FIELD_BITSIZE (type, field) == 1)
1295 {
1296 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1297 fprintf_filtered (stream, " %s",
1298 TYPE_FIELD_NAME (type, field));
1299 }
1300 else
1301 {
1302 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1303 ULONGEST field_val
1304 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1305
1306 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1307 field_val &= ((ULONGEST) 1 << field_len) - 1;
1308 fprintf_filtered (stream, " %s=",
1309 TYPE_FIELD_NAME (type, field));
1310 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1311 generic_val_print_enum_1 (field_type, field_val, stream);
1312 else
1313 print_longest (stream, 'd', 0, field_val);
1314 }
1315 }
1316 }
1317 fputs_filtered (" ]", stream);
1318 }
1319
1320 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1321 according to OPTIONS and SIZE on STREAM. Format i is not supported
1322 at this level.
1323
1324 This is how the elements of an array or structure are printed
1325 with a format. */
1326
1327 void
1328 val_print_scalar_formatted (struct type *type,
1329 LONGEST embedded_offset,
1330 struct value *val,
1331 const struct value_print_options *options,
1332 int size,
1333 struct ui_file *stream)
1334 {
1335 struct gdbarch *arch = get_type_arch (type);
1336 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1337
1338 gdb_assert (val != NULL);
1339
1340 /* If we get here with a string format, try again without it. Go
1341 all the way back to the language printers, which may call us
1342 again. */
1343 if (options->format == 's')
1344 {
1345 struct value_print_options opts = *options;
1346 opts.format = 0;
1347 opts.deref_ref = 0;
1348 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1349 current_language);
1350 return;
1351 }
1352
1353 /* value_contents_for_printing fetches all VAL's contents. They are
1354 needed to check whether VAL is optimized-out or unavailable
1355 below. */
1356 const gdb_byte *valaddr = value_contents_for_printing (val);
1357
1358 /* A scalar object that does not have all bits available can't be
1359 printed, because all bits contribute to its representation. */
1360 if (value_bits_any_optimized_out (val,
1361 TARGET_CHAR_BIT * embedded_offset,
1362 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1363 val_print_optimized_out (val, stream);
1364 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1365 val_print_unavailable (stream);
1366 else
1367 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1368 options, size, stream);
1369 }
1370
1371 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1372 The raison d'etre of this function is to consolidate printing of
1373 LONG_LONG's into this one function. The format chars b,h,w,g are
1374 from print_scalar_formatted(). Numbers are printed using C
1375 format.
1376
1377 USE_C_FORMAT means to use C format in all cases. Without it,
1378 'o' and 'x' format do not include the standard C radix prefix
1379 (leading 0 or 0x).
1380
1381 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1382 and was intended to request formating according to the current
1383 language and would be used for most integers that GDB prints. The
1384 exceptional cases were things like protocols where the format of
1385 the integer is a protocol thing, not a user-visible thing). The
1386 parameter remains to preserve the information of what things might
1387 be printed with language-specific format, should we ever resurrect
1388 that capability. */
1389
1390 void
1391 print_longest (struct ui_file *stream, int format, int use_c_format,
1392 LONGEST val_long)
1393 {
1394 const char *val;
1395
1396 switch (format)
1397 {
1398 case 'd':
1399 val = int_string (val_long, 10, 1, 0, 1); break;
1400 case 'u':
1401 val = int_string (val_long, 10, 0, 0, 1); break;
1402 case 'x':
1403 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1404 case 'b':
1405 val = int_string (val_long, 16, 0, 2, 1); break;
1406 case 'h':
1407 val = int_string (val_long, 16, 0, 4, 1); break;
1408 case 'w':
1409 val = int_string (val_long, 16, 0, 8, 1); break;
1410 case 'g':
1411 val = int_string (val_long, 16, 0, 16, 1); break;
1412 break;
1413 case 'o':
1414 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1415 default:
1416 internal_error (__FILE__, __LINE__,
1417 _("failed internal consistency check"));
1418 }
1419 fputs_filtered (val, stream);
1420 }
1421
1422 /* This used to be a macro, but I don't think it is called often enough
1423 to merit such treatment. */
1424 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1425 arguments to a function, number in a value history, register number, etc.)
1426 where the value must not be larger than can fit in an int. */
1427
1428 int
1429 longest_to_int (LONGEST arg)
1430 {
1431 /* Let the compiler do the work. */
1432 int rtnval = (int) arg;
1433
1434 /* Check for overflows or underflows. */
1435 if (sizeof (LONGEST) > sizeof (int))
1436 {
1437 if (rtnval != arg)
1438 {
1439 error (_("Value out of range."));
1440 }
1441 }
1442 return (rtnval);
1443 }
1444
1445 /* Print a floating point value of type TYPE (not always a
1446 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1447
1448 void
1449 print_floating (const gdb_byte *valaddr, struct type *type,
1450 struct ui_file *stream)
1451 {
1452 DOUBLEST doub;
1453 int inv;
1454 const struct floatformat *fmt = NULL;
1455 unsigned len = TYPE_LENGTH (type);
1456 enum float_kind kind;
1457
1458 /* If it is a floating-point, check for obvious problems. */
1459 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1460 fmt = floatformat_from_type (type);
1461 if (fmt != NULL)
1462 {
1463 kind = floatformat_classify (fmt, valaddr);
1464 if (kind == float_nan)
1465 {
1466 if (floatformat_is_negative (fmt, valaddr))
1467 fprintf_filtered (stream, "-");
1468 fprintf_filtered (stream, "nan(");
1469 fputs_filtered ("0x", stream);
1470 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1471 fprintf_filtered (stream, ")");
1472 return;
1473 }
1474 else if (kind == float_infinite)
1475 {
1476 if (floatformat_is_negative (fmt, valaddr))
1477 fputs_filtered ("-", stream);
1478 fputs_filtered ("inf", stream);
1479 return;
1480 }
1481 }
1482
1483 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1484 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1485 needs to be used as that takes care of any necessary type
1486 conversions. Such conversions are of course direct to DOUBLEST
1487 and disregard any possible target floating point limitations.
1488 For instance, a u64 would be converted and displayed exactly on a
1489 host with 80 bit DOUBLEST but with loss of information on a host
1490 with 64 bit DOUBLEST. */
1491
1492 doub = unpack_double (type, valaddr, &inv);
1493 if (inv)
1494 {
1495 fprintf_filtered (stream, "<invalid float value>");
1496 return;
1497 }
1498
1499 /* FIXME: kettenis/2001-01-20: The following code makes too much
1500 assumptions about the host and target floating point format. */
1501
1502 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1503 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1504 instead uses the type's length to determine the precision of the
1505 floating-point value being printed. */
1506
1507 if (len < sizeof (double))
1508 fprintf_filtered (stream, "%.9g", (double) doub);
1509 else if (len == sizeof (double))
1510 fprintf_filtered (stream, "%.17g", (double) doub);
1511 else
1512 #ifdef PRINTF_HAS_LONG_DOUBLE
1513 fprintf_filtered (stream, "%.35Lg", doub);
1514 #else
1515 /* This at least wins with values that are representable as
1516 doubles. */
1517 fprintf_filtered (stream, "%.17g", (double) doub);
1518 #endif
1519 }
1520
1521 void
1522 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1523 struct ui_file *stream)
1524 {
1525 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1526 char decstr[MAX_DECIMAL_STRING];
1527 unsigned len = TYPE_LENGTH (type);
1528
1529 decimal_to_string (valaddr, len, byte_order, decstr);
1530 fputs_filtered (decstr, stream);
1531 return;
1532 }
1533
1534 void
1535 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1536 unsigned len, enum bfd_endian byte_order)
1537 {
1538
1539 #define BITS_IN_BYTES 8
1540
1541 const gdb_byte *p;
1542 unsigned int i;
1543 int b;
1544
1545 /* Declared "int" so it will be signed.
1546 This ensures that right shift will shift in zeros. */
1547
1548 const int mask = 0x080;
1549
1550 /* FIXME: We should be not printing leading zeroes in most cases. */
1551
1552 if (byte_order == BFD_ENDIAN_BIG)
1553 {
1554 for (p = valaddr;
1555 p < valaddr + len;
1556 p++)
1557 {
1558 /* Every byte has 8 binary characters; peel off
1559 and print from the MSB end. */
1560
1561 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1562 {
1563 if (*p & (mask >> i))
1564 b = 1;
1565 else
1566 b = 0;
1567
1568 fprintf_filtered (stream, "%1d", b);
1569 }
1570 }
1571 }
1572 else
1573 {
1574 for (p = valaddr + len - 1;
1575 p >= valaddr;
1576 p--)
1577 {
1578 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1579 {
1580 if (*p & (mask >> i))
1581 b = 1;
1582 else
1583 b = 0;
1584
1585 fprintf_filtered (stream, "%1d", b);
1586 }
1587 }
1588 }
1589 }
1590
1591 /* VALADDR points to an integer of LEN bytes.
1592 Print it in octal on stream or format it in buf. */
1593
1594 void
1595 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1596 unsigned len, enum bfd_endian byte_order)
1597 {
1598 const gdb_byte *p;
1599 unsigned char octa1, octa2, octa3, carry;
1600 int cycle;
1601
1602 /* FIXME: We should be not printing leading zeroes in most cases. */
1603
1604
1605 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1606 * the extra bits, which cycle every three bytes:
1607 *
1608 * Byte side: 0 1 2 3
1609 * | | | |
1610 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1611 *
1612 * Octal side: 0 1 carry 3 4 carry ...
1613 *
1614 * Cycle number: 0 1 2
1615 *
1616 * But of course we are printing from the high side, so we have to
1617 * figure out where in the cycle we are so that we end up with no
1618 * left over bits at the end.
1619 */
1620 #define BITS_IN_OCTAL 3
1621 #define HIGH_ZERO 0340
1622 #define LOW_ZERO 0016
1623 #define CARRY_ZERO 0003
1624 #define HIGH_ONE 0200
1625 #define MID_ONE 0160
1626 #define LOW_ONE 0016
1627 #define CARRY_ONE 0001
1628 #define HIGH_TWO 0300
1629 #define MID_TWO 0070
1630 #define LOW_TWO 0007
1631
1632 /* For 32 we start in cycle 2, with two bits and one bit carry;
1633 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1634
1635 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1636 carry = 0;
1637
1638 fputs_filtered ("0", stream);
1639 if (byte_order == BFD_ENDIAN_BIG)
1640 {
1641 for (p = valaddr;
1642 p < valaddr + len;
1643 p++)
1644 {
1645 switch (cycle)
1646 {
1647 case 0:
1648 /* No carry in, carry out two bits. */
1649
1650 octa1 = (HIGH_ZERO & *p) >> 5;
1651 octa2 = (LOW_ZERO & *p) >> 2;
1652 carry = (CARRY_ZERO & *p);
1653 fprintf_filtered (stream, "%o", octa1);
1654 fprintf_filtered (stream, "%o", octa2);
1655 break;
1656
1657 case 1:
1658 /* Carry in two bits, carry out one bit. */
1659
1660 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1661 octa2 = (MID_ONE & *p) >> 4;
1662 octa3 = (LOW_ONE & *p) >> 1;
1663 carry = (CARRY_ONE & *p);
1664 fprintf_filtered (stream, "%o", octa1);
1665 fprintf_filtered (stream, "%o", octa2);
1666 fprintf_filtered (stream, "%o", octa3);
1667 break;
1668
1669 case 2:
1670 /* Carry in one bit, no carry out. */
1671
1672 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1673 octa2 = (MID_TWO & *p) >> 3;
1674 octa3 = (LOW_TWO & *p);
1675 carry = 0;
1676 fprintf_filtered (stream, "%o", octa1);
1677 fprintf_filtered (stream, "%o", octa2);
1678 fprintf_filtered (stream, "%o", octa3);
1679 break;
1680
1681 default:
1682 error (_("Internal error in octal conversion;"));
1683 }
1684
1685 cycle++;
1686 cycle = cycle % BITS_IN_OCTAL;
1687 }
1688 }
1689 else
1690 {
1691 for (p = valaddr + len - 1;
1692 p >= valaddr;
1693 p--)
1694 {
1695 switch (cycle)
1696 {
1697 case 0:
1698 /* Carry out, no carry in */
1699
1700 octa1 = (HIGH_ZERO & *p) >> 5;
1701 octa2 = (LOW_ZERO & *p) >> 2;
1702 carry = (CARRY_ZERO & *p);
1703 fprintf_filtered (stream, "%o", octa1);
1704 fprintf_filtered (stream, "%o", octa2);
1705 break;
1706
1707 case 1:
1708 /* Carry in, carry out */
1709
1710 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1711 octa2 = (MID_ONE & *p) >> 4;
1712 octa3 = (LOW_ONE & *p) >> 1;
1713 carry = (CARRY_ONE & *p);
1714 fprintf_filtered (stream, "%o", octa1);
1715 fprintf_filtered (stream, "%o", octa2);
1716 fprintf_filtered (stream, "%o", octa3);
1717 break;
1718
1719 case 2:
1720 /* Carry in, no carry out */
1721
1722 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1723 octa2 = (MID_TWO & *p) >> 3;
1724 octa3 = (LOW_TWO & *p);
1725 carry = 0;
1726 fprintf_filtered (stream, "%o", octa1);
1727 fprintf_filtered (stream, "%o", octa2);
1728 fprintf_filtered (stream, "%o", octa3);
1729 break;
1730
1731 default:
1732 error (_("Internal error in octal conversion;"));
1733 }
1734
1735 cycle++;
1736 cycle = cycle % BITS_IN_OCTAL;
1737 }
1738 }
1739
1740 }
1741
1742 /* VALADDR points to an integer of LEN bytes.
1743 Print it in decimal on stream or format it in buf. */
1744
1745 void
1746 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1747 unsigned len, enum bfd_endian byte_order)
1748 {
1749 #define TEN 10
1750 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1751 #define CARRY_LEFT( x ) ((x) % TEN)
1752 #define SHIFT( x ) ((x) << 4)
1753 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1754 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1755
1756 const gdb_byte *p;
1757 unsigned char *digits;
1758 int carry;
1759 int decimal_len;
1760 int i, j, decimal_digits;
1761 int dummy;
1762 int flip;
1763
1764 /* Base-ten number is less than twice as many digits
1765 as the base 16 number, which is 2 digits per byte. */
1766
1767 decimal_len = len * 2 * 2;
1768 digits = (unsigned char *) xmalloc (decimal_len);
1769
1770 for (i = 0; i < decimal_len; i++)
1771 {
1772 digits[i] = 0;
1773 }
1774
1775 /* Ok, we have an unknown number of bytes of data to be printed in
1776 * decimal.
1777 *
1778 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1779 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1780 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1781 *
1782 * The trick is that "digits" holds a base-10 number, but sometimes
1783 * the individual digits are > 10.
1784 *
1785 * Outer loop is per nibble (hex digit) of input, from MSD end to
1786 * LSD end.
1787 */
1788 decimal_digits = 0; /* Number of decimal digits so far */
1789 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1790 flip = 0;
1791 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1792 {
1793 /*
1794 * Multiply current base-ten number by 16 in place.
1795 * Each digit was between 0 and 9, now is between
1796 * 0 and 144.
1797 */
1798 for (j = 0; j < decimal_digits; j++)
1799 {
1800 digits[j] = SHIFT (digits[j]);
1801 }
1802
1803 /* Take the next nibble off the input and add it to what
1804 * we've got in the LSB position. Bottom 'digit' is now
1805 * between 0 and 159.
1806 *
1807 * "flip" is used to run this loop twice for each byte.
1808 */
1809 if (flip == 0)
1810 {
1811 /* Take top nibble. */
1812
1813 digits[0] += HIGH_NIBBLE (*p);
1814 flip = 1;
1815 }
1816 else
1817 {
1818 /* Take low nibble and bump our pointer "p". */
1819
1820 digits[0] += LOW_NIBBLE (*p);
1821 if (byte_order == BFD_ENDIAN_BIG)
1822 p++;
1823 else
1824 p--;
1825 flip = 0;
1826 }
1827
1828 /* Re-decimalize. We have to do this often enough
1829 * that we don't overflow, but once per nibble is
1830 * overkill. Easier this way, though. Note that the
1831 * carry is often larger than 10 (e.g. max initial
1832 * carry out of lowest nibble is 15, could bubble all
1833 * the way up greater than 10). So we have to do
1834 * the carrying beyond the last current digit.
1835 */
1836 carry = 0;
1837 for (j = 0; j < decimal_len - 1; j++)
1838 {
1839 digits[j] += carry;
1840
1841 /* "/" won't handle an unsigned char with
1842 * a value that if signed would be negative.
1843 * So extend to longword int via "dummy".
1844 */
1845 dummy = digits[j];
1846 carry = CARRY_OUT (dummy);
1847 digits[j] = CARRY_LEFT (dummy);
1848
1849 if (j >= decimal_digits && carry == 0)
1850 {
1851 /*
1852 * All higher digits are 0 and we
1853 * no longer have a carry.
1854 *
1855 * Note: "j" is 0-based, "decimal_digits" is
1856 * 1-based.
1857 */
1858 decimal_digits = j + 1;
1859 break;
1860 }
1861 }
1862 }
1863
1864 /* Ok, now "digits" is the decimal representation, with
1865 the "decimal_digits" actual digits. Print! */
1866
1867 for (i = decimal_digits - 1; i >= 0; i--)
1868 {
1869 fprintf_filtered (stream, "%1d", digits[i]);
1870 }
1871 xfree (digits);
1872 }
1873
1874 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1875
1876 void
1877 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1878 unsigned len, enum bfd_endian byte_order)
1879 {
1880 const gdb_byte *p;
1881
1882 /* FIXME: We should be not printing leading zeroes in most cases. */
1883
1884 fputs_filtered ("0x", stream);
1885 if (byte_order == BFD_ENDIAN_BIG)
1886 {
1887 for (p = valaddr;
1888 p < valaddr + len;
1889 p++)
1890 {
1891 fprintf_filtered (stream, "%02x", *p);
1892 }
1893 }
1894 else
1895 {
1896 for (p = valaddr + len - 1;
1897 p >= valaddr;
1898 p--)
1899 {
1900 fprintf_filtered (stream, "%02x", *p);
1901 }
1902 }
1903 }
1904
1905 /* VALADDR points to a char integer of LEN bytes.
1906 Print it out in appropriate language form on stream.
1907 Omit any leading zero chars. */
1908
1909 void
1910 print_char_chars (struct ui_file *stream, struct type *type,
1911 const gdb_byte *valaddr,
1912 unsigned len, enum bfd_endian byte_order)
1913 {
1914 const gdb_byte *p;
1915
1916 if (byte_order == BFD_ENDIAN_BIG)
1917 {
1918 p = valaddr;
1919 while (p < valaddr + len - 1 && *p == 0)
1920 ++p;
1921
1922 while (p < valaddr + len)
1923 {
1924 LA_EMIT_CHAR (*p, type, stream, '\'');
1925 ++p;
1926 }
1927 }
1928 else
1929 {
1930 p = valaddr + len - 1;
1931 while (p > valaddr && *p == 0)
1932 --p;
1933
1934 while (p >= valaddr)
1935 {
1936 LA_EMIT_CHAR (*p, type, stream, '\'');
1937 --p;
1938 }
1939 }
1940 }
1941
1942 /* Print function pointer with inferior address ADDRESS onto stdio
1943 stream STREAM. */
1944
1945 void
1946 print_function_pointer_address (const struct value_print_options *options,
1947 struct gdbarch *gdbarch,
1948 CORE_ADDR address,
1949 struct ui_file *stream)
1950 {
1951 CORE_ADDR func_addr
1952 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1953 &current_target);
1954
1955 /* If the function pointer is represented by a description, print
1956 the address of the description. */
1957 if (options->addressprint && func_addr != address)
1958 {
1959 fputs_filtered ("@", stream);
1960 fputs_filtered (paddress (gdbarch, address), stream);
1961 fputs_filtered (": ", stream);
1962 }
1963 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1964 }
1965
1966
1967 /* Print on STREAM using the given OPTIONS the index for the element
1968 at INDEX of an array whose index type is INDEX_TYPE. */
1969
1970 void
1971 maybe_print_array_index (struct type *index_type, LONGEST index,
1972 struct ui_file *stream,
1973 const struct value_print_options *options)
1974 {
1975 struct value *index_value;
1976
1977 if (!options->print_array_indexes)
1978 return;
1979
1980 index_value = value_from_longest (index_type, index);
1981
1982 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1983 }
1984
1985 /* Called by various <lang>_val_print routines to print elements of an
1986 array in the form "<elem1>, <elem2>, <elem3>, ...".
1987
1988 (FIXME?) Assumes array element separator is a comma, which is correct
1989 for all languages currently handled.
1990 (FIXME?) Some languages have a notation for repeated array elements,
1991 perhaps we should try to use that notation when appropriate. */
1992
1993 void
1994 val_print_array_elements (struct type *type,
1995 LONGEST embedded_offset,
1996 CORE_ADDR address, struct ui_file *stream,
1997 int recurse,
1998 struct value *val,
1999 const struct value_print_options *options,
2000 unsigned int i)
2001 {
2002 unsigned int things_printed = 0;
2003 unsigned len;
2004 struct type *elttype, *index_type, *base_index_type;
2005 unsigned eltlen;
2006 /* Position of the array element we are examining to see
2007 whether it is repeated. */
2008 unsigned int rep1;
2009 /* Number of repetitions we have detected so far. */
2010 unsigned int reps;
2011 LONGEST low_bound, high_bound;
2012 LONGEST low_pos, high_pos;
2013
2014 elttype = TYPE_TARGET_TYPE (type);
2015 eltlen = type_length_units (check_typedef (elttype));
2016 index_type = TYPE_INDEX_TYPE (type);
2017
2018 if (get_array_bounds (type, &low_bound, &high_bound))
2019 {
2020 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2021 base_index_type = TYPE_TARGET_TYPE (index_type);
2022 else
2023 base_index_type = index_type;
2024
2025 /* Non-contiguous enumerations types can by used as index types
2026 in some languages (e.g. Ada). In this case, the array length
2027 shall be computed from the positions of the first and last
2028 literal in the enumeration type, and not from the values
2029 of these literals. */
2030 if (!discrete_position (base_index_type, low_bound, &low_pos)
2031 || !discrete_position (base_index_type, high_bound, &high_pos))
2032 {
2033 warning (_("unable to get positions in array, use bounds instead"));
2034 low_pos = low_bound;
2035 high_pos = high_bound;
2036 }
2037
2038 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2039 But we have to be a little extra careful, because some languages
2040 such as Ada allow LOW_POS to be greater than HIGH_POS for
2041 empty arrays. In that situation, the array length is just zero,
2042 not negative! */
2043 if (low_pos > high_pos)
2044 len = 0;
2045 else
2046 len = high_pos - low_pos + 1;
2047 }
2048 else
2049 {
2050 warning (_("unable to get bounds of array, assuming null array"));
2051 low_bound = 0;
2052 len = 0;
2053 }
2054
2055 annotate_array_section_begin (i, elttype);
2056
2057 for (; i < len && things_printed < options->print_max; i++)
2058 {
2059 if (i != 0)
2060 {
2061 if (options->prettyformat_arrays)
2062 {
2063 fprintf_filtered (stream, ",\n");
2064 print_spaces_filtered (2 + 2 * recurse, stream);
2065 }
2066 else
2067 {
2068 fprintf_filtered (stream, ", ");
2069 }
2070 }
2071 wrap_here (n_spaces (2 + 2 * recurse));
2072 maybe_print_array_index (index_type, i + low_bound,
2073 stream, options);
2074
2075 rep1 = i + 1;
2076 reps = 1;
2077 /* Only check for reps if repeat_count_threshold is not set to
2078 UINT_MAX (unlimited). */
2079 if (options->repeat_count_threshold < UINT_MAX)
2080 {
2081 while (rep1 < len
2082 && value_contents_eq (val,
2083 embedded_offset + i * eltlen,
2084 val,
2085 (embedded_offset
2086 + rep1 * eltlen),
2087 eltlen))
2088 {
2089 ++reps;
2090 ++rep1;
2091 }
2092 }
2093
2094 if (reps > options->repeat_count_threshold)
2095 {
2096 val_print (elttype, embedded_offset + i * eltlen,
2097 address, stream, recurse + 1, val, options,
2098 current_language);
2099 annotate_elt_rep (reps);
2100 fprintf_filtered (stream, " <repeats %u times>", reps);
2101 annotate_elt_rep_end ();
2102
2103 i = rep1 - 1;
2104 things_printed += options->repeat_count_threshold;
2105 }
2106 else
2107 {
2108 val_print (elttype, embedded_offset + i * eltlen,
2109 address,
2110 stream, recurse + 1, val, options, current_language);
2111 annotate_elt ();
2112 things_printed++;
2113 }
2114 }
2115 annotate_array_section_end ();
2116 if (i < len)
2117 {
2118 fprintf_filtered (stream, "...");
2119 }
2120 }
2121
2122 /* Read LEN bytes of target memory at address MEMADDR, placing the
2123 results in GDB's memory at MYADDR. Returns a count of the bytes
2124 actually read, and optionally a target_xfer_status value in the
2125 location pointed to by ERRPTR if ERRPTR is non-null. */
2126
2127 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2128 function be eliminated. */
2129
2130 static int
2131 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2132 int len, int *errptr)
2133 {
2134 int nread; /* Number of bytes actually read. */
2135 int errcode; /* Error from last read. */
2136
2137 /* First try a complete read. */
2138 errcode = target_read_memory (memaddr, myaddr, len);
2139 if (errcode == 0)
2140 {
2141 /* Got it all. */
2142 nread = len;
2143 }
2144 else
2145 {
2146 /* Loop, reading one byte at a time until we get as much as we can. */
2147 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2148 {
2149 errcode = target_read_memory (memaddr++, myaddr++, 1);
2150 }
2151 /* If an error, the last read was unsuccessful, so adjust count. */
2152 if (errcode != 0)
2153 {
2154 nread--;
2155 }
2156 }
2157 if (errptr != NULL)
2158 {
2159 *errptr = errcode;
2160 }
2161 return (nread);
2162 }
2163
2164 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2165 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2166 allocated buffer containing the string, which the caller is responsible to
2167 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
2168 success, or a target_xfer_status on failure.
2169
2170 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2171 (including eventual NULs in the middle or end of the string).
2172
2173 If LEN is -1, stops at the first null character (not necessarily
2174 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2175 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2176 the string.
2177
2178 Unless an exception is thrown, BUFFER will always be allocated, even on
2179 failure. In this case, some characters might have been read before the
2180 failure happened. Check BYTES_READ to recognize this situation.
2181
2182 Note: There was a FIXME asking to make this code use target_read_string,
2183 but this function is more general (can read past null characters, up to
2184 given LEN). Besides, it is used much more often than target_read_string
2185 so it is more tested. Perhaps callers of target_read_string should use
2186 this function instead? */
2187
2188 int
2189 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2190 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
2191 {
2192 int errcode; /* Errno returned from bad reads. */
2193 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2194 gdb_byte *bufptr; /* Pointer to next available byte in
2195 buffer. */
2196 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2197
2198 /* Loop until we either have all the characters, or we encounter
2199 some error, such as bumping into the end of the address space. */
2200
2201 *buffer = NULL;
2202
2203 old_chain = make_cleanup (free_current_contents, buffer);
2204
2205 if (len > 0)
2206 {
2207 /* We want fetchlimit chars, so we might as well read them all in
2208 one operation. */
2209 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2210
2211 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2212 bufptr = *buffer;
2213
2214 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2215 / width;
2216 addr += nfetch * width;
2217 bufptr += nfetch * width;
2218 }
2219 else if (len == -1)
2220 {
2221 unsigned long bufsize = 0;
2222 unsigned int chunksize; /* Size of each fetch, in chars. */
2223 int found_nul; /* Non-zero if we found the nul char. */
2224 gdb_byte *limit; /* First location past end of fetch buffer. */
2225
2226 found_nul = 0;
2227 /* We are looking for a NUL terminator to end the fetching, so we
2228 might as well read in blocks that are large enough to be efficient,
2229 but not so large as to be slow if fetchlimit happens to be large.
2230 So we choose the minimum of 8 and fetchlimit. We used to use 200
2231 instead of 8 but 200 is way too big for remote debugging over a
2232 serial line. */
2233 chunksize = std::min (8u, fetchlimit);
2234
2235 do
2236 {
2237 QUIT;
2238 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2239
2240 if (*buffer == NULL)
2241 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2242 else
2243 *buffer = (gdb_byte *) xrealloc (*buffer,
2244 (nfetch + bufsize) * width);
2245
2246 bufptr = *buffer + bufsize * width;
2247 bufsize += nfetch;
2248
2249 /* Read as much as we can. */
2250 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2251 / width;
2252
2253 /* Scan this chunk for the null character that terminates the string
2254 to print. If found, we don't need to fetch any more. Note
2255 that bufptr is explicitly left pointing at the next character
2256 after the null character, or at the next character after the end
2257 of the buffer. */
2258
2259 limit = bufptr + nfetch * width;
2260 while (bufptr < limit)
2261 {
2262 unsigned long c;
2263
2264 c = extract_unsigned_integer (bufptr, width, byte_order);
2265 addr += width;
2266 bufptr += width;
2267 if (c == 0)
2268 {
2269 /* We don't care about any error which happened after
2270 the NUL terminator. */
2271 errcode = 0;
2272 found_nul = 1;
2273 break;
2274 }
2275 }
2276 }
2277 while (errcode == 0 /* no error */
2278 && bufptr - *buffer < fetchlimit * width /* no overrun */
2279 && !found_nul); /* haven't found NUL yet */
2280 }
2281 else
2282 { /* Length of string is really 0! */
2283 /* We always allocate *buffer. */
2284 *buffer = bufptr = (gdb_byte *) xmalloc (1);
2285 errcode = 0;
2286 }
2287
2288 /* bufptr and addr now point immediately beyond the last byte which we
2289 consider part of the string (including a '\0' which ends the string). */
2290 *bytes_read = bufptr - *buffer;
2291
2292 QUIT;
2293
2294 discard_cleanups (old_chain);
2295
2296 return errcode;
2297 }
2298
2299 /* Return true if print_wchar can display W without resorting to a
2300 numeric escape, false otherwise. */
2301
2302 static int
2303 wchar_printable (gdb_wchar_t w)
2304 {
2305 return (gdb_iswprint (w)
2306 || w == LCST ('\a') || w == LCST ('\b')
2307 || w == LCST ('\f') || w == LCST ('\n')
2308 || w == LCST ('\r') || w == LCST ('\t')
2309 || w == LCST ('\v'));
2310 }
2311
2312 /* A helper function that converts the contents of STRING to wide
2313 characters and then appends them to OUTPUT. */
2314
2315 static void
2316 append_string_as_wide (const char *string,
2317 struct obstack *output)
2318 {
2319 for (; *string; ++string)
2320 {
2321 gdb_wchar_t w = gdb_btowc (*string);
2322 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2323 }
2324 }
2325
2326 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2327 original (target) bytes representing the character, ORIG_LEN is the
2328 number of valid bytes. WIDTH is the number of bytes in a base
2329 characters of the type. OUTPUT is an obstack to which wide
2330 characters are emitted. QUOTER is a (narrow) character indicating
2331 the style of quotes surrounding the character to be printed.
2332 NEED_ESCAPE is an in/out flag which is used to track numeric
2333 escapes across calls. */
2334
2335 static void
2336 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2337 int orig_len, int width,
2338 enum bfd_endian byte_order,
2339 struct obstack *output,
2340 int quoter, int *need_escapep)
2341 {
2342 int need_escape = *need_escapep;
2343
2344 *need_escapep = 0;
2345
2346 /* iswprint implementation on Windows returns 1 for tab character.
2347 In order to avoid different printout on this host, we explicitly
2348 use wchar_printable function. */
2349 switch (w)
2350 {
2351 case LCST ('\a'):
2352 obstack_grow_wstr (output, LCST ("\\a"));
2353 break;
2354 case LCST ('\b'):
2355 obstack_grow_wstr (output, LCST ("\\b"));
2356 break;
2357 case LCST ('\f'):
2358 obstack_grow_wstr (output, LCST ("\\f"));
2359 break;
2360 case LCST ('\n'):
2361 obstack_grow_wstr (output, LCST ("\\n"));
2362 break;
2363 case LCST ('\r'):
2364 obstack_grow_wstr (output, LCST ("\\r"));
2365 break;
2366 case LCST ('\t'):
2367 obstack_grow_wstr (output, LCST ("\\t"));
2368 break;
2369 case LCST ('\v'):
2370 obstack_grow_wstr (output, LCST ("\\v"));
2371 break;
2372 default:
2373 {
2374 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2375 && w != LCST ('8')
2376 && w != LCST ('9'))))
2377 {
2378 gdb_wchar_t wchar = w;
2379
2380 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2381 obstack_grow_wstr (output, LCST ("\\"));
2382 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2383 }
2384 else
2385 {
2386 int i;
2387
2388 for (i = 0; i + width <= orig_len; i += width)
2389 {
2390 char octal[30];
2391 ULONGEST value;
2392
2393 value = extract_unsigned_integer (&orig[i], width,
2394 byte_order);
2395 /* If the value fits in 3 octal digits, print it that
2396 way. Otherwise, print it as a hex escape. */
2397 if (value <= 0777)
2398 xsnprintf (octal, sizeof (octal), "\\%.3o",
2399 (int) (value & 0777));
2400 else
2401 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2402 append_string_as_wide (octal, output);
2403 }
2404 /* If we somehow have extra bytes, print them now. */
2405 while (i < orig_len)
2406 {
2407 char octal[5];
2408
2409 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2410 append_string_as_wide (octal, output);
2411 ++i;
2412 }
2413
2414 *need_escapep = 1;
2415 }
2416 break;
2417 }
2418 }
2419 }
2420
2421 /* Print the character C on STREAM as part of the contents of a
2422 literal string whose delimiter is QUOTER. ENCODING names the
2423 encoding of C. */
2424
2425 void
2426 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2427 int quoter, const char *encoding)
2428 {
2429 enum bfd_endian byte_order
2430 = gdbarch_byte_order (get_type_arch (type));
2431 struct obstack wchar_buf, output;
2432 struct cleanup *cleanups;
2433 gdb_byte *buf;
2434 int need_escape = 0;
2435
2436 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2437 pack_long (buf, type, c);
2438
2439 wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2440
2441 /* This holds the printable form of the wchar_t data. */
2442 obstack_init (&wchar_buf);
2443 cleanups = make_cleanup_obstack_free (&wchar_buf);
2444
2445 while (1)
2446 {
2447 int num_chars;
2448 gdb_wchar_t *chars;
2449 const gdb_byte *buf;
2450 size_t buflen;
2451 int print_escape = 1;
2452 enum wchar_iterate_result result;
2453
2454 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2455 if (num_chars < 0)
2456 break;
2457 if (num_chars > 0)
2458 {
2459 /* If all characters are printable, print them. Otherwise,
2460 we're going to have to print an escape sequence. We
2461 check all characters because we want to print the target
2462 bytes in the escape sequence, and we don't know character
2463 boundaries there. */
2464 int i;
2465
2466 print_escape = 0;
2467 for (i = 0; i < num_chars; ++i)
2468 if (!wchar_printable (chars[i]))
2469 {
2470 print_escape = 1;
2471 break;
2472 }
2473
2474 if (!print_escape)
2475 {
2476 for (i = 0; i < num_chars; ++i)
2477 print_wchar (chars[i], buf, buflen,
2478 TYPE_LENGTH (type), byte_order,
2479 &wchar_buf, quoter, &need_escape);
2480 }
2481 }
2482
2483 /* This handles the NUM_CHARS == 0 case as well. */
2484 if (print_escape)
2485 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2486 byte_order, &wchar_buf, quoter, &need_escape);
2487 }
2488
2489 /* The output in the host encoding. */
2490 obstack_init (&output);
2491 make_cleanup_obstack_free (&output);
2492
2493 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2494 (gdb_byte *) obstack_base (&wchar_buf),
2495 obstack_object_size (&wchar_buf),
2496 sizeof (gdb_wchar_t), &output, translit_char);
2497 obstack_1grow (&output, '\0');
2498
2499 fputs_filtered ((const char *) obstack_base (&output), stream);
2500
2501 do_cleanups (cleanups);
2502 }
2503
2504 /* Return the repeat count of the next character/byte in ITER,
2505 storing the result in VEC. */
2506
2507 static int
2508 count_next_character (wchar_iterator *iter,
2509 VEC (converted_character_d) **vec)
2510 {
2511 struct converted_character *current;
2512
2513 if (VEC_empty (converted_character_d, *vec))
2514 {
2515 struct converted_character tmp;
2516 gdb_wchar_t *chars;
2517
2518 tmp.num_chars
2519 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2520 if (tmp.num_chars > 0)
2521 {
2522 gdb_assert (tmp.num_chars < MAX_WCHARS);
2523 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2524 }
2525 VEC_safe_push (converted_character_d, *vec, &tmp);
2526 }
2527
2528 current = VEC_last (converted_character_d, *vec);
2529
2530 /* Count repeated characters or bytes. */
2531 current->repeat_count = 1;
2532 if (current->num_chars == -1)
2533 {
2534 /* EOF */
2535 return -1;
2536 }
2537 else
2538 {
2539 gdb_wchar_t *chars;
2540 struct converted_character d;
2541 int repeat;
2542
2543 d.repeat_count = 0;
2544
2545 while (1)
2546 {
2547 /* Get the next character. */
2548 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2549
2550 /* If a character was successfully converted, save the character
2551 into the converted character. */
2552 if (d.num_chars > 0)
2553 {
2554 gdb_assert (d.num_chars < MAX_WCHARS);
2555 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2556 }
2557
2558 /* Determine if the current character is the same as this
2559 new character. */
2560 if (d.num_chars == current->num_chars && d.result == current->result)
2561 {
2562 /* There are two cases to consider:
2563
2564 1) Equality of converted character (num_chars > 0)
2565 2) Equality of non-converted character (num_chars == 0) */
2566 if ((current->num_chars > 0
2567 && memcmp (current->chars, d.chars,
2568 WCHAR_BUFLEN (current->num_chars)) == 0)
2569 || (current->num_chars == 0
2570 && current->buflen == d.buflen
2571 && memcmp (current->buf, d.buf, current->buflen) == 0))
2572 ++current->repeat_count;
2573 else
2574 break;
2575 }
2576 else
2577 break;
2578 }
2579
2580 /* Push this next converted character onto the result vector. */
2581 repeat = current->repeat_count;
2582 VEC_safe_push (converted_character_d, *vec, &d);
2583 return repeat;
2584 }
2585 }
2586
2587 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2588 character to use with string output. WIDTH is the size of the output
2589 character type. BYTE_ORDER is the the target byte order. OPTIONS
2590 is the user's print options. */
2591
2592 static void
2593 print_converted_chars_to_obstack (struct obstack *obstack,
2594 VEC (converted_character_d) *chars,
2595 int quote_char, int width,
2596 enum bfd_endian byte_order,
2597 const struct value_print_options *options)
2598 {
2599 unsigned int idx;
2600 struct converted_character *elem;
2601 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2602 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2603 int need_escape = 0;
2604
2605 /* Set the start state. */
2606 idx = 0;
2607 last = state = START;
2608 elem = NULL;
2609
2610 while (1)
2611 {
2612 switch (state)
2613 {
2614 case START:
2615 /* Nothing to do. */
2616 break;
2617
2618 case SINGLE:
2619 {
2620 int j;
2621
2622 /* We are outputting a single character
2623 (< options->repeat_count_threshold). */
2624
2625 if (last != SINGLE)
2626 {
2627 /* We were outputting some other type of content, so we
2628 must output and a comma and a quote. */
2629 if (last != START)
2630 obstack_grow_wstr (obstack, LCST (", "));
2631 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2632 }
2633 /* Output the character. */
2634 for (j = 0; j < elem->repeat_count; ++j)
2635 {
2636 if (elem->result == wchar_iterate_ok)
2637 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2638 byte_order, obstack, quote_char, &need_escape);
2639 else
2640 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2641 byte_order, obstack, quote_char, &need_escape);
2642 }
2643 }
2644 break;
2645
2646 case REPEAT:
2647 {
2648 int j;
2649 char *s;
2650
2651 /* We are outputting a character with a repeat count
2652 greater than options->repeat_count_threshold. */
2653
2654 if (last == SINGLE)
2655 {
2656 /* We were outputting a single string. Terminate the
2657 string. */
2658 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2659 }
2660 if (last != START)
2661 obstack_grow_wstr (obstack, LCST (", "));
2662
2663 /* Output the character and repeat string. */
2664 obstack_grow_wstr (obstack, LCST ("'"));
2665 if (elem->result == wchar_iterate_ok)
2666 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2667 byte_order, obstack, quote_char, &need_escape);
2668 else
2669 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2670 byte_order, obstack, quote_char, &need_escape);
2671 obstack_grow_wstr (obstack, LCST ("'"));
2672 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2673 for (j = 0; s[j]; ++j)
2674 {
2675 gdb_wchar_t w = gdb_btowc (s[j]);
2676 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2677 }
2678 xfree (s);
2679 }
2680 break;
2681
2682 case INCOMPLETE:
2683 /* We are outputting an incomplete sequence. */
2684 if (last == SINGLE)
2685 {
2686 /* If we were outputting a string of SINGLE characters,
2687 terminate the quote. */
2688 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2689 }
2690 if (last != START)
2691 obstack_grow_wstr (obstack, LCST (", "));
2692
2693 /* Output the incomplete sequence string. */
2694 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2695 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2696 obstack, 0, &need_escape);
2697 obstack_grow_wstr (obstack, LCST (">"));
2698
2699 /* We do not attempt to outupt anything after this. */
2700 state = FINISH;
2701 break;
2702
2703 case FINISH:
2704 /* All done. If we were outputting a string of SINGLE
2705 characters, the string must be terminated. Otherwise,
2706 REPEAT and INCOMPLETE are always left properly terminated. */
2707 if (last == SINGLE)
2708 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2709
2710 return;
2711 }
2712
2713 /* Get the next element and state. */
2714 last = state;
2715 if (state != FINISH)
2716 {
2717 elem = VEC_index (converted_character_d, chars, idx++);
2718 switch (elem->result)
2719 {
2720 case wchar_iterate_ok:
2721 case wchar_iterate_invalid:
2722 if (elem->repeat_count > options->repeat_count_threshold)
2723 state = REPEAT;
2724 else
2725 state = SINGLE;
2726 break;
2727
2728 case wchar_iterate_incomplete:
2729 state = INCOMPLETE;
2730 break;
2731
2732 case wchar_iterate_eof:
2733 state = FINISH;
2734 break;
2735 }
2736 }
2737 }
2738 }
2739
2740 /* Print the character string STRING, printing at most LENGTH
2741 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2742 the type of each character. OPTIONS holds the printing options;
2743 printing stops early if the number hits print_max; repeat counts
2744 are printed as appropriate. Print ellipses at the end if we had to
2745 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2746 QUOTE_CHAR is the character to print at each end of the string. If
2747 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2748 omitted. */
2749
2750 void
2751 generic_printstr (struct ui_file *stream, struct type *type,
2752 const gdb_byte *string, unsigned int length,
2753 const char *encoding, int force_ellipses,
2754 int quote_char, int c_style_terminator,
2755 const struct value_print_options *options)
2756 {
2757 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2758 unsigned int i;
2759 int width = TYPE_LENGTH (type);
2760 struct obstack wchar_buf, output;
2761 struct cleanup *cleanup;
2762 int finished = 0;
2763 struct converted_character *last;
2764 VEC (converted_character_d) *converted_chars;
2765
2766 if (length == -1)
2767 {
2768 unsigned long current_char = 1;
2769
2770 for (i = 0; current_char; ++i)
2771 {
2772 QUIT;
2773 current_char = extract_unsigned_integer (string + i * width,
2774 width, byte_order);
2775 }
2776 length = i;
2777 }
2778
2779 /* If the string was not truncated due to `set print elements', and
2780 the last byte of it is a null, we don't print that, in
2781 traditional C style. */
2782 if (c_style_terminator
2783 && !force_ellipses
2784 && length > 0
2785 && (extract_unsigned_integer (string + (length - 1) * width,
2786 width, byte_order) == 0))
2787 length--;
2788
2789 if (length == 0)
2790 {
2791 fputs_filtered ("\"\"", stream);
2792 return;
2793 }
2794
2795 /* Arrange to iterate over the characters, in wchar_t form. */
2796 wchar_iterator iter (string, length * width, encoding, width);
2797 converted_chars = NULL;
2798 cleanup = make_cleanup (VEC_cleanup (converted_character_d),
2799 &converted_chars);
2800
2801 /* Convert characters until the string is over or the maximum
2802 number of printed characters has been reached. */
2803 i = 0;
2804 while (i < options->print_max)
2805 {
2806 int r;
2807
2808 QUIT;
2809
2810 /* Grab the next character and repeat count. */
2811 r = count_next_character (&iter, &converted_chars);
2812
2813 /* If less than zero, the end of the input string was reached. */
2814 if (r < 0)
2815 break;
2816
2817 /* Otherwise, add the count to the total print count and get
2818 the next character. */
2819 i += r;
2820 }
2821
2822 /* Get the last element and determine if the entire string was
2823 processed. */
2824 last = VEC_last (converted_character_d, converted_chars);
2825 finished = (last->result == wchar_iterate_eof);
2826
2827 /* Ensure that CONVERTED_CHARS is terminated. */
2828 last->result = wchar_iterate_eof;
2829
2830 /* WCHAR_BUF is the obstack we use to represent the string in
2831 wchar_t form. */
2832 obstack_init (&wchar_buf);
2833 make_cleanup_obstack_free (&wchar_buf);
2834
2835 /* Print the output string to the obstack. */
2836 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2837 width, byte_order, options);
2838
2839 if (force_ellipses || !finished)
2840 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2841
2842 /* OUTPUT is where we collect `char's for printing. */
2843 obstack_init (&output);
2844 make_cleanup_obstack_free (&output);
2845
2846 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2847 (gdb_byte *) obstack_base (&wchar_buf),
2848 obstack_object_size (&wchar_buf),
2849 sizeof (gdb_wchar_t), &output, translit_char);
2850 obstack_1grow (&output, '\0');
2851
2852 fputs_filtered ((const char *) obstack_base (&output), stream);
2853
2854 do_cleanups (cleanup);
2855 }
2856
2857 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2858 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2859 stops at the first null byte, otherwise printing proceeds (including null
2860 bytes) until either print_max or LEN characters have been printed,
2861 whichever is smaller. ENCODING is the name of the string's
2862 encoding. It can be NULL, in which case the target encoding is
2863 assumed. */
2864
2865 int
2866 val_print_string (struct type *elttype, const char *encoding,
2867 CORE_ADDR addr, int len,
2868 struct ui_file *stream,
2869 const struct value_print_options *options)
2870 {
2871 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2872 int err; /* Non-zero if we got a bad read. */
2873 int found_nul; /* Non-zero if we found the nul char. */
2874 unsigned int fetchlimit; /* Maximum number of chars to print. */
2875 int bytes_read;
2876 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2877 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2878 struct gdbarch *gdbarch = get_type_arch (elttype);
2879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2880 int width = TYPE_LENGTH (elttype);
2881
2882 /* First we need to figure out the limit on the number of characters we are
2883 going to attempt to fetch and print. This is actually pretty simple. If
2884 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2885 LEN is -1, then the limit is print_max. This is true regardless of
2886 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2887 because finding the null byte (or available memory) is what actually
2888 limits the fetch. */
2889
2890 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2891 options->print_max));
2892
2893 err = read_string (addr, len, width, fetchlimit, byte_order,
2894 &buffer, &bytes_read);
2895 old_chain = make_cleanup (xfree, buffer);
2896
2897 addr += bytes_read;
2898
2899 /* We now have either successfully filled the buffer to fetchlimit,
2900 or terminated early due to an error or finding a null char when
2901 LEN is -1. */
2902
2903 /* Determine found_nul by looking at the last character read. */
2904 found_nul = 0;
2905 if (bytes_read >= width)
2906 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2907 byte_order) == 0;
2908 if (len == -1 && !found_nul)
2909 {
2910 gdb_byte *peekbuf;
2911
2912 /* We didn't find a NUL terminator we were looking for. Attempt
2913 to peek at the next character. If not successful, or it is not
2914 a null byte, then force ellipsis to be printed. */
2915
2916 peekbuf = (gdb_byte *) alloca (width);
2917
2918 if (target_read_memory (addr, peekbuf, width) == 0
2919 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2920 force_ellipsis = 1;
2921 }
2922 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2923 {
2924 /* Getting an error when we have a requested length, or fetching less
2925 than the number of characters actually requested, always make us
2926 print ellipsis. */
2927 force_ellipsis = 1;
2928 }
2929
2930 /* If we get an error before fetching anything, don't print a string.
2931 But if we fetch something and then get an error, print the string
2932 and then the error message. */
2933 if (err == 0 || bytes_read > 0)
2934 {
2935 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2936 encoding, force_ellipsis, options);
2937 }
2938
2939 if (err != 0)
2940 {
2941 char *str;
2942
2943 str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2944 make_cleanup (xfree, str);
2945
2946 fprintf_filtered (stream, "<error: ");
2947 fputs_filtered (str, stream);
2948 fprintf_filtered (stream, ">");
2949 }
2950
2951 gdb_flush (stream);
2952 do_cleanups (old_chain);
2953
2954 return (bytes_read / width);
2955 }
2956 \f
2957
2958 /* The 'set input-radix' command writes to this auxiliary variable.
2959 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2960 it is left unchanged. */
2961
2962 static unsigned input_radix_1 = 10;
2963
2964 /* Validate an input or output radix setting, and make sure the user
2965 knows what they really did here. Radix setting is confusing, e.g.
2966 setting the input radix to "10" never changes it! */
2967
2968 static void
2969 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2970 {
2971 set_input_radix_1 (from_tty, input_radix_1);
2972 }
2973
2974 static void
2975 set_input_radix_1 (int from_tty, unsigned radix)
2976 {
2977 /* We don't currently disallow any input radix except 0 or 1, which don't
2978 make any mathematical sense. In theory, we can deal with any input
2979 radix greater than 1, even if we don't have unique digits for every
2980 value from 0 to radix-1, but in practice we lose on large radix values.
2981 We should either fix the lossage or restrict the radix range more.
2982 (FIXME). */
2983
2984 if (radix < 2)
2985 {
2986 input_radix_1 = input_radix;
2987 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2988 radix);
2989 }
2990 input_radix_1 = input_radix = radix;
2991 if (from_tty)
2992 {
2993 printf_filtered (_("Input radix now set to "
2994 "decimal %u, hex %x, octal %o.\n"),
2995 radix, radix, radix);
2996 }
2997 }
2998
2999 /* The 'set output-radix' command writes to this auxiliary variable.
3000 If the requested radix is valid, OUTPUT_RADIX is updated,
3001 otherwise, it is left unchanged. */
3002
3003 static unsigned output_radix_1 = 10;
3004
3005 static void
3006 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
3007 {
3008 set_output_radix_1 (from_tty, output_radix_1);
3009 }
3010
3011 static void
3012 set_output_radix_1 (int from_tty, unsigned radix)
3013 {
3014 /* Validate the radix and disallow ones that we aren't prepared to
3015 handle correctly, leaving the radix unchanged. */
3016 switch (radix)
3017 {
3018 case 16:
3019 user_print_options.output_format = 'x'; /* hex */
3020 break;
3021 case 10:
3022 user_print_options.output_format = 0; /* decimal */
3023 break;
3024 case 8:
3025 user_print_options.output_format = 'o'; /* octal */
3026 break;
3027 default:
3028 output_radix_1 = output_radix;
3029 error (_("Unsupported output radix ``decimal %u''; "
3030 "output radix unchanged."),
3031 radix);
3032 }
3033 output_radix_1 = output_radix = radix;
3034 if (from_tty)
3035 {
3036 printf_filtered (_("Output radix now set to "
3037 "decimal %u, hex %x, octal %o.\n"),
3038 radix, radix, radix);
3039 }
3040 }
3041
3042 /* Set both the input and output radix at once. Try to set the output radix
3043 first, since it has the most restrictive range. An radix that is valid as
3044 an output radix is also valid as an input radix.
3045
3046 It may be useful to have an unusual input radix. If the user wishes to
3047 set an input radix that is not valid as an output radix, he needs to use
3048 the 'set input-radix' command. */
3049
3050 static void
3051 set_radix (char *arg, int from_tty)
3052 {
3053 unsigned radix;
3054
3055 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3056 set_output_radix_1 (0, radix);
3057 set_input_radix_1 (0, radix);
3058 if (from_tty)
3059 {
3060 printf_filtered (_("Input and output radices now set to "
3061 "decimal %u, hex %x, octal %o.\n"),
3062 radix, radix, radix);
3063 }
3064 }
3065
3066 /* Show both the input and output radices. */
3067
3068 static void
3069 show_radix (char *arg, int from_tty)
3070 {
3071 if (from_tty)
3072 {
3073 if (input_radix == output_radix)
3074 {
3075 printf_filtered (_("Input and output radices set to "
3076 "decimal %u, hex %x, octal %o.\n"),
3077 input_radix, input_radix, input_radix);
3078 }
3079 else
3080 {
3081 printf_filtered (_("Input radix set to decimal "
3082 "%u, hex %x, octal %o.\n"),
3083 input_radix, input_radix, input_radix);
3084 printf_filtered (_("Output radix set to decimal "
3085 "%u, hex %x, octal %o.\n"),
3086 output_radix, output_radix, output_radix);
3087 }
3088 }
3089 }
3090 \f
3091
3092 static void
3093 set_print (char *arg, int from_tty)
3094 {
3095 printf_unfiltered (
3096 "\"set print\" must be followed by the name of a print subcommand.\n");
3097 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3098 }
3099
3100 static void
3101 show_print (char *args, int from_tty)
3102 {
3103 cmd_show_list (showprintlist, from_tty, "");
3104 }
3105
3106 static void
3107 set_print_raw (char *arg, int from_tty)
3108 {
3109 printf_unfiltered (
3110 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3111 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3112 }
3113
3114 static void
3115 show_print_raw (char *args, int from_tty)
3116 {
3117 cmd_show_list (showprintrawlist, from_tty, "");
3118 }
3119
3120 \f
3121 void
3122 _initialize_valprint (void)
3123 {
3124 add_prefix_cmd ("print", no_class, set_print,
3125 _("Generic command for setting how things print."),
3126 &setprintlist, "set print ", 0, &setlist);
3127 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3128 /* Prefer set print to set prompt. */
3129 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3130
3131 add_prefix_cmd ("print", no_class, show_print,
3132 _("Generic command for showing print settings."),
3133 &showprintlist, "show print ", 0, &showlist);
3134 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3135 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3136
3137 add_prefix_cmd ("raw", no_class, set_print_raw,
3138 _("\
3139 Generic command for setting what things to print in \"raw\" mode."),
3140 &setprintrawlist, "set print raw ", 0, &setprintlist);
3141 add_prefix_cmd ("raw", no_class, show_print_raw,
3142 _("Generic command for showing \"print raw\" settings."),
3143 &showprintrawlist, "show print raw ", 0, &showprintlist);
3144
3145 add_setshow_uinteger_cmd ("elements", no_class,
3146 &user_print_options.print_max, _("\
3147 Set limit on string chars or array elements to print."), _("\
3148 Show limit on string chars or array elements to print."), _("\
3149 \"set print elements unlimited\" causes there to be no limit."),
3150 NULL,
3151 show_print_max,
3152 &setprintlist, &showprintlist);
3153
3154 add_setshow_boolean_cmd ("null-stop", no_class,
3155 &user_print_options.stop_print_at_null, _("\
3156 Set printing of char arrays to stop at first null char."), _("\
3157 Show printing of char arrays to stop at first null char."), NULL,
3158 NULL,
3159 show_stop_print_at_null,
3160 &setprintlist, &showprintlist);
3161
3162 add_setshow_uinteger_cmd ("repeats", no_class,
3163 &user_print_options.repeat_count_threshold, _("\
3164 Set threshold for repeated print elements."), _("\
3165 Show threshold for repeated print elements."), _("\
3166 \"set print repeats unlimited\" causes all elements to be individually printed."),
3167 NULL,
3168 show_repeat_count_threshold,
3169 &setprintlist, &showprintlist);
3170
3171 add_setshow_boolean_cmd ("pretty", class_support,
3172 &user_print_options.prettyformat_structs, _("\
3173 Set pretty formatting of structures."), _("\
3174 Show pretty formatting of structures."), NULL,
3175 NULL,
3176 show_prettyformat_structs,
3177 &setprintlist, &showprintlist);
3178
3179 add_setshow_boolean_cmd ("union", class_support,
3180 &user_print_options.unionprint, _("\
3181 Set printing of unions interior to structures."), _("\
3182 Show printing of unions interior to structures."), NULL,
3183 NULL,
3184 show_unionprint,
3185 &setprintlist, &showprintlist);
3186
3187 add_setshow_boolean_cmd ("array", class_support,
3188 &user_print_options.prettyformat_arrays, _("\
3189 Set pretty formatting of arrays."), _("\
3190 Show pretty formatting of arrays."), NULL,
3191 NULL,
3192 show_prettyformat_arrays,
3193 &setprintlist, &showprintlist);
3194
3195 add_setshow_boolean_cmd ("address", class_support,
3196 &user_print_options.addressprint, _("\
3197 Set printing of addresses."), _("\
3198 Show printing of addresses."), NULL,
3199 NULL,
3200 show_addressprint,
3201 &setprintlist, &showprintlist);
3202
3203 add_setshow_boolean_cmd ("symbol", class_support,
3204 &user_print_options.symbol_print, _("\
3205 Set printing of symbol names when printing pointers."), _("\
3206 Show printing of symbol names when printing pointers."),
3207 NULL, NULL,
3208 show_symbol_print,
3209 &setprintlist, &showprintlist);
3210
3211 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3212 _("\
3213 Set default input radix for entering numbers."), _("\
3214 Show default input radix for entering numbers."), NULL,
3215 set_input_radix,
3216 show_input_radix,
3217 &setlist, &showlist);
3218
3219 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3220 _("\
3221 Set default output radix for printing of values."), _("\
3222 Show default output radix for printing of values."), NULL,
3223 set_output_radix,
3224 show_output_radix,
3225 &setlist, &showlist);
3226
3227 /* The "set radix" and "show radix" commands are special in that
3228 they are like normal set and show commands but allow two normally
3229 independent variables to be either set or shown with a single
3230 command. So the usual deprecated_add_set_cmd() and [deleted]
3231 add_show_from_set() commands aren't really appropriate. */
3232 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3233 longer true - show can display anything. */
3234 add_cmd ("radix", class_support, set_radix, _("\
3235 Set default input and output number radices.\n\
3236 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3237 Without an argument, sets both radices back to the default value of 10."),
3238 &setlist);
3239 add_cmd ("radix", class_support, show_radix, _("\
3240 Show the default input and output number radices.\n\
3241 Use 'show input-radix' or 'show output-radix' to independently show each."),
3242 &showlist);
3243
3244 add_setshow_boolean_cmd ("array-indexes", class_support,
3245 &user_print_options.print_array_indexes, _("\
3246 Set printing of array indexes."), _("\
3247 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3248 &setprintlist, &showprintlist);
3249 }
This page took 0.206781 seconds and 4 git commands to generate.