Wrong value printed by info locals for dynamic object.
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37 #include "python/python.h"
38 #include "ada-lang.h"
39
40 #include <errno.h>
41
42 /* Prototypes for local functions */
43
44 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
45 int len, int *errnoptr);
46
47 static void show_print (char *, int);
48
49 static void set_print (char *, int);
50
51 static void set_radix (char *, int);
52
53 static void show_radix (char *, int);
54
55 static void set_input_radix (char *, int, struct cmd_list_element *);
56
57 static void set_input_radix_1 (int, unsigned);
58
59 static void set_output_radix (char *, int, struct cmd_list_element *);
60
61 static void set_output_radix_1 (int, unsigned);
62
63 void _initialize_valprint (void);
64
65 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
66
67 struct value_print_options user_print_options =
68 {
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
88 };
89
90 /* Initialize *OPTS to be a copy of the user print options. */
91 void
92 get_user_print_options (struct value_print_options *opts)
93 {
94 *opts = user_print_options;
95 }
96
97 /* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99 void
100 get_raw_print_options (struct value_print_options *opts)
101 {
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104 }
105
106 /* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108 void
109 get_formatted_print_options (struct value_print_options *opts,
110 char format)
111 {
112 *opts = user_print_options;
113 opts->format = format;
114 }
115
116 static void
117 show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("\
121 Limit on string chars or array elements to print is %s.\n"),
122 value);
123 }
124
125
126 /* Default input and output radixes, and output format letter. */
127
128 unsigned input_radix = 10;
129 static void
130 show_input_radix (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("\
134 Default input radix for entering numbers is %s.\n"),
135 value);
136 }
137
138 unsigned output_radix = 10;
139 static void
140 show_output_radix (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142 {
143 fprintf_filtered (file, _("\
144 Default output radix for printing of values is %s.\n"),
145 value);
146 }
147
148 /* By default we print arrays without printing the index of each element in
149 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
150
151 static void
152 show_print_array_indexes (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
156 }
157
158 /* Print repeat counts if there are more than this many repetitions of an
159 element in an array. Referenced by the low level language dependent
160 print routines. */
161
162 static void
163 show_repeat_count_threshold (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
167 value);
168 }
169
170 /* If nonzero, stops printing of char arrays at first null. */
171
172 static void
173 show_stop_print_at_null (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("\
177 Printing of char arrays to stop at first null char is %s.\n"),
178 value);
179 }
180
181 /* Controls pretty printing of structures. */
182
183 static void
184 show_prettyprint_structs (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186 {
187 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
188 }
189
190 /* Controls pretty printing of arrays. */
191
192 static void
193 show_prettyprint_arrays (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
197 }
198
199 /* If nonzero, causes unions inside structures or other unions to be
200 printed. */
201
202 static void
203 show_unionprint (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205 {
206 fprintf_filtered (file, _("\
207 Printing of unions interior to structures is %s.\n"),
208 value);
209 }
210
211 /* If nonzero, causes machine addresses to be printed in certain contexts. */
212
213 static void
214 show_addressprint (struct ui_file *file, int from_tty,
215 struct cmd_list_element *c, const char *value)
216 {
217 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
218 }
219 \f
220
221 /* A helper function for val_print. When printing in "summary" mode,
222 we want to print scalar arguments, but not aggregate arguments.
223 This function distinguishes between the two. */
224
225 static int
226 scalar_type_p (struct type *type)
227 {
228 CHECK_TYPEDEF (type);
229 while (TYPE_CODE (type) == TYPE_CODE_REF)
230 {
231 type = TYPE_TARGET_TYPE (type);
232 CHECK_TYPEDEF (type);
233 }
234 switch (TYPE_CODE (type))
235 {
236 case TYPE_CODE_ARRAY:
237 case TYPE_CODE_STRUCT:
238 case TYPE_CODE_UNION:
239 case TYPE_CODE_SET:
240 case TYPE_CODE_STRING:
241 case TYPE_CODE_BITSTRING:
242 return 0;
243 default:
244 return 1;
245 }
246 }
247
248 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
249 (within GDB), which came from the inferior at address ADDRESS, onto
250 stdio stream STREAM according to OPTIONS.
251
252 If the data are a string pointer, returns the number of string characters
253 printed.
254
255 FIXME: The data at VALADDR is in target byte order. If gdb is ever
256 enhanced to be able to debug more than the single target it was compiled
257 for (specific CPU type and thus specific target byte ordering), then
258 either the print routines are going to have to take this into account,
259 or the data is going to have to be passed into here already converted
260 to the host byte ordering, whichever is more convenient. */
261
262
263 int
264 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
265 CORE_ADDR address, struct ui_file *stream, int recurse,
266 const struct value_print_options *options,
267 const struct language_defn *language)
268 {
269 volatile struct gdb_exception except;
270 int ret = 0;
271 struct value_print_options local_opts = *options;
272 struct type *real_type = check_typedef (type);
273
274 if (local_opts.pretty == Val_pretty_default)
275 local_opts.pretty = (local_opts.prettyprint_structs
276 ? Val_prettyprint : Val_no_prettyprint);
277
278 QUIT;
279
280 /* Ensure that the type is complete and not just a stub. If the type is
281 only a stub and we can't find and substitute its complete type, then
282 print appropriate string and return. */
283
284 if (TYPE_STUB (real_type))
285 {
286 fprintf_filtered (stream, "<incomplete type>");
287 gdb_flush (stream);
288 return (0);
289 }
290
291 if (!options->raw)
292 {
293 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
294 address, stream, recurse, options,
295 language);
296 if (ret)
297 return ret;
298 }
299
300 /* Handle summary mode. If the value is a scalar, print it;
301 otherwise, print an ellipsis. */
302 if (options->summary && !scalar_type_p (type))
303 {
304 fprintf_filtered (stream, "...");
305 return 0;
306 }
307
308 TRY_CATCH (except, RETURN_MASK_ERROR)
309 {
310 ret = language->la_val_print (type, valaddr, embedded_offset, address,
311 stream, recurse, &local_opts);
312 }
313 if (except.reason < 0)
314 fprintf_filtered (stream, _("<error reading variable>"));
315
316 return ret;
317 }
318
319 /* Check whether the value VAL is printable. Return 1 if it is;
320 return 0 and print an appropriate error message to STREAM if it
321 is not. */
322
323 static int
324 value_check_printable (struct value *val, struct ui_file *stream)
325 {
326 if (val == 0)
327 {
328 fprintf_filtered (stream, _("<address of value unknown>"));
329 return 0;
330 }
331
332 if (value_optimized_out (val))
333 {
334 fprintf_filtered (stream, _("<value optimized out>"));
335 return 0;
336 }
337
338 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
339 {
340 fprintf_filtered (stream, _("<internal function %s>"),
341 value_internal_function_name (val));
342 return 0;
343 }
344
345 return 1;
346 }
347
348 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
349 to OPTIONS.
350
351 If the data are a string pointer, returns the number of string characters
352 printed.
353
354 This is a preferable interface to val_print, above, because it uses
355 GDB's value mechanism. */
356
357 int
358 common_val_print (struct value *val, struct ui_file *stream, int recurse,
359 const struct value_print_options *options,
360 const struct language_defn *language)
361 {
362 if (!value_check_printable (val, stream))
363 return 0;
364
365 if (language->la_language == language_ada)
366 /* The value might have a dynamic type, which would cause trouble
367 below when trying to extract the value contents (since the value
368 size is determined from the type size which is unknown). So
369 get a fixed representation of our value. */
370 val = ada_to_fixed_value (val);
371
372 return val_print (value_type (val), value_contents_all (val),
373 value_embedded_offset (val), value_address (val),
374 stream, recurse, options, language);
375 }
376
377 /* Print on stream STREAM the value VAL according to OPTIONS. The value
378 is printed using the current_language syntax.
379
380 If the object printed is a string pointer, return the number of string
381 bytes printed. */
382
383 int
384 value_print (struct value *val, struct ui_file *stream,
385 const struct value_print_options *options)
386 {
387 if (!value_check_printable (val, stream))
388 return 0;
389
390 if (!options->raw)
391 {
392 int r = apply_val_pretty_printer (value_type (val),
393 value_contents_all (val),
394 value_embedded_offset (val),
395 value_address (val),
396 stream, 0, options,
397 current_language);
398 if (r)
399 return r;
400 }
401
402 return LA_VALUE_PRINT (val, stream, options);
403 }
404
405 /* Called by various <lang>_val_print routines to print
406 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
407 value. STREAM is where to print the value. */
408
409 void
410 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
411 struct ui_file *stream)
412 {
413 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
414
415 if (TYPE_LENGTH (type) > sizeof (LONGEST))
416 {
417 LONGEST val;
418
419 if (TYPE_UNSIGNED (type)
420 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
421 byte_order, &val))
422 {
423 print_longest (stream, 'u', 0, val);
424 }
425 else
426 {
427 /* Signed, or we couldn't turn an unsigned value into a
428 LONGEST. For signed values, one could assume two's
429 complement (a reasonable assumption, I think) and do
430 better than this. */
431 print_hex_chars (stream, (unsigned char *) valaddr,
432 TYPE_LENGTH (type), byte_order);
433 }
434 }
435 else
436 {
437 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
438 unpack_long (type, valaddr));
439 }
440 }
441
442 void
443 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
444 struct ui_file *stream)
445 {
446 ULONGEST val = unpack_long (type, valaddr);
447 int bitpos, nfields = TYPE_NFIELDS (type);
448
449 fputs_filtered ("[ ", stream);
450 for (bitpos = 0; bitpos < nfields; bitpos++)
451 {
452 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
453 && (val & ((ULONGEST)1 << bitpos)))
454 {
455 if (TYPE_FIELD_NAME (type, bitpos))
456 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
457 else
458 fprintf_filtered (stream, "#%d ", bitpos);
459 }
460 }
461 fputs_filtered ("]", stream);
462 }
463
464 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
465 The raison d'etre of this function is to consolidate printing of
466 LONG_LONG's into this one function. The format chars b,h,w,g are
467 from print_scalar_formatted(). Numbers are printed using C
468 format.
469
470 USE_C_FORMAT means to use C format in all cases. Without it,
471 'o' and 'x' format do not include the standard C radix prefix
472 (leading 0 or 0x).
473
474 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
475 and was intended to request formating according to the current
476 language and would be used for most integers that GDB prints. The
477 exceptional cases were things like protocols where the format of
478 the integer is a protocol thing, not a user-visible thing). The
479 parameter remains to preserve the information of what things might
480 be printed with language-specific format, should we ever resurrect
481 that capability. */
482
483 void
484 print_longest (struct ui_file *stream, int format, int use_c_format,
485 LONGEST val_long)
486 {
487 const char *val;
488
489 switch (format)
490 {
491 case 'd':
492 val = int_string (val_long, 10, 1, 0, 1); break;
493 case 'u':
494 val = int_string (val_long, 10, 0, 0, 1); break;
495 case 'x':
496 val = int_string (val_long, 16, 0, 0, use_c_format); break;
497 case 'b':
498 val = int_string (val_long, 16, 0, 2, 1); break;
499 case 'h':
500 val = int_string (val_long, 16, 0, 4, 1); break;
501 case 'w':
502 val = int_string (val_long, 16, 0, 8, 1); break;
503 case 'g':
504 val = int_string (val_long, 16, 0, 16, 1); break;
505 break;
506 case 'o':
507 val = int_string (val_long, 8, 0, 0, use_c_format); break;
508 default:
509 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
510 }
511 fputs_filtered (val, stream);
512 }
513
514 /* This used to be a macro, but I don't think it is called often enough
515 to merit such treatment. */
516 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
517 arguments to a function, number in a value history, register number, etc.)
518 where the value must not be larger than can fit in an int. */
519
520 int
521 longest_to_int (LONGEST arg)
522 {
523 /* Let the compiler do the work */
524 int rtnval = (int) arg;
525
526 /* Check for overflows or underflows */
527 if (sizeof (LONGEST) > sizeof (int))
528 {
529 if (rtnval != arg)
530 {
531 error (_("Value out of range."));
532 }
533 }
534 return (rtnval);
535 }
536
537 /* Print a floating point value of type TYPE (not always a
538 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
539
540 void
541 print_floating (const gdb_byte *valaddr, struct type *type,
542 struct ui_file *stream)
543 {
544 DOUBLEST doub;
545 int inv;
546 const struct floatformat *fmt = NULL;
547 unsigned len = TYPE_LENGTH (type);
548 enum float_kind kind;
549
550 /* If it is a floating-point, check for obvious problems. */
551 if (TYPE_CODE (type) == TYPE_CODE_FLT)
552 fmt = floatformat_from_type (type);
553 if (fmt != NULL)
554 {
555 kind = floatformat_classify (fmt, valaddr);
556 if (kind == float_nan)
557 {
558 if (floatformat_is_negative (fmt, valaddr))
559 fprintf_filtered (stream, "-");
560 fprintf_filtered (stream, "nan(");
561 fputs_filtered ("0x", stream);
562 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
563 fprintf_filtered (stream, ")");
564 return;
565 }
566 else if (kind == float_infinite)
567 {
568 if (floatformat_is_negative (fmt, valaddr))
569 fputs_filtered ("-", stream);
570 fputs_filtered ("inf", stream);
571 return;
572 }
573 }
574
575 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
576 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
577 needs to be used as that takes care of any necessary type
578 conversions. Such conversions are of course direct to DOUBLEST
579 and disregard any possible target floating point limitations.
580 For instance, a u64 would be converted and displayed exactly on a
581 host with 80 bit DOUBLEST but with loss of information on a host
582 with 64 bit DOUBLEST. */
583
584 doub = unpack_double (type, valaddr, &inv);
585 if (inv)
586 {
587 fprintf_filtered (stream, "<invalid float value>");
588 return;
589 }
590
591 /* FIXME: kettenis/2001-01-20: The following code makes too much
592 assumptions about the host and target floating point format. */
593
594 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
595 not necessarily be a TYPE_CODE_FLT, the below ignores that and
596 instead uses the type's length to determine the precision of the
597 floating-point value being printed. */
598
599 if (len < sizeof (double))
600 fprintf_filtered (stream, "%.9g", (double) doub);
601 else if (len == sizeof (double))
602 fprintf_filtered (stream, "%.17g", (double) doub);
603 else
604 #ifdef PRINTF_HAS_LONG_DOUBLE
605 fprintf_filtered (stream, "%.35Lg", doub);
606 #else
607 /* This at least wins with values that are representable as
608 doubles. */
609 fprintf_filtered (stream, "%.17g", (double) doub);
610 #endif
611 }
612
613 void
614 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
615 struct ui_file *stream)
616 {
617 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
618 char decstr[MAX_DECIMAL_STRING];
619 unsigned len = TYPE_LENGTH (type);
620
621 decimal_to_string (valaddr, len, byte_order, decstr);
622 fputs_filtered (decstr, stream);
623 return;
624 }
625
626 void
627 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
628 unsigned len, enum bfd_endian byte_order)
629 {
630
631 #define BITS_IN_BYTES 8
632
633 const gdb_byte *p;
634 unsigned int i;
635 int b;
636
637 /* Declared "int" so it will be signed.
638 * This ensures that right shift will shift in zeros.
639 */
640 const int mask = 0x080;
641
642 /* FIXME: We should be not printing leading zeroes in most cases. */
643
644 if (byte_order == BFD_ENDIAN_BIG)
645 {
646 for (p = valaddr;
647 p < valaddr + len;
648 p++)
649 {
650 /* Every byte has 8 binary characters; peel off
651 * and print from the MSB end.
652 */
653 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
654 {
655 if (*p & (mask >> i))
656 b = 1;
657 else
658 b = 0;
659
660 fprintf_filtered (stream, "%1d", b);
661 }
662 }
663 }
664 else
665 {
666 for (p = valaddr + len - 1;
667 p >= valaddr;
668 p--)
669 {
670 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
671 {
672 if (*p & (mask >> i))
673 b = 1;
674 else
675 b = 0;
676
677 fprintf_filtered (stream, "%1d", b);
678 }
679 }
680 }
681 }
682
683 /* VALADDR points to an integer of LEN bytes.
684 * Print it in octal on stream or format it in buf.
685 */
686 void
687 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
688 unsigned len, enum bfd_endian byte_order)
689 {
690 const gdb_byte *p;
691 unsigned char octa1, octa2, octa3, carry;
692 int cycle;
693
694 /* FIXME: We should be not printing leading zeroes in most cases. */
695
696
697 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
698 * the extra bits, which cycle every three bytes:
699 *
700 * Byte side: 0 1 2 3
701 * | | | |
702 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
703 *
704 * Octal side: 0 1 carry 3 4 carry ...
705 *
706 * Cycle number: 0 1 2
707 *
708 * But of course we are printing from the high side, so we have to
709 * figure out where in the cycle we are so that we end up with no
710 * left over bits at the end.
711 */
712 #define BITS_IN_OCTAL 3
713 #define HIGH_ZERO 0340
714 #define LOW_ZERO 0016
715 #define CARRY_ZERO 0003
716 #define HIGH_ONE 0200
717 #define MID_ONE 0160
718 #define LOW_ONE 0016
719 #define CARRY_ONE 0001
720 #define HIGH_TWO 0300
721 #define MID_TWO 0070
722 #define LOW_TWO 0007
723
724 /* For 32 we start in cycle 2, with two bits and one bit carry;
725 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
726 */
727 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
728 carry = 0;
729
730 fputs_filtered ("0", stream);
731 if (byte_order == BFD_ENDIAN_BIG)
732 {
733 for (p = valaddr;
734 p < valaddr + len;
735 p++)
736 {
737 switch (cycle)
738 {
739 case 0:
740 /* No carry in, carry out two bits.
741 */
742 octa1 = (HIGH_ZERO & *p) >> 5;
743 octa2 = (LOW_ZERO & *p) >> 2;
744 carry = (CARRY_ZERO & *p);
745 fprintf_filtered (stream, "%o", octa1);
746 fprintf_filtered (stream, "%o", octa2);
747 break;
748
749 case 1:
750 /* Carry in two bits, carry out one bit.
751 */
752 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
753 octa2 = (MID_ONE & *p) >> 4;
754 octa3 = (LOW_ONE & *p) >> 1;
755 carry = (CARRY_ONE & *p);
756 fprintf_filtered (stream, "%o", octa1);
757 fprintf_filtered (stream, "%o", octa2);
758 fprintf_filtered (stream, "%o", octa3);
759 break;
760
761 case 2:
762 /* Carry in one bit, no carry out.
763 */
764 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
765 octa2 = (MID_TWO & *p) >> 3;
766 octa3 = (LOW_TWO & *p);
767 carry = 0;
768 fprintf_filtered (stream, "%o", octa1);
769 fprintf_filtered (stream, "%o", octa2);
770 fprintf_filtered (stream, "%o", octa3);
771 break;
772
773 default:
774 error (_("Internal error in octal conversion;"));
775 }
776
777 cycle++;
778 cycle = cycle % BITS_IN_OCTAL;
779 }
780 }
781 else
782 {
783 for (p = valaddr + len - 1;
784 p >= valaddr;
785 p--)
786 {
787 switch (cycle)
788 {
789 case 0:
790 /* Carry out, no carry in */
791 octa1 = (HIGH_ZERO & *p) >> 5;
792 octa2 = (LOW_ZERO & *p) >> 2;
793 carry = (CARRY_ZERO & *p);
794 fprintf_filtered (stream, "%o", octa1);
795 fprintf_filtered (stream, "%o", octa2);
796 break;
797
798 case 1:
799 /* Carry in, carry out */
800 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
801 octa2 = (MID_ONE & *p) >> 4;
802 octa3 = (LOW_ONE & *p) >> 1;
803 carry = (CARRY_ONE & *p);
804 fprintf_filtered (stream, "%o", octa1);
805 fprintf_filtered (stream, "%o", octa2);
806 fprintf_filtered (stream, "%o", octa3);
807 break;
808
809 case 2:
810 /* Carry in, no carry out */
811 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
812 octa2 = (MID_TWO & *p) >> 3;
813 octa3 = (LOW_TWO & *p);
814 carry = 0;
815 fprintf_filtered (stream, "%o", octa1);
816 fprintf_filtered (stream, "%o", octa2);
817 fprintf_filtered (stream, "%o", octa3);
818 break;
819
820 default:
821 error (_("Internal error in octal conversion;"));
822 }
823
824 cycle++;
825 cycle = cycle % BITS_IN_OCTAL;
826 }
827 }
828
829 }
830
831 /* VALADDR points to an integer of LEN bytes.
832 * Print it in decimal on stream or format it in buf.
833 */
834 void
835 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
836 unsigned len, enum bfd_endian byte_order)
837 {
838 #define TEN 10
839 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
840 #define CARRY_LEFT( x ) ((x) % TEN)
841 #define SHIFT( x ) ((x) << 4)
842 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
843 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
844
845 const gdb_byte *p;
846 unsigned char *digits;
847 int carry;
848 int decimal_len;
849 int i, j, decimal_digits;
850 int dummy;
851 int flip;
852
853 /* Base-ten number is less than twice as many digits
854 * as the base 16 number, which is 2 digits per byte.
855 */
856 decimal_len = len * 2 * 2;
857 digits = xmalloc (decimal_len);
858
859 for (i = 0; i < decimal_len; i++)
860 {
861 digits[i] = 0;
862 }
863
864 /* Ok, we have an unknown number of bytes of data to be printed in
865 * decimal.
866 *
867 * Given a hex number (in nibbles) as XYZ, we start by taking X and
868 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
869 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
870 *
871 * The trick is that "digits" holds a base-10 number, but sometimes
872 * the individual digits are > 10.
873 *
874 * Outer loop is per nibble (hex digit) of input, from MSD end to
875 * LSD end.
876 */
877 decimal_digits = 0; /* Number of decimal digits so far */
878 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
879 flip = 0;
880 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
881 {
882 /*
883 * Multiply current base-ten number by 16 in place.
884 * Each digit was between 0 and 9, now is between
885 * 0 and 144.
886 */
887 for (j = 0; j < decimal_digits; j++)
888 {
889 digits[j] = SHIFT (digits[j]);
890 }
891
892 /* Take the next nibble off the input and add it to what
893 * we've got in the LSB position. Bottom 'digit' is now
894 * between 0 and 159.
895 *
896 * "flip" is used to run this loop twice for each byte.
897 */
898 if (flip == 0)
899 {
900 /* Take top nibble.
901 */
902 digits[0] += HIGH_NIBBLE (*p);
903 flip = 1;
904 }
905 else
906 {
907 /* Take low nibble and bump our pointer "p".
908 */
909 digits[0] += LOW_NIBBLE (*p);
910 if (byte_order == BFD_ENDIAN_BIG)
911 p++;
912 else
913 p--;
914 flip = 0;
915 }
916
917 /* Re-decimalize. We have to do this often enough
918 * that we don't overflow, but once per nibble is
919 * overkill. Easier this way, though. Note that the
920 * carry is often larger than 10 (e.g. max initial
921 * carry out of lowest nibble is 15, could bubble all
922 * the way up greater than 10). So we have to do
923 * the carrying beyond the last current digit.
924 */
925 carry = 0;
926 for (j = 0; j < decimal_len - 1; j++)
927 {
928 digits[j] += carry;
929
930 /* "/" won't handle an unsigned char with
931 * a value that if signed would be negative.
932 * So extend to longword int via "dummy".
933 */
934 dummy = digits[j];
935 carry = CARRY_OUT (dummy);
936 digits[j] = CARRY_LEFT (dummy);
937
938 if (j >= decimal_digits && carry == 0)
939 {
940 /*
941 * All higher digits are 0 and we
942 * no longer have a carry.
943 *
944 * Note: "j" is 0-based, "decimal_digits" is
945 * 1-based.
946 */
947 decimal_digits = j + 1;
948 break;
949 }
950 }
951 }
952
953 /* Ok, now "digits" is the decimal representation, with
954 * the "decimal_digits" actual digits. Print!
955 */
956 for (i = decimal_digits - 1; i >= 0; i--)
957 {
958 fprintf_filtered (stream, "%1d", digits[i]);
959 }
960 xfree (digits);
961 }
962
963 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
964
965 void
966 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
967 unsigned len, enum bfd_endian byte_order)
968 {
969 const gdb_byte *p;
970
971 /* FIXME: We should be not printing leading zeroes in most cases. */
972
973 fputs_filtered ("0x", stream);
974 if (byte_order == BFD_ENDIAN_BIG)
975 {
976 for (p = valaddr;
977 p < valaddr + len;
978 p++)
979 {
980 fprintf_filtered (stream, "%02x", *p);
981 }
982 }
983 else
984 {
985 for (p = valaddr + len - 1;
986 p >= valaddr;
987 p--)
988 {
989 fprintf_filtered (stream, "%02x", *p);
990 }
991 }
992 }
993
994 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
995 Omit any leading zero chars. */
996
997 void
998 print_char_chars (struct ui_file *stream, struct type *type,
999 const gdb_byte *valaddr,
1000 unsigned len, enum bfd_endian byte_order)
1001 {
1002 const gdb_byte *p;
1003
1004 if (byte_order == BFD_ENDIAN_BIG)
1005 {
1006 p = valaddr;
1007 while (p < valaddr + len - 1 && *p == 0)
1008 ++p;
1009
1010 while (p < valaddr + len)
1011 {
1012 LA_EMIT_CHAR (*p, type, stream, '\'');
1013 ++p;
1014 }
1015 }
1016 else
1017 {
1018 p = valaddr + len - 1;
1019 while (p > valaddr && *p == 0)
1020 --p;
1021
1022 while (p >= valaddr)
1023 {
1024 LA_EMIT_CHAR (*p, type, stream, '\'');
1025 --p;
1026 }
1027 }
1028 }
1029
1030 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1031 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1032 Save the high bound into HIGH_BOUND if not NULL.
1033
1034 Return 1 if the operation was successful. Return zero otherwise,
1035 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1036
1037 Computing the array upper and lower bounds is pretty easy, but this
1038 function does some additional verifications before returning them.
1039 If something incorrect is detected, it is better to return a status
1040 rather than throwing an error, making it easier for the caller to
1041 implement an error-recovery plan. For instance, it may decide to
1042 warn the user that the bounds were not found and then use some
1043 default values instead. */
1044
1045 int
1046 get_array_bounds (struct type *type, long *low_bound, long *high_bound)
1047 {
1048 struct type *index = TYPE_INDEX_TYPE (type);
1049 long low = 0;
1050 long high = 0;
1051
1052 if (index == NULL)
1053 return 0;
1054
1055 if (TYPE_CODE (index) == TYPE_CODE_RANGE)
1056 {
1057 low = TYPE_LOW_BOUND (index);
1058 high = TYPE_HIGH_BOUND (index);
1059 }
1060 else if (TYPE_CODE (index) == TYPE_CODE_ENUM)
1061 {
1062 const int n_enums = TYPE_NFIELDS (index);
1063
1064 low = TYPE_FIELD_BITPOS (index, 0);
1065 high = TYPE_FIELD_BITPOS (index, n_enums - 1);
1066 }
1067 else
1068 return 0;
1069
1070 /* Abort if the lower bound is greater than the higher bound, except
1071 when low = high + 1. This is a very common idiom used in Ada when
1072 defining empty ranges (for instance "range 1 .. 0"). */
1073 if (low > high + 1)
1074 return 0;
1075
1076 if (low_bound)
1077 *low_bound = low;
1078
1079 if (high_bound)
1080 *high_bound = high;
1081
1082 return 1;
1083 }
1084
1085 /* Print on STREAM using the given OPTIONS the index for the element
1086 at INDEX of an array whose index type is INDEX_TYPE. */
1087
1088 void
1089 maybe_print_array_index (struct type *index_type, LONGEST index,
1090 struct ui_file *stream,
1091 const struct value_print_options *options)
1092 {
1093 struct value *index_value;
1094
1095 if (!options->print_array_indexes)
1096 return;
1097
1098 index_value = value_from_longest (index_type, index);
1099
1100 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1101 }
1102
1103 /* Called by various <lang>_val_print routines to print elements of an
1104 array in the form "<elem1>, <elem2>, <elem3>, ...".
1105
1106 (FIXME?) Assumes array element separator is a comma, which is correct
1107 for all languages currently handled.
1108 (FIXME?) Some languages have a notation for repeated array elements,
1109 perhaps we should try to use that notation when appropriate.
1110 */
1111
1112 void
1113 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1114 CORE_ADDR address, struct ui_file *stream,
1115 int recurse,
1116 const struct value_print_options *options,
1117 unsigned int i)
1118 {
1119 unsigned int things_printed = 0;
1120 unsigned len;
1121 struct type *elttype, *index_type;
1122 unsigned eltlen;
1123 /* Position of the array element we are examining to see
1124 whether it is repeated. */
1125 unsigned int rep1;
1126 /* Number of repetitions we have detected so far. */
1127 unsigned int reps;
1128 long low_bound_index = 0;
1129
1130 elttype = TYPE_TARGET_TYPE (type);
1131 eltlen = TYPE_LENGTH (check_typedef (elttype));
1132 index_type = TYPE_INDEX_TYPE (type);
1133
1134 /* Compute the number of elements in the array. On most arrays,
1135 the size of its elements is not zero, and so the number of elements
1136 is simply the size of the array divided by the size of the elements.
1137 But for arrays of elements whose size is zero, we need to look at
1138 the bounds. */
1139 if (eltlen != 0)
1140 len = TYPE_LENGTH (type) / eltlen;
1141 else
1142 {
1143 long low, hi;
1144 if (get_array_bounds (type, &low, &hi))
1145 len = hi - low + 1;
1146 else
1147 {
1148 warning (_("unable to get bounds of array, assuming null array"));
1149 len = 0;
1150 }
1151 }
1152
1153 /* Get the array low bound. This only makes sense if the array
1154 has one or more element in it. */
1155 if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL))
1156 {
1157 warning (_("unable to get low bound of array, using zero as default"));
1158 low_bound_index = 0;
1159 }
1160
1161 annotate_array_section_begin (i, elttype);
1162
1163 for (; i < len && things_printed < options->print_max; i++)
1164 {
1165 if (i != 0)
1166 {
1167 if (options->prettyprint_arrays)
1168 {
1169 fprintf_filtered (stream, ",\n");
1170 print_spaces_filtered (2 + 2 * recurse, stream);
1171 }
1172 else
1173 {
1174 fprintf_filtered (stream, ", ");
1175 }
1176 }
1177 wrap_here (n_spaces (2 + 2 * recurse));
1178 maybe_print_array_index (index_type, i + low_bound_index,
1179 stream, options);
1180
1181 rep1 = i + 1;
1182 reps = 1;
1183 while ((rep1 < len) &&
1184 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1185 {
1186 ++reps;
1187 ++rep1;
1188 }
1189
1190 if (reps > options->repeat_count_threshold)
1191 {
1192 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1193 stream, recurse + 1, options, current_language);
1194 annotate_elt_rep (reps);
1195 fprintf_filtered (stream, " <repeats %u times>", reps);
1196 annotate_elt_rep_end ();
1197
1198 i = rep1 - 1;
1199 things_printed += options->repeat_count_threshold;
1200 }
1201 else
1202 {
1203 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1204 stream, recurse + 1, options, current_language);
1205 annotate_elt ();
1206 things_printed++;
1207 }
1208 }
1209 annotate_array_section_end ();
1210 if (i < len)
1211 {
1212 fprintf_filtered (stream, "...");
1213 }
1214 }
1215
1216 /* Read LEN bytes of target memory at address MEMADDR, placing the
1217 results in GDB's memory at MYADDR. Returns a count of the bytes
1218 actually read, and optionally an errno value in the location
1219 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1220
1221 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1222 function be eliminated. */
1223
1224 static int
1225 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
1226 {
1227 int nread; /* Number of bytes actually read. */
1228 int errcode; /* Error from last read. */
1229
1230 /* First try a complete read. */
1231 errcode = target_read_memory (memaddr, myaddr, len);
1232 if (errcode == 0)
1233 {
1234 /* Got it all. */
1235 nread = len;
1236 }
1237 else
1238 {
1239 /* Loop, reading one byte at a time until we get as much as we can. */
1240 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1241 {
1242 errcode = target_read_memory (memaddr++, myaddr++, 1);
1243 }
1244 /* If an error, the last read was unsuccessful, so adjust count. */
1245 if (errcode != 0)
1246 {
1247 nread--;
1248 }
1249 }
1250 if (errnoptr != NULL)
1251 {
1252 *errnoptr = errcode;
1253 }
1254 return (nread);
1255 }
1256
1257 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1258 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1259 allocated buffer containing the string, which the caller is responsible to
1260 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1261 success, or errno on failure.
1262
1263 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1264 the middle or end of the string). If LEN is -1, stops at the first
1265 null character (not necessarily the first null byte) up to a maximum
1266 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1267 characters as possible from the string.
1268
1269 Unless an exception is thrown, BUFFER will always be allocated, even on
1270 failure. In this case, some characters might have been read before the
1271 failure happened. Check BYTES_READ to recognize this situation.
1272
1273 Note: There was a FIXME asking to make this code use target_read_string,
1274 but this function is more general (can read past null characters, up to
1275 given LEN). Besides, it is used much more often than target_read_string
1276 so it is more tested. Perhaps callers of target_read_string should use
1277 this function instead? */
1278
1279 int
1280 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1281 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1282 {
1283 int found_nul; /* Non-zero if we found the nul char. */
1284 int errcode; /* Errno returned from bad reads. */
1285 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1286 unsigned int chunksize; /* Size of each fetch, in chars. */
1287 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1288 gdb_byte *limit; /* First location past end of fetch buffer. */
1289 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1290
1291 /* Decide how large of chunks to try to read in one operation. This
1292 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1293 so we might as well read them all in one operation. If LEN is -1, we
1294 are looking for a NUL terminator to end the fetching, so we might as
1295 well read in blocks that are large enough to be efficient, but not so
1296 large as to be slow if fetchlimit happens to be large. So we choose the
1297 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1298 200 is way too big for remote debugging over a serial line. */
1299
1300 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1301
1302 /* Loop until we either have all the characters, or we encounter
1303 some error, such as bumping into the end of the address space. */
1304
1305 found_nul = 0;
1306 *buffer = NULL;
1307
1308 old_chain = make_cleanup (free_current_contents, buffer);
1309
1310 if (len > 0)
1311 {
1312 *buffer = (gdb_byte *) xmalloc (len * width);
1313 bufptr = *buffer;
1314
1315 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1316 / width;
1317 addr += nfetch * width;
1318 bufptr += nfetch * width;
1319 }
1320 else if (len == -1)
1321 {
1322 unsigned long bufsize = 0;
1323
1324 do
1325 {
1326 QUIT;
1327 nfetch = min (chunksize, fetchlimit - bufsize);
1328
1329 if (*buffer == NULL)
1330 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1331 else
1332 *buffer = (gdb_byte *) xrealloc (*buffer,
1333 (nfetch + bufsize) * width);
1334
1335 bufptr = *buffer + bufsize * width;
1336 bufsize += nfetch;
1337
1338 /* Read as much as we can. */
1339 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1340 / width;
1341
1342 /* Scan this chunk for the null character that terminates the string
1343 to print. If found, we don't need to fetch any more. Note
1344 that bufptr is explicitly left pointing at the next character
1345 after the null character, or at the next character after the end
1346 of the buffer. */
1347
1348 limit = bufptr + nfetch * width;
1349 while (bufptr < limit)
1350 {
1351 unsigned long c;
1352
1353 c = extract_unsigned_integer (bufptr, width, byte_order);
1354 addr += width;
1355 bufptr += width;
1356 if (c == 0)
1357 {
1358 /* We don't care about any error which happened after
1359 the NUL terminator. */
1360 errcode = 0;
1361 found_nul = 1;
1362 break;
1363 }
1364 }
1365 }
1366 while (errcode == 0 /* no error */
1367 && bufptr - *buffer < fetchlimit * width /* no overrun */
1368 && !found_nul); /* haven't found NUL yet */
1369 }
1370 else
1371 { /* Length of string is really 0! */
1372 /* We always allocate *buffer. */
1373 *buffer = bufptr = xmalloc (1);
1374 errcode = 0;
1375 }
1376
1377 /* bufptr and addr now point immediately beyond the last byte which we
1378 consider part of the string (including a '\0' which ends the string). */
1379 *bytes_read = bufptr - *buffer;
1380
1381 QUIT;
1382
1383 discard_cleanups (old_chain);
1384
1385 return errcode;
1386 }
1387
1388 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1389 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1390 stops at the first null byte, otherwise printing proceeds (including null
1391 bytes) until either print_max or LEN characters have been printed,
1392 whichever is smaller. */
1393
1394 int
1395 val_print_string (struct type *elttype, CORE_ADDR addr, int len,
1396 struct ui_file *stream,
1397 const struct value_print_options *options)
1398 {
1399 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1400 int errcode; /* Errno returned from bad reads. */
1401 int found_nul; /* Non-zero if we found the nul char */
1402 unsigned int fetchlimit; /* Maximum number of chars to print. */
1403 int bytes_read;
1404 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1405 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1406 struct gdbarch *gdbarch = get_type_arch (elttype);
1407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1408 int width = TYPE_LENGTH (elttype);
1409
1410 /* First we need to figure out the limit on the number of characters we are
1411 going to attempt to fetch and print. This is actually pretty simple. If
1412 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1413 LEN is -1, then the limit is print_max. This is true regardless of
1414 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1415 because finding the null byte (or available memory) is what actually
1416 limits the fetch. */
1417
1418 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1419
1420 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1421 &buffer, &bytes_read);
1422 old_chain = make_cleanup (xfree, buffer);
1423
1424 addr += bytes_read;
1425
1426 /* We now have either successfully filled the buffer to fetchlimit, or
1427 terminated early due to an error or finding a null char when LEN is -1. */
1428
1429 /* Determine found_nul by looking at the last character read. */
1430 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1431 byte_order) == 0;
1432 if (len == -1 && !found_nul)
1433 {
1434 gdb_byte *peekbuf;
1435
1436 /* We didn't find a NUL terminator we were looking for. Attempt
1437 to peek at the next character. If not successful, or it is not
1438 a null byte, then force ellipsis to be printed. */
1439
1440 peekbuf = (gdb_byte *) alloca (width);
1441
1442 if (target_read_memory (addr, peekbuf, width) == 0
1443 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
1444 force_ellipsis = 1;
1445 }
1446 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1447 {
1448 /* Getting an error when we have a requested length, or fetching less
1449 than the number of characters actually requested, always make us
1450 print ellipsis. */
1451 force_ellipsis = 1;
1452 }
1453
1454 /* If we get an error before fetching anything, don't print a string.
1455 But if we fetch something and then get an error, print the string
1456 and then the error message. */
1457 if (errcode == 0 || bytes_read > 0)
1458 {
1459 if (options->addressprint)
1460 {
1461 fputs_filtered (" ", stream);
1462 }
1463 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1464 NULL, force_ellipsis, options);
1465 }
1466
1467 if (errcode != 0)
1468 {
1469 if (errcode == EIO)
1470 {
1471 fprintf_filtered (stream, " <Address ");
1472 fputs_filtered (paddress (gdbarch, addr), stream);
1473 fprintf_filtered (stream, " out of bounds>");
1474 }
1475 else
1476 {
1477 fprintf_filtered (stream, " <Error reading address ");
1478 fputs_filtered (paddress (gdbarch, addr), stream);
1479 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1480 }
1481 }
1482
1483 gdb_flush (stream);
1484 do_cleanups (old_chain);
1485
1486 return (bytes_read / width);
1487 }
1488 \f
1489
1490 /* The 'set input-radix' command writes to this auxiliary variable.
1491 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1492 it is left unchanged. */
1493
1494 static unsigned input_radix_1 = 10;
1495
1496 /* Validate an input or output radix setting, and make sure the user
1497 knows what they really did here. Radix setting is confusing, e.g.
1498 setting the input radix to "10" never changes it! */
1499
1500 static void
1501 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1502 {
1503 set_input_radix_1 (from_tty, input_radix_1);
1504 }
1505
1506 static void
1507 set_input_radix_1 (int from_tty, unsigned radix)
1508 {
1509 /* We don't currently disallow any input radix except 0 or 1, which don't
1510 make any mathematical sense. In theory, we can deal with any input
1511 radix greater than 1, even if we don't have unique digits for every
1512 value from 0 to radix-1, but in practice we lose on large radix values.
1513 We should either fix the lossage or restrict the radix range more.
1514 (FIXME). */
1515
1516 if (radix < 2)
1517 {
1518 input_radix_1 = input_radix;
1519 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1520 radix);
1521 }
1522 input_radix_1 = input_radix = radix;
1523 if (from_tty)
1524 {
1525 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1526 radix, radix, radix);
1527 }
1528 }
1529
1530 /* The 'set output-radix' command writes to this auxiliary variable.
1531 If the requested radix is valid, OUTPUT_RADIX is updated,
1532 otherwise, it is left unchanged. */
1533
1534 static unsigned output_radix_1 = 10;
1535
1536 static void
1537 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1538 {
1539 set_output_radix_1 (from_tty, output_radix_1);
1540 }
1541
1542 static void
1543 set_output_radix_1 (int from_tty, unsigned radix)
1544 {
1545 /* Validate the radix and disallow ones that we aren't prepared to
1546 handle correctly, leaving the radix unchanged. */
1547 switch (radix)
1548 {
1549 case 16:
1550 user_print_options.output_format = 'x'; /* hex */
1551 break;
1552 case 10:
1553 user_print_options.output_format = 0; /* decimal */
1554 break;
1555 case 8:
1556 user_print_options.output_format = 'o'; /* octal */
1557 break;
1558 default:
1559 output_radix_1 = output_radix;
1560 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1561 radix);
1562 }
1563 output_radix_1 = output_radix = radix;
1564 if (from_tty)
1565 {
1566 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1567 radix, radix, radix);
1568 }
1569 }
1570
1571 /* Set both the input and output radix at once. Try to set the output radix
1572 first, since it has the most restrictive range. An radix that is valid as
1573 an output radix is also valid as an input radix.
1574
1575 It may be useful to have an unusual input radix. If the user wishes to
1576 set an input radix that is not valid as an output radix, he needs to use
1577 the 'set input-radix' command. */
1578
1579 static void
1580 set_radix (char *arg, int from_tty)
1581 {
1582 unsigned radix;
1583
1584 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1585 set_output_radix_1 (0, radix);
1586 set_input_radix_1 (0, radix);
1587 if (from_tty)
1588 {
1589 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1590 radix, radix, radix);
1591 }
1592 }
1593
1594 /* Show both the input and output radices. */
1595
1596 static void
1597 show_radix (char *arg, int from_tty)
1598 {
1599 if (from_tty)
1600 {
1601 if (input_radix == output_radix)
1602 {
1603 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1604 input_radix, input_radix, input_radix);
1605 }
1606 else
1607 {
1608 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1609 input_radix, input_radix, input_radix);
1610 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1611 output_radix, output_radix, output_radix);
1612 }
1613 }
1614 }
1615 \f
1616
1617 static void
1618 set_print (char *arg, int from_tty)
1619 {
1620 printf_unfiltered (
1621 "\"set print\" must be followed by the name of a print subcommand.\n");
1622 help_list (setprintlist, "set print ", -1, gdb_stdout);
1623 }
1624
1625 static void
1626 show_print (char *args, int from_tty)
1627 {
1628 cmd_show_list (showprintlist, from_tty, "");
1629 }
1630 \f
1631 void
1632 _initialize_valprint (void)
1633 {
1634 struct cmd_list_element *c;
1635
1636 add_prefix_cmd ("print", no_class, set_print,
1637 _("Generic command for setting how things print."),
1638 &setprintlist, "set print ", 0, &setlist);
1639 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1640 /* prefer set print to set prompt */
1641 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1642
1643 add_prefix_cmd ("print", no_class, show_print,
1644 _("Generic command for showing print settings."),
1645 &showprintlist, "show print ", 0, &showlist);
1646 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1647 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1648
1649 add_setshow_uinteger_cmd ("elements", no_class,
1650 &user_print_options.print_max, _("\
1651 Set limit on string chars or array elements to print."), _("\
1652 Show limit on string chars or array elements to print."), _("\
1653 \"set print elements 0\" causes there to be no limit."),
1654 NULL,
1655 show_print_max,
1656 &setprintlist, &showprintlist);
1657
1658 add_setshow_boolean_cmd ("null-stop", no_class,
1659 &user_print_options.stop_print_at_null, _("\
1660 Set printing of char arrays to stop at first null char."), _("\
1661 Show printing of char arrays to stop at first null char."), NULL,
1662 NULL,
1663 show_stop_print_at_null,
1664 &setprintlist, &showprintlist);
1665
1666 add_setshow_uinteger_cmd ("repeats", no_class,
1667 &user_print_options.repeat_count_threshold, _("\
1668 Set threshold for repeated print elements."), _("\
1669 Show threshold for repeated print elements."), _("\
1670 \"set print repeats 0\" causes all elements to be individually printed."),
1671 NULL,
1672 show_repeat_count_threshold,
1673 &setprintlist, &showprintlist);
1674
1675 add_setshow_boolean_cmd ("pretty", class_support,
1676 &user_print_options.prettyprint_structs, _("\
1677 Set prettyprinting of structures."), _("\
1678 Show prettyprinting of structures."), NULL,
1679 NULL,
1680 show_prettyprint_structs,
1681 &setprintlist, &showprintlist);
1682
1683 add_setshow_boolean_cmd ("union", class_support,
1684 &user_print_options.unionprint, _("\
1685 Set printing of unions interior to structures."), _("\
1686 Show printing of unions interior to structures."), NULL,
1687 NULL,
1688 show_unionprint,
1689 &setprintlist, &showprintlist);
1690
1691 add_setshow_boolean_cmd ("array", class_support,
1692 &user_print_options.prettyprint_arrays, _("\
1693 Set prettyprinting of arrays."), _("\
1694 Show prettyprinting of arrays."), NULL,
1695 NULL,
1696 show_prettyprint_arrays,
1697 &setprintlist, &showprintlist);
1698
1699 add_setshow_boolean_cmd ("address", class_support,
1700 &user_print_options.addressprint, _("\
1701 Set printing of addresses."), _("\
1702 Show printing of addresses."), NULL,
1703 NULL,
1704 show_addressprint,
1705 &setprintlist, &showprintlist);
1706
1707 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1708 _("\
1709 Set default input radix for entering numbers."), _("\
1710 Show default input radix for entering numbers."), NULL,
1711 set_input_radix,
1712 show_input_radix,
1713 &setlist, &showlist);
1714
1715 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1716 _("\
1717 Set default output radix for printing of values."), _("\
1718 Show default output radix for printing of values."), NULL,
1719 set_output_radix,
1720 show_output_radix,
1721 &setlist, &showlist);
1722
1723 /* The "set radix" and "show radix" commands are special in that
1724 they are like normal set and show commands but allow two normally
1725 independent variables to be either set or shown with a single
1726 command. So the usual deprecated_add_set_cmd() and [deleted]
1727 add_show_from_set() commands aren't really appropriate. */
1728 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1729 longer true - show can display anything. */
1730 add_cmd ("radix", class_support, set_radix, _("\
1731 Set default input and output number radices.\n\
1732 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1733 Without an argument, sets both radices back to the default value of 10."),
1734 &setlist);
1735 add_cmd ("radix", class_support, show_radix, _("\
1736 Show the default input and output number radices.\n\
1737 Use 'show input-radix' or 'show output-radix' to independently show each."),
1738 &showlist);
1739
1740 add_setshow_boolean_cmd ("array-indexes", class_support,
1741 &user_print_options.print_array_indexes, _("\
1742 Set printing of array indexes."), _("\
1743 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1744 &setprintlist, &showprintlist);
1745 }
This page took 0.074077 seconds and 4 git commands to generate.