eb3ad35be5d01b2e25ba428ad0c38203933ed60c
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37
38 #include <errno.h>
39
40 /* Prototypes for local functions */
41
42 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
43 int len, int *errnoptr);
44
45 static void show_print (char *, int);
46
47 static void set_print (char *, int);
48
49 static void set_radix (char *, int);
50
51 static void show_radix (char *, int);
52
53 static void set_input_radix (char *, int, struct cmd_list_element *);
54
55 static void set_input_radix_1 (int, unsigned);
56
57 static void set_output_radix (char *, int, struct cmd_list_element *);
58
59 static void set_output_radix_1 (int, unsigned);
60
61 void _initialize_valprint (void);
62
63 /* Maximum number of chars to print for a string pointer value or vector
64 contents, or UINT_MAX for no limit. Note that "set print elements 0"
65 stores UINT_MAX in print_max, which displays in a show command as
66 "unlimited". */
67
68 unsigned int print_max;
69 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
70 static void
71 show_print_max (struct ui_file *file, int from_tty,
72 struct cmd_list_element *c, const char *value)
73 {
74 fprintf_filtered (file, _("\
75 Limit on string chars or array elements to print is %s.\n"),
76 value);
77 }
78
79
80 /* Default input and output radixes, and output format letter. */
81
82 unsigned input_radix = 10;
83 static void
84 show_input_radix (struct ui_file *file, int from_tty,
85 struct cmd_list_element *c, const char *value)
86 {
87 fprintf_filtered (file, _("\
88 Default input radix for entering numbers is %s.\n"),
89 value);
90 }
91
92 unsigned output_radix = 10;
93 static void
94 show_output_radix (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96 {
97 fprintf_filtered (file, _("\
98 Default output radix for printing of values is %s.\n"),
99 value);
100 }
101 int output_format = 0;
102
103 /* By default we print arrays without printing the index of each element in
104 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
105
106 static int print_array_indexes = 0;
107 static void
108 show_print_array_indexes (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
112 }
113
114 /* Print repeat counts if there are more than this many repetitions of an
115 element in an array. Referenced by the low level language dependent
116 print routines. */
117
118 unsigned int repeat_count_threshold = 10;
119 static void
120 show_repeat_count_threshold (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122 {
123 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
124 value);
125 }
126
127 /* If nonzero, stops printing of char arrays at first null. */
128
129 int stop_print_at_null;
130 static void
131 show_stop_print_at_null (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133 {
134 fprintf_filtered (file, _("\
135 Printing of char arrays to stop at first null char is %s.\n"),
136 value);
137 }
138
139 /* Controls pretty printing of structures. */
140
141 int prettyprint_structs;
142 static void
143 show_prettyprint_structs (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
147 }
148
149 /* Controls pretty printing of arrays. */
150
151 int prettyprint_arrays;
152 static void
153 show_prettyprint_arrays (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
157 }
158
159 /* If nonzero, causes unions inside structures or other unions to be
160 printed. */
161
162 int unionprint; /* Controls printing of nested unions. */
163 static void
164 show_unionprint (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("\
168 Printing of unions interior to structures is %s.\n"),
169 value);
170 }
171
172 /* If nonzero, causes machine addresses to be printed in certain contexts. */
173
174 int addressprint; /* Controls printing of machine addresses */
175 static void
176 show_addressprint (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
180 }
181 \f
182
183 /* Print data of type TYPE located at VALADDR (within GDB), which came from
184 the inferior at address ADDRESS, onto stdio stream STREAM according to
185 FORMAT (a letter, or 0 for natural format using TYPE).
186
187 If DEREF_REF is nonzero, then dereference references, otherwise just print
188 them like pointers.
189
190 The PRETTY parameter controls prettyprinting.
191
192 If the data are a string pointer, returns the number of string characters
193 printed.
194
195 FIXME: The data at VALADDR is in target byte order. If gdb is ever
196 enhanced to be able to debug more than the single target it was compiled
197 for (specific CPU type and thus specific target byte ordering), then
198 either the print routines are going to have to take this into account,
199 or the data is going to have to be passed into here already converted
200 to the host byte ordering, whichever is more convenient. */
201
202
203 int
204 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
205 CORE_ADDR address, struct ui_file *stream, int format,
206 int deref_ref, int recurse, enum val_prettyprint pretty)
207 {
208 volatile struct gdb_exception except;
209 volatile enum val_prettyprint real_pretty = pretty;
210 int ret = 0;
211
212 struct type *real_type = check_typedef (type);
213 if (pretty == Val_pretty_default)
214 real_pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
215
216 QUIT;
217
218 /* Ensure that the type is complete and not just a stub. If the type is
219 only a stub and we can't find and substitute its complete type, then
220 print appropriate string and return. */
221
222 if (TYPE_STUB (real_type))
223 {
224 fprintf_filtered (stream, "<incomplete type>");
225 gdb_flush (stream);
226 return (0);
227 }
228
229 TRY_CATCH (except, RETURN_MASK_ERROR)
230 {
231 ret = LA_VAL_PRINT (type, valaddr, embedded_offset, address,
232 stream, format, deref_ref, recurse, real_pretty);
233 }
234 if (except.reason < 0)
235 fprintf_filtered (stream, _("<error reading variable>"));
236
237 return ret;
238 }
239
240 /* Check whether the value VAL is printable. Return 1 if it is;
241 return 0 and print an appropriate error message to STREAM if it
242 is not. */
243
244 static int
245 value_check_printable (struct value *val, struct ui_file *stream)
246 {
247 if (val == 0)
248 {
249 fprintf_filtered (stream, _("<address of value unknown>"));
250 return 0;
251 }
252
253 if (value_optimized_out (val))
254 {
255 fprintf_filtered (stream, _("<value optimized out>"));
256 return 0;
257 }
258
259 return 1;
260 }
261
262 /* Print the value VAL onto stream STREAM according to FORMAT (a
263 letter, or 0 for natural format using TYPE).
264
265 If DEREF_REF is nonzero, then dereference references, otherwise just print
266 them like pointers.
267
268 The PRETTY parameter controls prettyprinting.
269
270 If the data are a string pointer, returns the number of string characters
271 printed.
272
273 This is a preferable interface to val_print, above, because it uses
274 GDB's value mechanism. */
275
276 int
277 common_val_print (struct value *val, struct ui_file *stream, int format,
278 int deref_ref, int recurse, enum val_prettyprint pretty)
279 {
280 if (!value_check_printable (val, stream))
281 return 0;
282
283 return val_print (value_type (val), value_contents_all (val),
284 value_embedded_offset (val), VALUE_ADDRESS (val),
285 stream, format, deref_ref, recurse, pretty);
286 }
287
288 /* Print the value VAL in C-ish syntax on stream STREAM.
289 FORMAT is a format-letter, or 0 for print in natural format of data type.
290 If the object printed is a string pointer, returns
291 the number of string bytes printed. */
292
293 int
294 value_print (struct value *val, struct ui_file *stream, int format,
295 enum val_prettyprint pretty)
296 {
297 if (!value_check_printable (val, stream))
298 return 0;
299
300 return LA_VALUE_PRINT (val, stream, format, pretty);
301 }
302
303 /* Called by various <lang>_val_print routines to print
304 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
305 value. STREAM is where to print the value. */
306
307 void
308 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
309 struct ui_file *stream)
310 {
311 if (TYPE_LENGTH (type) > sizeof (LONGEST))
312 {
313 LONGEST val;
314
315 if (TYPE_UNSIGNED (type)
316 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
317 &val))
318 {
319 print_longest (stream, 'u', 0, val);
320 }
321 else
322 {
323 /* Signed, or we couldn't turn an unsigned value into a
324 LONGEST. For signed values, one could assume two's
325 complement (a reasonable assumption, I think) and do
326 better than this. */
327 print_hex_chars (stream, (unsigned char *) valaddr,
328 TYPE_LENGTH (type));
329 }
330 }
331 else
332 {
333 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
334 unpack_long (type, valaddr));
335 }
336 }
337
338 void
339 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
340 struct ui_file *stream)
341 {
342 ULONGEST val = unpack_long (type, valaddr);
343 int bitpos, nfields = TYPE_NFIELDS (type);
344
345 fputs_filtered ("[ ", stream);
346 for (bitpos = 0; bitpos < nfields; bitpos++)
347 {
348 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
349 && (val & ((ULONGEST)1 << bitpos)))
350 {
351 if (TYPE_FIELD_NAME (type, bitpos))
352 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
353 else
354 fprintf_filtered (stream, "#%d ", bitpos);
355 }
356 }
357 fputs_filtered ("]", stream);
358 }
359
360 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
361 The raison d'etre of this function is to consolidate printing of
362 LONG_LONG's into this one function. The format chars b,h,w,g are
363 from print_scalar_formatted(). Numbers are printed using C
364 format.
365
366 USE_C_FORMAT means to use C format in all cases. Without it,
367 'o' and 'x' format do not include the standard C radix prefix
368 (leading 0 or 0x).
369
370 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
371 and was intended to request formating according to the current
372 language and would be used for most integers that GDB prints. The
373 exceptional cases were things like protocols where the format of
374 the integer is a protocol thing, not a user-visible thing). The
375 parameter remains to preserve the information of what things might
376 be printed with language-specific format, should we ever resurrect
377 that capability. */
378
379 void
380 print_longest (struct ui_file *stream, int format, int use_c_format,
381 LONGEST val_long)
382 {
383 const char *val;
384
385 switch (format)
386 {
387 case 'd':
388 val = int_string (val_long, 10, 1, 0, 1); break;
389 case 'u':
390 val = int_string (val_long, 10, 0, 0, 1); break;
391 case 'x':
392 val = int_string (val_long, 16, 0, 0, use_c_format); break;
393 case 'b':
394 val = int_string (val_long, 16, 0, 2, 1); break;
395 case 'h':
396 val = int_string (val_long, 16, 0, 4, 1); break;
397 case 'w':
398 val = int_string (val_long, 16, 0, 8, 1); break;
399 case 'g':
400 val = int_string (val_long, 16, 0, 16, 1); break;
401 break;
402 case 'o':
403 val = int_string (val_long, 8, 0, 0, use_c_format); break;
404 default:
405 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
406 }
407 fputs_filtered (val, stream);
408 }
409
410 /* This used to be a macro, but I don't think it is called often enough
411 to merit such treatment. */
412 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
413 arguments to a function, number in a value history, register number, etc.)
414 where the value must not be larger than can fit in an int. */
415
416 int
417 longest_to_int (LONGEST arg)
418 {
419 /* Let the compiler do the work */
420 int rtnval = (int) arg;
421
422 /* Check for overflows or underflows */
423 if (sizeof (LONGEST) > sizeof (int))
424 {
425 if (rtnval != arg)
426 {
427 error (_("Value out of range."));
428 }
429 }
430 return (rtnval);
431 }
432
433 /* Print a floating point value of type TYPE (not always a
434 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
435
436 void
437 print_floating (const gdb_byte *valaddr, struct type *type,
438 struct ui_file *stream)
439 {
440 DOUBLEST doub;
441 int inv;
442 const struct floatformat *fmt = NULL;
443 unsigned len = TYPE_LENGTH (type);
444 enum float_kind kind;
445
446 /* If it is a floating-point, check for obvious problems. */
447 if (TYPE_CODE (type) == TYPE_CODE_FLT)
448 fmt = floatformat_from_type (type);
449 if (fmt != NULL)
450 {
451 kind = floatformat_classify (fmt, valaddr);
452 if (kind == float_nan)
453 {
454 if (floatformat_is_negative (fmt, valaddr))
455 fprintf_filtered (stream, "-");
456 fprintf_filtered (stream, "nan(");
457 fputs_filtered ("0x", stream);
458 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
459 fprintf_filtered (stream, ")");
460 return;
461 }
462 else if (kind == float_infinite)
463 {
464 if (floatformat_is_negative (fmt, valaddr))
465 fputs_filtered ("-", stream);
466 fputs_filtered ("inf", stream);
467 return;
468 }
469 }
470
471 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
472 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
473 needs to be used as that takes care of any necessary type
474 conversions. Such conversions are of course direct to DOUBLEST
475 and disregard any possible target floating point limitations.
476 For instance, a u64 would be converted and displayed exactly on a
477 host with 80 bit DOUBLEST but with loss of information on a host
478 with 64 bit DOUBLEST. */
479
480 doub = unpack_double (type, valaddr, &inv);
481 if (inv)
482 {
483 fprintf_filtered (stream, "<invalid float value>");
484 return;
485 }
486
487 /* FIXME: kettenis/2001-01-20: The following code makes too much
488 assumptions about the host and target floating point format. */
489
490 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
491 not necessarily be a TYPE_CODE_FLT, the below ignores that and
492 instead uses the type's length to determine the precision of the
493 floating-point value being printed. */
494
495 if (len < sizeof (double))
496 fprintf_filtered (stream, "%.9g", (double) doub);
497 else if (len == sizeof (double))
498 fprintf_filtered (stream, "%.17g", (double) doub);
499 else
500 #ifdef PRINTF_HAS_LONG_DOUBLE
501 fprintf_filtered (stream, "%.35Lg", doub);
502 #else
503 /* This at least wins with values that are representable as
504 doubles. */
505 fprintf_filtered (stream, "%.17g", (double) doub);
506 #endif
507 }
508
509 void
510 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
511 struct ui_file *stream)
512 {
513 char decstr[MAX_DECIMAL_STRING];
514 unsigned len = TYPE_LENGTH (type);
515
516 decimal_to_string (valaddr, len, decstr);
517 fputs_filtered (decstr, stream);
518 return;
519 }
520
521 void
522 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
523 unsigned len)
524 {
525
526 #define BITS_IN_BYTES 8
527
528 const gdb_byte *p;
529 unsigned int i;
530 int b;
531
532 /* Declared "int" so it will be signed.
533 * This ensures that right shift will shift in zeros.
534 */
535 const int mask = 0x080;
536
537 /* FIXME: We should be not printing leading zeroes in most cases. */
538
539 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
540 {
541 for (p = valaddr;
542 p < valaddr + len;
543 p++)
544 {
545 /* Every byte has 8 binary characters; peel off
546 * and print from the MSB end.
547 */
548 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
549 {
550 if (*p & (mask >> i))
551 b = 1;
552 else
553 b = 0;
554
555 fprintf_filtered (stream, "%1d", b);
556 }
557 }
558 }
559 else
560 {
561 for (p = valaddr + len - 1;
562 p >= valaddr;
563 p--)
564 {
565 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
566 {
567 if (*p & (mask >> i))
568 b = 1;
569 else
570 b = 0;
571
572 fprintf_filtered (stream, "%1d", b);
573 }
574 }
575 }
576 }
577
578 /* VALADDR points to an integer of LEN bytes.
579 * Print it in octal on stream or format it in buf.
580 */
581 void
582 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
583 unsigned len)
584 {
585 const gdb_byte *p;
586 unsigned char octa1, octa2, octa3, carry;
587 int cycle;
588
589 /* FIXME: We should be not printing leading zeroes in most cases. */
590
591
592 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
593 * the extra bits, which cycle every three bytes:
594 *
595 * Byte side: 0 1 2 3
596 * | | | |
597 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
598 *
599 * Octal side: 0 1 carry 3 4 carry ...
600 *
601 * Cycle number: 0 1 2
602 *
603 * But of course we are printing from the high side, so we have to
604 * figure out where in the cycle we are so that we end up with no
605 * left over bits at the end.
606 */
607 #define BITS_IN_OCTAL 3
608 #define HIGH_ZERO 0340
609 #define LOW_ZERO 0016
610 #define CARRY_ZERO 0003
611 #define HIGH_ONE 0200
612 #define MID_ONE 0160
613 #define LOW_ONE 0016
614 #define CARRY_ONE 0001
615 #define HIGH_TWO 0300
616 #define MID_TWO 0070
617 #define LOW_TWO 0007
618
619 /* For 32 we start in cycle 2, with two bits and one bit carry;
620 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
621 */
622 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
623 carry = 0;
624
625 fputs_filtered ("0", stream);
626 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
627 {
628 for (p = valaddr;
629 p < valaddr + len;
630 p++)
631 {
632 switch (cycle)
633 {
634 case 0:
635 /* No carry in, carry out two bits.
636 */
637 octa1 = (HIGH_ZERO & *p) >> 5;
638 octa2 = (LOW_ZERO & *p) >> 2;
639 carry = (CARRY_ZERO & *p);
640 fprintf_filtered (stream, "%o", octa1);
641 fprintf_filtered (stream, "%o", octa2);
642 break;
643
644 case 1:
645 /* Carry in two bits, carry out one bit.
646 */
647 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
648 octa2 = (MID_ONE & *p) >> 4;
649 octa3 = (LOW_ONE & *p) >> 1;
650 carry = (CARRY_ONE & *p);
651 fprintf_filtered (stream, "%o", octa1);
652 fprintf_filtered (stream, "%o", octa2);
653 fprintf_filtered (stream, "%o", octa3);
654 break;
655
656 case 2:
657 /* Carry in one bit, no carry out.
658 */
659 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
660 octa2 = (MID_TWO & *p) >> 3;
661 octa3 = (LOW_TWO & *p);
662 carry = 0;
663 fprintf_filtered (stream, "%o", octa1);
664 fprintf_filtered (stream, "%o", octa2);
665 fprintf_filtered (stream, "%o", octa3);
666 break;
667
668 default:
669 error (_("Internal error in octal conversion;"));
670 }
671
672 cycle++;
673 cycle = cycle % BITS_IN_OCTAL;
674 }
675 }
676 else
677 {
678 for (p = valaddr + len - 1;
679 p >= valaddr;
680 p--)
681 {
682 switch (cycle)
683 {
684 case 0:
685 /* Carry out, no carry in */
686 octa1 = (HIGH_ZERO & *p) >> 5;
687 octa2 = (LOW_ZERO & *p) >> 2;
688 carry = (CARRY_ZERO & *p);
689 fprintf_filtered (stream, "%o", octa1);
690 fprintf_filtered (stream, "%o", octa2);
691 break;
692
693 case 1:
694 /* Carry in, carry out */
695 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
696 octa2 = (MID_ONE & *p) >> 4;
697 octa3 = (LOW_ONE & *p) >> 1;
698 carry = (CARRY_ONE & *p);
699 fprintf_filtered (stream, "%o", octa1);
700 fprintf_filtered (stream, "%o", octa2);
701 fprintf_filtered (stream, "%o", octa3);
702 break;
703
704 case 2:
705 /* Carry in, no carry out */
706 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
707 octa2 = (MID_TWO & *p) >> 3;
708 octa3 = (LOW_TWO & *p);
709 carry = 0;
710 fprintf_filtered (stream, "%o", octa1);
711 fprintf_filtered (stream, "%o", octa2);
712 fprintf_filtered (stream, "%o", octa3);
713 break;
714
715 default:
716 error (_("Internal error in octal conversion;"));
717 }
718
719 cycle++;
720 cycle = cycle % BITS_IN_OCTAL;
721 }
722 }
723
724 }
725
726 /* VALADDR points to an integer of LEN bytes.
727 * Print it in decimal on stream or format it in buf.
728 */
729 void
730 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
731 unsigned len)
732 {
733 #define TEN 10
734 #define TWO_TO_FOURTH 16
735 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
736 #define CARRY_LEFT( x ) ((x) % TEN)
737 #define SHIFT( x ) ((x) << 4)
738 #define START_P \
739 ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
740 #define NOT_END_P \
741 ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
742 #define NEXT_P \
743 ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) ? p++ : p-- )
744 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
745 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
746
747 const gdb_byte *p;
748 unsigned char *digits;
749 int carry;
750 int decimal_len;
751 int i, j, decimal_digits;
752 int dummy;
753 int flip;
754
755 /* Base-ten number is less than twice as many digits
756 * as the base 16 number, which is 2 digits per byte.
757 */
758 decimal_len = len * 2 * 2;
759 digits = xmalloc (decimal_len);
760
761 for (i = 0; i < decimal_len; i++)
762 {
763 digits[i] = 0;
764 }
765
766 /* Ok, we have an unknown number of bytes of data to be printed in
767 * decimal.
768 *
769 * Given a hex number (in nibbles) as XYZ, we start by taking X and
770 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
771 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
772 *
773 * The trick is that "digits" holds a base-10 number, but sometimes
774 * the individual digits are > 10.
775 *
776 * Outer loop is per nibble (hex digit) of input, from MSD end to
777 * LSD end.
778 */
779 decimal_digits = 0; /* Number of decimal digits so far */
780 p = START_P;
781 flip = 0;
782 while (NOT_END_P)
783 {
784 /*
785 * Multiply current base-ten number by 16 in place.
786 * Each digit was between 0 and 9, now is between
787 * 0 and 144.
788 */
789 for (j = 0; j < decimal_digits; j++)
790 {
791 digits[j] = SHIFT (digits[j]);
792 }
793
794 /* Take the next nibble off the input and add it to what
795 * we've got in the LSB position. Bottom 'digit' is now
796 * between 0 and 159.
797 *
798 * "flip" is used to run this loop twice for each byte.
799 */
800 if (flip == 0)
801 {
802 /* Take top nibble.
803 */
804 digits[0] += HIGH_NIBBLE (*p);
805 flip = 1;
806 }
807 else
808 {
809 /* Take low nibble and bump our pointer "p".
810 */
811 digits[0] += LOW_NIBBLE (*p);
812 NEXT_P;
813 flip = 0;
814 }
815
816 /* Re-decimalize. We have to do this often enough
817 * that we don't overflow, but once per nibble is
818 * overkill. Easier this way, though. Note that the
819 * carry is often larger than 10 (e.g. max initial
820 * carry out of lowest nibble is 15, could bubble all
821 * the way up greater than 10). So we have to do
822 * the carrying beyond the last current digit.
823 */
824 carry = 0;
825 for (j = 0; j < decimal_len - 1; j++)
826 {
827 digits[j] += carry;
828
829 /* "/" won't handle an unsigned char with
830 * a value that if signed would be negative.
831 * So extend to longword int via "dummy".
832 */
833 dummy = digits[j];
834 carry = CARRY_OUT (dummy);
835 digits[j] = CARRY_LEFT (dummy);
836
837 if (j >= decimal_digits && carry == 0)
838 {
839 /*
840 * All higher digits are 0 and we
841 * no longer have a carry.
842 *
843 * Note: "j" is 0-based, "decimal_digits" is
844 * 1-based.
845 */
846 decimal_digits = j + 1;
847 break;
848 }
849 }
850 }
851
852 /* Ok, now "digits" is the decimal representation, with
853 * the "decimal_digits" actual digits. Print!
854 */
855 for (i = decimal_digits - 1; i >= 0; i--)
856 {
857 fprintf_filtered (stream, "%1d", digits[i]);
858 }
859 xfree (digits);
860 }
861
862 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
863
864 void
865 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
866 unsigned len)
867 {
868 const gdb_byte *p;
869
870 /* FIXME: We should be not printing leading zeroes in most cases. */
871
872 fputs_filtered ("0x", stream);
873 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
874 {
875 for (p = valaddr;
876 p < valaddr + len;
877 p++)
878 {
879 fprintf_filtered (stream, "%02x", *p);
880 }
881 }
882 else
883 {
884 for (p = valaddr + len - 1;
885 p >= valaddr;
886 p--)
887 {
888 fprintf_filtered (stream, "%02x", *p);
889 }
890 }
891 }
892
893 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
894 Omit any leading zero chars. */
895
896 void
897 print_char_chars (struct ui_file *stream, const gdb_byte *valaddr,
898 unsigned len)
899 {
900 const gdb_byte *p;
901
902 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
903 {
904 p = valaddr;
905 while (p < valaddr + len - 1 && *p == 0)
906 ++p;
907
908 while (p < valaddr + len)
909 {
910 LA_EMIT_CHAR (*p, stream, '\'');
911 ++p;
912 }
913 }
914 else
915 {
916 p = valaddr + len - 1;
917 while (p > valaddr && *p == 0)
918 --p;
919
920 while (p >= valaddr)
921 {
922 LA_EMIT_CHAR (*p, stream, '\'');
923 --p;
924 }
925 }
926 }
927
928 /* Return non-zero if the debugger should print the index of each element
929 when printing array values. */
930
931 int
932 print_array_indexes_p (void)
933 {
934 return print_array_indexes;
935 }
936
937 /* Assuming TYPE is a simple, non-empty array type, compute its lower bound.
938 Save it into LOW_BOUND if not NULL.
939
940 Return 1 if the operation was successful. Return zero otherwise,
941 in which case the value of LOW_BOUND is unmodified.
942
943 Computing the array lower bound is pretty easy, but this function
944 does some additional verifications before returning the low bound.
945 If something incorrect is detected, it is better to return a status
946 rather than throwing an error, making it easier for the caller to
947 implement an error-recovery plan. For instance, it may decide to
948 warn the user that the bound was not found and then use a default
949 value instead. */
950
951 int
952 get_array_low_bound (struct type *type, long *low_bound)
953 {
954 struct type *index = TYPE_INDEX_TYPE (type);
955 long low = 0;
956
957 if (index == NULL)
958 return 0;
959
960 if (TYPE_CODE (index) != TYPE_CODE_RANGE
961 && TYPE_CODE (index) != TYPE_CODE_ENUM)
962 return 0;
963
964 low = TYPE_LOW_BOUND (index);
965 if (low > TYPE_HIGH_BOUND (index))
966 return 0;
967
968 if (low_bound)
969 *low_bound = low;
970
971 return 1;
972 }
973
974 /* Print on STREAM using the given FORMAT the index for the element
975 at INDEX of an array whose index type is INDEX_TYPE. */
976
977 void
978 maybe_print_array_index (struct type *index_type, LONGEST index,
979 struct ui_file *stream, int format,
980 enum val_prettyprint pretty)
981 {
982 struct value *index_value;
983
984 if (!print_array_indexes)
985 return;
986
987 index_value = value_from_longest (index_type, index);
988
989 LA_PRINT_ARRAY_INDEX (index_value, stream, format, pretty);
990 }
991
992 /* Called by various <lang>_val_print routines to print elements of an
993 array in the form "<elem1>, <elem2>, <elem3>, ...".
994
995 (FIXME?) Assumes array element separator is a comma, which is correct
996 for all languages currently handled.
997 (FIXME?) Some languages have a notation for repeated array elements,
998 perhaps we should try to use that notation when appropriate.
999 */
1000
1001 void
1002 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1003 CORE_ADDR address, struct ui_file *stream,
1004 int format, int deref_ref,
1005 int recurse, enum val_prettyprint pretty,
1006 unsigned int i)
1007 {
1008 unsigned int things_printed = 0;
1009 unsigned len;
1010 struct type *elttype, *index_type;
1011 unsigned eltlen;
1012 /* Position of the array element we are examining to see
1013 whether it is repeated. */
1014 unsigned int rep1;
1015 /* Number of repetitions we have detected so far. */
1016 unsigned int reps;
1017 long low_bound_index = 0;
1018
1019 elttype = TYPE_TARGET_TYPE (type);
1020 eltlen = TYPE_LENGTH (check_typedef (elttype));
1021 len = TYPE_LENGTH (type) / eltlen;
1022 index_type = TYPE_INDEX_TYPE (type);
1023
1024 /* Get the array low bound. This only makes sense if the array
1025 has one or more element in it. */
1026 if (len > 0 && !get_array_low_bound (type, &low_bound_index))
1027 {
1028 warning ("unable to get low bound of array, using zero as default");
1029 low_bound_index = 0;
1030 }
1031
1032 annotate_array_section_begin (i, elttype);
1033
1034 for (; i < len && things_printed < print_max; i++)
1035 {
1036 if (i != 0)
1037 {
1038 if (prettyprint_arrays)
1039 {
1040 fprintf_filtered (stream, ",\n");
1041 print_spaces_filtered (2 + 2 * recurse, stream);
1042 }
1043 else
1044 {
1045 fprintf_filtered (stream, ", ");
1046 }
1047 }
1048 wrap_here (n_spaces (2 + 2 * recurse));
1049 maybe_print_array_index (index_type, i + low_bound_index,
1050 stream, format, pretty);
1051
1052 rep1 = i + 1;
1053 reps = 1;
1054 while ((rep1 < len) &&
1055 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1056 {
1057 ++reps;
1058 ++rep1;
1059 }
1060
1061 if (reps > repeat_count_threshold)
1062 {
1063 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1064 deref_ref, recurse + 1, pretty);
1065 annotate_elt_rep (reps);
1066 fprintf_filtered (stream, " <repeats %u times>", reps);
1067 annotate_elt_rep_end ();
1068
1069 i = rep1 - 1;
1070 things_printed += repeat_count_threshold;
1071 }
1072 else
1073 {
1074 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1075 deref_ref, recurse + 1, pretty);
1076 annotate_elt ();
1077 things_printed++;
1078 }
1079 }
1080 annotate_array_section_end ();
1081 if (i < len)
1082 {
1083 fprintf_filtered (stream, "...");
1084 }
1085 }
1086
1087 /* Read LEN bytes of target memory at address MEMADDR, placing the
1088 results in GDB's memory at MYADDR. Returns a count of the bytes
1089 actually read, and optionally an errno value in the location
1090 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1091
1092 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1093 function be eliminated. */
1094
1095 static int
1096 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
1097 {
1098 int nread; /* Number of bytes actually read. */
1099 int errcode; /* Error from last read. */
1100
1101 /* First try a complete read. */
1102 errcode = target_read_memory (memaddr, myaddr, len);
1103 if (errcode == 0)
1104 {
1105 /* Got it all. */
1106 nread = len;
1107 }
1108 else
1109 {
1110 /* Loop, reading one byte at a time until we get as much as we can. */
1111 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1112 {
1113 errcode = target_read_memory (memaddr++, myaddr++, 1);
1114 }
1115 /* If an error, the last read was unsuccessful, so adjust count. */
1116 if (errcode != 0)
1117 {
1118 nread--;
1119 }
1120 }
1121 if (errnoptr != NULL)
1122 {
1123 *errnoptr = errcode;
1124 }
1125 return (nread);
1126 }
1127
1128 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1129 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1130 stops at the first null byte, otherwise printing proceeds (including null
1131 bytes) until either print_max or LEN characters have been printed,
1132 whichever is smaller. */
1133
1134 /* FIXME: Use target_read_string. */
1135
1136 int
1137 val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
1138 {
1139 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1140 int errcode; /* Errno returned from bad reads. */
1141 unsigned int fetchlimit; /* Maximum number of chars to print. */
1142 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1143 unsigned int chunksize; /* Size of each fetch, in chars. */
1144 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1145 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1146 gdb_byte *limit; /* First location past end of fetch buffer. */
1147 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1148 int found_nul; /* Non-zero if we found the nul char */
1149
1150 /* First we need to figure out the limit on the number of characters we are
1151 going to attempt to fetch and print. This is actually pretty simple. If
1152 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1153 LEN is -1, then the limit is print_max. This is true regardless of
1154 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1155 because finding the null byte (or available memory) is what actually
1156 limits the fetch. */
1157
1158 fetchlimit = (len == -1 ? print_max : min (len, print_max));
1159
1160 /* Now decide how large of chunks to try to read in one operation. This
1161 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1162 so we might as well read them all in one operation. If LEN is -1, we
1163 are looking for a null terminator to end the fetching, so we might as
1164 well read in blocks that are large enough to be efficient, but not so
1165 large as to be slow if fetchlimit happens to be large. So we choose the
1166 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1167 200 is way too big for remote debugging over a serial line. */
1168
1169 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1170
1171 /* Loop until we either have all the characters to print, or we encounter
1172 some error, such as bumping into the end of the address space. */
1173
1174 found_nul = 0;
1175 old_chain = make_cleanup (null_cleanup, 0);
1176
1177 if (len > 0)
1178 {
1179 buffer = (gdb_byte *) xmalloc (len * width);
1180 bufptr = buffer;
1181 old_chain = make_cleanup (xfree, buffer);
1182
1183 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1184 / width;
1185 addr += nfetch * width;
1186 bufptr += nfetch * width;
1187 }
1188 else if (len == -1)
1189 {
1190 unsigned long bufsize = 0;
1191 do
1192 {
1193 QUIT;
1194 nfetch = min (chunksize, fetchlimit - bufsize);
1195
1196 if (buffer == NULL)
1197 buffer = (gdb_byte *) xmalloc (nfetch * width);
1198 else
1199 {
1200 discard_cleanups (old_chain);
1201 buffer = (gdb_byte *) xrealloc (buffer, (nfetch + bufsize) * width);
1202 }
1203
1204 old_chain = make_cleanup (xfree, buffer);
1205 bufptr = buffer + bufsize * width;
1206 bufsize += nfetch;
1207
1208 /* Read as much as we can. */
1209 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1210 / width;
1211
1212 /* Scan this chunk for the null byte that terminates the string
1213 to print. If found, we don't need to fetch any more. Note
1214 that bufptr is explicitly left pointing at the next character
1215 after the null byte, or at the next character after the end of
1216 the buffer. */
1217
1218 limit = bufptr + nfetch * width;
1219 while (bufptr < limit)
1220 {
1221 unsigned long c;
1222
1223 c = extract_unsigned_integer (bufptr, width);
1224 addr += width;
1225 bufptr += width;
1226 if (c == 0)
1227 {
1228 /* We don't care about any error which happened after
1229 the NULL terminator. */
1230 errcode = 0;
1231 found_nul = 1;
1232 break;
1233 }
1234 }
1235 }
1236 while (errcode == 0 /* no error */
1237 && bufptr - buffer < fetchlimit * width /* no overrun */
1238 && !found_nul); /* haven't found nul yet */
1239 }
1240 else
1241 { /* length of string is really 0! */
1242 buffer = bufptr = NULL;
1243 errcode = 0;
1244 }
1245
1246 /* bufptr and addr now point immediately beyond the last byte which we
1247 consider part of the string (including a '\0' which ends the string). */
1248
1249 /* We now have either successfully filled the buffer to fetchlimit, or
1250 terminated early due to an error or finding a null char when LEN is -1. */
1251
1252 if (len == -1 && !found_nul)
1253 {
1254 gdb_byte *peekbuf;
1255
1256 /* We didn't find a null terminator we were looking for. Attempt
1257 to peek at the next character. If not successful, or it is not
1258 a null byte, then force ellipsis to be printed. */
1259
1260 peekbuf = (gdb_byte *) alloca (width);
1261
1262 if (target_read_memory (addr, peekbuf, width) == 0
1263 && extract_unsigned_integer (peekbuf, width) != 0)
1264 force_ellipsis = 1;
1265 }
1266 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1267 {
1268 /* Getting an error when we have a requested length, or fetching less
1269 than the number of characters actually requested, always make us
1270 print ellipsis. */
1271 force_ellipsis = 1;
1272 }
1273
1274 QUIT;
1275
1276 /* If we get an error before fetching anything, don't print a string.
1277 But if we fetch something and then get an error, print the string
1278 and then the error message. */
1279 if (errcode == 0 || bufptr > buffer)
1280 {
1281 if (addressprint)
1282 {
1283 fputs_filtered (" ", stream);
1284 }
1285 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1286 }
1287
1288 if (errcode != 0)
1289 {
1290 if (errcode == EIO)
1291 {
1292 fprintf_filtered (stream, " <Address ");
1293 fputs_filtered (paddress (addr), stream);
1294 fprintf_filtered (stream, " out of bounds>");
1295 }
1296 else
1297 {
1298 fprintf_filtered (stream, " <Error reading address ");
1299 fputs_filtered (paddress (addr), stream);
1300 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1301 }
1302 }
1303 gdb_flush (stream);
1304 do_cleanups (old_chain);
1305 return ((bufptr - buffer) / width);
1306 }
1307 \f
1308
1309 /* Validate an input or output radix setting, and make sure the user
1310 knows what they really did here. Radix setting is confusing, e.g.
1311 setting the input radix to "10" never changes it! */
1312
1313 static void
1314 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1315 {
1316 set_input_radix_1 (from_tty, input_radix);
1317 }
1318
1319 static void
1320 set_input_radix_1 (int from_tty, unsigned radix)
1321 {
1322 /* We don't currently disallow any input radix except 0 or 1, which don't
1323 make any mathematical sense. In theory, we can deal with any input
1324 radix greater than 1, even if we don't have unique digits for every
1325 value from 0 to radix-1, but in practice we lose on large radix values.
1326 We should either fix the lossage or restrict the radix range more.
1327 (FIXME). */
1328
1329 if (radix < 2)
1330 {
1331 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1332 value. */
1333 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1334 radix);
1335 }
1336 input_radix = radix;
1337 if (from_tty)
1338 {
1339 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1340 radix, radix, radix);
1341 }
1342 }
1343
1344 static void
1345 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1346 {
1347 set_output_radix_1 (from_tty, output_radix);
1348 }
1349
1350 static void
1351 set_output_radix_1 (int from_tty, unsigned radix)
1352 {
1353 /* Validate the radix and disallow ones that we aren't prepared to
1354 handle correctly, leaving the radix unchanged. */
1355 switch (radix)
1356 {
1357 case 16:
1358 output_format = 'x'; /* hex */
1359 break;
1360 case 10:
1361 output_format = 0; /* decimal */
1362 break;
1363 case 8:
1364 output_format = 'o'; /* octal */
1365 break;
1366 default:
1367 /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1368 value. */
1369 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1370 radix);
1371 }
1372 output_radix = radix;
1373 if (from_tty)
1374 {
1375 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1376 radix, radix, radix);
1377 }
1378 }
1379
1380 /* Set both the input and output radix at once. Try to set the output radix
1381 first, since it has the most restrictive range. An radix that is valid as
1382 an output radix is also valid as an input radix.
1383
1384 It may be useful to have an unusual input radix. If the user wishes to
1385 set an input radix that is not valid as an output radix, he needs to use
1386 the 'set input-radix' command. */
1387
1388 static void
1389 set_radix (char *arg, int from_tty)
1390 {
1391 unsigned radix;
1392
1393 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1394 set_output_radix_1 (0, radix);
1395 set_input_radix_1 (0, radix);
1396 if (from_tty)
1397 {
1398 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1399 radix, radix, radix);
1400 }
1401 }
1402
1403 /* Show both the input and output radices. */
1404
1405 static void
1406 show_radix (char *arg, int from_tty)
1407 {
1408 if (from_tty)
1409 {
1410 if (input_radix == output_radix)
1411 {
1412 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1413 input_radix, input_radix, input_radix);
1414 }
1415 else
1416 {
1417 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1418 input_radix, input_radix, input_radix);
1419 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1420 output_radix, output_radix, output_radix);
1421 }
1422 }
1423 }
1424 \f
1425
1426 static void
1427 set_print (char *arg, int from_tty)
1428 {
1429 printf_unfiltered (
1430 "\"set print\" must be followed by the name of a print subcommand.\n");
1431 help_list (setprintlist, "set print ", -1, gdb_stdout);
1432 }
1433
1434 static void
1435 show_print (char *args, int from_tty)
1436 {
1437 cmd_show_list (showprintlist, from_tty, "");
1438 }
1439 \f
1440 void
1441 _initialize_valprint (void)
1442 {
1443 struct cmd_list_element *c;
1444
1445 add_prefix_cmd ("print", no_class, set_print,
1446 _("Generic command for setting how things print."),
1447 &setprintlist, "set print ", 0, &setlist);
1448 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1449 /* prefer set print to set prompt */
1450 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1451
1452 add_prefix_cmd ("print", no_class, show_print,
1453 _("Generic command for showing print settings."),
1454 &showprintlist, "show print ", 0, &showlist);
1455 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1456 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1457
1458 add_setshow_uinteger_cmd ("elements", no_class, &print_max, _("\
1459 Set limit on string chars or array elements to print."), _("\
1460 Show limit on string chars or array elements to print."), _("\
1461 \"set print elements 0\" causes there to be no limit."),
1462 NULL,
1463 show_print_max,
1464 &setprintlist, &showprintlist);
1465
1466 add_setshow_boolean_cmd ("null-stop", no_class, &stop_print_at_null, _("\
1467 Set printing of char arrays to stop at first null char."), _("\
1468 Show printing of char arrays to stop at first null char."), NULL,
1469 NULL,
1470 show_stop_print_at_null,
1471 &setprintlist, &showprintlist);
1472
1473 add_setshow_uinteger_cmd ("repeats", no_class,
1474 &repeat_count_threshold, _("\
1475 Set threshold for repeated print elements."), _("\
1476 Show threshold for repeated print elements."), _("\
1477 \"set print repeats 0\" causes all elements to be individually printed."),
1478 NULL,
1479 show_repeat_count_threshold,
1480 &setprintlist, &showprintlist);
1481
1482 add_setshow_boolean_cmd ("pretty", class_support, &prettyprint_structs, _("\
1483 Set prettyprinting of structures."), _("\
1484 Show prettyprinting of structures."), NULL,
1485 NULL,
1486 show_prettyprint_structs,
1487 &setprintlist, &showprintlist);
1488
1489 add_setshow_boolean_cmd ("union", class_support, &unionprint, _("\
1490 Set printing of unions interior to structures."), _("\
1491 Show printing of unions interior to structures."), NULL,
1492 NULL,
1493 show_unionprint,
1494 &setprintlist, &showprintlist);
1495
1496 add_setshow_boolean_cmd ("array", class_support, &prettyprint_arrays, _("\
1497 Set prettyprinting of arrays."), _("\
1498 Show prettyprinting of arrays."), NULL,
1499 NULL,
1500 show_prettyprint_arrays,
1501 &setprintlist, &showprintlist);
1502
1503 add_setshow_boolean_cmd ("address", class_support, &addressprint, _("\
1504 Set printing of addresses."), _("\
1505 Show printing of addresses."), NULL,
1506 NULL,
1507 show_addressprint,
1508 &setprintlist, &showprintlist);
1509
1510 add_setshow_uinteger_cmd ("input-radix", class_support, &input_radix, _("\
1511 Set default input radix for entering numbers."), _("\
1512 Show default input radix for entering numbers."), NULL,
1513 set_input_radix,
1514 show_input_radix,
1515 &setlist, &showlist);
1516
1517 add_setshow_uinteger_cmd ("output-radix", class_support, &output_radix, _("\
1518 Set default output radix for printing of values."), _("\
1519 Show default output radix for printing of values."), NULL,
1520 set_output_radix,
1521 show_output_radix,
1522 &setlist, &showlist);
1523
1524 /* The "set radix" and "show radix" commands are special in that
1525 they are like normal set and show commands but allow two normally
1526 independent variables to be either set or shown with a single
1527 command. So the usual deprecated_add_set_cmd() and [deleted]
1528 add_show_from_set() commands aren't really appropriate. */
1529 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1530 longer true - show can display anything. */
1531 add_cmd ("radix", class_support, set_radix, _("\
1532 Set default input and output number radices.\n\
1533 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1534 Without an argument, sets both radices back to the default value of 10."),
1535 &setlist);
1536 add_cmd ("radix", class_support, show_radix, _("\
1537 Show the default input and output number radices.\n\
1538 Use 'show input-radix' or 'show output-radix' to independently show each."),
1539 &showlist);
1540
1541 add_setshow_boolean_cmd ("array-indexes", class_support,
1542 &print_array_indexes, _("\
1543 Set printing of array indexes."), _("\
1544 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1545 &setprintlist, &showprintlist);
1546
1547 /* Give people the defaults which they are used to. */
1548 prettyprint_structs = 0;
1549 prettyprint_arrays = 0;
1550 unionprint = 1;
1551 addressprint = 1;
1552 print_max = PRINT_MAX_DEFAULT;
1553 }
This page took 0.063575 seconds and 4 git commands to generate.