GDBserver self tests
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include "typeprint.h"
38 #include <ctype.h>
39 #include <algorithm>
40 #include "common/byte-vector.h"
41
42 /* Maximum number of wchars returned from wchar_iterate. */
43 #define MAX_WCHARS 4
44
45 /* A convenience macro to compute the size of a wchar_t buffer containing X
46 characters. */
47 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
48
49 /* Character buffer size saved while iterating over wchars. */
50 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
51
52 /* A structure to encapsulate state information from iterated
53 character conversions. */
54 struct converted_character
55 {
56 /* The number of characters converted. */
57 int num_chars;
58
59 /* The result of the conversion. See charset.h for more. */
60 enum wchar_iterate_result result;
61
62 /* The (saved) converted character(s). */
63 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
64
65 /* The first converted target byte. */
66 const gdb_byte *buf;
67
68 /* The number of bytes converted. */
69 size_t buflen;
70
71 /* How many times this character(s) is repeated. */
72 int repeat_count;
73 };
74
75 typedef struct converted_character converted_character_d;
76 DEF_VEC_O (converted_character_d);
77
78 /* Command lists for set/show print raw. */
79 struct cmd_list_element *setprintrawlist;
80 struct cmd_list_element *showprintrawlist;
81
82 /* Prototypes for local functions */
83
84 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
85 int len, int *errptr);
86
87 static void show_print (char *, int);
88
89 static void set_print (char *, int);
90
91 static void set_radix (char *, int);
92
93 static void show_radix (char *, int);
94
95 static void set_input_radix (char *, int, struct cmd_list_element *);
96
97 static void set_input_radix_1 (int, unsigned);
98
99 static void set_output_radix (char *, int, struct cmd_list_element *);
100
101 static void set_output_radix_1 (int, unsigned);
102
103 static void val_print_type_code_flags (struct type *type,
104 const gdb_byte *valaddr,
105 struct ui_file *stream);
106
107 void _initialize_valprint (void);
108
109 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
110
111 struct value_print_options user_print_options =
112 {
113 Val_prettyformat_default, /* prettyformat */
114 0, /* prettyformat_arrays */
115 0, /* prettyformat_structs */
116 0, /* vtblprint */
117 1, /* unionprint */
118 1, /* addressprint */
119 0, /* objectprint */
120 PRINT_MAX_DEFAULT, /* print_max */
121 10, /* repeat_count_threshold */
122 0, /* output_format */
123 0, /* format */
124 0, /* stop_print_at_null */
125 0, /* print_array_indexes */
126 0, /* deref_ref */
127 1, /* static_field_print */
128 1, /* pascal_static_field_print */
129 0, /* raw */
130 0, /* summary */
131 1 /* symbol_print */
132 };
133
134 /* Initialize *OPTS to be a copy of the user print options. */
135 void
136 get_user_print_options (struct value_print_options *opts)
137 {
138 *opts = user_print_options;
139 }
140
141 /* Initialize *OPTS to be a copy of the user print options, but with
142 pretty-formatting disabled. */
143 void
144 get_no_prettyformat_print_options (struct value_print_options *opts)
145 {
146 *opts = user_print_options;
147 opts->prettyformat = Val_no_prettyformat;
148 }
149
150 /* Initialize *OPTS to be a copy of the user print options, but using
151 FORMAT as the formatting option. */
152 void
153 get_formatted_print_options (struct value_print_options *opts,
154 char format)
155 {
156 *opts = user_print_options;
157 opts->format = format;
158 }
159
160 static void
161 show_print_max (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163 {
164 fprintf_filtered (file,
165 _("Limit on string chars or array "
166 "elements to print is %s.\n"),
167 value);
168 }
169
170
171 /* Default input and output radixes, and output format letter. */
172
173 unsigned input_radix = 10;
174 static void
175 show_input_radix (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177 {
178 fprintf_filtered (file,
179 _("Default input radix for entering numbers is %s.\n"),
180 value);
181 }
182
183 unsigned output_radix = 10;
184 static void
185 show_output_radix (struct ui_file *file, int from_tty,
186 struct cmd_list_element *c, const char *value)
187 {
188 fprintf_filtered (file,
189 _("Default output radix for printing of values is %s.\n"),
190 value);
191 }
192
193 /* By default we print arrays without printing the index of each element in
194 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
195
196 static void
197 show_print_array_indexes (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199 {
200 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
201 }
202
203 /* Print repeat counts if there are more than this many repetitions of an
204 element in an array. Referenced by the low level language dependent
205 print routines. */
206
207 static void
208 show_repeat_count_threshold (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
210 {
211 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
212 value);
213 }
214
215 /* If nonzero, stops printing of char arrays at first null. */
216
217 static void
218 show_stop_print_at_null (struct ui_file *file, int from_tty,
219 struct cmd_list_element *c, const char *value)
220 {
221 fprintf_filtered (file,
222 _("Printing of char arrays to stop "
223 "at first null char is %s.\n"),
224 value);
225 }
226
227 /* Controls pretty printing of structures. */
228
229 static void
230 show_prettyformat_structs (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
234 }
235
236 /* Controls pretty printing of arrays. */
237
238 static void
239 show_prettyformat_arrays (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
243 }
244
245 /* If nonzero, causes unions inside structures or other unions to be
246 printed. */
247
248 static void
249 show_unionprint (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 fprintf_filtered (file,
253 _("Printing of unions interior to structures is %s.\n"),
254 value);
255 }
256
257 /* If nonzero, causes machine addresses to be printed in certain contexts. */
258
259 static void
260 show_addressprint (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
264 }
265
266 static void
267 show_symbol_print (struct ui_file *file, int from_tty,
268 struct cmd_list_element *c, const char *value)
269 {
270 fprintf_filtered (file,
271 _("Printing of symbols when printing pointers is %s.\n"),
272 value);
273 }
274
275 \f
276
277 /* A helper function for val_print. When printing in "summary" mode,
278 we want to print scalar arguments, but not aggregate arguments.
279 This function distinguishes between the two. */
280
281 int
282 val_print_scalar_type_p (struct type *type)
283 {
284 type = check_typedef (type);
285 while (TYPE_IS_REFERENCE (type))
286 {
287 type = TYPE_TARGET_TYPE (type);
288 type = check_typedef (type);
289 }
290 switch (TYPE_CODE (type))
291 {
292 case TYPE_CODE_ARRAY:
293 case TYPE_CODE_STRUCT:
294 case TYPE_CODE_UNION:
295 case TYPE_CODE_SET:
296 case TYPE_CODE_STRING:
297 return 0;
298 default:
299 return 1;
300 }
301 }
302
303 /* See its definition in value.h. */
304
305 int
306 valprint_check_validity (struct ui_file *stream,
307 struct type *type,
308 LONGEST embedded_offset,
309 const struct value *val)
310 {
311 type = check_typedef (type);
312
313 if (type_not_associated (type))
314 {
315 val_print_not_associated (stream);
316 return 0;
317 }
318
319 if (type_not_allocated (type))
320 {
321 val_print_not_allocated (stream);
322 return 0;
323 }
324
325 if (TYPE_CODE (type) != TYPE_CODE_UNION
326 && TYPE_CODE (type) != TYPE_CODE_STRUCT
327 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
328 {
329 if (value_bits_any_optimized_out (val,
330 TARGET_CHAR_BIT * embedded_offset,
331 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
332 {
333 val_print_optimized_out (val, stream);
334 return 0;
335 }
336
337 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
338 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
339 {
340 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
341 int ref_is_addressable = 0;
342
343 if (is_ref)
344 {
345 const struct value *deref_val = coerce_ref_if_computed (val);
346
347 if (deref_val != NULL)
348 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
349 }
350
351 if (!is_ref || !ref_is_addressable)
352 fputs_filtered (_("<synthetic pointer>"), stream);
353
354 /* C++ references should be valid even if they're synthetic. */
355 return is_ref;
356 }
357
358 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
359 {
360 val_print_unavailable (stream);
361 return 0;
362 }
363 }
364
365 return 1;
366 }
367
368 void
369 val_print_optimized_out (const struct value *val, struct ui_file *stream)
370 {
371 if (val != NULL && value_lval_const (val) == lval_register)
372 val_print_not_saved (stream);
373 else
374 fprintf_filtered (stream, _("<optimized out>"));
375 }
376
377 void
378 val_print_not_saved (struct ui_file *stream)
379 {
380 fprintf_filtered (stream, _("<not saved>"));
381 }
382
383 void
384 val_print_unavailable (struct ui_file *stream)
385 {
386 fprintf_filtered (stream, _("<unavailable>"));
387 }
388
389 void
390 val_print_invalid_address (struct ui_file *stream)
391 {
392 fprintf_filtered (stream, _("<invalid address>"));
393 }
394
395 /* Print a pointer based on the type of its target.
396
397 Arguments to this functions are roughly the same as those in
398 generic_val_print. A difference is that ADDRESS is the address to print,
399 with embedded_offset already added. ELTTYPE represents
400 the pointed type after check_typedef. */
401
402 static void
403 print_unpacked_pointer (struct type *type, struct type *elttype,
404 CORE_ADDR address, struct ui_file *stream,
405 const struct value_print_options *options)
406 {
407 struct gdbarch *gdbarch = get_type_arch (type);
408
409 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
410 {
411 /* Try to print what function it points to. */
412 print_function_pointer_address (options, gdbarch, address, stream);
413 return;
414 }
415
416 if (options->symbol_print)
417 print_address_demangle (options, gdbarch, address, stream, demangle);
418 else if (options->addressprint)
419 fputs_filtered (paddress (gdbarch, address), stream);
420 }
421
422 /* generic_val_print helper for TYPE_CODE_ARRAY. */
423
424 static void
425 generic_val_print_array (struct type *type,
426 int embedded_offset, CORE_ADDR address,
427 struct ui_file *stream, int recurse,
428 struct value *original_value,
429 const struct value_print_options *options,
430 const struct
431 generic_val_print_decorations *decorations)
432 {
433 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
434 struct type *elttype = check_typedef (unresolved_elttype);
435
436 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
437 {
438 LONGEST low_bound, high_bound;
439
440 if (!get_array_bounds (type, &low_bound, &high_bound))
441 error (_("Could not determine the array high bound"));
442
443 if (options->prettyformat_arrays)
444 {
445 print_spaces_filtered (2 + 2 * recurse, stream);
446 }
447
448 fputs_filtered (decorations->array_start, stream);
449 val_print_array_elements (type, embedded_offset,
450 address, stream,
451 recurse, original_value, options, 0);
452 fputs_filtered (decorations->array_end, stream);
453 }
454 else
455 {
456 /* Array of unspecified length: treat like pointer to first elt. */
457 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
458 options);
459 }
460
461 }
462
463 /* generic_val_print helper for TYPE_CODE_PTR. */
464
465 static void
466 generic_val_print_ptr (struct type *type,
467 int embedded_offset, struct ui_file *stream,
468 struct value *original_value,
469 const struct value_print_options *options)
470 {
471 struct gdbarch *gdbarch = get_type_arch (type);
472 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
473
474 if (options->format && options->format != 's')
475 {
476 val_print_scalar_formatted (type, embedded_offset,
477 original_value, options, 0, stream);
478 }
479 else
480 {
481 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
482 struct type *elttype = check_typedef (unresolved_elttype);
483 const gdb_byte *valaddr = value_contents_for_printing (original_value);
484 CORE_ADDR addr = unpack_pointer (type,
485 valaddr + embedded_offset * unit_size);
486
487 print_unpacked_pointer (type, elttype, addr, stream, options);
488 }
489 }
490
491
492 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
493
494 static void
495 generic_val_print_memberptr (struct type *type,
496 int embedded_offset, struct ui_file *stream,
497 struct value *original_value,
498 const struct value_print_options *options)
499 {
500 val_print_scalar_formatted (type, embedded_offset,
501 original_value, options, 0, stream);
502 }
503
504 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
505
506 static void
507 print_ref_address (struct type *type, const gdb_byte *address_buffer,
508 int embedded_offset, struct ui_file *stream)
509 {
510 struct gdbarch *gdbarch = get_type_arch (type);
511
512 if (address_buffer != NULL)
513 {
514 CORE_ADDR address
515 = extract_typed_address (address_buffer + embedded_offset, type);
516
517 fprintf_filtered (stream, "@");
518 fputs_filtered (paddress (gdbarch, address), stream);
519 }
520 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
521 }
522
523 /* If VAL is addressable, return the value contents buffer of a value that
524 represents a pointer to VAL. Otherwise return NULL. */
525
526 static const gdb_byte *
527 get_value_addr_contents (struct value *deref_val)
528 {
529 gdb_assert (deref_val != NULL);
530
531 if (value_lval_const (deref_val) == lval_memory)
532 return value_contents_for_printing_const (value_addr (deref_val));
533 else
534 {
535 /* We have a non-addressable value, such as a DW_AT_const_value. */
536 return NULL;
537 }
538 }
539
540 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
541
542 static void
543 generic_val_print_ref (struct type *type,
544 int embedded_offset, struct ui_file *stream, int recurse,
545 struct value *original_value,
546 const struct value_print_options *options)
547 {
548 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
549 struct value *deref_val = NULL;
550 const int value_is_synthetic
551 = value_bits_synthetic_pointer (original_value,
552 TARGET_CHAR_BIT * embedded_offset,
553 TARGET_CHAR_BIT * TYPE_LENGTH (type));
554 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
555 || options->deref_ref);
556 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
557 const gdb_byte *valaddr = value_contents_for_printing (original_value);
558
559 if (must_coerce_ref && type_is_defined)
560 {
561 deref_val = coerce_ref_if_computed (original_value);
562
563 if (deref_val != NULL)
564 {
565 /* More complicated computed references are not supported. */
566 gdb_assert (embedded_offset == 0);
567 }
568 else
569 deref_val = value_at (TYPE_TARGET_TYPE (type),
570 unpack_pointer (type, valaddr + embedded_offset));
571 }
572 /* Else, original_value isn't a synthetic reference or we don't have to print
573 the reference's contents.
574
575 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
576 cause original_value to be a not_lval instead of an lval_computed,
577 which will make value_bits_synthetic_pointer return false.
578 This happens because if options->objectprint is true, c_value_print will
579 overwrite original_value's contents with the result of coercing
580 the reference through value_addr, and then set its type back to
581 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
582 we can simply treat it as non-synthetic and move on. */
583
584 if (options->addressprint)
585 {
586 const gdb_byte *address = (value_is_synthetic && type_is_defined
587 ? get_value_addr_contents (deref_val)
588 : valaddr);
589
590 print_ref_address (type, address, embedded_offset, stream);
591
592 if (options->deref_ref)
593 fputs_filtered (": ", stream);
594 }
595
596 if (options->deref_ref)
597 {
598 if (type_is_defined)
599 common_val_print (deref_val, stream, recurse, options,
600 current_language);
601 else
602 fputs_filtered ("???", stream);
603 }
604 }
605
606 /* Helper function for generic_val_print_enum.
607 This is also used to print enums in TYPE_CODE_FLAGS values. */
608
609 static void
610 generic_val_print_enum_1 (struct type *type, LONGEST val,
611 struct ui_file *stream)
612 {
613 unsigned int i;
614 unsigned int len;
615
616 len = TYPE_NFIELDS (type);
617 for (i = 0; i < len; i++)
618 {
619 QUIT;
620 if (val == TYPE_FIELD_ENUMVAL (type, i))
621 {
622 break;
623 }
624 }
625 if (i < len)
626 {
627 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
628 }
629 else if (TYPE_FLAG_ENUM (type))
630 {
631 int first = 1;
632
633 /* We have a "flag" enum, so we try to decompose it into
634 pieces as appropriate. A flag enum has disjoint
635 constants by definition. */
636 fputs_filtered ("(", stream);
637 for (i = 0; i < len; ++i)
638 {
639 QUIT;
640
641 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
642 {
643 if (!first)
644 fputs_filtered (" | ", stream);
645 first = 0;
646
647 val &= ~TYPE_FIELD_ENUMVAL (type, i);
648 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
649 }
650 }
651
652 if (first || val != 0)
653 {
654 if (!first)
655 fputs_filtered (" | ", stream);
656 fputs_filtered ("unknown: ", stream);
657 print_longest (stream, 'd', 0, val);
658 }
659
660 fputs_filtered (")", stream);
661 }
662 else
663 print_longest (stream, 'd', 0, val);
664 }
665
666 /* generic_val_print helper for TYPE_CODE_ENUM. */
667
668 static void
669 generic_val_print_enum (struct type *type,
670 int embedded_offset, struct ui_file *stream,
671 struct value *original_value,
672 const struct value_print_options *options)
673 {
674 LONGEST val;
675 struct gdbarch *gdbarch = get_type_arch (type);
676 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
677
678 if (options->format)
679 {
680 val_print_scalar_formatted (type, embedded_offset,
681 original_value, options, 0, stream);
682 }
683 else
684 {
685 const gdb_byte *valaddr = value_contents_for_printing (original_value);
686
687 val = unpack_long (type, valaddr + embedded_offset * unit_size);
688
689 generic_val_print_enum_1 (type, val, stream);
690 }
691 }
692
693 /* generic_val_print helper for TYPE_CODE_FLAGS. */
694
695 static void
696 generic_val_print_flags (struct type *type,
697 int embedded_offset, struct ui_file *stream,
698 struct value *original_value,
699 const struct value_print_options *options)
700
701 {
702 if (options->format)
703 val_print_scalar_formatted (type, embedded_offset, original_value,
704 options, 0, stream);
705 else
706 {
707 const gdb_byte *valaddr = value_contents_for_printing (original_value);
708
709 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
710 }
711 }
712
713 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
714
715 static void
716 generic_val_print_func (struct type *type,
717 int embedded_offset, CORE_ADDR address,
718 struct ui_file *stream,
719 struct value *original_value,
720 const struct value_print_options *options)
721 {
722 struct gdbarch *gdbarch = get_type_arch (type);
723
724 if (options->format)
725 {
726 val_print_scalar_formatted (type, embedded_offset,
727 original_value, options, 0, stream);
728 }
729 else
730 {
731 /* FIXME, we should consider, at least for ANSI C language,
732 eliminating the distinction made between FUNCs and POINTERs
733 to FUNCs. */
734 fprintf_filtered (stream, "{");
735 type_print (type, "", stream, -1);
736 fprintf_filtered (stream, "} ");
737 /* Try to print what function it points to, and its address. */
738 print_address_demangle (options, gdbarch, address, stream, demangle);
739 }
740 }
741
742 /* generic_val_print helper for TYPE_CODE_BOOL. */
743
744 static void
745 generic_val_print_bool (struct type *type,
746 int embedded_offset, struct ui_file *stream,
747 struct value *original_value,
748 const struct value_print_options *options,
749 const struct generic_val_print_decorations *decorations)
750 {
751 LONGEST val;
752 struct gdbarch *gdbarch = get_type_arch (type);
753 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
754
755 if (options->format || options->output_format)
756 {
757 struct value_print_options opts = *options;
758 opts.format = (options->format ? options->format
759 : options->output_format);
760 val_print_scalar_formatted (type, embedded_offset,
761 original_value, &opts, 0, stream);
762 }
763 else
764 {
765 const gdb_byte *valaddr = value_contents_for_printing (original_value);
766
767 val = unpack_long (type, valaddr + embedded_offset * unit_size);
768 if (val == 0)
769 fputs_filtered (decorations->false_name, stream);
770 else if (val == 1)
771 fputs_filtered (decorations->true_name, stream);
772 else
773 print_longest (stream, 'd', 0, val);
774 }
775 }
776
777 /* generic_val_print helper for TYPE_CODE_INT. */
778
779 static void
780 generic_val_print_int (struct type *type,
781 int embedded_offset, struct ui_file *stream,
782 struct value *original_value,
783 const struct value_print_options *options)
784 {
785 struct value_print_options opts = *options;
786
787 opts.format = (options->format ? options->format
788 : options->output_format);
789 val_print_scalar_formatted (type, embedded_offset,
790 original_value, &opts, 0, stream);
791 }
792
793 /* generic_val_print helper for TYPE_CODE_CHAR. */
794
795 static void
796 generic_val_print_char (struct type *type, struct type *unresolved_type,
797 int embedded_offset,
798 struct ui_file *stream,
799 struct value *original_value,
800 const struct value_print_options *options)
801 {
802 LONGEST val;
803 struct gdbarch *gdbarch = get_type_arch (type);
804 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
805
806 if (options->format || options->output_format)
807 {
808 struct value_print_options opts = *options;
809
810 opts.format = (options->format ? options->format
811 : options->output_format);
812 val_print_scalar_formatted (type, embedded_offset,
813 original_value, &opts, 0, stream);
814 }
815 else
816 {
817 const gdb_byte *valaddr = value_contents_for_printing (original_value);
818
819 val = unpack_long (type, valaddr + embedded_offset * unit_size);
820 if (TYPE_UNSIGNED (type))
821 fprintf_filtered (stream, "%u", (unsigned int) val);
822 else
823 fprintf_filtered (stream, "%d", (int) val);
824 fputs_filtered (" ", stream);
825 LA_PRINT_CHAR (val, unresolved_type, stream);
826 }
827 }
828
829 /* generic_val_print helper for TYPE_CODE_FLT. */
830
831 static void
832 generic_val_print_float (struct type *type,
833 int embedded_offset, struct ui_file *stream,
834 struct value *original_value,
835 const struct value_print_options *options)
836 {
837 struct gdbarch *gdbarch = get_type_arch (type);
838 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
839
840 if (options->format)
841 {
842 val_print_scalar_formatted (type, embedded_offset,
843 original_value, options, 0, stream);
844 }
845 else
846 {
847 const gdb_byte *valaddr = value_contents_for_printing (original_value);
848
849 print_floating (valaddr + embedded_offset * unit_size, type, stream);
850 }
851 }
852
853 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */
854
855 static void
856 generic_val_print_decfloat (struct type *type,
857 int embedded_offset, struct ui_file *stream,
858 struct value *original_value,
859 const struct value_print_options *options)
860 {
861 struct gdbarch *gdbarch = get_type_arch (type);
862 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
863
864 if (options->format)
865 val_print_scalar_formatted (type, embedded_offset, original_value,
866 options, 0, stream);
867 else
868 {
869 const gdb_byte *valaddr = value_contents_for_printing (original_value);
870
871 print_decimal_floating (valaddr + embedded_offset * unit_size, type,
872 stream);
873 }
874 }
875
876 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
877
878 static void
879 generic_val_print_complex (struct type *type,
880 int embedded_offset, struct ui_file *stream,
881 struct value *original_value,
882 const struct value_print_options *options,
883 const struct generic_val_print_decorations
884 *decorations)
885 {
886 struct gdbarch *gdbarch = get_type_arch (type);
887 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
888 const gdb_byte *valaddr = value_contents_for_printing (original_value);
889
890 fprintf_filtered (stream, "%s", decorations->complex_prefix);
891 if (options->format)
892 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
893 embedded_offset, original_value, options, 0,
894 stream);
895 else
896 print_floating (valaddr + embedded_offset * unit_size,
897 TYPE_TARGET_TYPE (type), stream);
898 fprintf_filtered (stream, "%s", decorations->complex_infix);
899 if (options->format)
900 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
901 embedded_offset
902 + type_length_units (TYPE_TARGET_TYPE (type)),
903 original_value, options, 0, stream);
904 else
905 print_floating (valaddr + embedded_offset * unit_size
906 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
907 TYPE_TARGET_TYPE (type), stream);
908 fprintf_filtered (stream, "%s", decorations->complex_suffix);
909 }
910
911 /* A generic val_print that is suitable for use by language
912 implementations of the la_val_print method. This function can
913 handle most type codes, though not all, notably exception
914 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
915 the caller.
916
917 Most arguments are as to val_print.
918
919 The additional DECORATIONS argument can be used to customize the
920 output in some small, language-specific ways. */
921
922 void
923 generic_val_print (struct type *type,
924 int embedded_offset, CORE_ADDR address,
925 struct ui_file *stream, int recurse,
926 struct value *original_value,
927 const struct value_print_options *options,
928 const struct generic_val_print_decorations *decorations)
929 {
930 struct type *unresolved_type = type;
931
932 type = check_typedef (type);
933 switch (TYPE_CODE (type))
934 {
935 case TYPE_CODE_ARRAY:
936 generic_val_print_array (type, embedded_offset, address, stream,
937 recurse, original_value, options, decorations);
938 break;
939
940 case TYPE_CODE_MEMBERPTR:
941 generic_val_print_memberptr (type, embedded_offset, stream,
942 original_value, options);
943 break;
944
945 case TYPE_CODE_PTR:
946 generic_val_print_ptr (type, embedded_offset, stream,
947 original_value, options);
948 break;
949
950 case TYPE_CODE_REF:
951 case TYPE_CODE_RVALUE_REF:
952 generic_val_print_ref (type, embedded_offset, stream, recurse,
953 original_value, options);
954 break;
955
956 case TYPE_CODE_ENUM:
957 generic_val_print_enum (type, embedded_offset, stream,
958 original_value, options);
959 break;
960
961 case TYPE_CODE_FLAGS:
962 generic_val_print_flags (type, embedded_offset, stream,
963 original_value, options);
964 break;
965
966 case TYPE_CODE_FUNC:
967 case TYPE_CODE_METHOD:
968 generic_val_print_func (type, embedded_offset, address, stream,
969 original_value, options);
970 break;
971
972 case TYPE_CODE_BOOL:
973 generic_val_print_bool (type, embedded_offset, stream,
974 original_value, options, decorations);
975 break;
976
977 case TYPE_CODE_RANGE:
978 /* FIXME: create_static_range_type does not set the unsigned bit in a
979 range type (I think it probably should copy it from the
980 target type), so we won't print values which are too large to
981 fit in a signed integer correctly. */
982 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
983 print with the target type, though, because the size of our
984 type and the target type might differ). */
985
986 /* FALLTHROUGH */
987
988 case TYPE_CODE_INT:
989 generic_val_print_int (type, embedded_offset, stream,
990 original_value, options);
991 break;
992
993 case TYPE_CODE_CHAR:
994 generic_val_print_char (type, unresolved_type, embedded_offset,
995 stream, original_value, options);
996 break;
997
998 case TYPE_CODE_FLT:
999 generic_val_print_float (type, embedded_offset, stream,
1000 original_value, options);
1001 break;
1002
1003 case TYPE_CODE_DECFLOAT:
1004 generic_val_print_decfloat (type, embedded_offset, stream,
1005 original_value, options);
1006 break;
1007
1008 case TYPE_CODE_VOID:
1009 fputs_filtered (decorations->void_name, stream);
1010 break;
1011
1012 case TYPE_CODE_ERROR:
1013 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1014 break;
1015
1016 case TYPE_CODE_UNDEF:
1017 /* This happens (without TYPE_STUB set) on systems which don't use
1018 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1019 and no complete type for struct foo in that file. */
1020 fprintf_filtered (stream, _("<incomplete type>"));
1021 break;
1022
1023 case TYPE_CODE_COMPLEX:
1024 generic_val_print_complex (type, embedded_offset, stream,
1025 original_value, options, decorations);
1026 break;
1027
1028 case TYPE_CODE_UNION:
1029 case TYPE_CODE_STRUCT:
1030 case TYPE_CODE_METHODPTR:
1031 default:
1032 error (_("Unhandled type code %d in symbol table."),
1033 TYPE_CODE (type));
1034 }
1035 gdb_flush (stream);
1036 }
1037
1038 /* Print using the given LANGUAGE the data of type TYPE located at
1039 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1040 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1041 stdio stream STREAM according to OPTIONS. VAL is the whole object
1042 that came from ADDRESS.
1043
1044 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1045 further helper subroutines as subfields of TYPE are printed. In
1046 such cases, VAL is passed down unadjusted, so
1047 that VAL can be queried for metadata about the contents data being
1048 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1049 buffer. For example: "has this field been optimized out", or "I'm
1050 printing an object while inspecting a traceframe; has this
1051 particular piece of data been collected?".
1052
1053 RECURSE indicates the amount of indentation to supply before
1054 continuation lines; this amount is roughly twice the value of
1055 RECURSE. */
1056
1057 void
1058 val_print (struct type *type, LONGEST embedded_offset,
1059 CORE_ADDR address, struct ui_file *stream, int recurse,
1060 struct value *val,
1061 const struct value_print_options *options,
1062 const struct language_defn *language)
1063 {
1064 int ret = 0;
1065 struct value_print_options local_opts = *options;
1066 struct type *real_type = check_typedef (type);
1067
1068 if (local_opts.prettyformat == Val_prettyformat_default)
1069 local_opts.prettyformat = (local_opts.prettyformat_structs
1070 ? Val_prettyformat : Val_no_prettyformat);
1071
1072 QUIT;
1073
1074 /* Ensure that the type is complete and not just a stub. If the type is
1075 only a stub and we can't find and substitute its complete type, then
1076 print appropriate string and return. */
1077
1078 if (TYPE_STUB (real_type))
1079 {
1080 fprintf_filtered (stream, _("<incomplete type>"));
1081 gdb_flush (stream);
1082 return;
1083 }
1084
1085 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1086 return;
1087
1088 if (!options->raw)
1089 {
1090 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1091 address, stream, recurse,
1092 val, options, language);
1093 if (ret)
1094 return;
1095 }
1096
1097 /* Handle summary mode. If the value is a scalar, print it;
1098 otherwise, print an ellipsis. */
1099 if (options->summary && !val_print_scalar_type_p (type))
1100 {
1101 fprintf_filtered (stream, "...");
1102 return;
1103 }
1104
1105 TRY
1106 {
1107 language->la_val_print (type, embedded_offset, address,
1108 stream, recurse, val,
1109 &local_opts);
1110 }
1111 CATCH (except, RETURN_MASK_ERROR)
1112 {
1113 fprintf_filtered (stream, _("<error reading variable>"));
1114 }
1115 END_CATCH
1116 }
1117
1118 /* Check whether the value VAL is printable. Return 1 if it is;
1119 return 0 and print an appropriate error message to STREAM according to
1120 OPTIONS if it is not. */
1121
1122 static int
1123 value_check_printable (struct value *val, struct ui_file *stream,
1124 const struct value_print_options *options)
1125 {
1126 if (val == 0)
1127 {
1128 fprintf_filtered (stream, _("<address of value unknown>"));
1129 return 0;
1130 }
1131
1132 if (value_entirely_optimized_out (val))
1133 {
1134 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1135 fprintf_filtered (stream, "...");
1136 else
1137 val_print_optimized_out (val, stream);
1138 return 0;
1139 }
1140
1141 if (value_entirely_unavailable (val))
1142 {
1143 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1144 fprintf_filtered (stream, "...");
1145 else
1146 val_print_unavailable (stream);
1147 return 0;
1148 }
1149
1150 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1151 {
1152 fprintf_filtered (stream, _("<internal function %s>"),
1153 value_internal_function_name (val));
1154 return 0;
1155 }
1156
1157 if (type_not_associated (value_type (val)))
1158 {
1159 val_print_not_associated (stream);
1160 return 0;
1161 }
1162
1163 if (type_not_allocated (value_type (val)))
1164 {
1165 val_print_not_allocated (stream);
1166 return 0;
1167 }
1168
1169 return 1;
1170 }
1171
1172 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1173 to OPTIONS.
1174
1175 This is a preferable interface to val_print, above, because it uses
1176 GDB's value mechanism. */
1177
1178 void
1179 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1180 const struct value_print_options *options,
1181 const struct language_defn *language)
1182 {
1183 if (!value_check_printable (val, stream, options))
1184 return;
1185
1186 if (language->la_language == language_ada)
1187 /* The value might have a dynamic type, which would cause trouble
1188 below when trying to extract the value contents (since the value
1189 size is determined from the type size which is unknown). So
1190 get a fixed representation of our value. */
1191 val = ada_to_fixed_value (val);
1192
1193 if (value_lazy (val))
1194 value_fetch_lazy (val);
1195
1196 val_print (value_type (val),
1197 value_embedded_offset (val), value_address (val),
1198 stream, recurse,
1199 val, options, language);
1200 }
1201
1202 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1203 is printed using the current_language syntax. */
1204
1205 void
1206 value_print (struct value *val, struct ui_file *stream,
1207 const struct value_print_options *options)
1208 {
1209 if (!value_check_printable (val, stream, options))
1210 return;
1211
1212 if (!options->raw)
1213 {
1214 int r
1215 = apply_ext_lang_val_pretty_printer (value_type (val),
1216 value_embedded_offset (val),
1217 value_address (val),
1218 stream, 0,
1219 val, options, current_language);
1220
1221 if (r)
1222 return;
1223 }
1224
1225 LA_VALUE_PRINT (val, stream, options);
1226 }
1227
1228 static void
1229 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1230 struct ui_file *stream)
1231 {
1232 ULONGEST val = unpack_long (type, valaddr);
1233 int field, nfields = TYPE_NFIELDS (type);
1234 struct gdbarch *gdbarch = get_type_arch (type);
1235 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1236
1237 fputs_filtered ("[", stream);
1238 for (field = 0; field < nfields; field++)
1239 {
1240 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1241 {
1242 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1243
1244 if (field_type == bool_type
1245 /* We require boolean types here to be one bit wide. This is a
1246 problematic place to notify the user of an internal error
1247 though. Instead just fall through and print the field as an
1248 int. */
1249 && TYPE_FIELD_BITSIZE (type, field) == 1)
1250 {
1251 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1252 fprintf_filtered (stream, " %s",
1253 TYPE_FIELD_NAME (type, field));
1254 }
1255 else
1256 {
1257 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1258 ULONGEST field_val
1259 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1260
1261 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1262 field_val &= ((ULONGEST) 1 << field_len) - 1;
1263 fprintf_filtered (stream, " %s=",
1264 TYPE_FIELD_NAME (type, field));
1265 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1266 generic_val_print_enum_1 (field_type, field_val, stream);
1267 else
1268 print_longest (stream, 'd', 0, field_val);
1269 }
1270 }
1271 }
1272 fputs_filtered (" ]", stream);
1273 }
1274
1275 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1276 according to OPTIONS and SIZE on STREAM. Format i is not supported
1277 at this level.
1278
1279 This is how the elements of an array or structure are printed
1280 with a format. */
1281
1282 void
1283 val_print_scalar_formatted (struct type *type,
1284 LONGEST embedded_offset,
1285 struct value *val,
1286 const struct value_print_options *options,
1287 int size,
1288 struct ui_file *stream)
1289 {
1290 struct gdbarch *arch = get_type_arch (type);
1291 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1292
1293 gdb_assert (val != NULL);
1294
1295 /* If we get here with a string format, try again without it. Go
1296 all the way back to the language printers, which may call us
1297 again. */
1298 if (options->format == 's')
1299 {
1300 struct value_print_options opts = *options;
1301 opts.format = 0;
1302 opts.deref_ref = 0;
1303 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1304 current_language);
1305 return;
1306 }
1307
1308 /* value_contents_for_printing fetches all VAL's contents. They are
1309 needed to check whether VAL is optimized-out or unavailable
1310 below. */
1311 const gdb_byte *valaddr = value_contents_for_printing (val);
1312
1313 /* A scalar object that does not have all bits available can't be
1314 printed, because all bits contribute to its representation. */
1315 if (value_bits_any_optimized_out (val,
1316 TARGET_CHAR_BIT * embedded_offset,
1317 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1318 val_print_optimized_out (val, stream);
1319 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1320 val_print_unavailable (stream);
1321 else
1322 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1323 options, size, stream);
1324 }
1325
1326 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1327 The raison d'etre of this function is to consolidate printing of
1328 LONG_LONG's into this one function. The format chars b,h,w,g are
1329 from print_scalar_formatted(). Numbers are printed using C
1330 format.
1331
1332 USE_C_FORMAT means to use C format in all cases. Without it,
1333 'o' and 'x' format do not include the standard C radix prefix
1334 (leading 0 or 0x).
1335
1336 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1337 and was intended to request formating according to the current
1338 language and would be used for most integers that GDB prints. The
1339 exceptional cases were things like protocols where the format of
1340 the integer is a protocol thing, not a user-visible thing). The
1341 parameter remains to preserve the information of what things might
1342 be printed with language-specific format, should we ever resurrect
1343 that capability. */
1344
1345 void
1346 print_longest (struct ui_file *stream, int format, int use_c_format,
1347 LONGEST val_long)
1348 {
1349 const char *val;
1350
1351 switch (format)
1352 {
1353 case 'd':
1354 val = int_string (val_long, 10, 1, 0, 1); break;
1355 case 'u':
1356 val = int_string (val_long, 10, 0, 0, 1); break;
1357 case 'x':
1358 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1359 case 'b':
1360 val = int_string (val_long, 16, 0, 2, 1); break;
1361 case 'h':
1362 val = int_string (val_long, 16, 0, 4, 1); break;
1363 case 'w':
1364 val = int_string (val_long, 16, 0, 8, 1); break;
1365 case 'g':
1366 val = int_string (val_long, 16, 0, 16, 1); break;
1367 break;
1368 case 'o':
1369 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1370 default:
1371 internal_error (__FILE__, __LINE__,
1372 _("failed internal consistency check"));
1373 }
1374 fputs_filtered (val, stream);
1375 }
1376
1377 /* This used to be a macro, but I don't think it is called often enough
1378 to merit such treatment. */
1379 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1380 arguments to a function, number in a value history, register number, etc.)
1381 where the value must not be larger than can fit in an int. */
1382
1383 int
1384 longest_to_int (LONGEST arg)
1385 {
1386 /* Let the compiler do the work. */
1387 int rtnval = (int) arg;
1388
1389 /* Check for overflows or underflows. */
1390 if (sizeof (LONGEST) > sizeof (int))
1391 {
1392 if (rtnval != arg)
1393 {
1394 error (_("Value out of range."));
1395 }
1396 }
1397 return (rtnval);
1398 }
1399
1400 /* Print a floating point value of type TYPE (not always a
1401 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1402
1403 void
1404 print_floating (const gdb_byte *valaddr, struct type *type,
1405 struct ui_file *stream)
1406 {
1407 DOUBLEST doub;
1408 int inv;
1409 const struct floatformat *fmt = NULL;
1410 unsigned len = TYPE_LENGTH (type);
1411 enum float_kind kind;
1412
1413 /* If it is a floating-point, check for obvious problems. */
1414 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1415 fmt = floatformat_from_type (type);
1416 if (fmt != NULL)
1417 {
1418 kind = floatformat_classify (fmt, valaddr);
1419 if (kind == float_nan)
1420 {
1421 if (floatformat_is_negative (fmt, valaddr))
1422 fprintf_filtered (stream, "-");
1423 fprintf_filtered (stream, "nan(");
1424 fputs_filtered ("0x", stream);
1425 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1426 fprintf_filtered (stream, ")");
1427 return;
1428 }
1429 else if (kind == float_infinite)
1430 {
1431 if (floatformat_is_negative (fmt, valaddr))
1432 fputs_filtered ("-", stream);
1433 fputs_filtered ("inf", stream);
1434 return;
1435 }
1436 }
1437
1438 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1439 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1440 needs to be used as that takes care of any necessary type
1441 conversions. Such conversions are of course direct to DOUBLEST
1442 and disregard any possible target floating point limitations.
1443 For instance, a u64 would be converted and displayed exactly on a
1444 host with 80 bit DOUBLEST but with loss of information on a host
1445 with 64 bit DOUBLEST. */
1446
1447 doub = unpack_double (type, valaddr, &inv);
1448 if (inv)
1449 {
1450 fprintf_filtered (stream, "<invalid float value>");
1451 return;
1452 }
1453
1454 /* FIXME: kettenis/2001-01-20: The following code makes too much
1455 assumptions about the host and target floating point format. */
1456
1457 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1458 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1459 instead uses the type's length to determine the precision of the
1460 floating-point value being printed. */
1461
1462 if (len < sizeof (double))
1463 fprintf_filtered (stream, "%.9g", (double) doub);
1464 else if (len == sizeof (double))
1465 fprintf_filtered (stream, "%.17g", (double) doub);
1466 else
1467 #ifdef PRINTF_HAS_LONG_DOUBLE
1468 fprintf_filtered (stream, "%.35Lg", doub);
1469 #else
1470 /* This at least wins with values that are representable as
1471 doubles. */
1472 fprintf_filtered (stream, "%.17g", (double) doub);
1473 #endif
1474 }
1475
1476 void
1477 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1478 struct ui_file *stream)
1479 {
1480 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1481 char decstr[MAX_DECIMAL_STRING];
1482 unsigned len = TYPE_LENGTH (type);
1483
1484 decimal_to_string (valaddr, len, byte_order, decstr);
1485 fputs_filtered (decstr, stream);
1486 return;
1487 }
1488
1489 void
1490 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1491 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1492 {
1493 const gdb_byte *p;
1494 unsigned int i;
1495 int b;
1496 bool seen_a_one = false;
1497
1498 /* Declared "int" so it will be signed.
1499 This ensures that right shift will shift in zeros. */
1500
1501 const int mask = 0x080;
1502
1503 if (byte_order == BFD_ENDIAN_BIG)
1504 {
1505 for (p = valaddr;
1506 p < valaddr + len;
1507 p++)
1508 {
1509 /* Every byte has 8 binary characters; peel off
1510 and print from the MSB end. */
1511
1512 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1513 {
1514 if (*p & (mask >> i))
1515 b = '1';
1516 else
1517 b = '0';
1518
1519 if (zero_pad || seen_a_one || b == '1')
1520 fputc_filtered (b, stream);
1521 if (b == '1')
1522 seen_a_one = true;
1523 }
1524 }
1525 }
1526 else
1527 {
1528 for (p = valaddr + len - 1;
1529 p >= valaddr;
1530 p--)
1531 {
1532 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1533 {
1534 if (*p & (mask >> i))
1535 b = '1';
1536 else
1537 b = '0';
1538
1539 if (zero_pad || seen_a_one || b == '1')
1540 fputc_filtered (b, stream);
1541 if (b == '1')
1542 seen_a_one = true;
1543 }
1544 }
1545 }
1546
1547 /* When not zero-padding, ensure that something is printed when the
1548 input is 0. */
1549 if (!zero_pad && !seen_a_one)
1550 fputc_filtered ('0', stream);
1551 }
1552
1553 /* A helper for print_octal_chars that emits a single octal digit,
1554 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1555
1556 static void
1557 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1558 {
1559 if (*seen_a_one || digit != 0)
1560 fprintf_filtered (stream, "%o", digit);
1561 if (digit != 0)
1562 *seen_a_one = true;
1563 }
1564
1565 /* VALADDR points to an integer of LEN bytes.
1566 Print it in octal on stream or format it in buf. */
1567
1568 void
1569 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1570 unsigned len, enum bfd_endian byte_order)
1571 {
1572 const gdb_byte *p;
1573 unsigned char octa1, octa2, octa3, carry;
1574 int cycle;
1575
1576 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1577 * the extra bits, which cycle every three bytes:
1578 *
1579 * Byte side: 0 1 2 3
1580 * | | | |
1581 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1582 *
1583 * Octal side: 0 1 carry 3 4 carry ...
1584 *
1585 * Cycle number: 0 1 2
1586 *
1587 * But of course we are printing from the high side, so we have to
1588 * figure out where in the cycle we are so that we end up with no
1589 * left over bits at the end.
1590 */
1591 #define BITS_IN_OCTAL 3
1592 #define HIGH_ZERO 0340
1593 #define LOW_ZERO 0034
1594 #define CARRY_ZERO 0003
1595 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1596 "cycle zero constants are wrong");
1597 #define HIGH_ONE 0200
1598 #define MID_ONE 0160
1599 #define LOW_ONE 0016
1600 #define CARRY_ONE 0001
1601 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1602 "cycle one constants are wrong");
1603 #define HIGH_TWO 0300
1604 #define MID_TWO 0070
1605 #define LOW_TWO 0007
1606 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1607 "cycle two constants are wrong");
1608
1609 /* For 32 we start in cycle 2, with two bits and one bit carry;
1610 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1611
1612 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1613 carry = 0;
1614
1615 fputs_filtered ("0", stream);
1616 bool seen_a_one = false;
1617 if (byte_order == BFD_ENDIAN_BIG)
1618 {
1619 for (p = valaddr;
1620 p < valaddr + len;
1621 p++)
1622 {
1623 switch (cycle)
1624 {
1625 case 0:
1626 /* No carry in, carry out two bits. */
1627
1628 octa1 = (HIGH_ZERO & *p) >> 5;
1629 octa2 = (LOW_ZERO & *p) >> 2;
1630 carry = (CARRY_ZERO & *p);
1631 emit_octal_digit (stream, &seen_a_one, octa1);
1632 emit_octal_digit (stream, &seen_a_one, octa2);
1633 break;
1634
1635 case 1:
1636 /* Carry in two bits, carry out one bit. */
1637
1638 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1639 octa2 = (MID_ONE & *p) >> 4;
1640 octa3 = (LOW_ONE & *p) >> 1;
1641 carry = (CARRY_ONE & *p);
1642 emit_octal_digit (stream, &seen_a_one, octa1);
1643 emit_octal_digit (stream, &seen_a_one, octa2);
1644 emit_octal_digit (stream, &seen_a_one, octa3);
1645 break;
1646
1647 case 2:
1648 /* Carry in one bit, no carry out. */
1649
1650 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1651 octa2 = (MID_TWO & *p) >> 3;
1652 octa3 = (LOW_TWO & *p);
1653 carry = 0;
1654 emit_octal_digit (stream, &seen_a_one, octa1);
1655 emit_octal_digit (stream, &seen_a_one, octa2);
1656 emit_octal_digit (stream, &seen_a_one, octa3);
1657 break;
1658
1659 default:
1660 error (_("Internal error in octal conversion;"));
1661 }
1662
1663 cycle++;
1664 cycle = cycle % BITS_IN_OCTAL;
1665 }
1666 }
1667 else
1668 {
1669 for (p = valaddr + len - 1;
1670 p >= valaddr;
1671 p--)
1672 {
1673 switch (cycle)
1674 {
1675 case 0:
1676 /* Carry out, no carry in */
1677
1678 octa1 = (HIGH_ZERO & *p) >> 5;
1679 octa2 = (LOW_ZERO & *p) >> 2;
1680 carry = (CARRY_ZERO & *p);
1681 emit_octal_digit (stream, &seen_a_one, octa1);
1682 emit_octal_digit (stream, &seen_a_one, octa2);
1683 break;
1684
1685 case 1:
1686 /* Carry in, carry out */
1687
1688 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1689 octa2 = (MID_ONE & *p) >> 4;
1690 octa3 = (LOW_ONE & *p) >> 1;
1691 carry = (CARRY_ONE & *p);
1692 emit_octal_digit (stream, &seen_a_one, octa1);
1693 emit_octal_digit (stream, &seen_a_one, octa2);
1694 emit_octal_digit (stream, &seen_a_one, octa3);
1695 break;
1696
1697 case 2:
1698 /* Carry in, no carry out */
1699
1700 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1701 octa2 = (MID_TWO & *p) >> 3;
1702 octa3 = (LOW_TWO & *p);
1703 carry = 0;
1704 emit_octal_digit (stream, &seen_a_one, octa1);
1705 emit_octal_digit (stream, &seen_a_one, octa2);
1706 emit_octal_digit (stream, &seen_a_one, octa3);
1707 break;
1708
1709 default:
1710 error (_("Internal error in octal conversion;"));
1711 }
1712
1713 cycle++;
1714 cycle = cycle % BITS_IN_OCTAL;
1715 }
1716 }
1717
1718 }
1719
1720 /* Possibly negate the integer represented by BYTES. It contains LEN
1721 bytes in the specified byte order. If the integer is negative,
1722 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1723 nothing and return false. */
1724
1725 static bool
1726 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1727 enum bfd_endian byte_order,
1728 gdb::byte_vector *out_vec)
1729 {
1730 gdb_byte sign_byte;
1731 if (byte_order == BFD_ENDIAN_BIG)
1732 sign_byte = bytes[0];
1733 else
1734 sign_byte = bytes[len - 1];
1735 if ((sign_byte & 0x80) == 0)
1736 return false;
1737
1738 out_vec->resize (len);
1739
1740 /* Compute -x == 1 + ~x. */
1741 if (byte_order == BFD_ENDIAN_LITTLE)
1742 {
1743 unsigned carry = 1;
1744 for (unsigned i = 0; i < len; ++i)
1745 {
1746 unsigned tem = (0xff & ~bytes[i]) + carry;
1747 (*out_vec)[i] = tem & 0xff;
1748 carry = tem / 256;
1749 }
1750 }
1751 else
1752 {
1753 unsigned carry = 1;
1754 for (unsigned i = len; i > 0; --i)
1755 {
1756 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1757 (*out_vec)[i - 1] = tem & 0xff;
1758 carry = tem / 256;
1759 }
1760 }
1761
1762 return true;
1763 }
1764
1765 /* VALADDR points to an integer of LEN bytes.
1766 Print it in decimal on stream or format it in buf. */
1767
1768 void
1769 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1770 unsigned len, bool is_signed,
1771 enum bfd_endian byte_order)
1772 {
1773 #define TEN 10
1774 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1775 #define CARRY_LEFT( x ) ((x) % TEN)
1776 #define SHIFT( x ) ((x) << 4)
1777 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1778 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1779
1780 const gdb_byte *p;
1781 int carry;
1782 int decimal_len;
1783 int i, j, decimal_digits;
1784 int dummy;
1785 int flip;
1786
1787 gdb::byte_vector negated_bytes;
1788 if (is_signed
1789 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1790 {
1791 fputs_filtered ("-", stream);
1792 valaddr = negated_bytes.data ();
1793 }
1794
1795 /* Base-ten number is less than twice as many digits
1796 as the base 16 number, which is 2 digits per byte. */
1797
1798 decimal_len = len * 2 * 2;
1799 std::vector<unsigned char> digits (decimal_len, 0);
1800
1801 /* Ok, we have an unknown number of bytes of data to be printed in
1802 * decimal.
1803 *
1804 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1805 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1806 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1807 *
1808 * The trick is that "digits" holds a base-10 number, but sometimes
1809 * the individual digits are > 10.
1810 *
1811 * Outer loop is per nibble (hex digit) of input, from MSD end to
1812 * LSD end.
1813 */
1814 decimal_digits = 0; /* Number of decimal digits so far */
1815 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1816 flip = 0;
1817 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1818 {
1819 /*
1820 * Multiply current base-ten number by 16 in place.
1821 * Each digit was between 0 and 9, now is between
1822 * 0 and 144.
1823 */
1824 for (j = 0; j < decimal_digits; j++)
1825 {
1826 digits[j] = SHIFT (digits[j]);
1827 }
1828
1829 /* Take the next nibble off the input and add it to what
1830 * we've got in the LSB position. Bottom 'digit' is now
1831 * between 0 and 159.
1832 *
1833 * "flip" is used to run this loop twice for each byte.
1834 */
1835 if (flip == 0)
1836 {
1837 /* Take top nibble. */
1838
1839 digits[0] += HIGH_NIBBLE (*p);
1840 flip = 1;
1841 }
1842 else
1843 {
1844 /* Take low nibble and bump our pointer "p". */
1845
1846 digits[0] += LOW_NIBBLE (*p);
1847 if (byte_order == BFD_ENDIAN_BIG)
1848 p++;
1849 else
1850 p--;
1851 flip = 0;
1852 }
1853
1854 /* Re-decimalize. We have to do this often enough
1855 * that we don't overflow, but once per nibble is
1856 * overkill. Easier this way, though. Note that the
1857 * carry is often larger than 10 (e.g. max initial
1858 * carry out of lowest nibble is 15, could bubble all
1859 * the way up greater than 10). So we have to do
1860 * the carrying beyond the last current digit.
1861 */
1862 carry = 0;
1863 for (j = 0; j < decimal_len - 1; j++)
1864 {
1865 digits[j] += carry;
1866
1867 /* "/" won't handle an unsigned char with
1868 * a value that if signed would be negative.
1869 * So extend to longword int via "dummy".
1870 */
1871 dummy = digits[j];
1872 carry = CARRY_OUT (dummy);
1873 digits[j] = CARRY_LEFT (dummy);
1874
1875 if (j >= decimal_digits && carry == 0)
1876 {
1877 /*
1878 * All higher digits are 0 and we
1879 * no longer have a carry.
1880 *
1881 * Note: "j" is 0-based, "decimal_digits" is
1882 * 1-based.
1883 */
1884 decimal_digits = j + 1;
1885 break;
1886 }
1887 }
1888 }
1889
1890 /* Ok, now "digits" is the decimal representation, with
1891 the "decimal_digits" actual digits. Print! */
1892
1893 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1894 ;
1895
1896 for (; i >= 0; i--)
1897 {
1898 fprintf_filtered (stream, "%1d", digits[i]);
1899 }
1900 }
1901
1902 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1903
1904 void
1905 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1906 unsigned len, enum bfd_endian byte_order,
1907 bool zero_pad)
1908 {
1909 const gdb_byte *p;
1910
1911 fputs_filtered ("0x", stream);
1912 if (byte_order == BFD_ENDIAN_BIG)
1913 {
1914 p = valaddr;
1915
1916 if (!zero_pad)
1917 {
1918 /* Strip leading 0 bytes, but be sure to leave at least a
1919 single byte at the end. */
1920 for (; p < valaddr + len - 1 && !*p; ++p)
1921 ;
1922 }
1923
1924 const gdb_byte *first = p;
1925 for (;
1926 p < valaddr + len;
1927 p++)
1928 {
1929 /* When not zero-padding, use a different format for the
1930 very first byte printed. */
1931 if (!zero_pad && p == first)
1932 fprintf_filtered (stream, "%x", *p);
1933 else
1934 fprintf_filtered (stream, "%02x", *p);
1935 }
1936 }
1937 else
1938 {
1939 p = valaddr + len - 1;
1940
1941 if (!zero_pad)
1942 {
1943 /* Strip leading 0 bytes, but be sure to leave at least a
1944 single byte at the end. */
1945 for (; p >= valaddr + 1 && !*p; --p)
1946 ;
1947 }
1948
1949 const gdb_byte *first = p;
1950 for (;
1951 p >= valaddr;
1952 p--)
1953 {
1954 /* When not zero-padding, use a different format for the
1955 very first byte printed. */
1956 if (!zero_pad && p == first)
1957 fprintf_filtered (stream, "%x", *p);
1958 else
1959 fprintf_filtered (stream, "%02x", *p);
1960 }
1961 }
1962 }
1963
1964 /* VALADDR points to a char integer of LEN bytes.
1965 Print it out in appropriate language form on stream.
1966 Omit any leading zero chars. */
1967
1968 void
1969 print_char_chars (struct ui_file *stream, struct type *type,
1970 const gdb_byte *valaddr,
1971 unsigned len, enum bfd_endian byte_order)
1972 {
1973 const gdb_byte *p;
1974
1975 if (byte_order == BFD_ENDIAN_BIG)
1976 {
1977 p = valaddr;
1978 while (p < valaddr + len - 1 && *p == 0)
1979 ++p;
1980
1981 while (p < valaddr + len)
1982 {
1983 LA_EMIT_CHAR (*p, type, stream, '\'');
1984 ++p;
1985 }
1986 }
1987 else
1988 {
1989 p = valaddr + len - 1;
1990 while (p > valaddr && *p == 0)
1991 --p;
1992
1993 while (p >= valaddr)
1994 {
1995 LA_EMIT_CHAR (*p, type, stream, '\'');
1996 --p;
1997 }
1998 }
1999 }
2000
2001 /* Print function pointer with inferior address ADDRESS onto stdio
2002 stream STREAM. */
2003
2004 void
2005 print_function_pointer_address (const struct value_print_options *options,
2006 struct gdbarch *gdbarch,
2007 CORE_ADDR address,
2008 struct ui_file *stream)
2009 {
2010 CORE_ADDR func_addr
2011 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
2012 &current_target);
2013
2014 /* If the function pointer is represented by a description, print
2015 the address of the description. */
2016 if (options->addressprint && func_addr != address)
2017 {
2018 fputs_filtered ("@", stream);
2019 fputs_filtered (paddress (gdbarch, address), stream);
2020 fputs_filtered (": ", stream);
2021 }
2022 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
2023 }
2024
2025
2026 /* Print on STREAM using the given OPTIONS the index for the element
2027 at INDEX of an array whose index type is INDEX_TYPE. */
2028
2029 void
2030 maybe_print_array_index (struct type *index_type, LONGEST index,
2031 struct ui_file *stream,
2032 const struct value_print_options *options)
2033 {
2034 struct value *index_value;
2035
2036 if (!options->print_array_indexes)
2037 return;
2038
2039 index_value = value_from_longest (index_type, index);
2040
2041 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2042 }
2043
2044 /* Called by various <lang>_val_print routines to print elements of an
2045 array in the form "<elem1>, <elem2>, <elem3>, ...".
2046
2047 (FIXME?) Assumes array element separator is a comma, which is correct
2048 for all languages currently handled.
2049 (FIXME?) Some languages have a notation for repeated array elements,
2050 perhaps we should try to use that notation when appropriate. */
2051
2052 void
2053 val_print_array_elements (struct type *type,
2054 LONGEST embedded_offset,
2055 CORE_ADDR address, struct ui_file *stream,
2056 int recurse,
2057 struct value *val,
2058 const struct value_print_options *options,
2059 unsigned int i)
2060 {
2061 unsigned int things_printed = 0;
2062 unsigned len;
2063 struct type *elttype, *index_type, *base_index_type;
2064 unsigned eltlen;
2065 /* Position of the array element we are examining to see
2066 whether it is repeated. */
2067 unsigned int rep1;
2068 /* Number of repetitions we have detected so far. */
2069 unsigned int reps;
2070 LONGEST low_bound, high_bound;
2071 LONGEST low_pos, high_pos;
2072
2073 elttype = TYPE_TARGET_TYPE (type);
2074 eltlen = type_length_units (check_typedef (elttype));
2075 index_type = TYPE_INDEX_TYPE (type);
2076
2077 if (get_array_bounds (type, &low_bound, &high_bound))
2078 {
2079 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2080 base_index_type = TYPE_TARGET_TYPE (index_type);
2081 else
2082 base_index_type = index_type;
2083
2084 /* Non-contiguous enumerations types can by used as index types
2085 in some languages (e.g. Ada). In this case, the array length
2086 shall be computed from the positions of the first and last
2087 literal in the enumeration type, and not from the values
2088 of these literals. */
2089 if (!discrete_position (base_index_type, low_bound, &low_pos)
2090 || !discrete_position (base_index_type, high_bound, &high_pos))
2091 {
2092 warning (_("unable to get positions in array, use bounds instead"));
2093 low_pos = low_bound;
2094 high_pos = high_bound;
2095 }
2096
2097 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2098 But we have to be a little extra careful, because some languages
2099 such as Ada allow LOW_POS to be greater than HIGH_POS for
2100 empty arrays. In that situation, the array length is just zero,
2101 not negative! */
2102 if (low_pos > high_pos)
2103 len = 0;
2104 else
2105 len = high_pos - low_pos + 1;
2106 }
2107 else
2108 {
2109 warning (_("unable to get bounds of array, assuming null array"));
2110 low_bound = 0;
2111 len = 0;
2112 }
2113
2114 annotate_array_section_begin (i, elttype);
2115
2116 for (; i < len && things_printed < options->print_max; i++)
2117 {
2118 if (i != 0)
2119 {
2120 if (options->prettyformat_arrays)
2121 {
2122 fprintf_filtered (stream, ",\n");
2123 print_spaces_filtered (2 + 2 * recurse, stream);
2124 }
2125 else
2126 {
2127 fprintf_filtered (stream, ", ");
2128 }
2129 }
2130 wrap_here (n_spaces (2 + 2 * recurse));
2131 maybe_print_array_index (index_type, i + low_bound,
2132 stream, options);
2133
2134 rep1 = i + 1;
2135 reps = 1;
2136 /* Only check for reps if repeat_count_threshold is not set to
2137 UINT_MAX (unlimited). */
2138 if (options->repeat_count_threshold < UINT_MAX)
2139 {
2140 while (rep1 < len
2141 && value_contents_eq (val,
2142 embedded_offset + i * eltlen,
2143 val,
2144 (embedded_offset
2145 + rep1 * eltlen),
2146 eltlen))
2147 {
2148 ++reps;
2149 ++rep1;
2150 }
2151 }
2152
2153 if (reps > options->repeat_count_threshold)
2154 {
2155 val_print (elttype, embedded_offset + i * eltlen,
2156 address, stream, recurse + 1, val, options,
2157 current_language);
2158 annotate_elt_rep (reps);
2159 fprintf_filtered (stream, " <repeats %u times>", reps);
2160 annotate_elt_rep_end ();
2161
2162 i = rep1 - 1;
2163 things_printed += options->repeat_count_threshold;
2164 }
2165 else
2166 {
2167 val_print (elttype, embedded_offset + i * eltlen,
2168 address,
2169 stream, recurse + 1, val, options, current_language);
2170 annotate_elt ();
2171 things_printed++;
2172 }
2173 }
2174 annotate_array_section_end ();
2175 if (i < len)
2176 {
2177 fprintf_filtered (stream, "...");
2178 }
2179 }
2180
2181 /* Read LEN bytes of target memory at address MEMADDR, placing the
2182 results in GDB's memory at MYADDR. Returns a count of the bytes
2183 actually read, and optionally a target_xfer_status value in the
2184 location pointed to by ERRPTR if ERRPTR is non-null. */
2185
2186 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2187 function be eliminated. */
2188
2189 static int
2190 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2191 int len, int *errptr)
2192 {
2193 int nread; /* Number of bytes actually read. */
2194 int errcode; /* Error from last read. */
2195
2196 /* First try a complete read. */
2197 errcode = target_read_memory (memaddr, myaddr, len);
2198 if (errcode == 0)
2199 {
2200 /* Got it all. */
2201 nread = len;
2202 }
2203 else
2204 {
2205 /* Loop, reading one byte at a time until we get as much as we can. */
2206 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2207 {
2208 errcode = target_read_memory (memaddr++, myaddr++, 1);
2209 }
2210 /* If an error, the last read was unsuccessful, so adjust count. */
2211 if (errcode != 0)
2212 {
2213 nread--;
2214 }
2215 }
2216 if (errptr != NULL)
2217 {
2218 *errptr = errcode;
2219 }
2220 return (nread);
2221 }
2222
2223 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2224 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2225 allocated buffer containing the string, which the caller is responsible to
2226 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
2227 success, or a target_xfer_status on failure.
2228
2229 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2230 (including eventual NULs in the middle or end of the string).
2231
2232 If LEN is -1, stops at the first null character (not necessarily
2233 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2234 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2235 the string.
2236
2237 Unless an exception is thrown, BUFFER will always be allocated, even on
2238 failure. In this case, some characters might have been read before the
2239 failure happened. Check BYTES_READ to recognize this situation.
2240
2241 Note: There was a FIXME asking to make this code use target_read_string,
2242 but this function is more general (can read past null characters, up to
2243 given LEN). Besides, it is used much more often than target_read_string
2244 so it is more tested. Perhaps callers of target_read_string should use
2245 this function instead? */
2246
2247 int
2248 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2249 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
2250 {
2251 int errcode; /* Errno returned from bad reads. */
2252 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2253 gdb_byte *bufptr; /* Pointer to next available byte in
2254 buffer. */
2255 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2256
2257 /* Loop until we either have all the characters, or we encounter
2258 some error, such as bumping into the end of the address space. */
2259
2260 *buffer = NULL;
2261
2262 old_chain = make_cleanup (free_current_contents, buffer);
2263
2264 if (len > 0)
2265 {
2266 /* We want fetchlimit chars, so we might as well read them all in
2267 one operation. */
2268 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2269
2270 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2271 bufptr = *buffer;
2272
2273 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2274 / width;
2275 addr += nfetch * width;
2276 bufptr += nfetch * width;
2277 }
2278 else if (len == -1)
2279 {
2280 unsigned long bufsize = 0;
2281 unsigned int chunksize; /* Size of each fetch, in chars. */
2282 int found_nul; /* Non-zero if we found the nul char. */
2283 gdb_byte *limit; /* First location past end of fetch buffer. */
2284
2285 found_nul = 0;
2286 /* We are looking for a NUL terminator to end the fetching, so we
2287 might as well read in blocks that are large enough to be efficient,
2288 but not so large as to be slow if fetchlimit happens to be large.
2289 So we choose the minimum of 8 and fetchlimit. We used to use 200
2290 instead of 8 but 200 is way too big for remote debugging over a
2291 serial line. */
2292 chunksize = std::min (8u, fetchlimit);
2293
2294 do
2295 {
2296 QUIT;
2297 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2298
2299 if (*buffer == NULL)
2300 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2301 else
2302 *buffer = (gdb_byte *) xrealloc (*buffer,
2303 (nfetch + bufsize) * width);
2304
2305 bufptr = *buffer + bufsize * width;
2306 bufsize += nfetch;
2307
2308 /* Read as much as we can. */
2309 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2310 / width;
2311
2312 /* Scan this chunk for the null character that terminates the string
2313 to print. If found, we don't need to fetch any more. Note
2314 that bufptr is explicitly left pointing at the next character
2315 after the null character, or at the next character after the end
2316 of the buffer. */
2317
2318 limit = bufptr + nfetch * width;
2319 while (bufptr < limit)
2320 {
2321 unsigned long c;
2322
2323 c = extract_unsigned_integer (bufptr, width, byte_order);
2324 addr += width;
2325 bufptr += width;
2326 if (c == 0)
2327 {
2328 /* We don't care about any error which happened after
2329 the NUL terminator. */
2330 errcode = 0;
2331 found_nul = 1;
2332 break;
2333 }
2334 }
2335 }
2336 while (errcode == 0 /* no error */
2337 && bufptr - *buffer < fetchlimit * width /* no overrun */
2338 && !found_nul); /* haven't found NUL yet */
2339 }
2340 else
2341 { /* Length of string is really 0! */
2342 /* We always allocate *buffer. */
2343 *buffer = bufptr = (gdb_byte *) xmalloc (1);
2344 errcode = 0;
2345 }
2346
2347 /* bufptr and addr now point immediately beyond the last byte which we
2348 consider part of the string (including a '\0' which ends the string). */
2349 *bytes_read = bufptr - *buffer;
2350
2351 QUIT;
2352
2353 discard_cleanups (old_chain);
2354
2355 return errcode;
2356 }
2357
2358 /* Return true if print_wchar can display W without resorting to a
2359 numeric escape, false otherwise. */
2360
2361 static int
2362 wchar_printable (gdb_wchar_t w)
2363 {
2364 return (gdb_iswprint (w)
2365 || w == LCST ('\a') || w == LCST ('\b')
2366 || w == LCST ('\f') || w == LCST ('\n')
2367 || w == LCST ('\r') || w == LCST ('\t')
2368 || w == LCST ('\v'));
2369 }
2370
2371 /* A helper function that converts the contents of STRING to wide
2372 characters and then appends them to OUTPUT. */
2373
2374 static void
2375 append_string_as_wide (const char *string,
2376 struct obstack *output)
2377 {
2378 for (; *string; ++string)
2379 {
2380 gdb_wchar_t w = gdb_btowc (*string);
2381 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2382 }
2383 }
2384
2385 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2386 original (target) bytes representing the character, ORIG_LEN is the
2387 number of valid bytes. WIDTH is the number of bytes in a base
2388 characters of the type. OUTPUT is an obstack to which wide
2389 characters are emitted. QUOTER is a (narrow) character indicating
2390 the style of quotes surrounding the character to be printed.
2391 NEED_ESCAPE is an in/out flag which is used to track numeric
2392 escapes across calls. */
2393
2394 static void
2395 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2396 int orig_len, int width,
2397 enum bfd_endian byte_order,
2398 struct obstack *output,
2399 int quoter, int *need_escapep)
2400 {
2401 int need_escape = *need_escapep;
2402
2403 *need_escapep = 0;
2404
2405 /* iswprint implementation on Windows returns 1 for tab character.
2406 In order to avoid different printout on this host, we explicitly
2407 use wchar_printable function. */
2408 switch (w)
2409 {
2410 case LCST ('\a'):
2411 obstack_grow_wstr (output, LCST ("\\a"));
2412 break;
2413 case LCST ('\b'):
2414 obstack_grow_wstr (output, LCST ("\\b"));
2415 break;
2416 case LCST ('\f'):
2417 obstack_grow_wstr (output, LCST ("\\f"));
2418 break;
2419 case LCST ('\n'):
2420 obstack_grow_wstr (output, LCST ("\\n"));
2421 break;
2422 case LCST ('\r'):
2423 obstack_grow_wstr (output, LCST ("\\r"));
2424 break;
2425 case LCST ('\t'):
2426 obstack_grow_wstr (output, LCST ("\\t"));
2427 break;
2428 case LCST ('\v'):
2429 obstack_grow_wstr (output, LCST ("\\v"));
2430 break;
2431 default:
2432 {
2433 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2434 && w != LCST ('8')
2435 && w != LCST ('9'))))
2436 {
2437 gdb_wchar_t wchar = w;
2438
2439 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2440 obstack_grow_wstr (output, LCST ("\\"));
2441 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2442 }
2443 else
2444 {
2445 int i;
2446
2447 for (i = 0; i + width <= orig_len; i += width)
2448 {
2449 char octal[30];
2450 ULONGEST value;
2451
2452 value = extract_unsigned_integer (&orig[i], width,
2453 byte_order);
2454 /* If the value fits in 3 octal digits, print it that
2455 way. Otherwise, print it as a hex escape. */
2456 if (value <= 0777)
2457 xsnprintf (octal, sizeof (octal), "\\%.3o",
2458 (int) (value & 0777));
2459 else
2460 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2461 append_string_as_wide (octal, output);
2462 }
2463 /* If we somehow have extra bytes, print them now. */
2464 while (i < orig_len)
2465 {
2466 char octal[5];
2467
2468 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2469 append_string_as_wide (octal, output);
2470 ++i;
2471 }
2472
2473 *need_escapep = 1;
2474 }
2475 break;
2476 }
2477 }
2478 }
2479
2480 /* Print the character C on STREAM as part of the contents of a
2481 literal string whose delimiter is QUOTER. ENCODING names the
2482 encoding of C. */
2483
2484 void
2485 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2486 int quoter, const char *encoding)
2487 {
2488 enum bfd_endian byte_order
2489 = gdbarch_byte_order (get_type_arch (type));
2490 gdb_byte *buf;
2491 int need_escape = 0;
2492
2493 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2494 pack_long (buf, type, c);
2495
2496 wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2497
2498 /* This holds the printable form of the wchar_t data. */
2499 auto_obstack wchar_buf;
2500
2501 while (1)
2502 {
2503 int num_chars;
2504 gdb_wchar_t *chars;
2505 const gdb_byte *buf;
2506 size_t buflen;
2507 int print_escape = 1;
2508 enum wchar_iterate_result result;
2509
2510 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2511 if (num_chars < 0)
2512 break;
2513 if (num_chars > 0)
2514 {
2515 /* If all characters are printable, print them. Otherwise,
2516 we're going to have to print an escape sequence. We
2517 check all characters because we want to print the target
2518 bytes in the escape sequence, and we don't know character
2519 boundaries there. */
2520 int i;
2521
2522 print_escape = 0;
2523 for (i = 0; i < num_chars; ++i)
2524 if (!wchar_printable (chars[i]))
2525 {
2526 print_escape = 1;
2527 break;
2528 }
2529
2530 if (!print_escape)
2531 {
2532 for (i = 0; i < num_chars; ++i)
2533 print_wchar (chars[i], buf, buflen,
2534 TYPE_LENGTH (type), byte_order,
2535 &wchar_buf, quoter, &need_escape);
2536 }
2537 }
2538
2539 /* This handles the NUM_CHARS == 0 case as well. */
2540 if (print_escape)
2541 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2542 byte_order, &wchar_buf, quoter, &need_escape);
2543 }
2544
2545 /* The output in the host encoding. */
2546 auto_obstack output;
2547
2548 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2549 (gdb_byte *) obstack_base (&wchar_buf),
2550 obstack_object_size (&wchar_buf),
2551 sizeof (gdb_wchar_t), &output, translit_char);
2552 obstack_1grow (&output, '\0');
2553
2554 fputs_filtered ((const char *) obstack_base (&output), stream);
2555 }
2556
2557 /* Return the repeat count of the next character/byte in ITER,
2558 storing the result in VEC. */
2559
2560 static int
2561 count_next_character (wchar_iterator *iter,
2562 VEC (converted_character_d) **vec)
2563 {
2564 struct converted_character *current;
2565
2566 if (VEC_empty (converted_character_d, *vec))
2567 {
2568 struct converted_character tmp;
2569 gdb_wchar_t *chars;
2570
2571 tmp.num_chars
2572 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2573 if (tmp.num_chars > 0)
2574 {
2575 gdb_assert (tmp.num_chars < MAX_WCHARS);
2576 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2577 }
2578 VEC_safe_push (converted_character_d, *vec, &tmp);
2579 }
2580
2581 current = VEC_last (converted_character_d, *vec);
2582
2583 /* Count repeated characters or bytes. */
2584 current->repeat_count = 1;
2585 if (current->num_chars == -1)
2586 {
2587 /* EOF */
2588 return -1;
2589 }
2590 else
2591 {
2592 gdb_wchar_t *chars;
2593 struct converted_character d;
2594 int repeat;
2595
2596 d.repeat_count = 0;
2597
2598 while (1)
2599 {
2600 /* Get the next character. */
2601 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2602
2603 /* If a character was successfully converted, save the character
2604 into the converted character. */
2605 if (d.num_chars > 0)
2606 {
2607 gdb_assert (d.num_chars < MAX_WCHARS);
2608 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2609 }
2610
2611 /* Determine if the current character is the same as this
2612 new character. */
2613 if (d.num_chars == current->num_chars && d.result == current->result)
2614 {
2615 /* There are two cases to consider:
2616
2617 1) Equality of converted character (num_chars > 0)
2618 2) Equality of non-converted character (num_chars == 0) */
2619 if ((current->num_chars > 0
2620 && memcmp (current->chars, d.chars,
2621 WCHAR_BUFLEN (current->num_chars)) == 0)
2622 || (current->num_chars == 0
2623 && current->buflen == d.buflen
2624 && memcmp (current->buf, d.buf, current->buflen) == 0))
2625 ++current->repeat_count;
2626 else
2627 break;
2628 }
2629 else
2630 break;
2631 }
2632
2633 /* Push this next converted character onto the result vector. */
2634 repeat = current->repeat_count;
2635 VEC_safe_push (converted_character_d, *vec, &d);
2636 return repeat;
2637 }
2638 }
2639
2640 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2641 character to use with string output. WIDTH is the size of the output
2642 character type. BYTE_ORDER is the the target byte order. OPTIONS
2643 is the user's print options. */
2644
2645 static void
2646 print_converted_chars_to_obstack (struct obstack *obstack,
2647 VEC (converted_character_d) *chars,
2648 int quote_char, int width,
2649 enum bfd_endian byte_order,
2650 const struct value_print_options *options)
2651 {
2652 unsigned int idx;
2653 struct converted_character *elem;
2654 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2655 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2656 int need_escape = 0;
2657
2658 /* Set the start state. */
2659 idx = 0;
2660 last = state = START;
2661 elem = NULL;
2662
2663 while (1)
2664 {
2665 switch (state)
2666 {
2667 case START:
2668 /* Nothing to do. */
2669 break;
2670
2671 case SINGLE:
2672 {
2673 int j;
2674
2675 /* We are outputting a single character
2676 (< options->repeat_count_threshold). */
2677
2678 if (last != SINGLE)
2679 {
2680 /* We were outputting some other type of content, so we
2681 must output and a comma and a quote. */
2682 if (last != START)
2683 obstack_grow_wstr (obstack, LCST (", "));
2684 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2685 }
2686 /* Output the character. */
2687 for (j = 0; j < elem->repeat_count; ++j)
2688 {
2689 if (elem->result == wchar_iterate_ok)
2690 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2691 byte_order, obstack, quote_char, &need_escape);
2692 else
2693 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2694 byte_order, obstack, quote_char, &need_escape);
2695 }
2696 }
2697 break;
2698
2699 case REPEAT:
2700 {
2701 int j;
2702 char *s;
2703
2704 /* We are outputting a character with a repeat count
2705 greater than options->repeat_count_threshold. */
2706
2707 if (last == SINGLE)
2708 {
2709 /* We were outputting a single string. Terminate the
2710 string. */
2711 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2712 }
2713 if (last != START)
2714 obstack_grow_wstr (obstack, LCST (", "));
2715
2716 /* Output the character and repeat string. */
2717 obstack_grow_wstr (obstack, LCST ("'"));
2718 if (elem->result == wchar_iterate_ok)
2719 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2720 byte_order, obstack, quote_char, &need_escape);
2721 else
2722 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2723 byte_order, obstack, quote_char, &need_escape);
2724 obstack_grow_wstr (obstack, LCST ("'"));
2725 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2726 for (j = 0; s[j]; ++j)
2727 {
2728 gdb_wchar_t w = gdb_btowc (s[j]);
2729 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2730 }
2731 xfree (s);
2732 }
2733 break;
2734
2735 case INCOMPLETE:
2736 /* We are outputting an incomplete sequence. */
2737 if (last == SINGLE)
2738 {
2739 /* If we were outputting a string of SINGLE characters,
2740 terminate the quote. */
2741 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2742 }
2743 if (last != START)
2744 obstack_grow_wstr (obstack, LCST (", "));
2745
2746 /* Output the incomplete sequence string. */
2747 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2748 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2749 obstack, 0, &need_escape);
2750 obstack_grow_wstr (obstack, LCST (">"));
2751
2752 /* We do not attempt to outupt anything after this. */
2753 state = FINISH;
2754 break;
2755
2756 case FINISH:
2757 /* All done. If we were outputting a string of SINGLE
2758 characters, the string must be terminated. Otherwise,
2759 REPEAT and INCOMPLETE are always left properly terminated. */
2760 if (last == SINGLE)
2761 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2762
2763 return;
2764 }
2765
2766 /* Get the next element and state. */
2767 last = state;
2768 if (state != FINISH)
2769 {
2770 elem = VEC_index (converted_character_d, chars, idx++);
2771 switch (elem->result)
2772 {
2773 case wchar_iterate_ok:
2774 case wchar_iterate_invalid:
2775 if (elem->repeat_count > options->repeat_count_threshold)
2776 state = REPEAT;
2777 else
2778 state = SINGLE;
2779 break;
2780
2781 case wchar_iterate_incomplete:
2782 state = INCOMPLETE;
2783 break;
2784
2785 case wchar_iterate_eof:
2786 state = FINISH;
2787 break;
2788 }
2789 }
2790 }
2791 }
2792
2793 /* Print the character string STRING, printing at most LENGTH
2794 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2795 the type of each character. OPTIONS holds the printing options;
2796 printing stops early if the number hits print_max; repeat counts
2797 are printed as appropriate. Print ellipses at the end if we had to
2798 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2799 QUOTE_CHAR is the character to print at each end of the string. If
2800 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2801 omitted. */
2802
2803 void
2804 generic_printstr (struct ui_file *stream, struct type *type,
2805 const gdb_byte *string, unsigned int length,
2806 const char *encoding, int force_ellipses,
2807 int quote_char, int c_style_terminator,
2808 const struct value_print_options *options)
2809 {
2810 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2811 unsigned int i;
2812 int width = TYPE_LENGTH (type);
2813 struct cleanup *cleanup;
2814 int finished = 0;
2815 struct converted_character *last;
2816 VEC (converted_character_d) *converted_chars;
2817
2818 if (length == -1)
2819 {
2820 unsigned long current_char = 1;
2821
2822 for (i = 0; current_char; ++i)
2823 {
2824 QUIT;
2825 current_char = extract_unsigned_integer (string + i * width,
2826 width, byte_order);
2827 }
2828 length = i;
2829 }
2830
2831 /* If the string was not truncated due to `set print elements', and
2832 the last byte of it is a null, we don't print that, in
2833 traditional C style. */
2834 if (c_style_terminator
2835 && !force_ellipses
2836 && length > 0
2837 && (extract_unsigned_integer (string + (length - 1) * width,
2838 width, byte_order) == 0))
2839 length--;
2840
2841 if (length == 0)
2842 {
2843 fputs_filtered ("\"\"", stream);
2844 return;
2845 }
2846
2847 /* Arrange to iterate over the characters, in wchar_t form. */
2848 wchar_iterator iter (string, length * width, encoding, width);
2849 converted_chars = NULL;
2850 cleanup = make_cleanup (VEC_cleanup (converted_character_d),
2851 &converted_chars);
2852
2853 /* Convert characters until the string is over or the maximum
2854 number of printed characters has been reached. */
2855 i = 0;
2856 while (i < options->print_max)
2857 {
2858 int r;
2859
2860 QUIT;
2861
2862 /* Grab the next character and repeat count. */
2863 r = count_next_character (&iter, &converted_chars);
2864
2865 /* If less than zero, the end of the input string was reached. */
2866 if (r < 0)
2867 break;
2868
2869 /* Otherwise, add the count to the total print count and get
2870 the next character. */
2871 i += r;
2872 }
2873
2874 /* Get the last element and determine if the entire string was
2875 processed. */
2876 last = VEC_last (converted_character_d, converted_chars);
2877 finished = (last->result == wchar_iterate_eof);
2878
2879 /* Ensure that CONVERTED_CHARS is terminated. */
2880 last->result = wchar_iterate_eof;
2881
2882 /* WCHAR_BUF is the obstack we use to represent the string in
2883 wchar_t form. */
2884 auto_obstack wchar_buf;
2885
2886 /* Print the output string to the obstack. */
2887 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2888 width, byte_order, options);
2889
2890 if (force_ellipses || !finished)
2891 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2892
2893 /* OUTPUT is where we collect `char's for printing. */
2894 auto_obstack output;
2895
2896 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2897 (gdb_byte *) obstack_base (&wchar_buf),
2898 obstack_object_size (&wchar_buf),
2899 sizeof (gdb_wchar_t), &output, translit_char);
2900 obstack_1grow (&output, '\0');
2901
2902 fputs_filtered ((const char *) obstack_base (&output), stream);
2903
2904 do_cleanups (cleanup);
2905 }
2906
2907 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2908 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2909 stops at the first null byte, otherwise printing proceeds (including null
2910 bytes) until either print_max or LEN characters have been printed,
2911 whichever is smaller. ENCODING is the name of the string's
2912 encoding. It can be NULL, in which case the target encoding is
2913 assumed. */
2914
2915 int
2916 val_print_string (struct type *elttype, const char *encoding,
2917 CORE_ADDR addr, int len,
2918 struct ui_file *stream,
2919 const struct value_print_options *options)
2920 {
2921 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2922 int err; /* Non-zero if we got a bad read. */
2923 int found_nul; /* Non-zero if we found the nul char. */
2924 unsigned int fetchlimit; /* Maximum number of chars to print. */
2925 int bytes_read;
2926 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2927 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2928 struct gdbarch *gdbarch = get_type_arch (elttype);
2929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2930 int width = TYPE_LENGTH (elttype);
2931
2932 /* First we need to figure out the limit on the number of characters we are
2933 going to attempt to fetch and print. This is actually pretty simple. If
2934 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2935 LEN is -1, then the limit is print_max. This is true regardless of
2936 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2937 because finding the null byte (or available memory) is what actually
2938 limits the fetch. */
2939
2940 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2941 options->print_max));
2942
2943 err = read_string (addr, len, width, fetchlimit, byte_order,
2944 &buffer, &bytes_read);
2945 old_chain = make_cleanup (xfree, buffer);
2946
2947 addr += bytes_read;
2948
2949 /* We now have either successfully filled the buffer to fetchlimit,
2950 or terminated early due to an error or finding a null char when
2951 LEN is -1. */
2952
2953 /* Determine found_nul by looking at the last character read. */
2954 found_nul = 0;
2955 if (bytes_read >= width)
2956 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2957 byte_order) == 0;
2958 if (len == -1 && !found_nul)
2959 {
2960 gdb_byte *peekbuf;
2961
2962 /* We didn't find a NUL terminator we were looking for. Attempt
2963 to peek at the next character. If not successful, or it is not
2964 a null byte, then force ellipsis to be printed. */
2965
2966 peekbuf = (gdb_byte *) alloca (width);
2967
2968 if (target_read_memory (addr, peekbuf, width) == 0
2969 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2970 force_ellipsis = 1;
2971 }
2972 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2973 {
2974 /* Getting an error when we have a requested length, or fetching less
2975 than the number of characters actually requested, always make us
2976 print ellipsis. */
2977 force_ellipsis = 1;
2978 }
2979
2980 /* If we get an error before fetching anything, don't print a string.
2981 But if we fetch something and then get an error, print the string
2982 and then the error message. */
2983 if (err == 0 || bytes_read > 0)
2984 {
2985 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2986 encoding, force_ellipsis, options);
2987 }
2988
2989 if (err != 0)
2990 {
2991 char *str;
2992
2993 str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2994 make_cleanup (xfree, str);
2995
2996 fprintf_filtered (stream, "<error: ");
2997 fputs_filtered (str, stream);
2998 fprintf_filtered (stream, ">");
2999 }
3000
3001 gdb_flush (stream);
3002 do_cleanups (old_chain);
3003
3004 return (bytes_read / width);
3005 }
3006 \f
3007
3008 /* The 'set input-radix' command writes to this auxiliary variable.
3009 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
3010 it is left unchanged. */
3011
3012 static unsigned input_radix_1 = 10;
3013
3014 /* Validate an input or output radix setting, and make sure the user
3015 knows what they really did here. Radix setting is confusing, e.g.
3016 setting the input radix to "10" never changes it! */
3017
3018 static void
3019 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
3020 {
3021 set_input_radix_1 (from_tty, input_radix_1);
3022 }
3023
3024 static void
3025 set_input_radix_1 (int from_tty, unsigned radix)
3026 {
3027 /* We don't currently disallow any input radix except 0 or 1, which don't
3028 make any mathematical sense. In theory, we can deal with any input
3029 radix greater than 1, even if we don't have unique digits for every
3030 value from 0 to radix-1, but in practice we lose on large radix values.
3031 We should either fix the lossage or restrict the radix range more.
3032 (FIXME). */
3033
3034 if (radix < 2)
3035 {
3036 input_radix_1 = input_radix;
3037 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
3038 radix);
3039 }
3040 input_radix_1 = input_radix = radix;
3041 if (from_tty)
3042 {
3043 printf_filtered (_("Input radix now set to "
3044 "decimal %u, hex %x, octal %o.\n"),
3045 radix, radix, radix);
3046 }
3047 }
3048
3049 /* The 'set output-radix' command writes to this auxiliary variable.
3050 If the requested radix is valid, OUTPUT_RADIX is updated,
3051 otherwise, it is left unchanged. */
3052
3053 static unsigned output_radix_1 = 10;
3054
3055 static void
3056 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
3057 {
3058 set_output_radix_1 (from_tty, output_radix_1);
3059 }
3060
3061 static void
3062 set_output_radix_1 (int from_tty, unsigned radix)
3063 {
3064 /* Validate the radix and disallow ones that we aren't prepared to
3065 handle correctly, leaving the radix unchanged. */
3066 switch (radix)
3067 {
3068 case 16:
3069 user_print_options.output_format = 'x'; /* hex */
3070 break;
3071 case 10:
3072 user_print_options.output_format = 0; /* decimal */
3073 break;
3074 case 8:
3075 user_print_options.output_format = 'o'; /* octal */
3076 break;
3077 default:
3078 output_radix_1 = output_radix;
3079 error (_("Unsupported output radix ``decimal %u''; "
3080 "output radix unchanged."),
3081 radix);
3082 }
3083 output_radix_1 = output_radix = radix;
3084 if (from_tty)
3085 {
3086 printf_filtered (_("Output radix now set to "
3087 "decimal %u, hex %x, octal %o.\n"),
3088 radix, radix, radix);
3089 }
3090 }
3091
3092 /* Set both the input and output radix at once. Try to set the output radix
3093 first, since it has the most restrictive range. An radix that is valid as
3094 an output radix is also valid as an input radix.
3095
3096 It may be useful to have an unusual input radix. If the user wishes to
3097 set an input radix that is not valid as an output radix, he needs to use
3098 the 'set input-radix' command. */
3099
3100 static void
3101 set_radix (char *arg, int from_tty)
3102 {
3103 unsigned radix;
3104
3105 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3106 set_output_radix_1 (0, radix);
3107 set_input_radix_1 (0, radix);
3108 if (from_tty)
3109 {
3110 printf_filtered (_("Input and output radices now set to "
3111 "decimal %u, hex %x, octal %o.\n"),
3112 radix, radix, radix);
3113 }
3114 }
3115
3116 /* Show both the input and output radices. */
3117
3118 static void
3119 show_radix (char *arg, int from_tty)
3120 {
3121 if (from_tty)
3122 {
3123 if (input_radix == output_radix)
3124 {
3125 printf_filtered (_("Input and output radices set to "
3126 "decimal %u, hex %x, octal %o.\n"),
3127 input_radix, input_radix, input_radix);
3128 }
3129 else
3130 {
3131 printf_filtered (_("Input radix set to decimal "
3132 "%u, hex %x, octal %o.\n"),
3133 input_radix, input_radix, input_radix);
3134 printf_filtered (_("Output radix set to decimal "
3135 "%u, hex %x, octal %o.\n"),
3136 output_radix, output_radix, output_radix);
3137 }
3138 }
3139 }
3140 \f
3141
3142 static void
3143 set_print (char *arg, int from_tty)
3144 {
3145 printf_unfiltered (
3146 "\"set print\" must be followed by the name of a print subcommand.\n");
3147 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3148 }
3149
3150 static void
3151 show_print (char *args, int from_tty)
3152 {
3153 cmd_show_list (showprintlist, from_tty, "");
3154 }
3155
3156 static void
3157 set_print_raw (char *arg, int from_tty)
3158 {
3159 printf_unfiltered (
3160 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3161 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3162 }
3163
3164 static void
3165 show_print_raw (char *args, int from_tty)
3166 {
3167 cmd_show_list (showprintrawlist, from_tty, "");
3168 }
3169
3170 \f
3171 void
3172 _initialize_valprint (void)
3173 {
3174 add_prefix_cmd ("print", no_class, set_print,
3175 _("Generic command for setting how things print."),
3176 &setprintlist, "set print ", 0, &setlist);
3177 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3178 /* Prefer set print to set prompt. */
3179 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3180
3181 add_prefix_cmd ("print", no_class, show_print,
3182 _("Generic command for showing print settings."),
3183 &showprintlist, "show print ", 0, &showlist);
3184 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3185 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3186
3187 add_prefix_cmd ("raw", no_class, set_print_raw,
3188 _("\
3189 Generic command for setting what things to print in \"raw\" mode."),
3190 &setprintrawlist, "set print raw ", 0, &setprintlist);
3191 add_prefix_cmd ("raw", no_class, show_print_raw,
3192 _("Generic command for showing \"print raw\" settings."),
3193 &showprintrawlist, "show print raw ", 0, &showprintlist);
3194
3195 add_setshow_uinteger_cmd ("elements", no_class,
3196 &user_print_options.print_max, _("\
3197 Set limit on string chars or array elements to print."), _("\
3198 Show limit on string chars or array elements to print."), _("\
3199 \"set print elements unlimited\" causes there to be no limit."),
3200 NULL,
3201 show_print_max,
3202 &setprintlist, &showprintlist);
3203
3204 add_setshow_boolean_cmd ("null-stop", no_class,
3205 &user_print_options.stop_print_at_null, _("\
3206 Set printing of char arrays to stop at first null char."), _("\
3207 Show printing of char arrays to stop at first null char."), NULL,
3208 NULL,
3209 show_stop_print_at_null,
3210 &setprintlist, &showprintlist);
3211
3212 add_setshow_uinteger_cmd ("repeats", no_class,
3213 &user_print_options.repeat_count_threshold, _("\
3214 Set threshold for repeated print elements."), _("\
3215 Show threshold for repeated print elements."), _("\
3216 \"set print repeats unlimited\" causes all elements to be individually printed."),
3217 NULL,
3218 show_repeat_count_threshold,
3219 &setprintlist, &showprintlist);
3220
3221 add_setshow_boolean_cmd ("pretty", class_support,
3222 &user_print_options.prettyformat_structs, _("\
3223 Set pretty formatting of structures."), _("\
3224 Show pretty formatting of structures."), NULL,
3225 NULL,
3226 show_prettyformat_structs,
3227 &setprintlist, &showprintlist);
3228
3229 add_setshow_boolean_cmd ("union", class_support,
3230 &user_print_options.unionprint, _("\
3231 Set printing of unions interior to structures."), _("\
3232 Show printing of unions interior to structures."), NULL,
3233 NULL,
3234 show_unionprint,
3235 &setprintlist, &showprintlist);
3236
3237 add_setshow_boolean_cmd ("array", class_support,
3238 &user_print_options.prettyformat_arrays, _("\
3239 Set pretty formatting of arrays."), _("\
3240 Show pretty formatting of arrays."), NULL,
3241 NULL,
3242 show_prettyformat_arrays,
3243 &setprintlist, &showprintlist);
3244
3245 add_setshow_boolean_cmd ("address", class_support,
3246 &user_print_options.addressprint, _("\
3247 Set printing of addresses."), _("\
3248 Show printing of addresses."), NULL,
3249 NULL,
3250 show_addressprint,
3251 &setprintlist, &showprintlist);
3252
3253 add_setshow_boolean_cmd ("symbol", class_support,
3254 &user_print_options.symbol_print, _("\
3255 Set printing of symbol names when printing pointers."), _("\
3256 Show printing of symbol names when printing pointers."),
3257 NULL, NULL,
3258 show_symbol_print,
3259 &setprintlist, &showprintlist);
3260
3261 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3262 _("\
3263 Set default input radix for entering numbers."), _("\
3264 Show default input radix for entering numbers."), NULL,
3265 set_input_radix,
3266 show_input_radix,
3267 &setlist, &showlist);
3268
3269 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3270 _("\
3271 Set default output radix for printing of values."), _("\
3272 Show default output radix for printing of values."), NULL,
3273 set_output_radix,
3274 show_output_radix,
3275 &setlist, &showlist);
3276
3277 /* The "set radix" and "show radix" commands are special in that
3278 they are like normal set and show commands but allow two normally
3279 independent variables to be either set or shown with a single
3280 command. So the usual deprecated_add_set_cmd() and [deleted]
3281 add_show_from_set() commands aren't really appropriate. */
3282 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3283 longer true - show can display anything. */
3284 add_cmd ("radix", class_support, set_radix, _("\
3285 Set default input and output number radices.\n\
3286 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3287 Without an argument, sets both radices back to the default value of 10."),
3288 &setlist);
3289 add_cmd ("radix", class_support, show_radix, _("\
3290 Show the default input and output number radices.\n\
3291 Use 'show input-radix' or 'show output-radix' to independently show each."),
3292 &showlist);
3293
3294 add_setshow_boolean_cmd ("array-indexes", class_support,
3295 &user_print_options.print_array_indexes, _("\
3296 Set printing of array indexes."), _("\
3297 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3298 &setprintlist, &showprintlist);
3299 }
This page took 0.098948 seconds and 4 git commands to generate.