* c-valprint.c (print_function_pointer_address): Move...
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "target.h"
28 #include "language.h"
29 #include "annotate.h"
30 #include "valprint.h"
31 #include "floatformat.h"
32 #include "doublest.h"
33 #include "exceptions.h"
34 #include "dfp.h"
35 #include "python/python.h"
36 #include "ada-lang.h"
37 #include "gdb_obstack.h"
38 #include "charset.h"
39 #include <ctype.h>
40
41 #include <errno.h>
42
43 /* Prototypes for local functions */
44
45 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
46 int len, int *errnoptr);
47
48 static void show_print (char *, int);
49
50 static void set_print (char *, int);
51
52 static void set_radix (char *, int);
53
54 static void show_radix (char *, int);
55
56 static void set_input_radix (char *, int, struct cmd_list_element *);
57
58 static void set_input_radix_1 (int, unsigned);
59
60 static void set_output_radix (char *, int, struct cmd_list_element *);
61
62 static void set_output_radix_1 (int, unsigned);
63
64 void _initialize_valprint (void);
65
66 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
67
68 struct value_print_options user_print_options =
69 {
70 Val_pretty_default, /* pretty */
71 0, /* prettyprint_arrays */
72 0, /* prettyprint_structs */
73 0, /* vtblprint */
74 1, /* unionprint */
75 1, /* addressprint */
76 0, /* objectprint */
77 PRINT_MAX_DEFAULT, /* print_max */
78 10, /* repeat_count_threshold */
79 0, /* output_format */
80 0, /* format */
81 0, /* stop_print_at_null */
82 0, /* inspect_it */
83 0, /* print_array_indexes */
84 0, /* deref_ref */
85 1, /* static_field_print */
86 1, /* pascal_static_field_print */
87 0, /* raw */
88 0 /* summary */
89 };
90
91 /* Initialize *OPTS to be a copy of the user print options. */
92 void
93 get_user_print_options (struct value_print_options *opts)
94 {
95 *opts = user_print_options;
96 }
97
98 /* Initialize *OPTS to be a copy of the user print options, but with
99 pretty-printing disabled. */
100 void
101 get_raw_print_options (struct value_print_options *opts)
102 {
103 *opts = user_print_options;
104 opts->pretty = Val_no_prettyprint;
105 }
106
107 /* Initialize *OPTS to be a copy of the user print options, but using
108 FORMAT as the formatting option. */
109 void
110 get_formatted_print_options (struct value_print_options *opts,
111 char format)
112 {
113 *opts = user_print_options;
114 opts->format = format;
115 }
116
117 static void
118 show_print_max (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c, const char *value)
120 {
121 fprintf_filtered (file,
122 _("Limit on string chars or array "
123 "elements to print is %s.\n"),
124 value);
125 }
126
127
128 /* Default input and output radixes, and output format letter. */
129
130 unsigned input_radix = 10;
131 static void
132 show_input_radix (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c, const char *value)
134 {
135 fprintf_filtered (file,
136 _("Default input radix for entering numbers is %s.\n"),
137 value);
138 }
139
140 unsigned output_radix = 10;
141 static void
142 show_output_radix (struct ui_file *file, int from_tty,
143 struct cmd_list_element *c, const char *value)
144 {
145 fprintf_filtered (file,
146 _("Default output radix for printing of values is %s.\n"),
147 value);
148 }
149
150 /* By default we print arrays without printing the index of each element in
151 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
152
153 static void
154 show_print_array_indexes (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
158 }
159
160 /* Print repeat counts if there are more than this many repetitions of an
161 element in an array. Referenced by the low level language dependent
162 print routines. */
163
164 static void
165 show_repeat_count_threshold (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
169 value);
170 }
171
172 /* If nonzero, stops printing of char arrays at first null. */
173
174 static void
175 show_stop_print_at_null (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177 {
178 fprintf_filtered (file,
179 _("Printing of char arrays to stop "
180 "at first null char is %s.\n"),
181 value);
182 }
183
184 /* Controls pretty printing of structures. */
185
186 static void
187 show_prettyprint_structs (struct ui_file *file, int from_tty,
188 struct cmd_list_element *c, const char *value)
189 {
190 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
191 }
192
193 /* Controls pretty printing of arrays. */
194
195 static void
196 show_prettyprint_arrays (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
200 }
201
202 /* If nonzero, causes unions inside structures or other unions to be
203 printed. */
204
205 static void
206 show_unionprint (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file,
210 _("Printing of unions interior to structures is %s.\n"),
211 value);
212 }
213
214 /* If nonzero, causes machine addresses to be printed in certain contexts. */
215
216 static void
217 show_addressprint (struct ui_file *file, int from_tty,
218 struct cmd_list_element *c, const char *value)
219 {
220 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
221 }
222 \f
223
224 /* A helper function for val_print. When printing in "summary" mode,
225 we want to print scalar arguments, but not aggregate arguments.
226 This function distinguishes between the two. */
227
228 static int
229 scalar_type_p (struct type *type)
230 {
231 CHECK_TYPEDEF (type);
232 while (TYPE_CODE (type) == TYPE_CODE_REF)
233 {
234 type = TYPE_TARGET_TYPE (type);
235 CHECK_TYPEDEF (type);
236 }
237 switch (TYPE_CODE (type))
238 {
239 case TYPE_CODE_ARRAY:
240 case TYPE_CODE_STRUCT:
241 case TYPE_CODE_UNION:
242 case TYPE_CODE_SET:
243 case TYPE_CODE_STRING:
244 case TYPE_CODE_BITSTRING:
245 return 0;
246 default:
247 return 1;
248 }
249 }
250
251 /* Helper function to check the validity of some bits of a value.
252
253 If TYPE represents some aggregate type (e.g., a structure), return 1.
254
255 Otherwise, any of the bytes starting at OFFSET and extending for
256 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
257 return 0. The checking is done using FUNCS.
258
259 Otherwise, return 1. */
260
261 static int
262 valprint_check_validity (struct ui_file *stream,
263 struct type *type,
264 int embedded_offset,
265 const struct value *val)
266 {
267 CHECK_TYPEDEF (type);
268
269 if (TYPE_CODE (type) != TYPE_CODE_UNION
270 && TYPE_CODE (type) != TYPE_CODE_STRUCT
271 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
272 {
273 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
274 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
275 {
276 val_print_optimized_out (stream);
277 return 0;
278 }
279
280 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
281 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
282 {
283 fputs_filtered (_("<synthetic pointer>"), stream);
284 return 0;
285 }
286
287 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
288 {
289 val_print_unavailable (stream);
290 return 0;
291 }
292 }
293
294 return 1;
295 }
296
297 void
298 val_print_optimized_out (struct ui_file *stream)
299 {
300 fprintf_filtered (stream, _("<optimized out>"));
301 }
302
303 void
304 val_print_unavailable (struct ui_file *stream)
305 {
306 fprintf_filtered (stream, _("<unavailable>"));
307 }
308
309 void
310 val_print_invalid_address (struct ui_file *stream)
311 {
312 fprintf_filtered (stream, _("<invalid address>"));
313 }
314
315 /* Print using the given LANGUAGE the data of type TYPE located at
316 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
317 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
318 STREAM according to OPTIONS. VAL is the whole object that came
319 from ADDRESS. VALADDR must point to the head of VAL's contents
320 buffer.
321
322 The language printers will pass down an adjusted EMBEDDED_OFFSET to
323 further helper subroutines as subfields of TYPE are printed. In
324 such cases, VALADDR is passed down unadjusted, as well as VAL, so
325 that VAL can be queried for metadata about the contents data being
326 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
327 buffer. For example: "has this field been optimized out", or "I'm
328 printing an object while inspecting a traceframe; has this
329 particular piece of data been collected?".
330
331 RECURSE indicates the amount of indentation to supply before
332 continuation lines; this amount is roughly twice the value of
333 RECURSE.
334
335 If the data is printed as a string, returns the number of string
336 characters printed. */
337
338 int
339 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
340 CORE_ADDR address, struct ui_file *stream, int recurse,
341 const struct value *val,
342 const struct value_print_options *options,
343 const struct language_defn *language)
344 {
345 volatile struct gdb_exception except;
346 int ret = 0;
347 struct value_print_options local_opts = *options;
348 struct type *real_type = check_typedef (type);
349
350 if (local_opts.pretty == Val_pretty_default)
351 local_opts.pretty = (local_opts.prettyprint_structs
352 ? Val_prettyprint : Val_no_prettyprint);
353
354 QUIT;
355
356 /* Ensure that the type is complete and not just a stub. If the type is
357 only a stub and we can't find and substitute its complete type, then
358 print appropriate string and return. */
359
360 if (TYPE_STUB (real_type))
361 {
362 fprintf_filtered (stream, _("<incomplete type>"));
363 gdb_flush (stream);
364 return (0);
365 }
366
367 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
368 return 0;
369
370 if (!options->raw)
371 {
372 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
373 address, stream, recurse,
374 val, options, language);
375 if (ret)
376 return ret;
377 }
378
379 /* Handle summary mode. If the value is a scalar, print it;
380 otherwise, print an ellipsis. */
381 if (options->summary && !scalar_type_p (type))
382 {
383 fprintf_filtered (stream, "...");
384 return 0;
385 }
386
387 TRY_CATCH (except, RETURN_MASK_ERROR)
388 {
389 ret = language->la_val_print (type, valaddr, embedded_offset, address,
390 stream, recurse, val,
391 &local_opts);
392 }
393 if (except.reason < 0)
394 fprintf_filtered (stream, _("<error reading variable>"));
395
396 return ret;
397 }
398
399 /* Check whether the value VAL is printable. Return 1 if it is;
400 return 0 and print an appropriate error message to STREAM according to
401 OPTIONS if it is not. */
402
403 static int
404 value_check_printable (struct value *val, struct ui_file *stream,
405 const struct value_print_options *options)
406 {
407 if (val == 0)
408 {
409 fprintf_filtered (stream, _("<address of value unknown>"));
410 return 0;
411 }
412
413 if (value_entirely_optimized_out (val))
414 {
415 if (options->summary && !scalar_type_p (value_type (val)))
416 fprintf_filtered (stream, "...");
417 else
418 val_print_optimized_out (stream);
419 return 0;
420 }
421
422 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
423 {
424 fprintf_filtered (stream, _("<internal function %s>"),
425 value_internal_function_name (val));
426 return 0;
427 }
428
429 return 1;
430 }
431
432 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
433 to OPTIONS.
434
435 If the data are a string pointer, returns the number of string characters
436 printed.
437
438 This is a preferable interface to val_print, above, because it uses
439 GDB's value mechanism. */
440
441 int
442 common_val_print (struct value *val, struct ui_file *stream, int recurse,
443 const struct value_print_options *options,
444 const struct language_defn *language)
445 {
446 if (!value_check_printable (val, stream, options))
447 return 0;
448
449 if (language->la_language == language_ada)
450 /* The value might have a dynamic type, which would cause trouble
451 below when trying to extract the value contents (since the value
452 size is determined from the type size which is unknown). So
453 get a fixed representation of our value. */
454 val = ada_to_fixed_value (val);
455
456 return val_print (value_type (val), value_contents_for_printing (val),
457 value_embedded_offset (val), value_address (val),
458 stream, recurse,
459 val, options, language);
460 }
461
462 /* Print on stream STREAM the value VAL according to OPTIONS. The value
463 is printed using the current_language syntax.
464
465 If the object printed is a string pointer, return the number of string
466 bytes printed. */
467
468 int
469 value_print (struct value *val, struct ui_file *stream,
470 const struct value_print_options *options)
471 {
472 if (!value_check_printable (val, stream, options))
473 return 0;
474
475 if (!options->raw)
476 {
477 int r = apply_val_pretty_printer (value_type (val),
478 value_contents_for_printing (val),
479 value_embedded_offset (val),
480 value_address (val),
481 stream, 0,
482 val, options, current_language);
483
484 if (r)
485 return r;
486 }
487
488 return LA_VALUE_PRINT (val, stream, options);
489 }
490
491 /* Called by various <lang>_val_print routines to print
492 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
493 value. STREAM is where to print the value. */
494
495 void
496 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
497 struct ui_file *stream)
498 {
499 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
500
501 if (TYPE_LENGTH (type) > sizeof (LONGEST))
502 {
503 LONGEST val;
504
505 if (TYPE_UNSIGNED (type)
506 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
507 byte_order, &val))
508 {
509 print_longest (stream, 'u', 0, val);
510 }
511 else
512 {
513 /* Signed, or we couldn't turn an unsigned value into a
514 LONGEST. For signed values, one could assume two's
515 complement (a reasonable assumption, I think) and do
516 better than this. */
517 print_hex_chars (stream, (unsigned char *) valaddr,
518 TYPE_LENGTH (type), byte_order);
519 }
520 }
521 else
522 {
523 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
524 unpack_long (type, valaddr));
525 }
526 }
527
528 void
529 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
530 struct ui_file *stream)
531 {
532 ULONGEST val = unpack_long (type, valaddr);
533 int bitpos, nfields = TYPE_NFIELDS (type);
534
535 fputs_filtered ("[ ", stream);
536 for (bitpos = 0; bitpos < nfields; bitpos++)
537 {
538 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
539 && (val & ((ULONGEST)1 << bitpos)))
540 {
541 if (TYPE_FIELD_NAME (type, bitpos))
542 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
543 else
544 fprintf_filtered (stream, "#%d ", bitpos);
545 }
546 }
547 fputs_filtered ("]", stream);
548 }
549
550 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
551 according to OPTIONS and SIZE on STREAM. Format i is not supported
552 at this level.
553
554 This is how the elements of an array or structure are printed
555 with a format. */
556
557 void
558 val_print_scalar_formatted (struct type *type,
559 const gdb_byte *valaddr, int embedded_offset,
560 const struct value *val,
561 const struct value_print_options *options,
562 int size,
563 struct ui_file *stream)
564 {
565 gdb_assert (val != NULL);
566 gdb_assert (valaddr == value_contents_for_printing_const (val));
567
568 /* If we get here with a string format, try again without it. Go
569 all the way back to the language printers, which may call us
570 again. */
571 if (options->format == 's')
572 {
573 struct value_print_options opts = *options;
574 opts.format = 0;
575 opts.deref_ref = 0;
576 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
577 current_language);
578 return;
579 }
580
581 /* A scalar object that does not have all bits available can't be
582 printed, because all bits contribute to its representation. */
583 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
584 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
585 val_print_optimized_out (stream);
586 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
587 val_print_unavailable (stream);
588 else
589 print_scalar_formatted (valaddr + embedded_offset, type,
590 options, size, stream);
591 }
592
593 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
594 The raison d'etre of this function is to consolidate printing of
595 LONG_LONG's into this one function. The format chars b,h,w,g are
596 from print_scalar_formatted(). Numbers are printed using C
597 format.
598
599 USE_C_FORMAT means to use C format in all cases. Without it,
600 'o' and 'x' format do not include the standard C radix prefix
601 (leading 0 or 0x).
602
603 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
604 and was intended to request formating according to the current
605 language and would be used for most integers that GDB prints. The
606 exceptional cases were things like protocols where the format of
607 the integer is a protocol thing, not a user-visible thing). The
608 parameter remains to preserve the information of what things might
609 be printed with language-specific format, should we ever resurrect
610 that capability. */
611
612 void
613 print_longest (struct ui_file *stream, int format, int use_c_format,
614 LONGEST val_long)
615 {
616 const char *val;
617
618 switch (format)
619 {
620 case 'd':
621 val = int_string (val_long, 10, 1, 0, 1); break;
622 case 'u':
623 val = int_string (val_long, 10, 0, 0, 1); break;
624 case 'x':
625 val = int_string (val_long, 16, 0, 0, use_c_format); break;
626 case 'b':
627 val = int_string (val_long, 16, 0, 2, 1); break;
628 case 'h':
629 val = int_string (val_long, 16, 0, 4, 1); break;
630 case 'w':
631 val = int_string (val_long, 16, 0, 8, 1); break;
632 case 'g':
633 val = int_string (val_long, 16, 0, 16, 1); break;
634 break;
635 case 'o':
636 val = int_string (val_long, 8, 0, 0, use_c_format); break;
637 default:
638 internal_error (__FILE__, __LINE__,
639 _("failed internal consistency check"));
640 }
641 fputs_filtered (val, stream);
642 }
643
644 /* This used to be a macro, but I don't think it is called often enough
645 to merit such treatment. */
646 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
647 arguments to a function, number in a value history, register number, etc.)
648 where the value must not be larger than can fit in an int. */
649
650 int
651 longest_to_int (LONGEST arg)
652 {
653 /* Let the compiler do the work. */
654 int rtnval = (int) arg;
655
656 /* Check for overflows or underflows. */
657 if (sizeof (LONGEST) > sizeof (int))
658 {
659 if (rtnval != arg)
660 {
661 error (_("Value out of range."));
662 }
663 }
664 return (rtnval);
665 }
666
667 /* Print a floating point value of type TYPE (not always a
668 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
669
670 void
671 print_floating (const gdb_byte *valaddr, struct type *type,
672 struct ui_file *stream)
673 {
674 DOUBLEST doub;
675 int inv;
676 const struct floatformat *fmt = NULL;
677 unsigned len = TYPE_LENGTH (type);
678 enum float_kind kind;
679
680 /* If it is a floating-point, check for obvious problems. */
681 if (TYPE_CODE (type) == TYPE_CODE_FLT)
682 fmt = floatformat_from_type (type);
683 if (fmt != NULL)
684 {
685 kind = floatformat_classify (fmt, valaddr);
686 if (kind == float_nan)
687 {
688 if (floatformat_is_negative (fmt, valaddr))
689 fprintf_filtered (stream, "-");
690 fprintf_filtered (stream, "nan(");
691 fputs_filtered ("0x", stream);
692 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
693 fprintf_filtered (stream, ")");
694 return;
695 }
696 else if (kind == float_infinite)
697 {
698 if (floatformat_is_negative (fmt, valaddr))
699 fputs_filtered ("-", stream);
700 fputs_filtered ("inf", stream);
701 return;
702 }
703 }
704
705 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
706 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
707 needs to be used as that takes care of any necessary type
708 conversions. Such conversions are of course direct to DOUBLEST
709 and disregard any possible target floating point limitations.
710 For instance, a u64 would be converted and displayed exactly on a
711 host with 80 bit DOUBLEST but with loss of information on a host
712 with 64 bit DOUBLEST. */
713
714 doub = unpack_double (type, valaddr, &inv);
715 if (inv)
716 {
717 fprintf_filtered (stream, "<invalid float value>");
718 return;
719 }
720
721 /* FIXME: kettenis/2001-01-20: The following code makes too much
722 assumptions about the host and target floating point format. */
723
724 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
725 not necessarily be a TYPE_CODE_FLT, the below ignores that and
726 instead uses the type's length to determine the precision of the
727 floating-point value being printed. */
728
729 if (len < sizeof (double))
730 fprintf_filtered (stream, "%.9g", (double) doub);
731 else if (len == sizeof (double))
732 fprintf_filtered (stream, "%.17g", (double) doub);
733 else
734 #ifdef PRINTF_HAS_LONG_DOUBLE
735 fprintf_filtered (stream, "%.35Lg", doub);
736 #else
737 /* This at least wins with values that are representable as
738 doubles. */
739 fprintf_filtered (stream, "%.17g", (double) doub);
740 #endif
741 }
742
743 void
744 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
745 struct ui_file *stream)
746 {
747 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
748 char decstr[MAX_DECIMAL_STRING];
749 unsigned len = TYPE_LENGTH (type);
750
751 decimal_to_string (valaddr, len, byte_order, decstr);
752 fputs_filtered (decstr, stream);
753 return;
754 }
755
756 void
757 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
758 unsigned len, enum bfd_endian byte_order)
759 {
760
761 #define BITS_IN_BYTES 8
762
763 const gdb_byte *p;
764 unsigned int i;
765 int b;
766
767 /* Declared "int" so it will be signed.
768 This ensures that right shift will shift in zeros. */
769
770 const int mask = 0x080;
771
772 /* FIXME: We should be not printing leading zeroes in most cases. */
773
774 if (byte_order == BFD_ENDIAN_BIG)
775 {
776 for (p = valaddr;
777 p < valaddr + len;
778 p++)
779 {
780 /* Every byte has 8 binary characters; peel off
781 and print from the MSB end. */
782
783 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
784 {
785 if (*p & (mask >> i))
786 b = 1;
787 else
788 b = 0;
789
790 fprintf_filtered (stream, "%1d", b);
791 }
792 }
793 }
794 else
795 {
796 for (p = valaddr + len - 1;
797 p >= valaddr;
798 p--)
799 {
800 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
801 {
802 if (*p & (mask >> i))
803 b = 1;
804 else
805 b = 0;
806
807 fprintf_filtered (stream, "%1d", b);
808 }
809 }
810 }
811 }
812
813 /* VALADDR points to an integer of LEN bytes.
814 Print it in octal on stream or format it in buf. */
815
816 void
817 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
818 unsigned len, enum bfd_endian byte_order)
819 {
820 const gdb_byte *p;
821 unsigned char octa1, octa2, octa3, carry;
822 int cycle;
823
824 /* FIXME: We should be not printing leading zeroes in most cases. */
825
826
827 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
828 * the extra bits, which cycle every three bytes:
829 *
830 * Byte side: 0 1 2 3
831 * | | | |
832 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
833 *
834 * Octal side: 0 1 carry 3 4 carry ...
835 *
836 * Cycle number: 0 1 2
837 *
838 * But of course we are printing from the high side, so we have to
839 * figure out where in the cycle we are so that we end up with no
840 * left over bits at the end.
841 */
842 #define BITS_IN_OCTAL 3
843 #define HIGH_ZERO 0340
844 #define LOW_ZERO 0016
845 #define CARRY_ZERO 0003
846 #define HIGH_ONE 0200
847 #define MID_ONE 0160
848 #define LOW_ONE 0016
849 #define CARRY_ONE 0001
850 #define HIGH_TWO 0300
851 #define MID_TWO 0070
852 #define LOW_TWO 0007
853
854 /* For 32 we start in cycle 2, with two bits and one bit carry;
855 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
856
857 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
858 carry = 0;
859
860 fputs_filtered ("0", stream);
861 if (byte_order == BFD_ENDIAN_BIG)
862 {
863 for (p = valaddr;
864 p < valaddr + len;
865 p++)
866 {
867 switch (cycle)
868 {
869 case 0:
870 /* No carry in, carry out two bits. */
871
872 octa1 = (HIGH_ZERO & *p) >> 5;
873 octa2 = (LOW_ZERO & *p) >> 2;
874 carry = (CARRY_ZERO & *p);
875 fprintf_filtered (stream, "%o", octa1);
876 fprintf_filtered (stream, "%o", octa2);
877 break;
878
879 case 1:
880 /* Carry in two bits, carry out one bit. */
881
882 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
883 octa2 = (MID_ONE & *p) >> 4;
884 octa3 = (LOW_ONE & *p) >> 1;
885 carry = (CARRY_ONE & *p);
886 fprintf_filtered (stream, "%o", octa1);
887 fprintf_filtered (stream, "%o", octa2);
888 fprintf_filtered (stream, "%o", octa3);
889 break;
890
891 case 2:
892 /* Carry in one bit, no carry out. */
893
894 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
895 octa2 = (MID_TWO & *p) >> 3;
896 octa3 = (LOW_TWO & *p);
897 carry = 0;
898 fprintf_filtered (stream, "%o", octa1);
899 fprintf_filtered (stream, "%o", octa2);
900 fprintf_filtered (stream, "%o", octa3);
901 break;
902
903 default:
904 error (_("Internal error in octal conversion;"));
905 }
906
907 cycle++;
908 cycle = cycle % BITS_IN_OCTAL;
909 }
910 }
911 else
912 {
913 for (p = valaddr + len - 1;
914 p >= valaddr;
915 p--)
916 {
917 switch (cycle)
918 {
919 case 0:
920 /* Carry out, no carry in */
921
922 octa1 = (HIGH_ZERO & *p) >> 5;
923 octa2 = (LOW_ZERO & *p) >> 2;
924 carry = (CARRY_ZERO & *p);
925 fprintf_filtered (stream, "%o", octa1);
926 fprintf_filtered (stream, "%o", octa2);
927 break;
928
929 case 1:
930 /* Carry in, carry out */
931
932 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
933 octa2 = (MID_ONE & *p) >> 4;
934 octa3 = (LOW_ONE & *p) >> 1;
935 carry = (CARRY_ONE & *p);
936 fprintf_filtered (stream, "%o", octa1);
937 fprintf_filtered (stream, "%o", octa2);
938 fprintf_filtered (stream, "%o", octa3);
939 break;
940
941 case 2:
942 /* Carry in, no carry out */
943
944 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
945 octa2 = (MID_TWO & *p) >> 3;
946 octa3 = (LOW_TWO & *p);
947 carry = 0;
948 fprintf_filtered (stream, "%o", octa1);
949 fprintf_filtered (stream, "%o", octa2);
950 fprintf_filtered (stream, "%o", octa3);
951 break;
952
953 default:
954 error (_("Internal error in octal conversion;"));
955 }
956
957 cycle++;
958 cycle = cycle % BITS_IN_OCTAL;
959 }
960 }
961
962 }
963
964 /* VALADDR points to an integer of LEN bytes.
965 Print it in decimal on stream or format it in buf. */
966
967 void
968 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
969 unsigned len, enum bfd_endian byte_order)
970 {
971 #define TEN 10
972 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
973 #define CARRY_LEFT( x ) ((x) % TEN)
974 #define SHIFT( x ) ((x) << 4)
975 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
976 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
977
978 const gdb_byte *p;
979 unsigned char *digits;
980 int carry;
981 int decimal_len;
982 int i, j, decimal_digits;
983 int dummy;
984 int flip;
985
986 /* Base-ten number is less than twice as many digits
987 as the base 16 number, which is 2 digits per byte. */
988
989 decimal_len = len * 2 * 2;
990 digits = xmalloc (decimal_len);
991
992 for (i = 0; i < decimal_len; i++)
993 {
994 digits[i] = 0;
995 }
996
997 /* Ok, we have an unknown number of bytes of data to be printed in
998 * decimal.
999 *
1000 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1001 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1002 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1003 *
1004 * The trick is that "digits" holds a base-10 number, but sometimes
1005 * the individual digits are > 10.
1006 *
1007 * Outer loop is per nibble (hex digit) of input, from MSD end to
1008 * LSD end.
1009 */
1010 decimal_digits = 0; /* Number of decimal digits so far */
1011 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1012 flip = 0;
1013 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1014 {
1015 /*
1016 * Multiply current base-ten number by 16 in place.
1017 * Each digit was between 0 and 9, now is between
1018 * 0 and 144.
1019 */
1020 for (j = 0; j < decimal_digits; j++)
1021 {
1022 digits[j] = SHIFT (digits[j]);
1023 }
1024
1025 /* Take the next nibble off the input and add it to what
1026 * we've got in the LSB position. Bottom 'digit' is now
1027 * between 0 and 159.
1028 *
1029 * "flip" is used to run this loop twice for each byte.
1030 */
1031 if (flip == 0)
1032 {
1033 /* Take top nibble. */
1034
1035 digits[0] += HIGH_NIBBLE (*p);
1036 flip = 1;
1037 }
1038 else
1039 {
1040 /* Take low nibble and bump our pointer "p". */
1041
1042 digits[0] += LOW_NIBBLE (*p);
1043 if (byte_order == BFD_ENDIAN_BIG)
1044 p++;
1045 else
1046 p--;
1047 flip = 0;
1048 }
1049
1050 /* Re-decimalize. We have to do this often enough
1051 * that we don't overflow, but once per nibble is
1052 * overkill. Easier this way, though. Note that the
1053 * carry is often larger than 10 (e.g. max initial
1054 * carry out of lowest nibble is 15, could bubble all
1055 * the way up greater than 10). So we have to do
1056 * the carrying beyond the last current digit.
1057 */
1058 carry = 0;
1059 for (j = 0; j < decimal_len - 1; j++)
1060 {
1061 digits[j] += carry;
1062
1063 /* "/" won't handle an unsigned char with
1064 * a value that if signed would be negative.
1065 * So extend to longword int via "dummy".
1066 */
1067 dummy = digits[j];
1068 carry = CARRY_OUT (dummy);
1069 digits[j] = CARRY_LEFT (dummy);
1070
1071 if (j >= decimal_digits && carry == 0)
1072 {
1073 /*
1074 * All higher digits are 0 and we
1075 * no longer have a carry.
1076 *
1077 * Note: "j" is 0-based, "decimal_digits" is
1078 * 1-based.
1079 */
1080 decimal_digits = j + 1;
1081 break;
1082 }
1083 }
1084 }
1085
1086 /* Ok, now "digits" is the decimal representation, with
1087 the "decimal_digits" actual digits. Print! */
1088
1089 for (i = decimal_digits - 1; i >= 0; i--)
1090 {
1091 fprintf_filtered (stream, "%1d", digits[i]);
1092 }
1093 xfree (digits);
1094 }
1095
1096 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1097
1098 void
1099 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1100 unsigned len, enum bfd_endian byte_order)
1101 {
1102 const gdb_byte *p;
1103
1104 /* FIXME: We should be not printing leading zeroes in most cases. */
1105
1106 fputs_filtered ("0x", stream);
1107 if (byte_order == BFD_ENDIAN_BIG)
1108 {
1109 for (p = valaddr;
1110 p < valaddr + len;
1111 p++)
1112 {
1113 fprintf_filtered (stream, "%02x", *p);
1114 }
1115 }
1116 else
1117 {
1118 for (p = valaddr + len - 1;
1119 p >= valaddr;
1120 p--)
1121 {
1122 fprintf_filtered (stream, "%02x", *p);
1123 }
1124 }
1125 }
1126
1127 /* VALADDR points to a char integer of LEN bytes.
1128 Print it out in appropriate language form on stream.
1129 Omit any leading zero chars. */
1130
1131 void
1132 print_char_chars (struct ui_file *stream, struct type *type,
1133 const gdb_byte *valaddr,
1134 unsigned len, enum bfd_endian byte_order)
1135 {
1136 const gdb_byte *p;
1137
1138 if (byte_order == BFD_ENDIAN_BIG)
1139 {
1140 p = valaddr;
1141 while (p < valaddr + len - 1 && *p == 0)
1142 ++p;
1143
1144 while (p < valaddr + len)
1145 {
1146 LA_EMIT_CHAR (*p, type, stream, '\'');
1147 ++p;
1148 }
1149 }
1150 else
1151 {
1152 p = valaddr + len - 1;
1153 while (p > valaddr && *p == 0)
1154 --p;
1155
1156 while (p >= valaddr)
1157 {
1158 LA_EMIT_CHAR (*p, type, stream, '\'');
1159 --p;
1160 }
1161 }
1162 }
1163
1164 /* Print function pointer with inferior address ADDRESS onto stdio
1165 stream STREAM. */
1166
1167 void
1168 print_function_pointer_address (struct gdbarch *gdbarch,
1169 CORE_ADDR address,
1170 struct ui_file *stream,
1171 int addressprint)
1172 {
1173 CORE_ADDR func_addr
1174 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1175 &current_target);
1176
1177 /* If the function pointer is represented by a description, print
1178 the address of the description. */
1179 if (addressprint && func_addr != address)
1180 {
1181 fputs_filtered ("@", stream);
1182 fputs_filtered (paddress (gdbarch, address), stream);
1183 fputs_filtered (": ", stream);
1184 }
1185 print_address_demangle (gdbarch, func_addr, stream, demangle);
1186 }
1187
1188
1189 /* Print on STREAM using the given OPTIONS the index for the element
1190 at INDEX of an array whose index type is INDEX_TYPE. */
1191
1192 void
1193 maybe_print_array_index (struct type *index_type, LONGEST index,
1194 struct ui_file *stream,
1195 const struct value_print_options *options)
1196 {
1197 struct value *index_value;
1198
1199 if (!options->print_array_indexes)
1200 return;
1201
1202 index_value = value_from_longest (index_type, index);
1203
1204 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1205 }
1206
1207 /* Called by various <lang>_val_print routines to print elements of an
1208 array in the form "<elem1>, <elem2>, <elem3>, ...".
1209
1210 (FIXME?) Assumes array element separator is a comma, which is correct
1211 for all languages currently handled.
1212 (FIXME?) Some languages have a notation for repeated array elements,
1213 perhaps we should try to use that notation when appropriate. */
1214
1215 void
1216 val_print_array_elements (struct type *type,
1217 const gdb_byte *valaddr, int embedded_offset,
1218 CORE_ADDR address, struct ui_file *stream,
1219 int recurse,
1220 const struct value *val,
1221 const struct value_print_options *options,
1222 unsigned int i)
1223 {
1224 unsigned int things_printed = 0;
1225 unsigned len;
1226 struct type *elttype, *index_type;
1227 unsigned eltlen;
1228 /* Position of the array element we are examining to see
1229 whether it is repeated. */
1230 unsigned int rep1;
1231 /* Number of repetitions we have detected so far. */
1232 unsigned int reps;
1233 LONGEST low_bound, high_bound;
1234
1235 elttype = TYPE_TARGET_TYPE (type);
1236 eltlen = TYPE_LENGTH (check_typedef (elttype));
1237 index_type = TYPE_INDEX_TYPE (type);
1238
1239 if (get_array_bounds (type, &low_bound, &high_bound))
1240 {
1241 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1242 But we have to be a little extra careful, because some languages
1243 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1244 empty arrays. In that situation, the array length is just zero,
1245 not negative! */
1246 if (low_bound > high_bound)
1247 len = 0;
1248 else
1249 len = high_bound - low_bound + 1;
1250 }
1251 else
1252 {
1253 warning (_("unable to get bounds of array, assuming null array"));
1254 low_bound = 0;
1255 len = 0;
1256 }
1257
1258 annotate_array_section_begin (i, elttype);
1259
1260 for (; i < len && things_printed < options->print_max; i++)
1261 {
1262 if (i != 0)
1263 {
1264 if (options->prettyprint_arrays)
1265 {
1266 fprintf_filtered (stream, ",\n");
1267 print_spaces_filtered (2 + 2 * recurse, stream);
1268 }
1269 else
1270 {
1271 fprintf_filtered (stream, ", ");
1272 }
1273 }
1274 wrap_here (n_spaces (2 + 2 * recurse));
1275 maybe_print_array_index (index_type, i + low_bound,
1276 stream, options);
1277
1278 rep1 = i + 1;
1279 reps = 1;
1280 /* Only check for reps if repeat_count_threshold is not set to
1281 UINT_MAX (unlimited). */
1282 if (options->repeat_count_threshold < UINT_MAX)
1283 {
1284 while (rep1 < len
1285 && value_available_contents_eq (val,
1286 embedded_offset + i * eltlen,
1287 val,
1288 (embedded_offset
1289 + rep1 * eltlen),
1290 eltlen))
1291 {
1292 ++reps;
1293 ++rep1;
1294 }
1295 }
1296
1297 if (reps > options->repeat_count_threshold)
1298 {
1299 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1300 address, stream, recurse + 1, val, options,
1301 current_language);
1302 annotate_elt_rep (reps);
1303 fprintf_filtered (stream, " <repeats %u times>", reps);
1304 annotate_elt_rep_end ();
1305
1306 i = rep1 - 1;
1307 things_printed += options->repeat_count_threshold;
1308 }
1309 else
1310 {
1311 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1312 address,
1313 stream, recurse + 1, val, options, current_language);
1314 annotate_elt ();
1315 things_printed++;
1316 }
1317 }
1318 annotate_array_section_end ();
1319 if (i < len)
1320 {
1321 fprintf_filtered (stream, "...");
1322 }
1323 }
1324
1325 /* Read LEN bytes of target memory at address MEMADDR, placing the
1326 results in GDB's memory at MYADDR. Returns a count of the bytes
1327 actually read, and optionally an errno value in the location
1328 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1329
1330 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1331 function be eliminated. */
1332
1333 static int
1334 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1335 int len, int *errnoptr)
1336 {
1337 int nread; /* Number of bytes actually read. */
1338 int errcode; /* Error from last read. */
1339
1340 /* First try a complete read. */
1341 errcode = target_read_memory (memaddr, myaddr, len);
1342 if (errcode == 0)
1343 {
1344 /* Got it all. */
1345 nread = len;
1346 }
1347 else
1348 {
1349 /* Loop, reading one byte at a time until we get as much as we can. */
1350 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1351 {
1352 errcode = target_read_memory (memaddr++, myaddr++, 1);
1353 }
1354 /* If an error, the last read was unsuccessful, so adjust count. */
1355 if (errcode != 0)
1356 {
1357 nread--;
1358 }
1359 }
1360 if (errnoptr != NULL)
1361 {
1362 *errnoptr = errcode;
1363 }
1364 return (nread);
1365 }
1366
1367 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1368 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1369 allocated buffer containing the string, which the caller is responsible to
1370 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1371 success, or errno on failure.
1372
1373 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1374 the middle or end of the string). If LEN is -1, stops at the first
1375 null character (not necessarily the first null byte) up to a maximum
1376 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1377 characters as possible from the string.
1378
1379 Unless an exception is thrown, BUFFER will always be allocated, even on
1380 failure. In this case, some characters might have been read before the
1381 failure happened. Check BYTES_READ to recognize this situation.
1382
1383 Note: There was a FIXME asking to make this code use target_read_string,
1384 but this function is more general (can read past null characters, up to
1385 given LEN). Besides, it is used much more often than target_read_string
1386 so it is more tested. Perhaps callers of target_read_string should use
1387 this function instead? */
1388
1389 int
1390 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1391 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1392 {
1393 int found_nul; /* Non-zero if we found the nul char. */
1394 int errcode; /* Errno returned from bad reads. */
1395 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1396 unsigned int chunksize; /* Size of each fetch, in chars. */
1397 gdb_byte *bufptr; /* Pointer to next available byte in
1398 buffer. */
1399 gdb_byte *limit; /* First location past end of fetch buffer. */
1400 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1401
1402 /* Decide how large of chunks to try to read in one operation. This
1403 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1404 so we might as well read them all in one operation. If LEN is -1, we
1405 are looking for a NUL terminator to end the fetching, so we might as
1406 well read in blocks that are large enough to be efficient, but not so
1407 large as to be slow if fetchlimit happens to be large. So we choose the
1408 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1409 200 is way too big for remote debugging over a serial line. */
1410
1411 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1412
1413 /* Loop until we either have all the characters, or we encounter
1414 some error, such as bumping into the end of the address space. */
1415
1416 found_nul = 0;
1417 *buffer = NULL;
1418
1419 old_chain = make_cleanup (free_current_contents, buffer);
1420
1421 if (len > 0)
1422 {
1423 *buffer = (gdb_byte *) xmalloc (len * width);
1424 bufptr = *buffer;
1425
1426 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1427 / width;
1428 addr += nfetch * width;
1429 bufptr += nfetch * width;
1430 }
1431 else if (len == -1)
1432 {
1433 unsigned long bufsize = 0;
1434
1435 do
1436 {
1437 QUIT;
1438 nfetch = min (chunksize, fetchlimit - bufsize);
1439
1440 if (*buffer == NULL)
1441 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1442 else
1443 *buffer = (gdb_byte *) xrealloc (*buffer,
1444 (nfetch + bufsize) * width);
1445
1446 bufptr = *buffer + bufsize * width;
1447 bufsize += nfetch;
1448
1449 /* Read as much as we can. */
1450 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1451 / width;
1452
1453 /* Scan this chunk for the null character that terminates the string
1454 to print. If found, we don't need to fetch any more. Note
1455 that bufptr is explicitly left pointing at the next character
1456 after the null character, or at the next character after the end
1457 of the buffer. */
1458
1459 limit = bufptr + nfetch * width;
1460 while (bufptr < limit)
1461 {
1462 unsigned long c;
1463
1464 c = extract_unsigned_integer (bufptr, width, byte_order);
1465 addr += width;
1466 bufptr += width;
1467 if (c == 0)
1468 {
1469 /* We don't care about any error which happened after
1470 the NUL terminator. */
1471 errcode = 0;
1472 found_nul = 1;
1473 break;
1474 }
1475 }
1476 }
1477 while (errcode == 0 /* no error */
1478 && bufptr - *buffer < fetchlimit * width /* no overrun */
1479 && !found_nul); /* haven't found NUL yet */
1480 }
1481 else
1482 { /* Length of string is really 0! */
1483 /* We always allocate *buffer. */
1484 *buffer = bufptr = xmalloc (1);
1485 errcode = 0;
1486 }
1487
1488 /* bufptr and addr now point immediately beyond the last byte which we
1489 consider part of the string (including a '\0' which ends the string). */
1490 *bytes_read = bufptr - *buffer;
1491
1492 QUIT;
1493
1494 discard_cleanups (old_chain);
1495
1496 return errcode;
1497 }
1498
1499 /* Return true if print_wchar can display W without resorting to a
1500 numeric escape, false otherwise. */
1501
1502 static int
1503 wchar_printable (gdb_wchar_t w)
1504 {
1505 return (gdb_iswprint (w)
1506 || w == LCST ('\a') || w == LCST ('\b')
1507 || w == LCST ('\f') || w == LCST ('\n')
1508 || w == LCST ('\r') || w == LCST ('\t')
1509 || w == LCST ('\v'));
1510 }
1511
1512 /* A helper function that converts the contents of STRING to wide
1513 characters and then appends them to OUTPUT. */
1514
1515 static void
1516 append_string_as_wide (const char *string,
1517 struct obstack *output)
1518 {
1519 for (; *string; ++string)
1520 {
1521 gdb_wchar_t w = gdb_btowc (*string);
1522 obstack_grow (output, &w, sizeof (gdb_wchar_t));
1523 }
1524 }
1525
1526 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
1527 original (target) bytes representing the character, ORIG_LEN is the
1528 number of valid bytes. WIDTH is the number of bytes in a base
1529 characters of the type. OUTPUT is an obstack to which wide
1530 characters are emitted. QUOTER is a (narrow) character indicating
1531 the style of quotes surrounding the character to be printed.
1532 NEED_ESCAPE is an in/out flag which is used to track numeric
1533 escapes across calls. */
1534
1535 static void
1536 print_wchar (gdb_wint_t w, const gdb_byte *orig,
1537 int orig_len, int width,
1538 enum bfd_endian byte_order,
1539 struct obstack *output,
1540 int quoter, int *need_escapep)
1541 {
1542 int need_escape = *need_escapep;
1543
1544 *need_escapep = 0;
1545 if (gdb_iswprint (w) && (!need_escape || (!gdb_iswdigit (w)
1546 && w != LCST ('8')
1547 && w != LCST ('9'))))
1548 {
1549 gdb_wchar_t wchar = w;
1550
1551 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
1552 obstack_grow_wstr (output, LCST ("\\"));
1553 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
1554 }
1555 else
1556 {
1557 switch (w)
1558 {
1559 case LCST ('\a'):
1560 obstack_grow_wstr (output, LCST ("\\a"));
1561 break;
1562 case LCST ('\b'):
1563 obstack_grow_wstr (output, LCST ("\\b"));
1564 break;
1565 case LCST ('\f'):
1566 obstack_grow_wstr (output, LCST ("\\f"));
1567 break;
1568 case LCST ('\n'):
1569 obstack_grow_wstr (output, LCST ("\\n"));
1570 break;
1571 case LCST ('\r'):
1572 obstack_grow_wstr (output, LCST ("\\r"));
1573 break;
1574 case LCST ('\t'):
1575 obstack_grow_wstr (output, LCST ("\\t"));
1576 break;
1577 case LCST ('\v'):
1578 obstack_grow_wstr (output, LCST ("\\v"));
1579 break;
1580 default:
1581 {
1582 int i;
1583
1584 for (i = 0; i + width <= orig_len; i += width)
1585 {
1586 char octal[30];
1587 ULONGEST value;
1588
1589 value = extract_unsigned_integer (&orig[i], width,
1590 byte_order);
1591 /* If the value fits in 3 octal digits, print it that
1592 way. Otherwise, print it as a hex escape. */
1593 if (value <= 0777)
1594 sprintf (octal, "\\%.3o", (int) (value & 0777));
1595 else
1596 sprintf (octal, "\\x%lx", (long) value);
1597 append_string_as_wide (octal, output);
1598 }
1599 /* If we somehow have extra bytes, print them now. */
1600 while (i < orig_len)
1601 {
1602 char octal[5];
1603
1604 sprintf (octal, "\\%.3o", orig[i] & 0xff);
1605 append_string_as_wide (octal, output);
1606 ++i;
1607 }
1608
1609 *need_escapep = 1;
1610 }
1611 break;
1612 }
1613 }
1614 }
1615
1616 /* Print the character C on STREAM as part of the contents of a
1617 literal string whose delimiter is QUOTER. ENCODING names the
1618 encoding of C. */
1619
1620 void
1621 generic_emit_char (int c, struct type *type, struct ui_file *stream,
1622 int quoter, const char *encoding)
1623 {
1624 enum bfd_endian byte_order
1625 = gdbarch_byte_order (get_type_arch (type));
1626 struct obstack wchar_buf, output;
1627 struct cleanup *cleanups;
1628 gdb_byte *buf;
1629 struct wchar_iterator *iter;
1630 int need_escape = 0;
1631
1632 buf = alloca (TYPE_LENGTH (type));
1633 pack_long (buf, type, c);
1634
1635 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
1636 encoding, TYPE_LENGTH (type));
1637 cleanups = make_cleanup_wchar_iterator (iter);
1638
1639 /* This holds the printable form of the wchar_t data. */
1640 obstack_init (&wchar_buf);
1641 make_cleanup_obstack_free (&wchar_buf);
1642
1643 while (1)
1644 {
1645 int num_chars;
1646 gdb_wchar_t *chars;
1647 const gdb_byte *buf;
1648 size_t buflen;
1649 int print_escape = 1;
1650 enum wchar_iterate_result result;
1651
1652 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
1653 if (num_chars < 0)
1654 break;
1655 if (num_chars > 0)
1656 {
1657 /* If all characters are printable, print them. Otherwise,
1658 we're going to have to print an escape sequence. We
1659 check all characters because we want to print the target
1660 bytes in the escape sequence, and we don't know character
1661 boundaries there. */
1662 int i;
1663
1664 print_escape = 0;
1665 for (i = 0; i < num_chars; ++i)
1666 if (!wchar_printable (chars[i]))
1667 {
1668 print_escape = 1;
1669 break;
1670 }
1671
1672 if (!print_escape)
1673 {
1674 for (i = 0; i < num_chars; ++i)
1675 print_wchar (chars[i], buf, buflen,
1676 TYPE_LENGTH (type), byte_order,
1677 &wchar_buf, quoter, &need_escape);
1678 }
1679 }
1680
1681 /* This handles the NUM_CHARS == 0 case as well. */
1682 if (print_escape)
1683 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
1684 byte_order, &wchar_buf, quoter, &need_escape);
1685 }
1686
1687 /* The output in the host encoding. */
1688 obstack_init (&output);
1689 make_cleanup_obstack_free (&output);
1690
1691 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
1692 obstack_base (&wchar_buf),
1693 obstack_object_size (&wchar_buf),
1694 1, &output, translit_char);
1695 obstack_1grow (&output, '\0');
1696
1697 fputs_filtered (obstack_base (&output), stream);
1698
1699 do_cleanups (cleanups);
1700 }
1701
1702 /* Print the character string STRING, printing at most LENGTH
1703 characters. LENGTH is -1 if the string is nul terminated. TYPE is
1704 the type of each character. OPTIONS holds the printing options;
1705 printing stops early if the number hits print_max; repeat counts
1706 are printed as appropriate. Print ellipses at the end if we had to
1707 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
1708 QUOTE_CHAR is the character to print at each end of the string. If
1709 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
1710 omitted. */
1711
1712 void
1713 generic_printstr (struct ui_file *stream, struct type *type,
1714 const gdb_byte *string, unsigned int length,
1715 const char *encoding, int force_ellipses,
1716 int quote_char, int c_style_terminator,
1717 const struct value_print_options *options)
1718 {
1719 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1720 unsigned int i;
1721 unsigned int things_printed = 0;
1722 int in_quotes = 0;
1723 int need_comma = 0;
1724 int width = TYPE_LENGTH (type);
1725 struct obstack wchar_buf, output;
1726 struct cleanup *cleanup;
1727 struct wchar_iterator *iter;
1728 int finished = 0;
1729 int need_escape = 0;
1730 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
1731
1732 if (length == -1)
1733 {
1734 unsigned long current_char = 1;
1735
1736 for (i = 0; current_char; ++i)
1737 {
1738 QUIT;
1739 current_char = extract_unsigned_integer (string + i * width,
1740 width, byte_order);
1741 }
1742 length = i;
1743 }
1744
1745 /* If the string was not truncated due to `set print elements', and
1746 the last byte of it is a null, we don't print that, in
1747 traditional C style. */
1748 if (c_style_terminator
1749 && !force_ellipses
1750 && length > 0
1751 && (extract_unsigned_integer (string + (length - 1) * width,
1752 width, byte_order) == 0))
1753 length--;
1754
1755 if (length == 0)
1756 {
1757 fputs_filtered ("\"\"", stream);
1758 return;
1759 }
1760
1761 /* Arrange to iterate over the characters, in wchar_t form. */
1762 iter = make_wchar_iterator (string, length * width, encoding, width);
1763 cleanup = make_cleanup_wchar_iterator (iter);
1764
1765 /* WCHAR_BUF is the obstack we use to represent the string in
1766 wchar_t form. */
1767 obstack_init (&wchar_buf);
1768 make_cleanup_obstack_free (&wchar_buf);
1769
1770 while (!finished && things_printed < options->print_max)
1771 {
1772 int num_chars;
1773 enum wchar_iterate_result result;
1774 gdb_wchar_t *chars;
1775 const gdb_byte *buf;
1776 size_t buflen;
1777
1778 QUIT;
1779
1780 if (need_comma)
1781 {
1782 obstack_grow_wstr (&wchar_buf, LCST (", "));
1783 need_comma = 0;
1784 }
1785
1786 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
1787 /* We only look at repetitions when we were able to convert a
1788 single character in isolation. This makes the code simpler
1789 and probably does the sensible thing in the majority of
1790 cases. */
1791 while (num_chars == 1 && things_printed < options->print_max)
1792 {
1793 /* Count the number of repetitions. */
1794 unsigned int reps = 0;
1795 gdb_wchar_t current_char = chars[0];
1796 const gdb_byte *orig_buf = buf;
1797 int orig_len = buflen;
1798
1799 if (need_comma)
1800 {
1801 obstack_grow_wstr (&wchar_buf, LCST (", "));
1802 need_comma = 0;
1803 }
1804
1805 while (num_chars == 1 && current_char == chars[0])
1806 {
1807 num_chars = wchar_iterate (iter, &result, &chars,
1808 &buf, &buflen);
1809 ++reps;
1810 }
1811
1812 /* Emit CURRENT_CHAR according to the repetition count and
1813 options. */
1814 if (reps > options->repeat_count_threshold)
1815 {
1816 if (in_quotes)
1817 {
1818 if (options->inspect_it)
1819 obstack_grow_wstr (&wchar_buf, LCST ("\\"));
1820 obstack_grow (&wchar_buf, &wide_quote_char,
1821 sizeof (gdb_wchar_t));
1822 obstack_grow_wstr (&wchar_buf, LCST (", "));
1823 in_quotes = 0;
1824 }
1825 obstack_grow_wstr (&wchar_buf, LCST ("'"));
1826 need_escape = 0;
1827 print_wchar (current_char, orig_buf, orig_len, width,
1828 byte_order, &wchar_buf, '\'', &need_escape);
1829 obstack_grow_wstr (&wchar_buf, LCST ("'"));
1830 {
1831 /* Painful gyrations. */
1832 int j;
1833 char *s = xstrprintf (_(" <repeats %u times>"), reps);
1834
1835 for (j = 0; s[j]; ++j)
1836 {
1837 gdb_wchar_t w = gdb_btowc (s[j]);
1838 obstack_grow (&wchar_buf, &w, sizeof (gdb_wchar_t));
1839 }
1840 xfree (s);
1841 }
1842 things_printed += options->repeat_count_threshold;
1843 need_comma = 1;
1844 }
1845 else
1846 {
1847 /* Saw the character one or more times, but fewer than
1848 the repetition threshold. */
1849 if (!in_quotes)
1850 {
1851 if (options->inspect_it)
1852 obstack_grow_wstr (&wchar_buf, LCST ("\\"));
1853 obstack_grow (&wchar_buf, &wide_quote_char,
1854 sizeof (gdb_wchar_t));
1855 in_quotes = 1;
1856 need_escape = 0;
1857 }
1858
1859 while (reps-- > 0)
1860 {
1861 print_wchar (current_char, orig_buf,
1862 orig_len, width,
1863 byte_order, &wchar_buf,
1864 quote_char, &need_escape);
1865 ++things_printed;
1866 }
1867 }
1868 }
1869
1870 /* NUM_CHARS and the other outputs from wchar_iterate are valid
1871 here regardless of which branch was taken above. */
1872 if (num_chars < 0)
1873 {
1874 /* Hit EOF. */
1875 finished = 1;
1876 break;
1877 }
1878
1879 switch (result)
1880 {
1881 case wchar_iterate_invalid:
1882 if (!in_quotes)
1883 {
1884 if (options->inspect_it)
1885 obstack_grow_wstr (&wchar_buf, LCST ("\\"));
1886 obstack_grow (&wchar_buf, &wide_quote_char,
1887 sizeof (gdb_wchar_t));
1888 in_quotes = 1;
1889 }
1890 need_escape = 0;
1891 print_wchar (gdb_WEOF, buf, buflen, width, byte_order,
1892 &wchar_buf, quote_char, &need_escape);
1893 break;
1894
1895 case wchar_iterate_incomplete:
1896 if (in_quotes)
1897 {
1898 if (options->inspect_it)
1899 obstack_grow_wstr (&wchar_buf, LCST ("\\"));
1900 obstack_grow (&wchar_buf, &wide_quote_char,
1901 sizeof (gdb_wchar_t));
1902 obstack_grow_wstr (&wchar_buf, LCST (","));
1903 in_quotes = 0;
1904 }
1905 obstack_grow_wstr (&wchar_buf,
1906 LCST (" <incomplete sequence "));
1907 print_wchar (gdb_WEOF, buf, buflen, width,
1908 byte_order, &wchar_buf,
1909 0, &need_escape);
1910 obstack_grow_wstr (&wchar_buf, LCST (">"));
1911 finished = 1;
1912 break;
1913 }
1914 }
1915
1916 /* Terminate the quotes if necessary. */
1917 if (in_quotes)
1918 {
1919 if (options->inspect_it)
1920 obstack_grow_wstr (&wchar_buf, LCST ("\\"));
1921 obstack_grow (&wchar_buf, &wide_quote_char,
1922 sizeof (gdb_wchar_t));
1923 }
1924
1925 if (force_ellipses || !finished)
1926 obstack_grow_wstr (&wchar_buf, LCST ("..."));
1927
1928 /* OUTPUT is where we collect `char's for printing. */
1929 obstack_init (&output);
1930 make_cleanup_obstack_free (&output);
1931
1932 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
1933 obstack_base (&wchar_buf),
1934 obstack_object_size (&wchar_buf),
1935 1, &output, translit_char);
1936 obstack_1grow (&output, '\0');
1937
1938 fputs_filtered (obstack_base (&output), stream);
1939
1940 do_cleanups (cleanup);
1941 }
1942
1943 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1944 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1945 stops at the first null byte, otherwise printing proceeds (including null
1946 bytes) until either print_max or LEN characters have been printed,
1947 whichever is smaller. ENCODING is the name of the string's
1948 encoding. It can be NULL, in which case the target encoding is
1949 assumed. */
1950
1951 int
1952 val_print_string (struct type *elttype, const char *encoding,
1953 CORE_ADDR addr, int len,
1954 struct ui_file *stream,
1955 const struct value_print_options *options)
1956 {
1957 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1958 int errcode; /* Errno returned from bad reads. */
1959 int found_nul; /* Non-zero if we found the nul char. */
1960 unsigned int fetchlimit; /* Maximum number of chars to print. */
1961 int bytes_read;
1962 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1963 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1964 struct gdbarch *gdbarch = get_type_arch (elttype);
1965 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1966 int width = TYPE_LENGTH (elttype);
1967
1968 /* First we need to figure out the limit on the number of characters we are
1969 going to attempt to fetch and print. This is actually pretty simple. If
1970 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1971 LEN is -1, then the limit is print_max. This is true regardless of
1972 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1973 because finding the null byte (or available memory) is what actually
1974 limits the fetch. */
1975
1976 fetchlimit = (len == -1 ? options->print_max : min (len,
1977 options->print_max));
1978
1979 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1980 &buffer, &bytes_read);
1981 old_chain = make_cleanup (xfree, buffer);
1982
1983 addr += bytes_read;
1984
1985 /* We now have either successfully filled the buffer to fetchlimit,
1986 or terminated early due to an error or finding a null char when
1987 LEN is -1. */
1988
1989 /* Determine found_nul by looking at the last character read. */
1990 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1991 byte_order) == 0;
1992 if (len == -1 && !found_nul)
1993 {
1994 gdb_byte *peekbuf;
1995
1996 /* We didn't find a NUL terminator we were looking for. Attempt
1997 to peek at the next character. If not successful, or it is not
1998 a null byte, then force ellipsis to be printed. */
1999
2000 peekbuf = (gdb_byte *) alloca (width);
2001
2002 if (target_read_memory (addr, peekbuf, width) == 0
2003 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2004 force_ellipsis = 1;
2005 }
2006 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2007 {
2008 /* Getting an error when we have a requested length, or fetching less
2009 than the number of characters actually requested, always make us
2010 print ellipsis. */
2011 force_ellipsis = 1;
2012 }
2013
2014 /* If we get an error before fetching anything, don't print a string.
2015 But if we fetch something and then get an error, print the string
2016 and then the error message. */
2017 if (errcode == 0 || bytes_read > 0)
2018 {
2019 if (options->addressprint)
2020 {
2021 fputs_filtered (" ", stream);
2022 }
2023 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2024 encoding, force_ellipsis, options);
2025 }
2026
2027 if (errcode != 0)
2028 {
2029 if (errcode == EIO)
2030 {
2031 fprintf_filtered (stream, " <Address ");
2032 fputs_filtered (paddress (gdbarch, addr), stream);
2033 fprintf_filtered (stream, " out of bounds>");
2034 }
2035 else
2036 {
2037 fprintf_filtered (stream, " <Error reading address ");
2038 fputs_filtered (paddress (gdbarch, addr), stream);
2039 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
2040 }
2041 }
2042
2043 gdb_flush (stream);
2044 do_cleanups (old_chain);
2045
2046 return (bytes_read / width);
2047 }
2048 \f
2049
2050 /* The 'set input-radix' command writes to this auxiliary variable.
2051 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2052 it is left unchanged. */
2053
2054 static unsigned input_radix_1 = 10;
2055
2056 /* Validate an input or output radix setting, and make sure the user
2057 knows what they really did here. Radix setting is confusing, e.g.
2058 setting the input radix to "10" never changes it! */
2059
2060 static void
2061 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2062 {
2063 set_input_radix_1 (from_tty, input_radix_1);
2064 }
2065
2066 static void
2067 set_input_radix_1 (int from_tty, unsigned radix)
2068 {
2069 /* We don't currently disallow any input radix except 0 or 1, which don't
2070 make any mathematical sense. In theory, we can deal with any input
2071 radix greater than 1, even if we don't have unique digits for every
2072 value from 0 to radix-1, but in practice we lose on large radix values.
2073 We should either fix the lossage or restrict the radix range more.
2074 (FIXME). */
2075
2076 if (radix < 2)
2077 {
2078 input_radix_1 = input_radix;
2079 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2080 radix);
2081 }
2082 input_radix_1 = input_radix = radix;
2083 if (from_tty)
2084 {
2085 printf_filtered (_("Input radix now set to "
2086 "decimal %u, hex %x, octal %o.\n"),
2087 radix, radix, radix);
2088 }
2089 }
2090
2091 /* The 'set output-radix' command writes to this auxiliary variable.
2092 If the requested radix is valid, OUTPUT_RADIX is updated,
2093 otherwise, it is left unchanged. */
2094
2095 static unsigned output_radix_1 = 10;
2096
2097 static void
2098 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2099 {
2100 set_output_radix_1 (from_tty, output_radix_1);
2101 }
2102
2103 static void
2104 set_output_radix_1 (int from_tty, unsigned radix)
2105 {
2106 /* Validate the radix and disallow ones that we aren't prepared to
2107 handle correctly, leaving the radix unchanged. */
2108 switch (radix)
2109 {
2110 case 16:
2111 user_print_options.output_format = 'x'; /* hex */
2112 break;
2113 case 10:
2114 user_print_options.output_format = 0; /* decimal */
2115 break;
2116 case 8:
2117 user_print_options.output_format = 'o'; /* octal */
2118 break;
2119 default:
2120 output_radix_1 = output_radix;
2121 error (_("Unsupported output radix ``decimal %u''; "
2122 "output radix unchanged."),
2123 radix);
2124 }
2125 output_radix_1 = output_radix = radix;
2126 if (from_tty)
2127 {
2128 printf_filtered (_("Output radix now set to "
2129 "decimal %u, hex %x, octal %o.\n"),
2130 radix, radix, radix);
2131 }
2132 }
2133
2134 /* Set both the input and output radix at once. Try to set the output radix
2135 first, since it has the most restrictive range. An radix that is valid as
2136 an output radix is also valid as an input radix.
2137
2138 It may be useful to have an unusual input radix. If the user wishes to
2139 set an input radix that is not valid as an output radix, he needs to use
2140 the 'set input-radix' command. */
2141
2142 static void
2143 set_radix (char *arg, int from_tty)
2144 {
2145 unsigned radix;
2146
2147 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2148 set_output_radix_1 (0, radix);
2149 set_input_radix_1 (0, radix);
2150 if (from_tty)
2151 {
2152 printf_filtered (_("Input and output radices now set to "
2153 "decimal %u, hex %x, octal %o.\n"),
2154 radix, radix, radix);
2155 }
2156 }
2157
2158 /* Show both the input and output radices. */
2159
2160 static void
2161 show_radix (char *arg, int from_tty)
2162 {
2163 if (from_tty)
2164 {
2165 if (input_radix == output_radix)
2166 {
2167 printf_filtered (_("Input and output radices set to "
2168 "decimal %u, hex %x, octal %o.\n"),
2169 input_radix, input_radix, input_radix);
2170 }
2171 else
2172 {
2173 printf_filtered (_("Input radix set to decimal "
2174 "%u, hex %x, octal %o.\n"),
2175 input_radix, input_radix, input_radix);
2176 printf_filtered (_("Output radix set to decimal "
2177 "%u, hex %x, octal %o.\n"),
2178 output_radix, output_radix, output_radix);
2179 }
2180 }
2181 }
2182 \f
2183
2184 static void
2185 set_print (char *arg, int from_tty)
2186 {
2187 printf_unfiltered (
2188 "\"set print\" must be followed by the name of a print subcommand.\n");
2189 help_list (setprintlist, "set print ", -1, gdb_stdout);
2190 }
2191
2192 static void
2193 show_print (char *args, int from_tty)
2194 {
2195 cmd_show_list (showprintlist, from_tty, "");
2196 }
2197 \f
2198 void
2199 _initialize_valprint (void)
2200 {
2201 add_prefix_cmd ("print", no_class, set_print,
2202 _("Generic command for setting how things print."),
2203 &setprintlist, "set print ", 0, &setlist);
2204 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2205 /* Prefer set print to set prompt. */
2206 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2207
2208 add_prefix_cmd ("print", no_class, show_print,
2209 _("Generic command for showing print settings."),
2210 &showprintlist, "show print ", 0, &showlist);
2211 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2212 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2213
2214 add_setshow_uinteger_cmd ("elements", no_class,
2215 &user_print_options.print_max, _("\
2216 Set limit on string chars or array elements to print."), _("\
2217 Show limit on string chars or array elements to print."), _("\
2218 \"set print elements 0\" causes there to be no limit."),
2219 NULL,
2220 show_print_max,
2221 &setprintlist, &showprintlist);
2222
2223 add_setshow_boolean_cmd ("null-stop", no_class,
2224 &user_print_options.stop_print_at_null, _("\
2225 Set printing of char arrays to stop at first null char."), _("\
2226 Show printing of char arrays to stop at first null char."), NULL,
2227 NULL,
2228 show_stop_print_at_null,
2229 &setprintlist, &showprintlist);
2230
2231 add_setshow_uinteger_cmd ("repeats", no_class,
2232 &user_print_options.repeat_count_threshold, _("\
2233 Set threshold for repeated print elements."), _("\
2234 Show threshold for repeated print elements."), _("\
2235 \"set print repeats 0\" causes all elements to be individually printed."),
2236 NULL,
2237 show_repeat_count_threshold,
2238 &setprintlist, &showprintlist);
2239
2240 add_setshow_boolean_cmd ("pretty", class_support,
2241 &user_print_options.prettyprint_structs, _("\
2242 Set prettyprinting of structures."), _("\
2243 Show prettyprinting of structures."), NULL,
2244 NULL,
2245 show_prettyprint_structs,
2246 &setprintlist, &showprintlist);
2247
2248 add_setshow_boolean_cmd ("union", class_support,
2249 &user_print_options.unionprint, _("\
2250 Set printing of unions interior to structures."), _("\
2251 Show printing of unions interior to structures."), NULL,
2252 NULL,
2253 show_unionprint,
2254 &setprintlist, &showprintlist);
2255
2256 add_setshow_boolean_cmd ("array", class_support,
2257 &user_print_options.prettyprint_arrays, _("\
2258 Set prettyprinting of arrays."), _("\
2259 Show prettyprinting of arrays."), NULL,
2260 NULL,
2261 show_prettyprint_arrays,
2262 &setprintlist, &showprintlist);
2263
2264 add_setshow_boolean_cmd ("address", class_support,
2265 &user_print_options.addressprint, _("\
2266 Set printing of addresses."), _("\
2267 Show printing of addresses."), NULL,
2268 NULL,
2269 show_addressprint,
2270 &setprintlist, &showprintlist);
2271
2272 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2273 _("\
2274 Set default input radix for entering numbers."), _("\
2275 Show default input radix for entering numbers."), NULL,
2276 set_input_radix,
2277 show_input_radix,
2278 &setlist, &showlist);
2279
2280 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2281 _("\
2282 Set default output radix for printing of values."), _("\
2283 Show default output radix for printing of values."), NULL,
2284 set_output_radix,
2285 show_output_radix,
2286 &setlist, &showlist);
2287
2288 /* The "set radix" and "show radix" commands are special in that
2289 they are like normal set and show commands but allow two normally
2290 independent variables to be either set or shown with a single
2291 command. So the usual deprecated_add_set_cmd() and [deleted]
2292 add_show_from_set() commands aren't really appropriate. */
2293 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2294 longer true - show can display anything. */
2295 add_cmd ("radix", class_support, set_radix, _("\
2296 Set default input and output number radices.\n\
2297 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2298 Without an argument, sets both radices back to the default value of 10."),
2299 &setlist);
2300 add_cmd ("radix", class_support, show_radix, _("\
2301 Show the default input and output number radices.\n\
2302 Use 'show input-radix' or 'show output-radix' to independently show each."),
2303 &showlist);
2304
2305 add_setshow_boolean_cmd ("array-indexes", class_support,
2306 &user_print_options.print_array_indexes, _("\
2307 Set printing of array indexes."), _("\
2308 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2309 &setprintlist, &showprintlist);
2310 }
This page took 0.075754 seconds and 5 git commands to generate.