gdb/
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "target.h"
28 #include "language.h"
29 #include "annotate.h"
30 #include "valprint.h"
31 #include "floatformat.h"
32 #include "doublest.h"
33 #include "exceptions.h"
34 #include "dfp.h"
35 #include "python/python.h"
36 #include "ada-lang.h"
37 #include "gdb_obstack.h"
38 #include "charset.h"
39 #include <ctype.h>
40
41 #include <errno.h>
42
43 /* Prototypes for local functions */
44
45 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
46 int len, int *errnoptr);
47
48 static void show_print (char *, int);
49
50 static void set_print (char *, int);
51
52 static void set_radix (char *, int);
53
54 static void show_radix (char *, int);
55
56 static void set_input_radix (char *, int, struct cmd_list_element *);
57
58 static void set_input_radix_1 (int, unsigned);
59
60 static void set_output_radix (char *, int, struct cmd_list_element *);
61
62 static void set_output_radix_1 (int, unsigned);
63
64 void _initialize_valprint (void);
65
66 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
67
68 struct value_print_options user_print_options =
69 {
70 Val_pretty_default, /* pretty */
71 0, /* prettyprint_arrays */
72 0, /* prettyprint_structs */
73 0, /* vtblprint */
74 1, /* unionprint */
75 1, /* addressprint */
76 0, /* objectprint */
77 PRINT_MAX_DEFAULT, /* print_max */
78 10, /* repeat_count_threshold */
79 0, /* output_format */
80 0, /* format */
81 0, /* stop_print_at_null */
82 0, /* inspect_it */
83 0, /* print_array_indexes */
84 0, /* deref_ref */
85 1, /* static_field_print */
86 1, /* pascal_static_field_print */
87 0, /* raw */
88 0 /* summary */
89 };
90
91 /* Initialize *OPTS to be a copy of the user print options. */
92 void
93 get_user_print_options (struct value_print_options *opts)
94 {
95 *opts = user_print_options;
96 }
97
98 /* Initialize *OPTS to be a copy of the user print options, but with
99 pretty-printing disabled. */
100 void
101 get_raw_print_options (struct value_print_options *opts)
102 {
103 *opts = user_print_options;
104 opts->pretty = Val_no_prettyprint;
105 }
106
107 /* Initialize *OPTS to be a copy of the user print options, but using
108 FORMAT as the formatting option. */
109 void
110 get_formatted_print_options (struct value_print_options *opts,
111 char format)
112 {
113 *opts = user_print_options;
114 opts->format = format;
115 }
116
117 static void
118 show_print_max (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c, const char *value)
120 {
121 fprintf_filtered (file,
122 _("Limit on string chars or array "
123 "elements to print is %s.\n"),
124 value);
125 }
126
127
128 /* Default input and output radixes, and output format letter. */
129
130 unsigned input_radix = 10;
131 static void
132 show_input_radix (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c, const char *value)
134 {
135 fprintf_filtered (file,
136 _("Default input radix for entering numbers is %s.\n"),
137 value);
138 }
139
140 unsigned output_radix = 10;
141 static void
142 show_output_radix (struct ui_file *file, int from_tty,
143 struct cmd_list_element *c, const char *value)
144 {
145 fprintf_filtered (file,
146 _("Default output radix for printing of values is %s.\n"),
147 value);
148 }
149
150 /* By default we print arrays without printing the index of each element in
151 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
152
153 static void
154 show_print_array_indexes (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
158 }
159
160 /* Print repeat counts if there are more than this many repetitions of an
161 element in an array. Referenced by the low level language dependent
162 print routines. */
163
164 static void
165 show_repeat_count_threshold (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
169 value);
170 }
171
172 /* If nonzero, stops printing of char arrays at first null. */
173
174 static void
175 show_stop_print_at_null (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177 {
178 fprintf_filtered (file,
179 _("Printing of char arrays to stop "
180 "at first null char is %s.\n"),
181 value);
182 }
183
184 /* Controls pretty printing of structures. */
185
186 static void
187 show_prettyprint_structs (struct ui_file *file, int from_tty,
188 struct cmd_list_element *c, const char *value)
189 {
190 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
191 }
192
193 /* Controls pretty printing of arrays. */
194
195 static void
196 show_prettyprint_arrays (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
200 }
201
202 /* If nonzero, causes unions inside structures or other unions to be
203 printed. */
204
205 static void
206 show_unionprint (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file,
210 _("Printing of unions interior to structures is %s.\n"),
211 value);
212 }
213
214 /* If nonzero, causes machine addresses to be printed in certain contexts. */
215
216 static void
217 show_addressprint (struct ui_file *file, int from_tty,
218 struct cmd_list_element *c, const char *value)
219 {
220 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
221 }
222 \f
223
224 /* A helper function for val_print. When printing in "summary" mode,
225 we want to print scalar arguments, but not aggregate arguments.
226 This function distinguishes between the two. */
227
228 static int
229 scalar_type_p (struct type *type)
230 {
231 CHECK_TYPEDEF (type);
232 while (TYPE_CODE (type) == TYPE_CODE_REF)
233 {
234 type = TYPE_TARGET_TYPE (type);
235 CHECK_TYPEDEF (type);
236 }
237 switch (TYPE_CODE (type))
238 {
239 case TYPE_CODE_ARRAY:
240 case TYPE_CODE_STRUCT:
241 case TYPE_CODE_UNION:
242 case TYPE_CODE_SET:
243 case TYPE_CODE_STRING:
244 case TYPE_CODE_BITSTRING:
245 return 0;
246 default:
247 return 1;
248 }
249 }
250
251 /* See its definition in value.h. */
252
253 int
254 valprint_check_validity (struct ui_file *stream,
255 struct type *type,
256 int embedded_offset,
257 const struct value *val)
258 {
259 CHECK_TYPEDEF (type);
260
261 if (TYPE_CODE (type) != TYPE_CODE_UNION
262 && TYPE_CODE (type) != TYPE_CODE_STRUCT
263 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
264 {
265 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
266 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
267 {
268 val_print_optimized_out (stream);
269 return 0;
270 }
271
272 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
273 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
274 {
275 fputs_filtered (_("<synthetic pointer>"), stream);
276 return 0;
277 }
278
279 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
280 {
281 val_print_unavailable (stream);
282 return 0;
283 }
284 }
285
286 return 1;
287 }
288
289 void
290 val_print_optimized_out (struct ui_file *stream)
291 {
292 fprintf_filtered (stream, _("<optimized out>"));
293 }
294
295 void
296 val_print_unavailable (struct ui_file *stream)
297 {
298 fprintf_filtered (stream, _("<unavailable>"));
299 }
300
301 void
302 val_print_invalid_address (struct ui_file *stream)
303 {
304 fprintf_filtered (stream, _("<invalid address>"));
305 }
306
307 /* A generic val_print that is suitable for use by language
308 implementations of the la_val_print method. This function can
309 handle most type codes, though not all, notably exception
310 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
311 the caller.
312
313 Most arguments are as to val_print.
314
315 The additional DECORATIONS argument can be used to customize the
316 output in some small, language-specific ways. */
317
318 void
319 generic_val_print (struct type *type, const gdb_byte *valaddr,
320 int embedded_offset, CORE_ADDR address,
321 struct ui_file *stream, int recurse,
322 const struct value *original_value,
323 const struct value_print_options *options,
324 const struct generic_val_print_decorations *decorations)
325 {
326 struct gdbarch *gdbarch = get_type_arch (type);
327 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
328 unsigned int i = 0; /* Number of characters printed. */
329 unsigned len;
330 struct type *elttype, *unresolved_elttype;
331 struct type *unresolved_type = type;
332 unsigned eltlen;
333 LONGEST val;
334 CORE_ADDR addr;
335
336 CHECK_TYPEDEF (type);
337 switch (TYPE_CODE (type))
338 {
339 case TYPE_CODE_ARRAY:
340 unresolved_elttype = TYPE_TARGET_TYPE (type);
341 elttype = check_typedef (unresolved_elttype);
342 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
343 {
344 LONGEST low_bound, high_bound;
345
346 if (!get_array_bounds (type, &low_bound, &high_bound))
347 error (_("Could not determine the array high bound"));
348
349 if (options->prettyprint_arrays)
350 {
351 print_spaces_filtered (2 + 2 * recurse, stream);
352 }
353
354 fprintf_filtered (stream, "{");
355 val_print_array_elements (type, valaddr, embedded_offset,
356 address, stream,
357 recurse, original_value, options, 0);
358 fprintf_filtered (stream, "}");
359 break;
360 }
361 /* Array of unspecified length: treat like pointer to first
362 elt. */
363 addr = address + embedded_offset;
364 goto print_unpacked_pointer;
365
366 case TYPE_CODE_MEMBERPTR:
367 val_print_scalar_formatted (type, valaddr, embedded_offset,
368 original_value, options, 0, stream);
369 break;
370
371 case TYPE_CODE_PTR:
372 if (options->format && options->format != 's')
373 {
374 val_print_scalar_formatted (type, valaddr, embedded_offset,
375 original_value, options, 0, stream);
376 break;
377 }
378 unresolved_elttype = TYPE_TARGET_TYPE (type);
379 elttype = check_typedef (unresolved_elttype);
380 {
381 addr = unpack_pointer (type, valaddr + embedded_offset);
382 print_unpacked_pointer:
383
384 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
385 {
386 /* Try to print what function it points to. */
387 print_function_pointer_address (gdbarch, addr, stream,
388 options->addressprint);
389 return;
390 }
391
392 if (options->addressprint)
393 fputs_filtered (paddress (gdbarch, addr), stream);
394 }
395 break;
396
397 case TYPE_CODE_REF:
398 elttype = check_typedef (TYPE_TARGET_TYPE (type));
399 if (options->addressprint)
400 {
401 CORE_ADDR addr
402 = extract_typed_address (valaddr + embedded_offset, type);
403
404 fprintf_filtered (stream, "@");
405 fputs_filtered (paddress (gdbarch, addr), stream);
406 if (options->deref_ref)
407 fputs_filtered (": ", stream);
408 }
409 /* De-reference the reference. */
410 if (options->deref_ref)
411 {
412 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
413 {
414 struct value *deref_val;
415
416 deref_val = coerce_ref_if_computed (original_value);
417 if (deref_val != NULL)
418 {
419 /* More complicated computed references are not supported. */
420 gdb_assert (embedded_offset == 0);
421 }
422 else
423 deref_val = value_at (TYPE_TARGET_TYPE (type),
424 unpack_pointer (type,
425 (valaddr
426 + embedded_offset)));
427
428 common_val_print (deref_val, stream, recurse, options,
429 current_language);
430 }
431 else
432 fputs_filtered ("???", stream);
433 }
434 break;
435
436 case TYPE_CODE_ENUM:
437 if (options->format)
438 {
439 val_print_scalar_formatted (type, valaddr, embedded_offset,
440 original_value, options, 0, stream);
441 break;
442 }
443 len = TYPE_NFIELDS (type);
444 val = unpack_long (type, valaddr + embedded_offset);
445 for (i = 0; i < len; i++)
446 {
447 QUIT;
448 if (val == TYPE_FIELD_ENUMVAL (type, i))
449 {
450 break;
451 }
452 }
453 if (i < len)
454 {
455 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
456 }
457 else if (TYPE_FLAG_ENUM (type))
458 {
459 int first = 1;
460
461 /* We have a "flag" enum, so we try to decompose it into
462 pieces as appropriate. A flag enum has disjoint
463 constants by definition. */
464 fputs_filtered ("(", stream);
465 for (i = 0; i < len; ++i)
466 {
467 QUIT;
468
469 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
470 {
471 if (!first)
472 fputs_filtered (" | ", stream);
473 first = 0;
474
475 val &= ~TYPE_FIELD_ENUMVAL (type, i);
476 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
477 }
478 }
479
480 if (first || val != 0)
481 {
482 if (!first)
483 fputs_filtered (" | ", stream);
484 fputs_filtered ("unknown: ", stream);
485 print_longest (stream, 'd', 0, val);
486 }
487
488 fputs_filtered (")", stream);
489 }
490 else
491 print_longest (stream, 'd', 0, val);
492 break;
493
494 case TYPE_CODE_FLAGS:
495 if (options->format)
496 val_print_scalar_formatted (type, valaddr, embedded_offset,
497 original_value, options, 0, stream);
498 else
499 val_print_type_code_flags (type, valaddr + embedded_offset,
500 stream);
501 break;
502
503 case TYPE_CODE_FUNC:
504 case TYPE_CODE_METHOD:
505 if (options->format)
506 {
507 val_print_scalar_formatted (type, valaddr, embedded_offset,
508 original_value, options, 0, stream);
509 break;
510 }
511 /* FIXME, we should consider, at least for ANSI C language,
512 eliminating the distinction made between FUNCs and POINTERs
513 to FUNCs. */
514 fprintf_filtered (stream, "{");
515 type_print (type, "", stream, -1);
516 fprintf_filtered (stream, "} ");
517 /* Try to print what function it points to, and its address. */
518 print_address_demangle (gdbarch, address, stream, demangle);
519 break;
520
521 case TYPE_CODE_BOOL:
522 if (options->format || options->output_format)
523 {
524 struct value_print_options opts = *options;
525 opts.format = (options->format ? options->format
526 : options->output_format);
527 val_print_scalar_formatted (type, valaddr, embedded_offset,
528 original_value, &opts, 0, stream);
529 }
530 else
531 {
532 val = unpack_long (type, valaddr + embedded_offset);
533 if (val == 0)
534 fputs_filtered (decorations->false_name, stream);
535 else if (val == 1)
536 fputs_filtered (decorations->true_name, stream);
537 else
538 print_longest (stream, 'd', 0, val);
539 }
540 break;
541
542 case TYPE_CODE_RANGE:
543 /* FIXME: create_range_type does not set the unsigned bit in a
544 range type (I think it probably should copy it from the
545 target type), so we won't print values which are too large to
546 fit in a signed integer correctly. */
547 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
548 print with the target type, though, because the size of our
549 type and the target type might differ). */
550
551 /* FALLTHROUGH */
552
553 case TYPE_CODE_INT:
554 if (options->format || options->output_format)
555 {
556 struct value_print_options opts = *options;
557
558 opts.format = (options->format ? options->format
559 : options->output_format);
560 val_print_scalar_formatted (type, valaddr, embedded_offset,
561 original_value, &opts, 0, stream);
562 }
563 else
564 val_print_type_code_int (type, valaddr + embedded_offset, stream);
565 break;
566
567 case TYPE_CODE_CHAR:
568 if (options->format || options->output_format)
569 {
570 struct value_print_options opts = *options;
571
572 opts.format = (options->format ? options->format
573 : options->output_format);
574 val_print_scalar_formatted (type, valaddr, embedded_offset,
575 original_value, &opts, 0, stream);
576 }
577 else
578 {
579 val = unpack_long (type, valaddr + embedded_offset);
580 if (TYPE_UNSIGNED (type))
581 fprintf_filtered (stream, "%u", (unsigned int) val);
582 else
583 fprintf_filtered (stream, "%d", (int) val);
584 fputs_filtered (" ", stream);
585 LA_PRINT_CHAR (val, unresolved_type, stream);
586 }
587 break;
588
589 case TYPE_CODE_FLT:
590 if (options->format)
591 {
592 val_print_scalar_formatted (type, valaddr, embedded_offset,
593 original_value, options, 0, stream);
594 }
595 else
596 {
597 print_floating (valaddr + embedded_offset, type, stream);
598 }
599 break;
600
601 case TYPE_CODE_DECFLOAT:
602 if (options->format)
603 val_print_scalar_formatted (type, valaddr, embedded_offset,
604 original_value, options, 0, stream);
605 else
606 print_decimal_floating (valaddr + embedded_offset,
607 type, stream);
608 break;
609
610 case TYPE_CODE_VOID:
611 fputs_filtered (decorations->void_name, stream);
612 break;
613
614 case TYPE_CODE_ERROR:
615 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
616 break;
617
618 case TYPE_CODE_UNDEF:
619 /* This happens (without TYPE_FLAG_STUB set) on systems which
620 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
621 "struct foo *bar" and no complete type for struct foo in that
622 file. */
623 fprintf_filtered (stream, _("<incomplete type>"));
624 break;
625
626 case TYPE_CODE_COMPLEX:
627 fprintf_filtered (stream, "%s", decorations->complex_prefix);
628 if (options->format)
629 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
630 valaddr, embedded_offset,
631 original_value, options, 0, stream);
632 else
633 print_floating (valaddr + embedded_offset,
634 TYPE_TARGET_TYPE (type),
635 stream);
636 fprintf_filtered (stream, "%s", decorations->complex_infix);
637 if (options->format)
638 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
639 valaddr,
640 embedded_offset
641 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
642 original_value,
643 options, 0, stream);
644 else
645 print_floating (valaddr + embedded_offset
646 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
647 TYPE_TARGET_TYPE (type),
648 stream);
649 fprintf_filtered (stream, "%s", decorations->complex_suffix);
650 break;
651
652 case TYPE_CODE_UNION:
653 case TYPE_CODE_STRUCT:
654 case TYPE_CODE_METHODPTR:
655 default:
656 error (_("Unhandled type code %d in symbol table."),
657 TYPE_CODE (type));
658 }
659 gdb_flush (stream);
660 }
661
662 /* Print using the given LANGUAGE the data of type TYPE located at
663 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
664 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
665 STREAM according to OPTIONS. VAL is the whole object that came
666 from ADDRESS. VALADDR must point to the head of VAL's contents
667 buffer.
668
669 The language printers will pass down an adjusted EMBEDDED_OFFSET to
670 further helper subroutines as subfields of TYPE are printed. In
671 such cases, VALADDR is passed down unadjusted, as well as VAL, so
672 that VAL can be queried for metadata about the contents data being
673 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
674 buffer. For example: "has this field been optimized out", or "I'm
675 printing an object while inspecting a traceframe; has this
676 particular piece of data been collected?".
677
678 RECURSE indicates the amount of indentation to supply before
679 continuation lines; this amount is roughly twice the value of
680 RECURSE. */
681
682 void
683 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
684 CORE_ADDR address, struct ui_file *stream, int recurse,
685 const struct value *val,
686 const struct value_print_options *options,
687 const struct language_defn *language)
688 {
689 volatile struct gdb_exception except;
690 int ret = 0;
691 struct value_print_options local_opts = *options;
692 struct type *real_type = check_typedef (type);
693
694 if (local_opts.pretty == Val_pretty_default)
695 local_opts.pretty = (local_opts.prettyprint_structs
696 ? Val_prettyprint : Val_no_prettyprint);
697
698 QUIT;
699
700 /* Ensure that the type is complete and not just a stub. If the type is
701 only a stub and we can't find and substitute its complete type, then
702 print appropriate string and return. */
703
704 if (TYPE_STUB (real_type))
705 {
706 fprintf_filtered (stream, _("<incomplete type>"));
707 gdb_flush (stream);
708 return;
709 }
710
711 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
712 return;
713
714 if (!options->raw)
715 {
716 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
717 address, stream, recurse,
718 val, options, language);
719 if (ret)
720 return;
721 }
722
723 /* Handle summary mode. If the value is a scalar, print it;
724 otherwise, print an ellipsis. */
725 if (options->summary && !scalar_type_p (type))
726 {
727 fprintf_filtered (stream, "...");
728 return;
729 }
730
731 TRY_CATCH (except, RETURN_MASK_ERROR)
732 {
733 language->la_val_print (type, valaddr, embedded_offset, address,
734 stream, recurse, val,
735 &local_opts);
736 }
737 if (except.reason < 0)
738 fprintf_filtered (stream, _("<error reading variable>"));
739 }
740
741 /* Check whether the value VAL is printable. Return 1 if it is;
742 return 0 and print an appropriate error message to STREAM according to
743 OPTIONS if it is not. */
744
745 static int
746 value_check_printable (struct value *val, struct ui_file *stream,
747 const struct value_print_options *options)
748 {
749 if (val == 0)
750 {
751 fprintf_filtered (stream, _("<address of value unknown>"));
752 return 0;
753 }
754
755 if (value_entirely_optimized_out (val))
756 {
757 if (options->summary && !scalar_type_p (value_type (val)))
758 fprintf_filtered (stream, "...");
759 else
760 val_print_optimized_out (stream);
761 return 0;
762 }
763
764 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
765 {
766 fprintf_filtered (stream, _("<internal function %s>"),
767 value_internal_function_name (val));
768 return 0;
769 }
770
771 return 1;
772 }
773
774 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
775 to OPTIONS.
776
777 This is a preferable interface to val_print, above, because it uses
778 GDB's value mechanism. */
779
780 void
781 common_val_print (struct value *val, struct ui_file *stream, int recurse,
782 const struct value_print_options *options,
783 const struct language_defn *language)
784 {
785 if (!value_check_printable (val, stream, options))
786 return;
787
788 if (language->la_language == language_ada)
789 /* The value might have a dynamic type, which would cause trouble
790 below when trying to extract the value contents (since the value
791 size is determined from the type size which is unknown). So
792 get a fixed representation of our value. */
793 val = ada_to_fixed_value (val);
794
795 val_print (value_type (val), value_contents_for_printing (val),
796 value_embedded_offset (val), value_address (val),
797 stream, recurse,
798 val, options, language);
799 }
800
801 /* Print on stream STREAM the value VAL according to OPTIONS. The value
802 is printed using the current_language syntax. */
803
804 void
805 value_print (struct value *val, struct ui_file *stream,
806 const struct value_print_options *options)
807 {
808 if (!value_check_printable (val, stream, options))
809 return;
810
811 if (!options->raw)
812 {
813 int r = apply_val_pretty_printer (value_type (val),
814 value_contents_for_printing (val),
815 value_embedded_offset (val),
816 value_address (val),
817 stream, 0,
818 val, options, current_language);
819
820 if (r)
821 return;
822 }
823
824 LA_VALUE_PRINT (val, stream, options);
825 }
826
827 /* Called by various <lang>_val_print routines to print
828 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
829 value. STREAM is where to print the value. */
830
831 void
832 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
833 struct ui_file *stream)
834 {
835 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
836
837 if (TYPE_LENGTH (type) > sizeof (LONGEST))
838 {
839 LONGEST val;
840
841 if (TYPE_UNSIGNED (type)
842 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
843 byte_order, &val))
844 {
845 print_longest (stream, 'u', 0, val);
846 }
847 else
848 {
849 /* Signed, or we couldn't turn an unsigned value into a
850 LONGEST. For signed values, one could assume two's
851 complement (a reasonable assumption, I think) and do
852 better than this. */
853 print_hex_chars (stream, (unsigned char *) valaddr,
854 TYPE_LENGTH (type), byte_order);
855 }
856 }
857 else
858 {
859 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
860 unpack_long (type, valaddr));
861 }
862 }
863
864 void
865 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
866 struct ui_file *stream)
867 {
868 ULONGEST val = unpack_long (type, valaddr);
869 int bitpos, nfields = TYPE_NFIELDS (type);
870
871 fputs_filtered ("[ ", stream);
872 for (bitpos = 0; bitpos < nfields; bitpos++)
873 {
874 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
875 && (val & ((ULONGEST)1 << bitpos)))
876 {
877 if (TYPE_FIELD_NAME (type, bitpos))
878 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
879 else
880 fprintf_filtered (stream, "#%d ", bitpos);
881 }
882 }
883 fputs_filtered ("]", stream);
884 }
885
886 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
887 according to OPTIONS and SIZE on STREAM. Format i is not supported
888 at this level.
889
890 This is how the elements of an array or structure are printed
891 with a format. */
892
893 void
894 val_print_scalar_formatted (struct type *type,
895 const gdb_byte *valaddr, int embedded_offset,
896 const struct value *val,
897 const struct value_print_options *options,
898 int size,
899 struct ui_file *stream)
900 {
901 gdb_assert (val != NULL);
902 gdb_assert (valaddr == value_contents_for_printing_const (val));
903
904 /* If we get here with a string format, try again without it. Go
905 all the way back to the language printers, which may call us
906 again. */
907 if (options->format == 's')
908 {
909 struct value_print_options opts = *options;
910 opts.format = 0;
911 opts.deref_ref = 0;
912 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
913 current_language);
914 return;
915 }
916
917 /* A scalar object that does not have all bits available can't be
918 printed, because all bits contribute to its representation. */
919 if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
920 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
921 val_print_optimized_out (stream);
922 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
923 val_print_unavailable (stream);
924 else
925 print_scalar_formatted (valaddr + embedded_offset, type,
926 options, size, stream);
927 }
928
929 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
930 The raison d'etre of this function is to consolidate printing of
931 LONG_LONG's into this one function. The format chars b,h,w,g are
932 from print_scalar_formatted(). Numbers are printed using C
933 format.
934
935 USE_C_FORMAT means to use C format in all cases. Without it,
936 'o' and 'x' format do not include the standard C radix prefix
937 (leading 0 or 0x).
938
939 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
940 and was intended to request formating according to the current
941 language and would be used for most integers that GDB prints. The
942 exceptional cases were things like protocols where the format of
943 the integer is a protocol thing, not a user-visible thing). The
944 parameter remains to preserve the information of what things might
945 be printed with language-specific format, should we ever resurrect
946 that capability. */
947
948 void
949 print_longest (struct ui_file *stream, int format, int use_c_format,
950 LONGEST val_long)
951 {
952 const char *val;
953
954 switch (format)
955 {
956 case 'd':
957 val = int_string (val_long, 10, 1, 0, 1); break;
958 case 'u':
959 val = int_string (val_long, 10, 0, 0, 1); break;
960 case 'x':
961 val = int_string (val_long, 16, 0, 0, use_c_format); break;
962 case 'b':
963 val = int_string (val_long, 16, 0, 2, 1); break;
964 case 'h':
965 val = int_string (val_long, 16, 0, 4, 1); break;
966 case 'w':
967 val = int_string (val_long, 16, 0, 8, 1); break;
968 case 'g':
969 val = int_string (val_long, 16, 0, 16, 1); break;
970 break;
971 case 'o':
972 val = int_string (val_long, 8, 0, 0, use_c_format); break;
973 default:
974 internal_error (__FILE__, __LINE__,
975 _("failed internal consistency check"));
976 }
977 fputs_filtered (val, stream);
978 }
979
980 /* This used to be a macro, but I don't think it is called often enough
981 to merit such treatment. */
982 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
983 arguments to a function, number in a value history, register number, etc.)
984 where the value must not be larger than can fit in an int. */
985
986 int
987 longest_to_int (LONGEST arg)
988 {
989 /* Let the compiler do the work. */
990 int rtnval = (int) arg;
991
992 /* Check for overflows or underflows. */
993 if (sizeof (LONGEST) > sizeof (int))
994 {
995 if (rtnval != arg)
996 {
997 error (_("Value out of range."));
998 }
999 }
1000 return (rtnval);
1001 }
1002
1003 /* Print a floating point value of type TYPE (not always a
1004 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1005
1006 void
1007 print_floating (const gdb_byte *valaddr, struct type *type,
1008 struct ui_file *stream)
1009 {
1010 DOUBLEST doub;
1011 int inv;
1012 const struct floatformat *fmt = NULL;
1013 unsigned len = TYPE_LENGTH (type);
1014 enum float_kind kind;
1015
1016 /* If it is a floating-point, check for obvious problems. */
1017 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1018 fmt = floatformat_from_type (type);
1019 if (fmt != NULL)
1020 {
1021 kind = floatformat_classify (fmt, valaddr);
1022 if (kind == float_nan)
1023 {
1024 if (floatformat_is_negative (fmt, valaddr))
1025 fprintf_filtered (stream, "-");
1026 fprintf_filtered (stream, "nan(");
1027 fputs_filtered ("0x", stream);
1028 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1029 fprintf_filtered (stream, ")");
1030 return;
1031 }
1032 else if (kind == float_infinite)
1033 {
1034 if (floatformat_is_negative (fmt, valaddr))
1035 fputs_filtered ("-", stream);
1036 fputs_filtered ("inf", stream);
1037 return;
1038 }
1039 }
1040
1041 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1042 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1043 needs to be used as that takes care of any necessary type
1044 conversions. Such conversions are of course direct to DOUBLEST
1045 and disregard any possible target floating point limitations.
1046 For instance, a u64 would be converted and displayed exactly on a
1047 host with 80 bit DOUBLEST but with loss of information on a host
1048 with 64 bit DOUBLEST. */
1049
1050 doub = unpack_double (type, valaddr, &inv);
1051 if (inv)
1052 {
1053 fprintf_filtered (stream, "<invalid float value>");
1054 return;
1055 }
1056
1057 /* FIXME: kettenis/2001-01-20: The following code makes too much
1058 assumptions about the host and target floating point format. */
1059
1060 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1061 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1062 instead uses the type's length to determine the precision of the
1063 floating-point value being printed. */
1064
1065 if (len < sizeof (double))
1066 fprintf_filtered (stream, "%.9g", (double) doub);
1067 else if (len == sizeof (double))
1068 fprintf_filtered (stream, "%.17g", (double) doub);
1069 else
1070 #ifdef PRINTF_HAS_LONG_DOUBLE
1071 fprintf_filtered (stream, "%.35Lg", doub);
1072 #else
1073 /* This at least wins with values that are representable as
1074 doubles. */
1075 fprintf_filtered (stream, "%.17g", (double) doub);
1076 #endif
1077 }
1078
1079 void
1080 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1081 struct ui_file *stream)
1082 {
1083 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1084 char decstr[MAX_DECIMAL_STRING];
1085 unsigned len = TYPE_LENGTH (type);
1086
1087 decimal_to_string (valaddr, len, byte_order, decstr);
1088 fputs_filtered (decstr, stream);
1089 return;
1090 }
1091
1092 void
1093 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1094 unsigned len, enum bfd_endian byte_order)
1095 {
1096
1097 #define BITS_IN_BYTES 8
1098
1099 const gdb_byte *p;
1100 unsigned int i;
1101 int b;
1102
1103 /* Declared "int" so it will be signed.
1104 This ensures that right shift will shift in zeros. */
1105
1106 const int mask = 0x080;
1107
1108 /* FIXME: We should be not printing leading zeroes in most cases. */
1109
1110 if (byte_order == BFD_ENDIAN_BIG)
1111 {
1112 for (p = valaddr;
1113 p < valaddr + len;
1114 p++)
1115 {
1116 /* Every byte has 8 binary characters; peel off
1117 and print from the MSB end. */
1118
1119 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1120 {
1121 if (*p & (mask >> i))
1122 b = 1;
1123 else
1124 b = 0;
1125
1126 fprintf_filtered (stream, "%1d", b);
1127 }
1128 }
1129 }
1130 else
1131 {
1132 for (p = valaddr + len - 1;
1133 p >= valaddr;
1134 p--)
1135 {
1136 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1137 {
1138 if (*p & (mask >> i))
1139 b = 1;
1140 else
1141 b = 0;
1142
1143 fprintf_filtered (stream, "%1d", b);
1144 }
1145 }
1146 }
1147 }
1148
1149 /* VALADDR points to an integer of LEN bytes.
1150 Print it in octal on stream or format it in buf. */
1151
1152 void
1153 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1154 unsigned len, enum bfd_endian byte_order)
1155 {
1156 const gdb_byte *p;
1157 unsigned char octa1, octa2, octa3, carry;
1158 int cycle;
1159
1160 /* FIXME: We should be not printing leading zeroes in most cases. */
1161
1162
1163 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1164 * the extra bits, which cycle every three bytes:
1165 *
1166 * Byte side: 0 1 2 3
1167 * | | | |
1168 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1169 *
1170 * Octal side: 0 1 carry 3 4 carry ...
1171 *
1172 * Cycle number: 0 1 2
1173 *
1174 * But of course we are printing from the high side, so we have to
1175 * figure out where in the cycle we are so that we end up with no
1176 * left over bits at the end.
1177 */
1178 #define BITS_IN_OCTAL 3
1179 #define HIGH_ZERO 0340
1180 #define LOW_ZERO 0016
1181 #define CARRY_ZERO 0003
1182 #define HIGH_ONE 0200
1183 #define MID_ONE 0160
1184 #define LOW_ONE 0016
1185 #define CARRY_ONE 0001
1186 #define HIGH_TWO 0300
1187 #define MID_TWO 0070
1188 #define LOW_TWO 0007
1189
1190 /* For 32 we start in cycle 2, with two bits and one bit carry;
1191 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1192
1193 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1194 carry = 0;
1195
1196 fputs_filtered ("0", stream);
1197 if (byte_order == BFD_ENDIAN_BIG)
1198 {
1199 for (p = valaddr;
1200 p < valaddr + len;
1201 p++)
1202 {
1203 switch (cycle)
1204 {
1205 case 0:
1206 /* No carry in, carry out two bits. */
1207
1208 octa1 = (HIGH_ZERO & *p) >> 5;
1209 octa2 = (LOW_ZERO & *p) >> 2;
1210 carry = (CARRY_ZERO & *p);
1211 fprintf_filtered (stream, "%o", octa1);
1212 fprintf_filtered (stream, "%o", octa2);
1213 break;
1214
1215 case 1:
1216 /* Carry in two bits, carry out one bit. */
1217
1218 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1219 octa2 = (MID_ONE & *p) >> 4;
1220 octa3 = (LOW_ONE & *p) >> 1;
1221 carry = (CARRY_ONE & *p);
1222 fprintf_filtered (stream, "%o", octa1);
1223 fprintf_filtered (stream, "%o", octa2);
1224 fprintf_filtered (stream, "%o", octa3);
1225 break;
1226
1227 case 2:
1228 /* Carry in one bit, no carry out. */
1229
1230 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1231 octa2 = (MID_TWO & *p) >> 3;
1232 octa3 = (LOW_TWO & *p);
1233 carry = 0;
1234 fprintf_filtered (stream, "%o", octa1);
1235 fprintf_filtered (stream, "%o", octa2);
1236 fprintf_filtered (stream, "%o", octa3);
1237 break;
1238
1239 default:
1240 error (_("Internal error in octal conversion;"));
1241 }
1242
1243 cycle++;
1244 cycle = cycle % BITS_IN_OCTAL;
1245 }
1246 }
1247 else
1248 {
1249 for (p = valaddr + len - 1;
1250 p >= valaddr;
1251 p--)
1252 {
1253 switch (cycle)
1254 {
1255 case 0:
1256 /* Carry out, no carry in */
1257
1258 octa1 = (HIGH_ZERO & *p) >> 5;
1259 octa2 = (LOW_ZERO & *p) >> 2;
1260 carry = (CARRY_ZERO & *p);
1261 fprintf_filtered (stream, "%o", octa1);
1262 fprintf_filtered (stream, "%o", octa2);
1263 break;
1264
1265 case 1:
1266 /* Carry in, carry out */
1267
1268 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1269 octa2 = (MID_ONE & *p) >> 4;
1270 octa3 = (LOW_ONE & *p) >> 1;
1271 carry = (CARRY_ONE & *p);
1272 fprintf_filtered (stream, "%o", octa1);
1273 fprintf_filtered (stream, "%o", octa2);
1274 fprintf_filtered (stream, "%o", octa3);
1275 break;
1276
1277 case 2:
1278 /* Carry in, no carry out */
1279
1280 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1281 octa2 = (MID_TWO & *p) >> 3;
1282 octa3 = (LOW_TWO & *p);
1283 carry = 0;
1284 fprintf_filtered (stream, "%o", octa1);
1285 fprintf_filtered (stream, "%o", octa2);
1286 fprintf_filtered (stream, "%o", octa3);
1287 break;
1288
1289 default:
1290 error (_("Internal error in octal conversion;"));
1291 }
1292
1293 cycle++;
1294 cycle = cycle % BITS_IN_OCTAL;
1295 }
1296 }
1297
1298 }
1299
1300 /* VALADDR points to an integer of LEN bytes.
1301 Print it in decimal on stream or format it in buf. */
1302
1303 void
1304 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1305 unsigned len, enum bfd_endian byte_order)
1306 {
1307 #define TEN 10
1308 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1309 #define CARRY_LEFT( x ) ((x) % TEN)
1310 #define SHIFT( x ) ((x) << 4)
1311 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1312 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1313
1314 const gdb_byte *p;
1315 unsigned char *digits;
1316 int carry;
1317 int decimal_len;
1318 int i, j, decimal_digits;
1319 int dummy;
1320 int flip;
1321
1322 /* Base-ten number is less than twice as many digits
1323 as the base 16 number, which is 2 digits per byte. */
1324
1325 decimal_len = len * 2 * 2;
1326 digits = xmalloc (decimal_len);
1327
1328 for (i = 0; i < decimal_len; i++)
1329 {
1330 digits[i] = 0;
1331 }
1332
1333 /* Ok, we have an unknown number of bytes of data to be printed in
1334 * decimal.
1335 *
1336 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1337 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1338 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1339 *
1340 * The trick is that "digits" holds a base-10 number, but sometimes
1341 * the individual digits are > 10.
1342 *
1343 * Outer loop is per nibble (hex digit) of input, from MSD end to
1344 * LSD end.
1345 */
1346 decimal_digits = 0; /* Number of decimal digits so far */
1347 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1348 flip = 0;
1349 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1350 {
1351 /*
1352 * Multiply current base-ten number by 16 in place.
1353 * Each digit was between 0 and 9, now is between
1354 * 0 and 144.
1355 */
1356 for (j = 0; j < decimal_digits; j++)
1357 {
1358 digits[j] = SHIFT (digits[j]);
1359 }
1360
1361 /* Take the next nibble off the input and add it to what
1362 * we've got in the LSB position. Bottom 'digit' is now
1363 * between 0 and 159.
1364 *
1365 * "flip" is used to run this loop twice for each byte.
1366 */
1367 if (flip == 0)
1368 {
1369 /* Take top nibble. */
1370
1371 digits[0] += HIGH_NIBBLE (*p);
1372 flip = 1;
1373 }
1374 else
1375 {
1376 /* Take low nibble and bump our pointer "p". */
1377
1378 digits[0] += LOW_NIBBLE (*p);
1379 if (byte_order == BFD_ENDIAN_BIG)
1380 p++;
1381 else
1382 p--;
1383 flip = 0;
1384 }
1385
1386 /* Re-decimalize. We have to do this often enough
1387 * that we don't overflow, but once per nibble is
1388 * overkill. Easier this way, though. Note that the
1389 * carry is often larger than 10 (e.g. max initial
1390 * carry out of lowest nibble is 15, could bubble all
1391 * the way up greater than 10). So we have to do
1392 * the carrying beyond the last current digit.
1393 */
1394 carry = 0;
1395 for (j = 0; j < decimal_len - 1; j++)
1396 {
1397 digits[j] += carry;
1398
1399 /* "/" won't handle an unsigned char with
1400 * a value that if signed would be negative.
1401 * So extend to longword int via "dummy".
1402 */
1403 dummy = digits[j];
1404 carry = CARRY_OUT (dummy);
1405 digits[j] = CARRY_LEFT (dummy);
1406
1407 if (j >= decimal_digits && carry == 0)
1408 {
1409 /*
1410 * All higher digits are 0 and we
1411 * no longer have a carry.
1412 *
1413 * Note: "j" is 0-based, "decimal_digits" is
1414 * 1-based.
1415 */
1416 decimal_digits = j + 1;
1417 break;
1418 }
1419 }
1420 }
1421
1422 /* Ok, now "digits" is the decimal representation, with
1423 the "decimal_digits" actual digits. Print! */
1424
1425 for (i = decimal_digits - 1; i >= 0; i--)
1426 {
1427 fprintf_filtered (stream, "%1d", digits[i]);
1428 }
1429 xfree (digits);
1430 }
1431
1432 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1433
1434 void
1435 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1436 unsigned len, enum bfd_endian byte_order)
1437 {
1438 const gdb_byte *p;
1439
1440 /* FIXME: We should be not printing leading zeroes in most cases. */
1441
1442 fputs_filtered ("0x", stream);
1443 if (byte_order == BFD_ENDIAN_BIG)
1444 {
1445 for (p = valaddr;
1446 p < valaddr + len;
1447 p++)
1448 {
1449 fprintf_filtered (stream, "%02x", *p);
1450 }
1451 }
1452 else
1453 {
1454 for (p = valaddr + len - 1;
1455 p >= valaddr;
1456 p--)
1457 {
1458 fprintf_filtered (stream, "%02x", *p);
1459 }
1460 }
1461 }
1462
1463 /* VALADDR points to a char integer of LEN bytes.
1464 Print it out in appropriate language form on stream.
1465 Omit any leading zero chars. */
1466
1467 void
1468 print_char_chars (struct ui_file *stream, struct type *type,
1469 const gdb_byte *valaddr,
1470 unsigned len, enum bfd_endian byte_order)
1471 {
1472 const gdb_byte *p;
1473
1474 if (byte_order == BFD_ENDIAN_BIG)
1475 {
1476 p = valaddr;
1477 while (p < valaddr + len - 1 && *p == 0)
1478 ++p;
1479
1480 while (p < valaddr + len)
1481 {
1482 LA_EMIT_CHAR (*p, type, stream, '\'');
1483 ++p;
1484 }
1485 }
1486 else
1487 {
1488 p = valaddr + len - 1;
1489 while (p > valaddr && *p == 0)
1490 --p;
1491
1492 while (p >= valaddr)
1493 {
1494 LA_EMIT_CHAR (*p, type, stream, '\'');
1495 --p;
1496 }
1497 }
1498 }
1499
1500 /* Print function pointer with inferior address ADDRESS onto stdio
1501 stream STREAM. */
1502
1503 void
1504 print_function_pointer_address (struct gdbarch *gdbarch,
1505 CORE_ADDR address,
1506 struct ui_file *stream,
1507 int addressprint)
1508 {
1509 CORE_ADDR func_addr
1510 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1511 &current_target);
1512
1513 /* If the function pointer is represented by a description, print
1514 the address of the description. */
1515 if (addressprint && func_addr != address)
1516 {
1517 fputs_filtered ("@", stream);
1518 fputs_filtered (paddress (gdbarch, address), stream);
1519 fputs_filtered (": ", stream);
1520 }
1521 print_address_demangle (gdbarch, func_addr, stream, demangle);
1522 }
1523
1524
1525 /* Print on STREAM using the given OPTIONS the index for the element
1526 at INDEX of an array whose index type is INDEX_TYPE. */
1527
1528 void
1529 maybe_print_array_index (struct type *index_type, LONGEST index,
1530 struct ui_file *stream,
1531 const struct value_print_options *options)
1532 {
1533 struct value *index_value;
1534
1535 if (!options->print_array_indexes)
1536 return;
1537
1538 index_value = value_from_longest (index_type, index);
1539
1540 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1541 }
1542
1543 /* Called by various <lang>_val_print routines to print elements of an
1544 array in the form "<elem1>, <elem2>, <elem3>, ...".
1545
1546 (FIXME?) Assumes array element separator is a comma, which is correct
1547 for all languages currently handled.
1548 (FIXME?) Some languages have a notation for repeated array elements,
1549 perhaps we should try to use that notation when appropriate. */
1550
1551 void
1552 val_print_array_elements (struct type *type,
1553 const gdb_byte *valaddr, int embedded_offset,
1554 CORE_ADDR address, struct ui_file *stream,
1555 int recurse,
1556 const struct value *val,
1557 const struct value_print_options *options,
1558 unsigned int i)
1559 {
1560 unsigned int things_printed = 0;
1561 unsigned len;
1562 struct type *elttype, *index_type;
1563 unsigned eltlen;
1564 /* Position of the array element we are examining to see
1565 whether it is repeated. */
1566 unsigned int rep1;
1567 /* Number of repetitions we have detected so far. */
1568 unsigned int reps;
1569 LONGEST low_bound, high_bound;
1570
1571 elttype = TYPE_TARGET_TYPE (type);
1572 eltlen = TYPE_LENGTH (check_typedef (elttype));
1573 index_type = TYPE_INDEX_TYPE (type);
1574
1575 if (get_array_bounds (type, &low_bound, &high_bound))
1576 {
1577 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1578 But we have to be a little extra careful, because some languages
1579 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1580 empty arrays. In that situation, the array length is just zero,
1581 not negative! */
1582 if (low_bound > high_bound)
1583 len = 0;
1584 else
1585 len = high_bound - low_bound + 1;
1586 }
1587 else
1588 {
1589 warning (_("unable to get bounds of array, assuming null array"));
1590 low_bound = 0;
1591 len = 0;
1592 }
1593
1594 annotate_array_section_begin (i, elttype);
1595
1596 for (; i < len && things_printed < options->print_max; i++)
1597 {
1598 if (i != 0)
1599 {
1600 if (options->prettyprint_arrays)
1601 {
1602 fprintf_filtered (stream, ",\n");
1603 print_spaces_filtered (2 + 2 * recurse, stream);
1604 }
1605 else
1606 {
1607 fprintf_filtered (stream, ", ");
1608 }
1609 }
1610 wrap_here (n_spaces (2 + 2 * recurse));
1611 maybe_print_array_index (index_type, i + low_bound,
1612 stream, options);
1613
1614 rep1 = i + 1;
1615 reps = 1;
1616 /* Only check for reps if repeat_count_threshold is not set to
1617 UINT_MAX (unlimited). */
1618 if (options->repeat_count_threshold < UINT_MAX)
1619 {
1620 while (rep1 < len
1621 && value_available_contents_eq (val,
1622 embedded_offset + i * eltlen,
1623 val,
1624 (embedded_offset
1625 + rep1 * eltlen),
1626 eltlen))
1627 {
1628 ++reps;
1629 ++rep1;
1630 }
1631 }
1632
1633 if (reps > options->repeat_count_threshold)
1634 {
1635 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1636 address, stream, recurse + 1, val, options,
1637 current_language);
1638 annotate_elt_rep (reps);
1639 fprintf_filtered (stream, " <repeats %u times>", reps);
1640 annotate_elt_rep_end ();
1641
1642 i = rep1 - 1;
1643 things_printed += options->repeat_count_threshold;
1644 }
1645 else
1646 {
1647 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1648 address,
1649 stream, recurse + 1, val, options, current_language);
1650 annotate_elt ();
1651 things_printed++;
1652 }
1653 }
1654 annotate_array_section_end ();
1655 if (i < len)
1656 {
1657 fprintf_filtered (stream, "...");
1658 }
1659 }
1660
1661 /* Read LEN bytes of target memory at address MEMADDR, placing the
1662 results in GDB's memory at MYADDR. Returns a count of the bytes
1663 actually read, and optionally an errno value in the location
1664 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1665
1666 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1667 function be eliminated. */
1668
1669 static int
1670 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1671 int len, int *errnoptr)
1672 {
1673 int nread; /* Number of bytes actually read. */
1674 int errcode; /* Error from last read. */
1675
1676 /* First try a complete read. */
1677 errcode = target_read_memory (memaddr, myaddr, len);
1678 if (errcode == 0)
1679 {
1680 /* Got it all. */
1681 nread = len;
1682 }
1683 else
1684 {
1685 /* Loop, reading one byte at a time until we get as much as we can. */
1686 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1687 {
1688 errcode = target_read_memory (memaddr++, myaddr++, 1);
1689 }
1690 /* If an error, the last read was unsuccessful, so adjust count. */
1691 if (errcode != 0)
1692 {
1693 nread--;
1694 }
1695 }
1696 if (errnoptr != NULL)
1697 {
1698 *errnoptr = errcode;
1699 }
1700 return (nread);
1701 }
1702
1703 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1704 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1705 allocated buffer containing the string, which the caller is responsible to
1706 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1707 success, or errno on failure.
1708
1709 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1710 the middle or end of the string). If LEN is -1, stops at the first
1711 null character (not necessarily the first null byte) up to a maximum
1712 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1713 characters as possible from the string.
1714
1715 Unless an exception is thrown, BUFFER will always be allocated, even on
1716 failure. In this case, some characters might have been read before the
1717 failure happened. Check BYTES_READ to recognize this situation.
1718
1719 Note: There was a FIXME asking to make this code use target_read_string,
1720 but this function is more general (can read past null characters, up to
1721 given LEN). Besides, it is used much more often than target_read_string
1722 so it is more tested. Perhaps callers of target_read_string should use
1723 this function instead? */
1724
1725 int
1726 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1727 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1728 {
1729 int found_nul; /* Non-zero if we found the nul char. */
1730 int errcode; /* Errno returned from bad reads. */
1731 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1732 unsigned int chunksize; /* Size of each fetch, in chars. */
1733 gdb_byte *bufptr; /* Pointer to next available byte in
1734 buffer. */
1735 gdb_byte *limit; /* First location past end of fetch buffer. */
1736 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1737
1738 /* Decide how large of chunks to try to read in one operation. This
1739 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1740 so we might as well read them all in one operation. If LEN is -1, we
1741 are looking for a NUL terminator to end the fetching, so we might as
1742 well read in blocks that are large enough to be efficient, but not so
1743 large as to be slow if fetchlimit happens to be large. So we choose the
1744 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1745 200 is way too big for remote debugging over a serial line. */
1746
1747 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1748
1749 /* Loop until we either have all the characters, or we encounter
1750 some error, such as bumping into the end of the address space. */
1751
1752 found_nul = 0;
1753 *buffer = NULL;
1754
1755 old_chain = make_cleanup (free_current_contents, buffer);
1756
1757 if (len > 0)
1758 {
1759 *buffer = (gdb_byte *) xmalloc (len * width);
1760 bufptr = *buffer;
1761
1762 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1763 / width;
1764 addr += nfetch * width;
1765 bufptr += nfetch * width;
1766 }
1767 else if (len == -1)
1768 {
1769 unsigned long bufsize = 0;
1770
1771 do
1772 {
1773 QUIT;
1774 nfetch = min (chunksize, fetchlimit - bufsize);
1775
1776 if (*buffer == NULL)
1777 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1778 else
1779 *buffer = (gdb_byte *) xrealloc (*buffer,
1780 (nfetch + bufsize) * width);
1781
1782 bufptr = *buffer + bufsize * width;
1783 bufsize += nfetch;
1784
1785 /* Read as much as we can. */
1786 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1787 / width;
1788
1789 /* Scan this chunk for the null character that terminates the string
1790 to print. If found, we don't need to fetch any more. Note
1791 that bufptr is explicitly left pointing at the next character
1792 after the null character, or at the next character after the end
1793 of the buffer. */
1794
1795 limit = bufptr + nfetch * width;
1796 while (bufptr < limit)
1797 {
1798 unsigned long c;
1799
1800 c = extract_unsigned_integer (bufptr, width, byte_order);
1801 addr += width;
1802 bufptr += width;
1803 if (c == 0)
1804 {
1805 /* We don't care about any error which happened after
1806 the NUL terminator. */
1807 errcode = 0;
1808 found_nul = 1;
1809 break;
1810 }
1811 }
1812 }
1813 while (errcode == 0 /* no error */
1814 && bufptr - *buffer < fetchlimit * width /* no overrun */
1815 && !found_nul); /* haven't found NUL yet */
1816 }
1817 else
1818 { /* Length of string is really 0! */
1819 /* We always allocate *buffer. */
1820 *buffer = bufptr = xmalloc (1);
1821 errcode = 0;
1822 }
1823
1824 /* bufptr and addr now point immediately beyond the last byte which we
1825 consider part of the string (including a '\0' which ends the string). */
1826 *bytes_read = bufptr - *buffer;
1827
1828 QUIT;
1829
1830 discard_cleanups (old_chain);
1831
1832 return errcode;
1833 }
1834
1835 /* Return true if print_wchar can display W without resorting to a
1836 numeric escape, false otherwise. */
1837
1838 static int
1839 wchar_printable (gdb_wchar_t w)
1840 {
1841 return (gdb_iswprint (w)
1842 || w == LCST ('\a') || w == LCST ('\b')
1843 || w == LCST ('\f') || w == LCST ('\n')
1844 || w == LCST ('\r') || w == LCST ('\t')
1845 || w == LCST ('\v'));
1846 }
1847
1848 /* A helper function that converts the contents of STRING to wide
1849 characters and then appends them to OUTPUT. */
1850
1851 static void
1852 append_string_as_wide (const char *string,
1853 struct obstack *output)
1854 {
1855 for (; *string; ++string)
1856 {
1857 gdb_wchar_t w = gdb_btowc (*string);
1858 obstack_grow (output, &w, sizeof (gdb_wchar_t));
1859 }
1860 }
1861
1862 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
1863 original (target) bytes representing the character, ORIG_LEN is the
1864 number of valid bytes. WIDTH is the number of bytes in a base
1865 characters of the type. OUTPUT is an obstack to which wide
1866 characters are emitted. QUOTER is a (narrow) character indicating
1867 the style of quotes surrounding the character to be printed.
1868 NEED_ESCAPE is an in/out flag which is used to track numeric
1869 escapes across calls. */
1870
1871 static void
1872 print_wchar (gdb_wint_t w, const gdb_byte *orig,
1873 int orig_len, int width,
1874 enum bfd_endian byte_order,
1875 struct obstack *output,
1876 int quoter, int *need_escapep)
1877 {
1878 int need_escape = *need_escapep;
1879
1880 *need_escapep = 0;
1881 if (gdb_iswprint (w) && (!need_escape || (!gdb_iswdigit (w)
1882 && w != LCST ('8')
1883 && w != LCST ('9'))))
1884 {
1885 gdb_wchar_t wchar = w;
1886
1887 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
1888 obstack_grow_wstr (output, LCST ("\\"));
1889 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
1890 }
1891 else
1892 {
1893 switch (w)
1894 {
1895 case LCST ('\a'):
1896 obstack_grow_wstr (output, LCST ("\\a"));
1897 break;
1898 case LCST ('\b'):
1899 obstack_grow_wstr (output, LCST ("\\b"));
1900 break;
1901 case LCST ('\f'):
1902 obstack_grow_wstr (output, LCST ("\\f"));
1903 break;
1904 case LCST ('\n'):
1905 obstack_grow_wstr (output, LCST ("\\n"));
1906 break;
1907 case LCST ('\r'):
1908 obstack_grow_wstr (output, LCST ("\\r"));
1909 break;
1910 case LCST ('\t'):
1911 obstack_grow_wstr (output, LCST ("\\t"));
1912 break;
1913 case LCST ('\v'):
1914 obstack_grow_wstr (output, LCST ("\\v"));
1915 break;
1916 default:
1917 {
1918 int i;
1919
1920 for (i = 0; i + width <= orig_len; i += width)
1921 {
1922 char octal[30];
1923 ULONGEST value;
1924
1925 value = extract_unsigned_integer (&orig[i], width,
1926 byte_order);
1927 /* If the value fits in 3 octal digits, print it that
1928 way. Otherwise, print it as a hex escape. */
1929 if (value <= 0777)
1930 sprintf (octal, "\\%.3o", (int) (value & 0777));
1931 else
1932 sprintf (octal, "\\x%lx", (long) value);
1933 append_string_as_wide (octal, output);
1934 }
1935 /* If we somehow have extra bytes, print them now. */
1936 while (i < orig_len)
1937 {
1938 char octal[5];
1939
1940 sprintf (octal, "\\%.3o", orig[i] & 0xff);
1941 append_string_as_wide (octal, output);
1942 ++i;
1943 }
1944
1945 *need_escapep = 1;
1946 }
1947 break;
1948 }
1949 }
1950 }
1951
1952 /* Print the character C on STREAM as part of the contents of a
1953 literal string whose delimiter is QUOTER. ENCODING names the
1954 encoding of C. */
1955
1956 void
1957 generic_emit_char (int c, struct type *type, struct ui_file *stream,
1958 int quoter, const char *encoding)
1959 {
1960 enum bfd_endian byte_order
1961 = gdbarch_byte_order (get_type_arch (type));
1962 struct obstack wchar_buf, output;
1963 struct cleanup *cleanups;
1964 gdb_byte *buf;
1965 struct wchar_iterator *iter;
1966 int need_escape = 0;
1967
1968 buf = alloca (TYPE_LENGTH (type));
1969 pack_long (buf, type, c);
1970
1971 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
1972 encoding, TYPE_LENGTH (type));
1973 cleanups = make_cleanup_wchar_iterator (iter);
1974
1975 /* This holds the printable form of the wchar_t data. */
1976 obstack_init (&wchar_buf);
1977 make_cleanup_obstack_free (&wchar_buf);
1978
1979 while (1)
1980 {
1981 int num_chars;
1982 gdb_wchar_t *chars;
1983 const gdb_byte *buf;
1984 size_t buflen;
1985 int print_escape = 1;
1986 enum wchar_iterate_result result;
1987
1988 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
1989 if (num_chars < 0)
1990 break;
1991 if (num_chars > 0)
1992 {
1993 /* If all characters are printable, print them. Otherwise,
1994 we're going to have to print an escape sequence. We
1995 check all characters because we want to print the target
1996 bytes in the escape sequence, and we don't know character
1997 boundaries there. */
1998 int i;
1999
2000 print_escape = 0;
2001 for (i = 0; i < num_chars; ++i)
2002 if (!wchar_printable (chars[i]))
2003 {
2004 print_escape = 1;
2005 break;
2006 }
2007
2008 if (!print_escape)
2009 {
2010 for (i = 0; i < num_chars; ++i)
2011 print_wchar (chars[i], buf, buflen,
2012 TYPE_LENGTH (type), byte_order,
2013 &wchar_buf, quoter, &need_escape);
2014 }
2015 }
2016
2017 /* This handles the NUM_CHARS == 0 case as well. */
2018 if (print_escape)
2019 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2020 byte_order, &wchar_buf, quoter, &need_escape);
2021 }
2022
2023 /* The output in the host encoding. */
2024 obstack_init (&output);
2025 make_cleanup_obstack_free (&output);
2026
2027 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2028 obstack_base (&wchar_buf),
2029 obstack_object_size (&wchar_buf),
2030 1, &output, translit_char);
2031 obstack_1grow (&output, '\0');
2032
2033 fputs_filtered (obstack_base (&output), stream);
2034
2035 do_cleanups (cleanups);
2036 }
2037
2038 /* Print the character string STRING, printing at most LENGTH
2039 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2040 the type of each character. OPTIONS holds the printing options;
2041 printing stops early if the number hits print_max; repeat counts
2042 are printed as appropriate. Print ellipses at the end if we had to
2043 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2044 QUOTE_CHAR is the character to print at each end of the string. If
2045 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2046 omitted. */
2047
2048 void
2049 generic_printstr (struct ui_file *stream, struct type *type,
2050 const gdb_byte *string, unsigned int length,
2051 const char *encoding, int force_ellipses,
2052 int quote_char, int c_style_terminator,
2053 const struct value_print_options *options)
2054 {
2055 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2056 unsigned int i;
2057 unsigned int things_printed = 0;
2058 int in_quotes = 0;
2059 int need_comma = 0;
2060 int width = TYPE_LENGTH (type);
2061 struct obstack wchar_buf, output;
2062 struct cleanup *cleanup;
2063 struct wchar_iterator *iter;
2064 int finished = 0;
2065 int need_escape = 0;
2066 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2067
2068 if (length == -1)
2069 {
2070 unsigned long current_char = 1;
2071
2072 for (i = 0; current_char; ++i)
2073 {
2074 QUIT;
2075 current_char = extract_unsigned_integer (string + i * width,
2076 width, byte_order);
2077 }
2078 length = i;
2079 }
2080
2081 /* If the string was not truncated due to `set print elements', and
2082 the last byte of it is a null, we don't print that, in
2083 traditional C style. */
2084 if (c_style_terminator
2085 && !force_ellipses
2086 && length > 0
2087 && (extract_unsigned_integer (string + (length - 1) * width,
2088 width, byte_order) == 0))
2089 length--;
2090
2091 if (length == 0)
2092 {
2093 fputs_filtered ("\"\"", stream);
2094 return;
2095 }
2096
2097 /* Arrange to iterate over the characters, in wchar_t form. */
2098 iter = make_wchar_iterator (string, length * width, encoding, width);
2099 cleanup = make_cleanup_wchar_iterator (iter);
2100
2101 /* WCHAR_BUF is the obstack we use to represent the string in
2102 wchar_t form. */
2103 obstack_init (&wchar_buf);
2104 make_cleanup_obstack_free (&wchar_buf);
2105
2106 while (!finished && things_printed < options->print_max)
2107 {
2108 int num_chars;
2109 enum wchar_iterate_result result;
2110 gdb_wchar_t *chars;
2111 const gdb_byte *buf;
2112 size_t buflen;
2113
2114 QUIT;
2115
2116 if (need_comma)
2117 {
2118 obstack_grow_wstr (&wchar_buf, LCST (", "));
2119 need_comma = 0;
2120 }
2121
2122 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2123 /* We only look at repetitions when we were able to convert a
2124 single character in isolation. This makes the code simpler
2125 and probably does the sensible thing in the majority of
2126 cases. */
2127 while (num_chars == 1 && things_printed < options->print_max)
2128 {
2129 /* Count the number of repetitions. */
2130 unsigned int reps = 0;
2131 gdb_wchar_t current_char = chars[0];
2132 const gdb_byte *orig_buf = buf;
2133 int orig_len = buflen;
2134
2135 if (need_comma)
2136 {
2137 obstack_grow_wstr (&wchar_buf, LCST (", "));
2138 need_comma = 0;
2139 }
2140
2141 while (num_chars == 1 && current_char == chars[0])
2142 {
2143 num_chars = wchar_iterate (iter, &result, &chars,
2144 &buf, &buflen);
2145 ++reps;
2146 }
2147
2148 /* Emit CURRENT_CHAR according to the repetition count and
2149 options. */
2150 if (reps > options->repeat_count_threshold)
2151 {
2152 if (in_quotes)
2153 {
2154 if (options->inspect_it)
2155 obstack_grow_wstr (&wchar_buf, LCST ("\\"));
2156 obstack_grow (&wchar_buf, &wide_quote_char,
2157 sizeof (gdb_wchar_t));
2158 obstack_grow_wstr (&wchar_buf, LCST (", "));
2159 in_quotes = 0;
2160 }
2161 obstack_grow_wstr (&wchar_buf, LCST ("'"));
2162 need_escape = 0;
2163 print_wchar (current_char, orig_buf, orig_len, width,
2164 byte_order, &wchar_buf, '\'', &need_escape);
2165 obstack_grow_wstr (&wchar_buf, LCST ("'"));
2166 {
2167 /* Painful gyrations. */
2168 int j;
2169 char *s = xstrprintf (_(" <repeats %u times>"), reps);
2170
2171 for (j = 0; s[j]; ++j)
2172 {
2173 gdb_wchar_t w = gdb_btowc (s[j]);
2174 obstack_grow (&wchar_buf, &w, sizeof (gdb_wchar_t));
2175 }
2176 xfree (s);
2177 }
2178 things_printed += options->repeat_count_threshold;
2179 need_comma = 1;
2180 }
2181 else
2182 {
2183 /* Saw the character one or more times, but fewer than
2184 the repetition threshold. */
2185 if (!in_quotes)
2186 {
2187 if (options->inspect_it)
2188 obstack_grow_wstr (&wchar_buf, LCST ("\\"));
2189 obstack_grow (&wchar_buf, &wide_quote_char,
2190 sizeof (gdb_wchar_t));
2191 in_quotes = 1;
2192 need_escape = 0;
2193 }
2194
2195 while (reps-- > 0)
2196 {
2197 print_wchar (current_char, orig_buf,
2198 orig_len, width,
2199 byte_order, &wchar_buf,
2200 quote_char, &need_escape);
2201 ++things_printed;
2202 }
2203 }
2204 }
2205
2206 /* NUM_CHARS and the other outputs from wchar_iterate are valid
2207 here regardless of which branch was taken above. */
2208 if (num_chars < 0)
2209 {
2210 /* Hit EOF. */
2211 finished = 1;
2212 break;
2213 }
2214
2215 switch (result)
2216 {
2217 case wchar_iterate_invalid:
2218 if (!in_quotes)
2219 {
2220 if (options->inspect_it)
2221 obstack_grow_wstr (&wchar_buf, LCST ("\\"));
2222 obstack_grow (&wchar_buf, &wide_quote_char,
2223 sizeof (gdb_wchar_t));
2224 in_quotes = 1;
2225 }
2226 need_escape = 0;
2227 print_wchar (gdb_WEOF, buf, buflen, width, byte_order,
2228 &wchar_buf, quote_char, &need_escape);
2229 break;
2230
2231 case wchar_iterate_incomplete:
2232 if (in_quotes)
2233 {
2234 if (options->inspect_it)
2235 obstack_grow_wstr (&wchar_buf, LCST ("\\"));
2236 obstack_grow (&wchar_buf, &wide_quote_char,
2237 sizeof (gdb_wchar_t));
2238 obstack_grow_wstr (&wchar_buf, LCST (","));
2239 in_quotes = 0;
2240 }
2241 obstack_grow_wstr (&wchar_buf,
2242 LCST (" <incomplete sequence "));
2243 print_wchar (gdb_WEOF, buf, buflen, width,
2244 byte_order, &wchar_buf,
2245 0, &need_escape);
2246 obstack_grow_wstr (&wchar_buf, LCST (">"));
2247 finished = 1;
2248 break;
2249 }
2250 }
2251
2252 /* Terminate the quotes if necessary. */
2253 if (in_quotes)
2254 {
2255 if (options->inspect_it)
2256 obstack_grow_wstr (&wchar_buf, LCST ("\\"));
2257 obstack_grow (&wchar_buf, &wide_quote_char,
2258 sizeof (gdb_wchar_t));
2259 }
2260
2261 if (force_ellipses || !finished)
2262 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2263
2264 /* OUTPUT is where we collect `char's for printing. */
2265 obstack_init (&output);
2266 make_cleanup_obstack_free (&output);
2267
2268 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2269 obstack_base (&wchar_buf),
2270 obstack_object_size (&wchar_buf),
2271 1, &output, translit_char);
2272 obstack_1grow (&output, '\0');
2273
2274 fputs_filtered (obstack_base (&output), stream);
2275
2276 do_cleanups (cleanup);
2277 }
2278
2279 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2280 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2281 stops at the first null byte, otherwise printing proceeds (including null
2282 bytes) until either print_max or LEN characters have been printed,
2283 whichever is smaller. ENCODING is the name of the string's
2284 encoding. It can be NULL, in which case the target encoding is
2285 assumed. */
2286
2287 int
2288 val_print_string (struct type *elttype, const char *encoding,
2289 CORE_ADDR addr, int len,
2290 struct ui_file *stream,
2291 const struct value_print_options *options)
2292 {
2293 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2294 int errcode; /* Errno returned from bad reads. */
2295 int found_nul; /* Non-zero if we found the nul char. */
2296 unsigned int fetchlimit; /* Maximum number of chars to print. */
2297 int bytes_read;
2298 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2299 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2300 struct gdbarch *gdbarch = get_type_arch (elttype);
2301 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2302 int width = TYPE_LENGTH (elttype);
2303
2304 /* First we need to figure out the limit on the number of characters we are
2305 going to attempt to fetch and print. This is actually pretty simple. If
2306 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2307 LEN is -1, then the limit is print_max. This is true regardless of
2308 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2309 because finding the null byte (or available memory) is what actually
2310 limits the fetch. */
2311
2312 fetchlimit = (len == -1 ? options->print_max : min (len,
2313 options->print_max));
2314
2315 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2316 &buffer, &bytes_read);
2317 old_chain = make_cleanup (xfree, buffer);
2318
2319 addr += bytes_read;
2320
2321 /* We now have either successfully filled the buffer to fetchlimit,
2322 or terminated early due to an error or finding a null char when
2323 LEN is -1. */
2324
2325 /* Determine found_nul by looking at the last character read. */
2326 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2327 byte_order) == 0;
2328 if (len == -1 && !found_nul)
2329 {
2330 gdb_byte *peekbuf;
2331
2332 /* We didn't find a NUL terminator we were looking for. Attempt
2333 to peek at the next character. If not successful, or it is not
2334 a null byte, then force ellipsis to be printed. */
2335
2336 peekbuf = (gdb_byte *) alloca (width);
2337
2338 if (target_read_memory (addr, peekbuf, width) == 0
2339 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2340 force_ellipsis = 1;
2341 }
2342 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2343 {
2344 /* Getting an error when we have a requested length, or fetching less
2345 than the number of characters actually requested, always make us
2346 print ellipsis. */
2347 force_ellipsis = 1;
2348 }
2349
2350 /* If we get an error before fetching anything, don't print a string.
2351 But if we fetch something and then get an error, print the string
2352 and then the error message. */
2353 if (errcode == 0 || bytes_read > 0)
2354 {
2355 if (options->addressprint)
2356 {
2357 fputs_filtered (" ", stream);
2358 }
2359 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2360 encoding, force_ellipsis, options);
2361 }
2362
2363 if (errcode != 0)
2364 {
2365 if (errcode == EIO)
2366 {
2367 fprintf_filtered (stream, " <Address ");
2368 fputs_filtered (paddress (gdbarch, addr), stream);
2369 fprintf_filtered (stream, " out of bounds>");
2370 }
2371 else
2372 {
2373 fprintf_filtered (stream, " <Error reading address ");
2374 fputs_filtered (paddress (gdbarch, addr), stream);
2375 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
2376 }
2377 }
2378
2379 gdb_flush (stream);
2380 do_cleanups (old_chain);
2381
2382 return (bytes_read / width);
2383 }
2384 \f
2385
2386 /* The 'set input-radix' command writes to this auxiliary variable.
2387 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2388 it is left unchanged. */
2389
2390 static unsigned input_radix_1 = 10;
2391
2392 /* Validate an input or output radix setting, and make sure the user
2393 knows what they really did here. Radix setting is confusing, e.g.
2394 setting the input radix to "10" never changes it! */
2395
2396 static void
2397 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2398 {
2399 set_input_radix_1 (from_tty, input_radix_1);
2400 }
2401
2402 static void
2403 set_input_radix_1 (int from_tty, unsigned radix)
2404 {
2405 /* We don't currently disallow any input radix except 0 or 1, which don't
2406 make any mathematical sense. In theory, we can deal with any input
2407 radix greater than 1, even if we don't have unique digits for every
2408 value from 0 to radix-1, but in practice we lose on large radix values.
2409 We should either fix the lossage or restrict the radix range more.
2410 (FIXME). */
2411
2412 if (radix < 2)
2413 {
2414 input_radix_1 = input_radix;
2415 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2416 radix);
2417 }
2418 input_radix_1 = input_radix = radix;
2419 if (from_tty)
2420 {
2421 printf_filtered (_("Input radix now set to "
2422 "decimal %u, hex %x, octal %o.\n"),
2423 radix, radix, radix);
2424 }
2425 }
2426
2427 /* The 'set output-radix' command writes to this auxiliary variable.
2428 If the requested radix is valid, OUTPUT_RADIX is updated,
2429 otherwise, it is left unchanged. */
2430
2431 static unsigned output_radix_1 = 10;
2432
2433 static void
2434 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2435 {
2436 set_output_radix_1 (from_tty, output_radix_1);
2437 }
2438
2439 static void
2440 set_output_radix_1 (int from_tty, unsigned radix)
2441 {
2442 /* Validate the radix and disallow ones that we aren't prepared to
2443 handle correctly, leaving the radix unchanged. */
2444 switch (radix)
2445 {
2446 case 16:
2447 user_print_options.output_format = 'x'; /* hex */
2448 break;
2449 case 10:
2450 user_print_options.output_format = 0; /* decimal */
2451 break;
2452 case 8:
2453 user_print_options.output_format = 'o'; /* octal */
2454 break;
2455 default:
2456 output_radix_1 = output_radix;
2457 error (_("Unsupported output radix ``decimal %u''; "
2458 "output radix unchanged."),
2459 radix);
2460 }
2461 output_radix_1 = output_radix = radix;
2462 if (from_tty)
2463 {
2464 printf_filtered (_("Output radix now set to "
2465 "decimal %u, hex %x, octal %o.\n"),
2466 radix, radix, radix);
2467 }
2468 }
2469
2470 /* Set both the input and output radix at once. Try to set the output radix
2471 first, since it has the most restrictive range. An radix that is valid as
2472 an output radix is also valid as an input radix.
2473
2474 It may be useful to have an unusual input radix. If the user wishes to
2475 set an input radix that is not valid as an output radix, he needs to use
2476 the 'set input-radix' command. */
2477
2478 static void
2479 set_radix (char *arg, int from_tty)
2480 {
2481 unsigned radix;
2482
2483 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2484 set_output_radix_1 (0, radix);
2485 set_input_radix_1 (0, radix);
2486 if (from_tty)
2487 {
2488 printf_filtered (_("Input and output radices now set to "
2489 "decimal %u, hex %x, octal %o.\n"),
2490 radix, radix, radix);
2491 }
2492 }
2493
2494 /* Show both the input and output radices. */
2495
2496 static void
2497 show_radix (char *arg, int from_tty)
2498 {
2499 if (from_tty)
2500 {
2501 if (input_radix == output_radix)
2502 {
2503 printf_filtered (_("Input and output radices set to "
2504 "decimal %u, hex %x, octal %o.\n"),
2505 input_radix, input_radix, input_radix);
2506 }
2507 else
2508 {
2509 printf_filtered (_("Input radix set to decimal "
2510 "%u, hex %x, octal %o.\n"),
2511 input_radix, input_radix, input_radix);
2512 printf_filtered (_("Output radix set to decimal "
2513 "%u, hex %x, octal %o.\n"),
2514 output_radix, output_radix, output_radix);
2515 }
2516 }
2517 }
2518 \f
2519
2520 static void
2521 set_print (char *arg, int from_tty)
2522 {
2523 printf_unfiltered (
2524 "\"set print\" must be followed by the name of a print subcommand.\n");
2525 help_list (setprintlist, "set print ", -1, gdb_stdout);
2526 }
2527
2528 static void
2529 show_print (char *args, int from_tty)
2530 {
2531 cmd_show_list (showprintlist, from_tty, "");
2532 }
2533 \f
2534 void
2535 _initialize_valprint (void)
2536 {
2537 add_prefix_cmd ("print", no_class, set_print,
2538 _("Generic command for setting how things print."),
2539 &setprintlist, "set print ", 0, &setlist);
2540 add_alias_cmd ("p", "print", no_class, 1, &setlist);
2541 /* Prefer set print to set prompt. */
2542 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2543
2544 add_prefix_cmd ("print", no_class, show_print,
2545 _("Generic command for showing print settings."),
2546 &showprintlist, "show print ", 0, &showlist);
2547 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2548 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2549
2550 add_setshow_uinteger_cmd ("elements", no_class,
2551 &user_print_options.print_max, _("\
2552 Set limit on string chars or array elements to print."), _("\
2553 Show limit on string chars or array elements to print."), _("\
2554 \"set print elements 0\" causes there to be no limit."),
2555 NULL,
2556 show_print_max,
2557 &setprintlist, &showprintlist);
2558
2559 add_setshow_boolean_cmd ("null-stop", no_class,
2560 &user_print_options.stop_print_at_null, _("\
2561 Set printing of char arrays to stop at first null char."), _("\
2562 Show printing of char arrays to stop at first null char."), NULL,
2563 NULL,
2564 show_stop_print_at_null,
2565 &setprintlist, &showprintlist);
2566
2567 add_setshow_uinteger_cmd ("repeats", no_class,
2568 &user_print_options.repeat_count_threshold, _("\
2569 Set threshold for repeated print elements."), _("\
2570 Show threshold for repeated print elements."), _("\
2571 \"set print repeats 0\" causes all elements to be individually printed."),
2572 NULL,
2573 show_repeat_count_threshold,
2574 &setprintlist, &showprintlist);
2575
2576 add_setshow_boolean_cmd ("pretty", class_support,
2577 &user_print_options.prettyprint_structs, _("\
2578 Set prettyprinting of structures."), _("\
2579 Show prettyprinting of structures."), NULL,
2580 NULL,
2581 show_prettyprint_structs,
2582 &setprintlist, &showprintlist);
2583
2584 add_setshow_boolean_cmd ("union", class_support,
2585 &user_print_options.unionprint, _("\
2586 Set printing of unions interior to structures."), _("\
2587 Show printing of unions interior to structures."), NULL,
2588 NULL,
2589 show_unionprint,
2590 &setprintlist, &showprintlist);
2591
2592 add_setshow_boolean_cmd ("array", class_support,
2593 &user_print_options.prettyprint_arrays, _("\
2594 Set prettyprinting of arrays."), _("\
2595 Show prettyprinting of arrays."), NULL,
2596 NULL,
2597 show_prettyprint_arrays,
2598 &setprintlist, &showprintlist);
2599
2600 add_setshow_boolean_cmd ("address", class_support,
2601 &user_print_options.addressprint, _("\
2602 Set printing of addresses."), _("\
2603 Show printing of addresses."), NULL,
2604 NULL,
2605 show_addressprint,
2606 &setprintlist, &showprintlist);
2607
2608 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2609 _("\
2610 Set default input radix for entering numbers."), _("\
2611 Show default input radix for entering numbers."), NULL,
2612 set_input_radix,
2613 show_input_radix,
2614 &setlist, &showlist);
2615
2616 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2617 _("\
2618 Set default output radix for printing of values."), _("\
2619 Show default output radix for printing of values."), NULL,
2620 set_output_radix,
2621 show_output_radix,
2622 &setlist, &showlist);
2623
2624 /* The "set radix" and "show radix" commands are special in that
2625 they are like normal set and show commands but allow two normally
2626 independent variables to be either set or shown with a single
2627 command. So the usual deprecated_add_set_cmd() and [deleted]
2628 add_show_from_set() commands aren't really appropriate. */
2629 /* FIXME: i18n: With the new add_setshow_integer command, that is no
2630 longer true - show can display anything. */
2631 add_cmd ("radix", class_support, set_radix, _("\
2632 Set default input and output number radices.\n\
2633 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2634 Without an argument, sets both radices back to the default value of 10."),
2635 &setlist);
2636 add_cmd ("radix", class_support, show_radix, _("\
2637 Show the default input and output number radices.\n\
2638 Use 'show input-radix' or 'show output-radix' to independently show each."),
2639 &showlist);
2640
2641 add_setshow_boolean_cmd ("array-indexes", class_support,
2642 &user_print_options.print_array_indexes, _("\
2643 Set printing of array indexes."), _("\
2644 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2645 &setprintlist, &showprintlist);
2646 }
This page took 0.086925 seconds and 5 git commands to generate.