gdb: Convert la_struct_too_deep_ellipsis to a method
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43 #include "c-lang.h"
44 #include "cp-abi.h"
45
46 /* Maximum number of wchars returned from wchar_iterate. */
47 #define MAX_WCHARS 4
48
49 /* A convenience macro to compute the size of a wchar_t buffer containing X
50 characters. */
51 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
52
53 /* Character buffer size saved while iterating over wchars. */
54 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
55
56 /* A structure to encapsulate state information from iterated
57 character conversions. */
58 struct converted_character
59 {
60 /* The number of characters converted. */
61 int num_chars;
62
63 /* The result of the conversion. See charset.h for more. */
64 enum wchar_iterate_result result;
65
66 /* The (saved) converted character(s). */
67 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
68
69 /* The first converted target byte. */
70 const gdb_byte *buf;
71
72 /* The number of bytes converted. */
73 size_t buflen;
74
75 /* How many times this character(s) is repeated. */
76 int repeat_count;
77 };
78
79 /* Command lists for set/show print raw. */
80 struct cmd_list_element *setprintrawlist;
81 struct cmd_list_element *showprintrawlist;
82
83 /* Prototypes for local functions */
84
85 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
86 int len, int *errptr);
87
88 static void set_input_radix_1 (int, unsigned);
89
90 static void set_output_radix_1 (int, unsigned);
91
92 static void val_print_type_code_flags (struct type *type,
93 struct value *original_value,
94 int embedded_offset,
95 struct ui_file *stream);
96
97 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
98 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
99
100 struct value_print_options user_print_options =
101 {
102 Val_prettyformat_default, /* prettyformat */
103 0, /* prettyformat_arrays */
104 0, /* prettyformat_structs */
105 0, /* vtblprint */
106 1, /* unionprint */
107 1, /* addressprint */
108 0, /* objectprint */
109 PRINT_MAX_DEFAULT, /* print_max */
110 10, /* repeat_count_threshold */
111 0, /* output_format */
112 0, /* format */
113 0, /* stop_print_at_null */
114 0, /* print_array_indexes */
115 0, /* deref_ref */
116 1, /* static_field_print */
117 1, /* pascal_static_field_print */
118 0, /* raw */
119 0, /* summary */
120 1, /* symbol_print */
121 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
122 1 /* finish_print */
123 };
124
125 /* Initialize *OPTS to be a copy of the user print options. */
126 void
127 get_user_print_options (struct value_print_options *opts)
128 {
129 *opts = user_print_options;
130 }
131
132 /* Initialize *OPTS to be a copy of the user print options, but with
133 pretty-formatting disabled. */
134 void
135 get_no_prettyformat_print_options (struct value_print_options *opts)
136 {
137 *opts = user_print_options;
138 opts->prettyformat = Val_no_prettyformat;
139 }
140
141 /* Initialize *OPTS to be a copy of the user print options, but using
142 FORMAT as the formatting option. */
143 void
144 get_formatted_print_options (struct value_print_options *opts,
145 char format)
146 {
147 *opts = user_print_options;
148 opts->format = format;
149 }
150
151 static void
152 show_print_max (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file,
156 _("Limit on string chars or array "
157 "elements to print is %s.\n"),
158 value);
159 }
160
161
162 /* Default input and output radixes, and output format letter. */
163
164 unsigned input_radix = 10;
165 static void
166 show_input_radix (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file,
170 _("Default input radix for entering numbers is %s.\n"),
171 value);
172 }
173
174 unsigned output_radix = 10;
175 static void
176 show_output_radix (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file,
180 _("Default output radix for printing of values is %s.\n"),
181 value);
182 }
183
184 /* By default we print arrays without printing the index of each element in
185 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
186
187 static void
188 show_print_array_indexes (struct ui_file *file, int from_tty,
189 struct cmd_list_element *c, const char *value)
190 {
191 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
192 }
193
194 /* Print repeat counts if there are more than this many repetitions of an
195 element in an array. Referenced by the low level language dependent
196 print routines. */
197
198 static void
199 show_repeat_count_threshold (struct ui_file *file, int from_tty,
200 struct cmd_list_element *c, const char *value)
201 {
202 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
203 value);
204 }
205
206 /* If nonzero, stops printing of char arrays at first null. */
207
208 static void
209 show_stop_print_at_null (struct ui_file *file, int from_tty,
210 struct cmd_list_element *c, const char *value)
211 {
212 fprintf_filtered (file,
213 _("Printing of char arrays to stop "
214 "at first null char is %s.\n"),
215 value);
216 }
217
218 /* Controls pretty printing of structures. */
219
220 static void
221 show_prettyformat_structs (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
225 }
226
227 /* Controls pretty printing of arrays. */
228
229 static void
230 show_prettyformat_arrays (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
234 }
235
236 /* If nonzero, causes unions inside structures or other unions to be
237 printed. */
238
239 static void
240 show_unionprint (struct ui_file *file, int from_tty,
241 struct cmd_list_element *c, const char *value)
242 {
243 fprintf_filtered (file,
244 _("Printing of unions interior to structures is %s.\n"),
245 value);
246 }
247
248 /* If nonzero, causes machine addresses to be printed in certain contexts. */
249
250 static void
251 show_addressprint (struct ui_file *file, int from_tty,
252 struct cmd_list_element *c, const char *value)
253 {
254 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
255 }
256
257 static void
258 show_symbol_print (struct ui_file *file, int from_tty,
259 struct cmd_list_element *c, const char *value)
260 {
261 fprintf_filtered (file,
262 _("Printing of symbols when printing pointers is %s.\n"),
263 value);
264 }
265
266 \f
267
268 /* A helper function for val_print. When printing in "summary" mode,
269 we want to print scalar arguments, but not aggregate arguments.
270 This function distinguishes between the two. */
271
272 int
273 val_print_scalar_type_p (struct type *type)
274 {
275 type = check_typedef (type);
276 while (TYPE_IS_REFERENCE (type))
277 {
278 type = TYPE_TARGET_TYPE (type);
279 type = check_typedef (type);
280 }
281 switch (type->code ())
282 {
283 case TYPE_CODE_ARRAY:
284 case TYPE_CODE_STRUCT:
285 case TYPE_CODE_UNION:
286 case TYPE_CODE_SET:
287 case TYPE_CODE_STRING:
288 return 0;
289 default:
290 return 1;
291 }
292 }
293
294 /* A helper function for val_print. When printing with limited depth we
295 want to print string and scalar arguments, but not aggregate arguments.
296 This function distinguishes between the two. */
297
298 static bool
299 val_print_scalar_or_string_type_p (struct type *type,
300 const struct language_defn *language)
301 {
302 return (val_print_scalar_type_p (type)
303 || language->is_string_type_p (type));
304 }
305
306 /* See valprint.h. */
307
308 int
309 valprint_check_validity (struct ui_file *stream,
310 struct type *type,
311 LONGEST embedded_offset,
312 const struct value *val)
313 {
314 type = check_typedef (type);
315
316 if (type_not_associated (type))
317 {
318 val_print_not_associated (stream);
319 return 0;
320 }
321
322 if (type_not_allocated (type))
323 {
324 val_print_not_allocated (stream);
325 return 0;
326 }
327
328 if (type->code () != TYPE_CODE_UNION
329 && type->code () != TYPE_CODE_STRUCT
330 && type->code () != TYPE_CODE_ARRAY)
331 {
332 if (value_bits_any_optimized_out (val,
333 TARGET_CHAR_BIT * embedded_offset,
334 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
335 {
336 val_print_optimized_out (val, stream);
337 return 0;
338 }
339
340 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
341 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
342 {
343 const int is_ref = type->code () == TYPE_CODE_REF;
344 int ref_is_addressable = 0;
345
346 if (is_ref)
347 {
348 const struct value *deref_val = coerce_ref_if_computed (val);
349
350 if (deref_val != NULL)
351 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
352 }
353
354 if (!is_ref || !ref_is_addressable)
355 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
356 stream);
357
358 /* C++ references should be valid even if they're synthetic. */
359 return is_ref;
360 }
361
362 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
363 {
364 val_print_unavailable (stream);
365 return 0;
366 }
367 }
368
369 return 1;
370 }
371
372 void
373 val_print_optimized_out (const struct value *val, struct ui_file *stream)
374 {
375 if (val != NULL && value_lval_const (val) == lval_register)
376 val_print_not_saved (stream);
377 else
378 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
379 }
380
381 void
382 val_print_not_saved (struct ui_file *stream)
383 {
384 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
385 }
386
387 void
388 val_print_unavailable (struct ui_file *stream)
389 {
390 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
391 }
392
393 void
394 val_print_invalid_address (struct ui_file *stream)
395 {
396 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
397 }
398
399 /* Print a pointer based on the type of its target.
400
401 Arguments to this functions are roughly the same as those in
402 generic_val_print. A difference is that ADDRESS is the address to print,
403 with embedded_offset already added. ELTTYPE represents
404 the pointed type after check_typedef. */
405
406 static void
407 print_unpacked_pointer (struct type *type, struct type *elttype,
408 CORE_ADDR address, struct ui_file *stream,
409 const struct value_print_options *options)
410 {
411 struct gdbarch *gdbarch = get_type_arch (type);
412
413 if (elttype->code () == TYPE_CODE_FUNC)
414 {
415 /* Try to print what function it points to. */
416 print_function_pointer_address (options, gdbarch, address, stream);
417 return;
418 }
419
420 if (options->symbol_print)
421 print_address_demangle (options, gdbarch, address, stream, demangle);
422 else if (options->addressprint)
423 fputs_filtered (paddress (gdbarch, address), stream);
424 }
425
426 /* generic_val_print helper for TYPE_CODE_ARRAY. */
427
428 static void
429 generic_val_print_array (struct value *val,
430 struct ui_file *stream, int recurse,
431 const struct value_print_options *options,
432 const struct
433 generic_val_print_decorations *decorations)
434 {
435 struct type *type = check_typedef (value_type (val));
436 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
437 struct type *elttype = check_typedef (unresolved_elttype);
438
439 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
440 {
441 LONGEST low_bound, high_bound;
442
443 if (!get_array_bounds (type, &low_bound, &high_bound))
444 error (_("Could not determine the array high bound"));
445
446 fputs_filtered (decorations->array_start, stream);
447 value_print_array_elements (val, stream, recurse, options, 0);
448 fputs_filtered (decorations->array_end, stream);
449 }
450 else
451 {
452 /* Array of unspecified length: treat like pointer to first elt. */
453 print_unpacked_pointer (type, elttype, value_address (val),
454 stream, options);
455 }
456
457 }
458
459 /* generic_value_print helper for TYPE_CODE_PTR. */
460
461 static void
462 generic_value_print_ptr (struct value *val, struct ui_file *stream,
463 const struct value_print_options *options)
464 {
465
466 if (options->format && options->format != 's')
467 value_print_scalar_formatted (val, options, 0, stream);
468 else
469 {
470 struct type *type = check_typedef (value_type (val));
471 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
472 const gdb_byte *valaddr = value_contents_for_printing (val);
473 CORE_ADDR addr = unpack_pointer (type, valaddr);
474
475 print_unpacked_pointer (type, elttype, addr, stream, options);
476 }
477 }
478
479
480 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
481
482 static void
483 print_ref_address (struct type *type, const gdb_byte *address_buffer,
484 int embedded_offset, struct ui_file *stream)
485 {
486 struct gdbarch *gdbarch = get_type_arch (type);
487
488 if (address_buffer != NULL)
489 {
490 CORE_ADDR address
491 = extract_typed_address (address_buffer + embedded_offset, type);
492
493 fprintf_filtered (stream, "@");
494 fputs_filtered (paddress (gdbarch, address), stream);
495 }
496 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
497 }
498
499 /* If VAL is addressable, return the value contents buffer of a value that
500 represents a pointer to VAL. Otherwise return NULL. */
501
502 static const gdb_byte *
503 get_value_addr_contents (struct value *deref_val)
504 {
505 gdb_assert (deref_val != NULL);
506
507 if (value_lval_const (deref_val) == lval_memory)
508 return value_contents_for_printing_const (value_addr (deref_val));
509 else
510 {
511 /* We have a non-addressable value, such as a DW_AT_const_value. */
512 return NULL;
513 }
514 }
515
516 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
517
518 static void
519 generic_val_print_ref (struct type *type,
520 int embedded_offset, struct ui_file *stream, int recurse,
521 struct value *original_value,
522 const struct value_print_options *options)
523 {
524 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
525 struct value *deref_val = NULL;
526 const int value_is_synthetic
527 = value_bits_synthetic_pointer (original_value,
528 TARGET_CHAR_BIT * embedded_offset,
529 TARGET_CHAR_BIT * TYPE_LENGTH (type));
530 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
531 || options->deref_ref);
532 const int type_is_defined = elttype->code () != TYPE_CODE_UNDEF;
533 const gdb_byte *valaddr = value_contents_for_printing (original_value);
534
535 if (must_coerce_ref && type_is_defined)
536 {
537 deref_val = coerce_ref_if_computed (original_value);
538
539 if (deref_val != NULL)
540 {
541 /* More complicated computed references are not supported. */
542 gdb_assert (embedded_offset == 0);
543 }
544 else
545 deref_val = value_at (TYPE_TARGET_TYPE (type),
546 unpack_pointer (type, valaddr + embedded_offset));
547 }
548 /* Else, original_value isn't a synthetic reference or we don't have to print
549 the reference's contents.
550
551 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
552 cause original_value to be a not_lval instead of an lval_computed,
553 which will make value_bits_synthetic_pointer return false.
554 This happens because if options->objectprint is true, c_value_print will
555 overwrite original_value's contents with the result of coercing
556 the reference through value_addr, and then set its type back to
557 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
558 we can simply treat it as non-synthetic and move on. */
559
560 if (options->addressprint)
561 {
562 const gdb_byte *address = (value_is_synthetic && type_is_defined
563 ? get_value_addr_contents (deref_val)
564 : valaddr);
565
566 print_ref_address (type, address, embedded_offset, stream);
567
568 if (options->deref_ref)
569 fputs_filtered (": ", stream);
570 }
571
572 if (options->deref_ref)
573 {
574 if (type_is_defined)
575 common_val_print (deref_val, stream, recurse, options,
576 current_language);
577 else
578 fputs_filtered ("???", stream);
579 }
580 }
581
582 /* Helper function for generic_val_print_enum.
583 This is also used to print enums in TYPE_CODE_FLAGS values. */
584
585 static void
586 generic_val_print_enum_1 (struct type *type, LONGEST val,
587 struct ui_file *stream)
588 {
589 unsigned int i;
590 unsigned int len;
591
592 len = type->num_fields ();
593 for (i = 0; i < len; i++)
594 {
595 QUIT;
596 if (val == TYPE_FIELD_ENUMVAL (type, i))
597 {
598 break;
599 }
600 }
601 if (i < len)
602 {
603 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
604 stream);
605 }
606 else if (TYPE_FLAG_ENUM (type))
607 {
608 int first = 1;
609
610 /* We have a "flag" enum, so we try to decompose it into pieces as
611 appropriate. The enum may have multiple enumerators representing
612 the same bit, in which case we choose to only print the first one
613 we find. */
614 for (i = 0; i < len; ++i)
615 {
616 QUIT;
617
618 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
619 int nbits = count_one_bits_ll (enumval);
620
621 gdb_assert (nbits == 0 || nbits == 1);
622
623 if ((val & enumval) != 0)
624 {
625 if (first)
626 {
627 fputs_filtered ("(", stream);
628 first = 0;
629 }
630 else
631 fputs_filtered (" | ", stream);
632
633 val &= ~TYPE_FIELD_ENUMVAL (type, i);
634 fputs_styled (TYPE_FIELD_NAME (type, i),
635 variable_name_style.style (), stream);
636 }
637 }
638
639 if (val != 0)
640 {
641 /* There are leftover bits, print them. */
642 if (first)
643 fputs_filtered ("(", stream);
644 else
645 fputs_filtered (" | ", stream);
646
647 fputs_filtered ("unknown: 0x", stream);
648 print_longest (stream, 'x', 0, val);
649 fputs_filtered (")", stream);
650 }
651 else if (first)
652 {
653 /* Nothing has been printed and the value is 0, the enum value must
654 have been 0. */
655 fputs_filtered ("0", stream);
656 }
657 else
658 {
659 /* Something has been printed, close the parenthesis. */
660 fputs_filtered (")", stream);
661 }
662 }
663 else
664 print_longest (stream, 'd', 0, val);
665 }
666
667 /* generic_val_print helper for TYPE_CODE_ENUM. */
668
669 static void
670 generic_val_print_enum (struct type *type,
671 int embedded_offset, struct ui_file *stream,
672 struct value *original_value,
673 const struct value_print_options *options)
674 {
675 LONGEST val;
676 struct gdbarch *gdbarch = get_type_arch (type);
677 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
678
679 gdb_assert (!options->format);
680
681 const gdb_byte *valaddr = value_contents_for_printing (original_value);
682
683 val = unpack_long (type, valaddr + embedded_offset * unit_size);
684
685 generic_val_print_enum_1 (type, val, stream);
686 }
687
688 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
689
690 static void
691 generic_val_print_func (struct type *type,
692 int embedded_offset, CORE_ADDR address,
693 struct ui_file *stream,
694 struct value *original_value,
695 const struct value_print_options *options)
696 {
697 struct gdbarch *gdbarch = get_type_arch (type);
698
699 gdb_assert (!options->format);
700
701 /* FIXME, we should consider, at least for ANSI C language,
702 eliminating the distinction made between FUNCs and POINTERs to
703 FUNCs. */
704 fprintf_filtered (stream, "{");
705 type_print (type, "", stream, -1);
706 fprintf_filtered (stream, "} ");
707 /* Try to print what function it points to, and its address. */
708 print_address_demangle (options, gdbarch, address, stream, demangle);
709 }
710
711 /* generic_value_print helper for TYPE_CODE_BOOL. */
712
713 static void
714 generic_value_print_bool
715 (struct value *value, struct ui_file *stream,
716 const struct value_print_options *options,
717 const struct generic_val_print_decorations *decorations)
718 {
719 if (options->format || options->output_format)
720 {
721 struct value_print_options opts = *options;
722 opts.format = (options->format ? options->format
723 : options->output_format);
724 value_print_scalar_formatted (value, &opts, 0, stream);
725 }
726 else
727 {
728 const gdb_byte *valaddr = value_contents_for_printing (value);
729 struct type *type = check_typedef (value_type (value));
730 LONGEST val = unpack_long (type, valaddr);
731 if (val == 0)
732 fputs_filtered (decorations->false_name, stream);
733 else if (val == 1)
734 fputs_filtered (decorations->true_name, stream);
735 else
736 print_longest (stream, 'd', 0, val);
737 }
738 }
739
740 /* generic_value_print helper for TYPE_CODE_INT. */
741
742 static void
743 generic_value_print_int (struct value *val, struct ui_file *stream,
744 const struct value_print_options *options)
745 {
746 struct value_print_options opts = *options;
747
748 opts.format = (options->format ? options->format
749 : options->output_format);
750 value_print_scalar_formatted (val, &opts, 0, stream);
751 }
752
753 /* generic_value_print helper for TYPE_CODE_CHAR. */
754
755 static void
756 generic_value_print_char (struct value *value, struct ui_file *stream,
757 const struct value_print_options *options)
758 {
759 if (options->format || options->output_format)
760 {
761 struct value_print_options opts = *options;
762
763 opts.format = (options->format ? options->format
764 : options->output_format);
765 value_print_scalar_formatted (value, &opts, 0, stream);
766 }
767 else
768 {
769 struct type *unresolved_type = value_type (value);
770 struct type *type = check_typedef (unresolved_type);
771 const gdb_byte *valaddr = value_contents_for_printing (value);
772
773 LONGEST val = unpack_long (type, valaddr);
774 if (type->is_unsigned ())
775 fprintf_filtered (stream, "%u", (unsigned int) val);
776 else
777 fprintf_filtered (stream, "%d", (int) val);
778 fputs_filtered (" ", stream);
779 LA_PRINT_CHAR (val, unresolved_type, stream);
780 }
781 }
782
783 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
784
785 static void
786 generic_val_print_float (struct type *type, struct ui_file *stream,
787 struct value *original_value,
788 const struct value_print_options *options)
789 {
790 gdb_assert (!options->format);
791
792 const gdb_byte *valaddr = value_contents_for_printing (original_value);
793
794 print_floating (valaddr, type, stream);
795 }
796
797 /* generic_value_print helper for TYPE_CODE_COMPLEX. */
798
799 static void
800 generic_value_print_complex (struct value *val, struct ui_file *stream,
801 const struct value_print_options *options,
802 const struct generic_val_print_decorations
803 *decorations)
804 {
805 fprintf_filtered (stream, "%s", decorations->complex_prefix);
806
807 struct value *real_part = value_real_part (val);
808 value_print_scalar_formatted (real_part, options, 0, stream);
809 fprintf_filtered (stream, "%s", decorations->complex_infix);
810
811 struct value *imag_part = value_imaginary_part (val);
812 value_print_scalar_formatted (imag_part, options, 0, stream);
813 fprintf_filtered (stream, "%s", decorations->complex_suffix);
814 }
815
816 /* generic_value_print helper for TYPE_CODE_MEMBERPTR. */
817
818 static void
819 generic_value_print_memberptr
820 (struct value *val, struct ui_file *stream,
821 int recurse,
822 const struct value_print_options *options,
823 const struct generic_val_print_decorations *decorations)
824 {
825 if (!options->format)
826 {
827 /* Member pointers are essentially specific to C++, and so if we
828 encounter one, we should print it according to C++ rules. */
829 struct type *type = check_typedef (value_type (val));
830 const gdb_byte *valaddr = value_contents_for_printing (val);
831 cp_print_class_member (valaddr, type, stream, "&");
832 }
833 else
834 generic_value_print (val, stream, recurse, options, decorations);
835 }
836
837 /* See valprint.h. */
838
839 void
840 generic_value_print (struct value *val, struct ui_file *stream, int recurse,
841 const struct value_print_options *options,
842 const struct generic_val_print_decorations *decorations)
843 {
844 struct type *type = value_type (val);
845
846 type = check_typedef (type);
847 switch (type->code ())
848 {
849 case TYPE_CODE_ARRAY:
850 generic_val_print_array (val, stream, recurse, options, decorations);
851 break;
852
853 case TYPE_CODE_MEMBERPTR:
854 generic_value_print_memberptr (val, stream, recurse, options,
855 decorations);
856 break;
857
858 case TYPE_CODE_PTR:
859 generic_value_print_ptr (val, stream, options);
860 break;
861
862 case TYPE_CODE_REF:
863 case TYPE_CODE_RVALUE_REF:
864 generic_val_print_ref (type, 0, stream, recurse,
865 val, options);
866 break;
867
868 case TYPE_CODE_ENUM:
869 if (options->format)
870 value_print_scalar_formatted (val, options, 0, stream);
871 else
872 generic_val_print_enum (type, 0, stream, val, options);
873 break;
874
875 case TYPE_CODE_FLAGS:
876 if (options->format)
877 value_print_scalar_formatted (val, options, 0, stream);
878 else
879 val_print_type_code_flags (type, val, 0, stream);
880 break;
881
882 case TYPE_CODE_FUNC:
883 case TYPE_CODE_METHOD:
884 if (options->format)
885 value_print_scalar_formatted (val, options, 0, stream);
886 else
887 generic_val_print_func (type, 0, value_address (val), stream,
888 val, options);
889 break;
890
891 case TYPE_CODE_BOOL:
892 generic_value_print_bool (val, stream, options, decorations);
893 break;
894
895 case TYPE_CODE_RANGE:
896 /* FIXME: create_static_range_type does not set the unsigned bit in a
897 range type (I think it probably should copy it from the
898 target type), so we won't print values which are too large to
899 fit in a signed integer correctly. */
900 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
901 print with the target type, though, because the size of our
902 type and the target type might differ). */
903
904 /* FALLTHROUGH */
905
906 case TYPE_CODE_INT:
907 generic_value_print_int (val, stream, options);
908 break;
909
910 case TYPE_CODE_CHAR:
911 generic_value_print_char (val, stream, options);
912 break;
913
914 case TYPE_CODE_FLT:
915 case TYPE_CODE_DECFLOAT:
916 if (options->format)
917 value_print_scalar_formatted (val, options, 0, stream);
918 else
919 generic_val_print_float (type, stream, val, options);
920 break;
921
922 case TYPE_CODE_VOID:
923 fputs_filtered (decorations->void_name, stream);
924 break;
925
926 case TYPE_CODE_ERROR:
927 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
928 break;
929
930 case TYPE_CODE_UNDEF:
931 /* This happens (without TYPE_STUB set) on systems which don't use
932 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
933 and no complete type for struct foo in that file. */
934 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
935 break;
936
937 case TYPE_CODE_COMPLEX:
938 generic_value_print_complex (val, stream, options, decorations);
939 break;
940
941 case TYPE_CODE_METHODPTR:
942 cplus_print_method_ptr (value_contents_for_printing (val), type,
943 stream);
944 break;
945
946 case TYPE_CODE_UNION:
947 case TYPE_CODE_STRUCT:
948 default:
949 error (_("Unhandled type code %d in symbol table."),
950 type->code ());
951 }
952 }
953
954 /* Helper function for val_print and common_val_print that does the
955 work. Arguments are as to val_print, but FULL_VALUE, if given, is
956 the value to be printed. */
957
958 static void
959 do_val_print (struct value *value, struct ui_file *stream, int recurse,
960 const struct value_print_options *options,
961 const struct language_defn *language)
962 {
963 int ret = 0;
964 struct value_print_options local_opts = *options;
965 struct type *type = value_type (value);
966 struct type *real_type = check_typedef (type);
967
968 if (local_opts.prettyformat == Val_prettyformat_default)
969 local_opts.prettyformat = (local_opts.prettyformat_structs
970 ? Val_prettyformat : Val_no_prettyformat);
971
972 QUIT;
973
974 /* Ensure that the type is complete and not just a stub. If the type is
975 only a stub and we can't find and substitute its complete type, then
976 print appropriate string and return. */
977
978 if (real_type->is_stub ())
979 {
980 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
981 return;
982 }
983
984 if (!valprint_check_validity (stream, real_type, 0, value))
985 return;
986
987 if (!options->raw)
988 {
989 ret = apply_ext_lang_val_pretty_printer (value, stream, recurse, options,
990 language);
991 if (ret)
992 return;
993 }
994
995 /* Handle summary mode. If the value is a scalar, print it;
996 otherwise, print an ellipsis. */
997 if (options->summary && !val_print_scalar_type_p (type))
998 {
999 fprintf_filtered (stream, "...");
1000 return;
1001 }
1002
1003 /* If this value is too deep then don't print it. */
1004 if (!val_print_scalar_or_string_type_p (type, language)
1005 && val_print_check_max_depth (stream, recurse, options, language))
1006 return;
1007
1008 try
1009 {
1010 language->value_print_inner (value, stream, recurse, &local_opts);
1011 }
1012 catch (const gdb_exception_error &except)
1013 {
1014 fprintf_styled (stream, metadata_style.style (),
1015 _("<error reading variable>"));
1016 }
1017 }
1018
1019 /* See valprint.h. */
1020
1021 bool
1022 val_print_check_max_depth (struct ui_file *stream, int recurse,
1023 const struct value_print_options *options,
1024 const struct language_defn *language)
1025 {
1026 if (options->max_depth > -1 && recurse >= options->max_depth)
1027 {
1028 gdb_assert (language->struct_too_deep_ellipsis () != NULL);
1029 fputs_filtered (language->struct_too_deep_ellipsis (), stream);
1030 return true;
1031 }
1032
1033 return false;
1034 }
1035
1036 /* Check whether the value VAL is printable. Return 1 if it is;
1037 return 0 and print an appropriate error message to STREAM according to
1038 OPTIONS if it is not. */
1039
1040 static int
1041 value_check_printable (struct value *val, struct ui_file *stream,
1042 const struct value_print_options *options)
1043 {
1044 if (val == 0)
1045 {
1046 fprintf_styled (stream, metadata_style.style (),
1047 _("<address of value unknown>"));
1048 return 0;
1049 }
1050
1051 if (value_entirely_optimized_out (val))
1052 {
1053 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1054 fprintf_filtered (stream, "...");
1055 else
1056 val_print_optimized_out (val, stream);
1057 return 0;
1058 }
1059
1060 if (value_entirely_unavailable (val))
1061 {
1062 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1063 fprintf_filtered (stream, "...");
1064 else
1065 val_print_unavailable (stream);
1066 return 0;
1067 }
1068
1069 if (value_type (val)->code () == TYPE_CODE_INTERNAL_FUNCTION)
1070 {
1071 fprintf_styled (stream, metadata_style.style (),
1072 _("<internal function %s>"),
1073 value_internal_function_name (val));
1074 return 0;
1075 }
1076
1077 if (type_not_associated (value_type (val)))
1078 {
1079 val_print_not_associated (stream);
1080 return 0;
1081 }
1082
1083 if (type_not_allocated (value_type (val)))
1084 {
1085 val_print_not_allocated (stream);
1086 return 0;
1087 }
1088
1089 return 1;
1090 }
1091
1092 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1093 to OPTIONS.
1094
1095 This is a preferable interface to val_print, above, because it uses
1096 GDB's value mechanism. */
1097
1098 void
1099 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1100 const struct value_print_options *options,
1101 const struct language_defn *language)
1102 {
1103 if (language->la_language == language_ada)
1104 /* The value might have a dynamic type, which would cause trouble
1105 below when trying to extract the value contents (since the value
1106 size is determined from the type size which is unknown). So
1107 get a fixed representation of our value. */
1108 val = ada_to_fixed_value (val);
1109
1110 if (value_lazy (val))
1111 value_fetch_lazy (val);
1112
1113 do_val_print (val, stream, recurse, options, language);
1114 }
1115
1116 /* See valprint.h. */
1117
1118 void
1119 common_val_print_checked (struct value *val, struct ui_file *stream,
1120 int recurse,
1121 const struct value_print_options *options,
1122 const struct language_defn *language)
1123 {
1124 if (!value_check_printable (val, stream, options))
1125 return;
1126 common_val_print (val, stream, recurse, options, language);
1127 }
1128
1129 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1130 is printed using the current_language syntax. */
1131
1132 void
1133 value_print (struct value *val, struct ui_file *stream,
1134 const struct value_print_options *options)
1135 {
1136 scoped_value_mark free_values;
1137
1138 if (!value_check_printable (val, stream, options))
1139 return;
1140
1141 if (!options->raw)
1142 {
1143 int r
1144 = apply_ext_lang_val_pretty_printer (val, stream, 0, options,
1145 current_language);
1146
1147 if (r)
1148 return;
1149 }
1150
1151 LA_VALUE_PRINT (val, stream, options);
1152 }
1153
1154 static void
1155 val_print_type_code_flags (struct type *type, struct value *original_value,
1156 int embedded_offset, struct ui_file *stream)
1157 {
1158 const gdb_byte *valaddr = (value_contents_for_printing (original_value)
1159 + embedded_offset);
1160 ULONGEST val = unpack_long (type, valaddr);
1161 int field, nfields = type->num_fields ();
1162 struct gdbarch *gdbarch = get_type_arch (type);
1163 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1164
1165 fputs_filtered ("[", stream);
1166 for (field = 0; field < nfields; field++)
1167 {
1168 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1169 {
1170 struct type *field_type = type->field (field).type ();
1171
1172 if (field_type == bool_type
1173 /* We require boolean types here to be one bit wide. This is a
1174 problematic place to notify the user of an internal error
1175 though. Instead just fall through and print the field as an
1176 int. */
1177 && TYPE_FIELD_BITSIZE (type, field) == 1)
1178 {
1179 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1180 fprintf_filtered
1181 (stream, " %ps",
1182 styled_string (variable_name_style.style (),
1183 TYPE_FIELD_NAME (type, field)));
1184 }
1185 else
1186 {
1187 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1188 ULONGEST field_val
1189 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1190
1191 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1192 field_val &= ((ULONGEST) 1 << field_len) - 1;
1193 fprintf_filtered (stream, " %ps=",
1194 styled_string (variable_name_style.style (),
1195 TYPE_FIELD_NAME (type, field)));
1196 if (field_type->code () == TYPE_CODE_ENUM)
1197 generic_val_print_enum_1 (field_type, field_val, stream);
1198 else
1199 print_longest (stream, 'd', 0, field_val);
1200 }
1201 }
1202 }
1203 fputs_filtered (" ]", stream);
1204 }
1205
1206 /* See valprint.h. */
1207
1208 void
1209 value_print_scalar_formatted (struct value *val,
1210 const struct value_print_options *options,
1211 int size,
1212 struct ui_file *stream)
1213 {
1214 struct type *type = check_typedef (value_type (val));
1215
1216 gdb_assert (val != NULL);
1217
1218 /* If we get here with a string format, try again without it. Go
1219 all the way back to the language printers, which may call us
1220 again. */
1221 if (options->format == 's')
1222 {
1223 struct value_print_options opts = *options;
1224 opts.format = 0;
1225 opts.deref_ref = 0;
1226 common_val_print (val, stream, 0, &opts, current_language);
1227 return;
1228 }
1229
1230 /* value_contents_for_printing fetches all VAL's contents. They are
1231 needed to check whether VAL is optimized-out or unavailable
1232 below. */
1233 const gdb_byte *valaddr = value_contents_for_printing (val);
1234
1235 /* A scalar object that does not have all bits available can't be
1236 printed, because all bits contribute to its representation. */
1237 if (value_bits_any_optimized_out (val, 0,
1238 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1239 val_print_optimized_out (val, stream);
1240 else if (!value_bytes_available (val, 0, TYPE_LENGTH (type)))
1241 val_print_unavailable (stream);
1242 else
1243 print_scalar_formatted (valaddr, type, options, size, stream);
1244 }
1245
1246 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1247 The raison d'etre of this function is to consolidate printing of
1248 LONG_LONG's into this one function. The format chars b,h,w,g are
1249 from print_scalar_formatted(). Numbers are printed using C
1250 format.
1251
1252 USE_C_FORMAT means to use C format in all cases. Without it,
1253 'o' and 'x' format do not include the standard C radix prefix
1254 (leading 0 or 0x).
1255
1256 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1257 and was intended to request formatting according to the current
1258 language and would be used for most integers that GDB prints. The
1259 exceptional cases were things like protocols where the format of
1260 the integer is a protocol thing, not a user-visible thing). The
1261 parameter remains to preserve the information of what things might
1262 be printed with language-specific format, should we ever resurrect
1263 that capability. */
1264
1265 void
1266 print_longest (struct ui_file *stream, int format, int use_c_format,
1267 LONGEST val_long)
1268 {
1269 const char *val;
1270
1271 switch (format)
1272 {
1273 case 'd':
1274 val = int_string (val_long, 10, 1, 0, 1); break;
1275 case 'u':
1276 val = int_string (val_long, 10, 0, 0, 1); break;
1277 case 'x':
1278 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1279 case 'b':
1280 val = int_string (val_long, 16, 0, 2, 1); break;
1281 case 'h':
1282 val = int_string (val_long, 16, 0, 4, 1); break;
1283 case 'w':
1284 val = int_string (val_long, 16, 0, 8, 1); break;
1285 case 'g':
1286 val = int_string (val_long, 16, 0, 16, 1); break;
1287 break;
1288 case 'o':
1289 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1290 default:
1291 internal_error (__FILE__, __LINE__,
1292 _("failed internal consistency check"));
1293 }
1294 fputs_filtered (val, stream);
1295 }
1296
1297 /* This used to be a macro, but I don't think it is called often enough
1298 to merit such treatment. */
1299 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1300 arguments to a function, number in a value history, register number, etc.)
1301 where the value must not be larger than can fit in an int. */
1302
1303 int
1304 longest_to_int (LONGEST arg)
1305 {
1306 /* Let the compiler do the work. */
1307 int rtnval = (int) arg;
1308
1309 /* Check for overflows or underflows. */
1310 if (sizeof (LONGEST) > sizeof (int))
1311 {
1312 if (rtnval != arg)
1313 {
1314 error (_("Value out of range."));
1315 }
1316 }
1317 return (rtnval);
1318 }
1319
1320 /* Print a floating point value of floating-point type TYPE,
1321 pointed to in GDB by VALADDR, on STREAM. */
1322
1323 void
1324 print_floating (const gdb_byte *valaddr, struct type *type,
1325 struct ui_file *stream)
1326 {
1327 std::string str = target_float_to_string (valaddr, type);
1328 fputs_filtered (str.c_str (), stream);
1329 }
1330
1331 void
1332 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1333 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1334 {
1335 const gdb_byte *p;
1336 unsigned int i;
1337 int b;
1338 bool seen_a_one = false;
1339
1340 /* Declared "int" so it will be signed.
1341 This ensures that right shift will shift in zeros. */
1342
1343 const int mask = 0x080;
1344
1345 if (byte_order == BFD_ENDIAN_BIG)
1346 {
1347 for (p = valaddr;
1348 p < valaddr + len;
1349 p++)
1350 {
1351 /* Every byte has 8 binary characters; peel off
1352 and print from the MSB end. */
1353
1354 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1355 {
1356 if (*p & (mask >> i))
1357 b = '1';
1358 else
1359 b = '0';
1360
1361 if (zero_pad || seen_a_one || b == '1')
1362 fputc_filtered (b, stream);
1363 if (b == '1')
1364 seen_a_one = true;
1365 }
1366 }
1367 }
1368 else
1369 {
1370 for (p = valaddr + len - 1;
1371 p >= valaddr;
1372 p--)
1373 {
1374 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1375 {
1376 if (*p & (mask >> i))
1377 b = '1';
1378 else
1379 b = '0';
1380
1381 if (zero_pad || seen_a_one || b == '1')
1382 fputc_filtered (b, stream);
1383 if (b == '1')
1384 seen_a_one = true;
1385 }
1386 }
1387 }
1388
1389 /* When not zero-padding, ensure that something is printed when the
1390 input is 0. */
1391 if (!zero_pad && !seen_a_one)
1392 fputc_filtered ('0', stream);
1393 }
1394
1395 /* A helper for print_octal_chars that emits a single octal digit,
1396 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1397
1398 static void
1399 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1400 {
1401 if (*seen_a_one || digit != 0)
1402 fprintf_filtered (stream, "%o", digit);
1403 if (digit != 0)
1404 *seen_a_one = true;
1405 }
1406
1407 /* VALADDR points to an integer of LEN bytes.
1408 Print it in octal on stream or format it in buf. */
1409
1410 void
1411 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1412 unsigned len, enum bfd_endian byte_order)
1413 {
1414 const gdb_byte *p;
1415 unsigned char octa1, octa2, octa3, carry;
1416 int cycle;
1417
1418 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1419 * the extra bits, which cycle every three bytes:
1420 *
1421 * Byte side: 0 1 2 3
1422 * | | | |
1423 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1424 *
1425 * Octal side: 0 1 carry 3 4 carry ...
1426 *
1427 * Cycle number: 0 1 2
1428 *
1429 * But of course we are printing from the high side, so we have to
1430 * figure out where in the cycle we are so that we end up with no
1431 * left over bits at the end.
1432 */
1433 #define BITS_IN_OCTAL 3
1434 #define HIGH_ZERO 0340
1435 #define LOW_ZERO 0034
1436 #define CARRY_ZERO 0003
1437 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1438 "cycle zero constants are wrong");
1439 #define HIGH_ONE 0200
1440 #define MID_ONE 0160
1441 #define LOW_ONE 0016
1442 #define CARRY_ONE 0001
1443 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1444 "cycle one constants are wrong");
1445 #define HIGH_TWO 0300
1446 #define MID_TWO 0070
1447 #define LOW_TWO 0007
1448 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1449 "cycle two constants are wrong");
1450
1451 /* For 32 we start in cycle 2, with two bits and one bit carry;
1452 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1453
1454 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1455 carry = 0;
1456
1457 fputs_filtered ("0", stream);
1458 bool seen_a_one = false;
1459 if (byte_order == BFD_ENDIAN_BIG)
1460 {
1461 for (p = valaddr;
1462 p < valaddr + len;
1463 p++)
1464 {
1465 switch (cycle)
1466 {
1467 case 0:
1468 /* No carry in, carry out two bits. */
1469
1470 octa1 = (HIGH_ZERO & *p) >> 5;
1471 octa2 = (LOW_ZERO & *p) >> 2;
1472 carry = (CARRY_ZERO & *p);
1473 emit_octal_digit (stream, &seen_a_one, octa1);
1474 emit_octal_digit (stream, &seen_a_one, octa2);
1475 break;
1476
1477 case 1:
1478 /* Carry in two bits, carry out one bit. */
1479
1480 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1481 octa2 = (MID_ONE & *p) >> 4;
1482 octa3 = (LOW_ONE & *p) >> 1;
1483 carry = (CARRY_ONE & *p);
1484 emit_octal_digit (stream, &seen_a_one, octa1);
1485 emit_octal_digit (stream, &seen_a_one, octa2);
1486 emit_octal_digit (stream, &seen_a_one, octa3);
1487 break;
1488
1489 case 2:
1490 /* Carry in one bit, no carry out. */
1491
1492 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1493 octa2 = (MID_TWO & *p) >> 3;
1494 octa3 = (LOW_TWO & *p);
1495 carry = 0;
1496 emit_octal_digit (stream, &seen_a_one, octa1);
1497 emit_octal_digit (stream, &seen_a_one, octa2);
1498 emit_octal_digit (stream, &seen_a_one, octa3);
1499 break;
1500
1501 default:
1502 error (_("Internal error in octal conversion;"));
1503 }
1504
1505 cycle++;
1506 cycle = cycle % BITS_IN_OCTAL;
1507 }
1508 }
1509 else
1510 {
1511 for (p = valaddr + len - 1;
1512 p >= valaddr;
1513 p--)
1514 {
1515 switch (cycle)
1516 {
1517 case 0:
1518 /* Carry out, no carry in */
1519
1520 octa1 = (HIGH_ZERO & *p) >> 5;
1521 octa2 = (LOW_ZERO & *p) >> 2;
1522 carry = (CARRY_ZERO & *p);
1523 emit_octal_digit (stream, &seen_a_one, octa1);
1524 emit_octal_digit (stream, &seen_a_one, octa2);
1525 break;
1526
1527 case 1:
1528 /* Carry in, carry out */
1529
1530 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1531 octa2 = (MID_ONE & *p) >> 4;
1532 octa3 = (LOW_ONE & *p) >> 1;
1533 carry = (CARRY_ONE & *p);
1534 emit_octal_digit (stream, &seen_a_one, octa1);
1535 emit_octal_digit (stream, &seen_a_one, octa2);
1536 emit_octal_digit (stream, &seen_a_one, octa3);
1537 break;
1538
1539 case 2:
1540 /* Carry in, no carry out */
1541
1542 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1543 octa2 = (MID_TWO & *p) >> 3;
1544 octa3 = (LOW_TWO & *p);
1545 carry = 0;
1546 emit_octal_digit (stream, &seen_a_one, octa1);
1547 emit_octal_digit (stream, &seen_a_one, octa2);
1548 emit_octal_digit (stream, &seen_a_one, octa3);
1549 break;
1550
1551 default:
1552 error (_("Internal error in octal conversion;"));
1553 }
1554
1555 cycle++;
1556 cycle = cycle % BITS_IN_OCTAL;
1557 }
1558 }
1559
1560 }
1561
1562 /* Possibly negate the integer represented by BYTES. It contains LEN
1563 bytes in the specified byte order. If the integer is negative,
1564 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1565 nothing and return false. */
1566
1567 static bool
1568 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1569 enum bfd_endian byte_order,
1570 gdb::byte_vector *out_vec)
1571 {
1572 gdb_byte sign_byte;
1573 gdb_assert (len > 0);
1574 if (byte_order == BFD_ENDIAN_BIG)
1575 sign_byte = bytes[0];
1576 else
1577 sign_byte = bytes[len - 1];
1578 if ((sign_byte & 0x80) == 0)
1579 return false;
1580
1581 out_vec->resize (len);
1582
1583 /* Compute -x == 1 + ~x. */
1584 if (byte_order == BFD_ENDIAN_LITTLE)
1585 {
1586 unsigned carry = 1;
1587 for (unsigned i = 0; i < len; ++i)
1588 {
1589 unsigned tem = (0xff & ~bytes[i]) + carry;
1590 (*out_vec)[i] = tem & 0xff;
1591 carry = tem / 256;
1592 }
1593 }
1594 else
1595 {
1596 unsigned carry = 1;
1597 for (unsigned i = len; i > 0; --i)
1598 {
1599 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1600 (*out_vec)[i - 1] = tem & 0xff;
1601 carry = tem / 256;
1602 }
1603 }
1604
1605 return true;
1606 }
1607
1608 /* VALADDR points to an integer of LEN bytes.
1609 Print it in decimal on stream or format it in buf. */
1610
1611 void
1612 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1613 unsigned len, bool is_signed,
1614 enum bfd_endian byte_order)
1615 {
1616 #define TEN 10
1617 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1618 #define CARRY_LEFT( x ) ((x) % TEN)
1619 #define SHIFT( x ) ((x) << 4)
1620 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1621 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1622
1623 const gdb_byte *p;
1624 int carry;
1625 int decimal_len;
1626 int i, j, decimal_digits;
1627 int dummy;
1628 int flip;
1629
1630 gdb::byte_vector negated_bytes;
1631 if (is_signed
1632 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1633 {
1634 fputs_filtered ("-", stream);
1635 valaddr = negated_bytes.data ();
1636 }
1637
1638 /* Base-ten number is less than twice as many digits
1639 as the base 16 number, which is 2 digits per byte. */
1640
1641 decimal_len = len * 2 * 2;
1642 std::vector<unsigned char> digits (decimal_len, 0);
1643
1644 /* Ok, we have an unknown number of bytes of data to be printed in
1645 * decimal.
1646 *
1647 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1648 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1649 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1650 *
1651 * The trick is that "digits" holds a base-10 number, but sometimes
1652 * the individual digits are > 10.
1653 *
1654 * Outer loop is per nibble (hex digit) of input, from MSD end to
1655 * LSD end.
1656 */
1657 decimal_digits = 0; /* Number of decimal digits so far */
1658 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1659 flip = 0;
1660 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1661 {
1662 /*
1663 * Multiply current base-ten number by 16 in place.
1664 * Each digit was between 0 and 9, now is between
1665 * 0 and 144.
1666 */
1667 for (j = 0; j < decimal_digits; j++)
1668 {
1669 digits[j] = SHIFT (digits[j]);
1670 }
1671
1672 /* Take the next nibble off the input and add it to what
1673 * we've got in the LSB position. Bottom 'digit' is now
1674 * between 0 and 159.
1675 *
1676 * "flip" is used to run this loop twice for each byte.
1677 */
1678 if (flip == 0)
1679 {
1680 /* Take top nibble. */
1681
1682 digits[0] += HIGH_NIBBLE (*p);
1683 flip = 1;
1684 }
1685 else
1686 {
1687 /* Take low nibble and bump our pointer "p". */
1688
1689 digits[0] += LOW_NIBBLE (*p);
1690 if (byte_order == BFD_ENDIAN_BIG)
1691 p++;
1692 else
1693 p--;
1694 flip = 0;
1695 }
1696
1697 /* Re-decimalize. We have to do this often enough
1698 * that we don't overflow, but once per nibble is
1699 * overkill. Easier this way, though. Note that the
1700 * carry is often larger than 10 (e.g. max initial
1701 * carry out of lowest nibble is 15, could bubble all
1702 * the way up greater than 10). So we have to do
1703 * the carrying beyond the last current digit.
1704 */
1705 carry = 0;
1706 for (j = 0; j < decimal_len - 1; j++)
1707 {
1708 digits[j] += carry;
1709
1710 /* "/" won't handle an unsigned char with
1711 * a value that if signed would be negative.
1712 * So extend to longword int via "dummy".
1713 */
1714 dummy = digits[j];
1715 carry = CARRY_OUT (dummy);
1716 digits[j] = CARRY_LEFT (dummy);
1717
1718 if (j >= decimal_digits && carry == 0)
1719 {
1720 /*
1721 * All higher digits are 0 and we
1722 * no longer have a carry.
1723 *
1724 * Note: "j" is 0-based, "decimal_digits" is
1725 * 1-based.
1726 */
1727 decimal_digits = j + 1;
1728 break;
1729 }
1730 }
1731 }
1732
1733 /* Ok, now "digits" is the decimal representation, with
1734 the "decimal_digits" actual digits. Print! */
1735
1736 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1737 ;
1738
1739 for (; i >= 0; i--)
1740 {
1741 fprintf_filtered (stream, "%1d", digits[i]);
1742 }
1743 }
1744
1745 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1746
1747 void
1748 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1749 unsigned len, enum bfd_endian byte_order,
1750 bool zero_pad)
1751 {
1752 const gdb_byte *p;
1753
1754 fputs_filtered ("0x", stream);
1755 if (byte_order == BFD_ENDIAN_BIG)
1756 {
1757 p = valaddr;
1758
1759 if (!zero_pad)
1760 {
1761 /* Strip leading 0 bytes, but be sure to leave at least a
1762 single byte at the end. */
1763 for (; p < valaddr + len - 1 && !*p; ++p)
1764 ;
1765 }
1766
1767 const gdb_byte *first = p;
1768 for (;
1769 p < valaddr + len;
1770 p++)
1771 {
1772 /* When not zero-padding, use a different format for the
1773 very first byte printed. */
1774 if (!zero_pad && p == first)
1775 fprintf_filtered (stream, "%x", *p);
1776 else
1777 fprintf_filtered (stream, "%02x", *p);
1778 }
1779 }
1780 else
1781 {
1782 p = valaddr + len - 1;
1783
1784 if (!zero_pad)
1785 {
1786 /* Strip leading 0 bytes, but be sure to leave at least a
1787 single byte at the end. */
1788 for (; p >= valaddr + 1 && !*p; --p)
1789 ;
1790 }
1791
1792 const gdb_byte *first = p;
1793 for (;
1794 p >= valaddr;
1795 p--)
1796 {
1797 /* When not zero-padding, use a different format for the
1798 very first byte printed. */
1799 if (!zero_pad && p == first)
1800 fprintf_filtered (stream, "%x", *p);
1801 else
1802 fprintf_filtered (stream, "%02x", *p);
1803 }
1804 }
1805 }
1806
1807 /* VALADDR points to a char integer of LEN bytes.
1808 Print it out in appropriate language form on stream.
1809 Omit any leading zero chars. */
1810
1811 void
1812 print_char_chars (struct ui_file *stream, struct type *type,
1813 const gdb_byte *valaddr,
1814 unsigned len, enum bfd_endian byte_order)
1815 {
1816 const gdb_byte *p;
1817
1818 if (byte_order == BFD_ENDIAN_BIG)
1819 {
1820 p = valaddr;
1821 while (p < valaddr + len - 1 && *p == 0)
1822 ++p;
1823
1824 while (p < valaddr + len)
1825 {
1826 LA_EMIT_CHAR (*p, type, stream, '\'');
1827 ++p;
1828 }
1829 }
1830 else
1831 {
1832 p = valaddr + len - 1;
1833 while (p > valaddr && *p == 0)
1834 --p;
1835
1836 while (p >= valaddr)
1837 {
1838 LA_EMIT_CHAR (*p, type, stream, '\'');
1839 --p;
1840 }
1841 }
1842 }
1843
1844 /* Print function pointer with inferior address ADDRESS onto stdio
1845 stream STREAM. */
1846
1847 void
1848 print_function_pointer_address (const struct value_print_options *options,
1849 struct gdbarch *gdbarch,
1850 CORE_ADDR address,
1851 struct ui_file *stream)
1852 {
1853 CORE_ADDR func_addr
1854 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1855 current_top_target ());
1856
1857 /* If the function pointer is represented by a description, print
1858 the address of the description. */
1859 if (options->addressprint && func_addr != address)
1860 {
1861 fputs_filtered ("@", stream);
1862 fputs_filtered (paddress (gdbarch, address), stream);
1863 fputs_filtered (": ", stream);
1864 }
1865 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1866 }
1867
1868
1869 /* Print on STREAM using the given OPTIONS the index for the element
1870 at INDEX of an array whose index type is INDEX_TYPE. */
1871
1872 void
1873 maybe_print_array_index (struct type *index_type, LONGEST index,
1874 struct ui_file *stream,
1875 const struct value_print_options *options)
1876 {
1877 if (!options->print_array_indexes)
1878 return;
1879
1880 LA_PRINT_ARRAY_INDEX (index_type, index, stream, options);
1881 }
1882
1883 /* See valprint.h. */
1884
1885 void
1886 value_print_array_elements (struct value *val, struct ui_file *stream,
1887 int recurse,
1888 const struct value_print_options *options,
1889 unsigned int i)
1890 {
1891 unsigned int things_printed = 0;
1892 unsigned len;
1893 struct type *elttype, *index_type;
1894 unsigned eltlen;
1895 /* Position of the array element we are examining to see
1896 whether it is repeated. */
1897 unsigned int rep1;
1898 /* Number of repetitions we have detected so far. */
1899 unsigned int reps;
1900 LONGEST low_bound, high_bound;
1901
1902 struct type *type = check_typedef (value_type (val));
1903
1904 elttype = TYPE_TARGET_TYPE (type);
1905 eltlen = type_length_units (check_typedef (elttype));
1906 index_type = type->index_type ();
1907 if (index_type->code () == TYPE_CODE_RANGE)
1908 index_type = TYPE_TARGET_TYPE (index_type);
1909
1910 if (get_array_bounds (type, &low_bound, &high_bound))
1911 {
1912 /* The array length should normally be HIGH_BOUND - LOW_BOUND +
1913 1. But we have to be a little extra careful, because some
1914 languages such as Ada allow LOW_BOUND to be greater than
1915 HIGH_BOUND for empty arrays. In that situation, the array
1916 length is just zero, not negative! */
1917 if (low_bound > high_bound)
1918 len = 0;
1919 else
1920 len = high_bound - low_bound + 1;
1921 }
1922 else
1923 {
1924 warning (_("unable to get bounds of array, assuming null array"));
1925 low_bound = 0;
1926 len = 0;
1927 }
1928
1929 annotate_array_section_begin (i, elttype);
1930
1931 for (; i < len && things_printed < options->print_max; i++)
1932 {
1933 scoped_value_mark free_values;
1934
1935 if (i != 0)
1936 {
1937 if (options->prettyformat_arrays)
1938 {
1939 fprintf_filtered (stream, ",\n");
1940 print_spaces_filtered (2 + 2 * recurse, stream);
1941 }
1942 else
1943 fprintf_filtered (stream, ", ");
1944 }
1945 else if (options->prettyformat_arrays)
1946 {
1947 fprintf_filtered (stream, "\n");
1948 print_spaces_filtered (2 + 2 * recurse, stream);
1949 }
1950 wrap_here (n_spaces (2 + 2 * recurse));
1951 maybe_print_array_index (index_type, i + low_bound,
1952 stream, options);
1953
1954 rep1 = i + 1;
1955 reps = 1;
1956 /* Only check for reps if repeat_count_threshold is not set to
1957 UINT_MAX (unlimited). */
1958 if (options->repeat_count_threshold < UINT_MAX)
1959 {
1960 while (rep1 < len
1961 && value_contents_eq (val, i * eltlen,
1962 val, rep1 * eltlen,
1963 eltlen))
1964 {
1965 ++reps;
1966 ++rep1;
1967 }
1968 }
1969
1970 struct value *element = value_from_component (val, elttype, eltlen * i);
1971 common_val_print (element, stream, recurse + 1, options,
1972 current_language);
1973
1974 if (reps > options->repeat_count_threshold)
1975 {
1976 annotate_elt_rep (reps);
1977 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
1978 metadata_style.style ().ptr (), reps, nullptr);
1979 annotate_elt_rep_end ();
1980
1981 i = rep1 - 1;
1982 things_printed += options->repeat_count_threshold;
1983 }
1984 else
1985 {
1986 annotate_elt ();
1987 things_printed++;
1988 }
1989 }
1990 annotate_array_section_end ();
1991 if (i < len)
1992 fprintf_filtered (stream, "...");
1993 if (options->prettyformat_arrays)
1994 {
1995 fprintf_filtered (stream, "\n");
1996 print_spaces_filtered (2 * recurse, stream);
1997 }
1998 }
1999
2000 /* Read LEN bytes of target memory at address MEMADDR, placing the
2001 results in GDB's memory at MYADDR. Returns a count of the bytes
2002 actually read, and optionally a target_xfer_status value in the
2003 location pointed to by ERRPTR if ERRPTR is non-null. */
2004
2005 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2006 function be eliminated. */
2007
2008 static int
2009 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2010 int len, int *errptr)
2011 {
2012 int nread; /* Number of bytes actually read. */
2013 int errcode; /* Error from last read. */
2014
2015 /* First try a complete read. */
2016 errcode = target_read_memory (memaddr, myaddr, len);
2017 if (errcode == 0)
2018 {
2019 /* Got it all. */
2020 nread = len;
2021 }
2022 else
2023 {
2024 /* Loop, reading one byte at a time until we get as much as we can. */
2025 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2026 {
2027 errcode = target_read_memory (memaddr++, myaddr++, 1);
2028 }
2029 /* If an error, the last read was unsuccessful, so adjust count. */
2030 if (errcode != 0)
2031 {
2032 nread--;
2033 }
2034 }
2035 if (errptr != NULL)
2036 {
2037 *errptr = errcode;
2038 }
2039 return (nread);
2040 }
2041
2042 /* Read a string from the inferior, at ADDR, with LEN characters of
2043 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2044 will be set to a newly allocated buffer containing the string, and
2045 BYTES_READ will be set to the number of bytes read. Returns 0 on
2046 success, or a target_xfer_status on failure.
2047
2048 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2049 (including eventual NULs in the middle or end of the string).
2050
2051 If LEN is -1, stops at the first null character (not necessarily
2052 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2053 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2054 the string.
2055
2056 Unless an exception is thrown, BUFFER will always be allocated, even on
2057 failure. In this case, some characters might have been read before the
2058 failure happened. Check BYTES_READ to recognize this situation. */
2059
2060 int
2061 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2062 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2063 int *bytes_read)
2064 {
2065 int errcode; /* Errno returned from bad reads. */
2066 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2067 gdb_byte *bufptr; /* Pointer to next available byte in
2068 buffer. */
2069
2070 /* Loop until we either have all the characters, or we encounter
2071 some error, such as bumping into the end of the address space. */
2072
2073 buffer->reset (nullptr);
2074
2075 if (len > 0)
2076 {
2077 /* We want fetchlimit chars, so we might as well read them all in
2078 one operation. */
2079 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2080
2081 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2082 bufptr = buffer->get ();
2083
2084 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2085 / width;
2086 addr += nfetch * width;
2087 bufptr += nfetch * width;
2088 }
2089 else if (len == -1)
2090 {
2091 unsigned long bufsize = 0;
2092 unsigned int chunksize; /* Size of each fetch, in chars. */
2093 int found_nul; /* Non-zero if we found the nul char. */
2094 gdb_byte *limit; /* First location past end of fetch buffer. */
2095
2096 found_nul = 0;
2097 /* We are looking for a NUL terminator to end the fetching, so we
2098 might as well read in blocks that are large enough to be efficient,
2099 but not so large as to be slow if fetchlimit happens to be large.
2100 So we choose the minimum of 8 and fetchlimit. We used to use 200
2101 instead of 8 but 200 is way too big for remote debugging over a
2102 serial line. */
2103 chunksize = std::min (8u, fetchlimit);
2104
2105 do
2106 {
2107 QUIT;
2108 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2109
2110 if (*buffer == NULL)
2111 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2112 else
2113 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2114 (nfetch + bufsize) * width));
2115
2116 bufptr = buffer->get () + bufsize * width;
2117 bufsize += nfetch;
2118
2119 /* Read as much as we can. */
2120 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2121 / width;
2122
2123 /* Scan this chunk for the null character that terminates the string
2124 to print. If found, we don't need to fetch any more. Note
2125 that bufptr is explicitly left pointing at the next character
2126 after the null character, or at the next character after the end
2127 of the buffer. */
2128
2129 limit = bufptr + nfetch * width;
2130 while (bufptr < limit)
2131 {
2132 unsigned long c;
2133
2134 c = extract_unsigned_integer (bufptr, width, byte_order);
2135 addr += width;
2136 bufptr += width;
2137 if (c == 0)
2138 {
2139 /* We don't care about any error which happened after
2140 the NUL terminator. */
2141 errcode = 0;
2142 found_nul = 1;
2143 break;
2144 }
2145 }
2146 }
2147 while (errcode == 0 /* no error */
2148 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2149 && !found_nul); /* haven't found NUL yet */
2150 }
2151 else
2152 { /* Length of string is really 0! */
2153 /* We always allocate *buffer. */
2154 buffer->reset ((gdb_byte *) xmalloc (1));
2155 bufptr = buffer->get ();
2156 errcode = 0;
2157 }
2158
2159 /* bufptr and addr now point immediately beyond the last byte which we
2160 consider part of the string (including a '\0' which ends the string). */
2161 *bytes_read = bufptr - buffer->get ();
2162
2163 QUIT;
2164
2165 return errcode;
2166 }
2167
2168 /* Return true if print_wchar can display W without resorting to a
2169 numeric escape, false otherwise. */
2170
2171 static int
2172 wchar_printable (gdb_wchar_t w)
2173 {
2174 return (gdb_iswprint (w)
2175 || w == LCST ('\a') || w == LCST ('\b')
2176 || w == LCST ('\f') || w == LCST ('\n')
2177 || w == LCST ('\r') || w == LCST ('\t')
2178 || w == LCST ('\v'));
2179 }
2180
2181 /* A helper function that converts the contents of STRING to wide
2182 characters and then appends them to OUTPUT. */
2183
2184 static void
2185 append_string_as_wide (const char *string,
2186 struct obstack *output)
2187 {
2188 for (; *string; ++string)
2189 {
2190 gdb_wchar_t w = gdb_btowc (*string);
2191 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2192 }
2193 }
2194
2195 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2196 original (target) bytes representing the character, ORIG_LEN is the
2197 number of valid bytes. WIDTH is the number of bytes in a base
2198 characters of the type. OUTPUT is an obstack to which wide
2199 characters are emitted. QUOTER is a (narrow) character indicating
2200 the style of quotes surrounding the character to be printed.
2201 NEED_ESCAPE is an in/out flag which is used to track numeric
2202 escapes across calls. */
2203
2204 static void
2205 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2206 int orig_len, int width,
2207 enum bfd_endian byte_order,
2208 struct obstack *output,
2209 int quoter, int *need_escapep)
2210 {
2211 int need_escape = *need_escapep;
2212
2213 *need_escapep = 0;
2214
2215 /* iswprint implementation on Windows returns 1 for tab character.
2216 In order to avoid different printout on this host, we explicitly
2217 use wchar_printable function. */
2218 switch (w)
2219 {
2220 case LCST ('\a'):
2221 obstack_grow_wstr (output, LCST ("\\a"));
2222 break;
2223 case LCST ('\b'):
2224 obstack_grow_wstr (output, LCST ("\\b"));
2225 break;
2226 case LCST ('\f'):
2227 obstack_grow_wstr (output, LCST ("\\f"));
2228 break;
2229 case LCST ('\n'):
2230 obstack_grow_wstr (output, LCST ("\\n"));
2231 break;
2232 case LCST ('\r'):
2233 obstack_grow_wstr (output, LCST ("\\r"));
2234 break;
2235 case LCST ('\t'):
2236 obstack_grow_wstr (output, LCST ("\\t"));
2237 break;
2238 case LCST ('\v'):
2239 obstack_grow_wstr (output, LCST ("\\v"));
2240 break;
2241 default:
2242 {
2243 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2244 && w != LCST ('8')
2245 && w != LCST ('9'))))
2246 {
2247 gdb_wchar_t wchar = w;
2248
2249 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2250 obstack_grow_wstr (output, LCST ("\\"));
2251 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2252 }
2253 else
2254 {
2255 int i;
2256
2257 for (i = 0; i + width <= orig_len; i += width)
2258 {
2259 char octal[30];
2260 ULONGEST value;
2261
2262 value = extract_unsigned_integer (&orig[i], width,
2263 byte_order);
2264 /* If the value fits in 3 octal digits, print it that
2265 way. Otherwise, print it as a hex escape. */
2266 if (value <= 0777)
2267 xsnprintf (octal, sizeof (octal), "\\%.3o",
2268 (int) (value & 0777));
2269 else
2270 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2271 append_string_as_wide (octal, output);
2272 }
2273 /* If we somehow have extra bytes, print them now. */
2274 while (i < orig_len)
2275 {
2276 char octal[5];
2277
2278 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2279 append_string_as_wide (octal, output);
2280 ++i;
2281 }
2282
2283 *need_escapep = 1;
2284 }
2285 break;
2286 }
2287 }
2288 }
2289
2290 /* Print the character C on STREAM as part of the contents of a
2291 literal string whose delimiter is QUOTER. ENCODING names the
2292 encoding of C. */
2293
2294 void
2295 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2296 int quoter, const char *encoding)
2297 {
2298 enum bfd_endian byte_order
2299 = type_byte_order (type);
2300 gdb_byte *c_buf;
2301 int need_escape = 0;
2302
2303 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2304 pack_long (c_buf, type, c);
2305
2306 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2307
2308 /* This holds the printable form of the wchar_t data. */
2309 auto_obstack wchar_buf;
2310
2311 while (1)
2312 {
2313 int num_chars;
2314 gdb_wchar_t *chars;
2315 const gdb_byte *buf;
2316 size_t buflen;
2317 int print_escape = 1;
2318 enum wchar_iterate_result result;
2319
2320 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2321 if (num_chars < 0)
2322 break;
2323 if (num_chars > 0)
2324 {
2325 /* If all characters are printable, print them. Otherwise,
2326 we're going to have to print an escape sequence. We
2327 check all characters because we want to print the target
2328 bytes in the escape sequence, and we don't know character
2329 boundaries there. */
2330 int i;
2331
2332 print_escape = 0;
2333 for (i = 0; i < num_chars; ++i)
2334 if (!wchar_printable (chars[i]))
2335 {
2336 print_escape = 1;
2337 break;
2338 }
2339
2340 if (!print_escape)
2341 {
2342 for (i = 0; i < num_chars; ++i)
2343 print_wchar (chars[i], buf, buflen,
2344 TYPE_LENGTH (type), byte_order,
2345 &wchar_buf, quoter, &need_escape);
2346 }
2347 }
2348
2349 /* This handles the NUM_CHARS == 0 case as well. */
2350 if (print_escape)
2351 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2352 byte_order, &wchar_buf, quoter, &need_escape);
2353 }
2354
2355 /* The output in the host encoding. */
2356 auto_obstack output;
2357
2358 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2359 (gdb_byte *) obstack_base (&wchar_buf),
2360 obstack_object_size (&wchar_buf),
2361 sizeof (gdb_wchar_t), &output, translit_char);
2362 obstack_1grow (&output, '\0');
2363
2364 fputs_filtered ((const char *) obstack_base (&output), stream);
2365 }
2366
2367 /* Return the repeat count of the next character/byte in ITER,
2368 storing the result in VEC. */
2369
2370 static int
2371 count_next_character (wchar_iterator *iter,
2372 std::vector<converted_character> *vec)
2373 {
2374 struct converted_character *current;
2375
2376 if (vec->empty ())
2377 {
2378 struct converted_character tmp;
2379 gdb_wchar_t *chars;
2380
2381 tmp.num_chars
2382 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2383 if (tmp.num_chars > 0)
2384 {
2385 gdb_assert (tmp.num_chars < MAX_WCHARS);
2386 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2387 }
2388 vec->push_back (tmp);
2389 }
2390
2391 current = &vec->back ();
2392
2393 /* Count repeated characters or bytes. */
2394 current->repeat_count = 1;
2395 if (current->num_chars == -1)
2396 {
2397 /* EOF */
2398 return -1;
2399 }
2400 else
2401 {
2402 gdb_wchar_t *chars;
2403 struct converted_character d;
2404 int repeat;
2405
2406 d.repeat_count = 0;
2407
2408 while (1)
2409 {
2410 /* Get the next character. */
2411 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2412
2413 /* If a character was successfully converted, save the character
2414 into the converted character. */
2415 if (d.num_chars > 0)
2416 {
2417 gdb_assert (d.num_chars < MAX_WCHARS);
2418 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2419 }
2420
2421 /* Determine if the current character is the same as this
2422 new character. */
2423 if (d.num_chars == current->num_chars && d.result == current->result)
2424 {
2425 /* There are two cases to consider:
2426
2427 1) Equality of converted character (num_chars > 0)
2428 2) Equality of non-converted character (num_chars == 0) */
2429 if ((current->num_chars > 0
2430 && memcmp (current->chars, d.chars,
2431 WCHAR_BUFLEN (current->num_chars)) == 0)
2432 || (current->num_chars == 0
2433 && current->buflen == d.buflen
2434 && memcmp (current->buf, d.buf, current->buflen) == 0))
2435 ++current->repeat_count;
2436 else
2437 break;
2438 }
2439 else
2440 break;
2441 }
2442
2443 /* Push this next converted character onto the result vector. */
2444 repeat = current->repeat_count;
2445 vec->push_back (d);
2446 return repeat;
2447 }
2448 }
2449
2450 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2451 character to use with string output. WIDTH is the size of the output
2452 character type. BYTE_ORDER is the target byte order. OPTIONS
2453 is the user's print options. */
2454
2455 static void
2456 print_converted_chars_to_obstack (struct obstack *obstack,
2457 const std::vector<converted_character> &chars,
2458 int quote_char, int width,
2459 enum bfd_endian byte_order,
2460 const struct value_print_options *options)
2461 {
2462 unsigned int idx;
2463 const converted_character *elem;
2464 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2465 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2466 int need_escape = 0;
2467
2468 /* Set the start state. */
2469 idx = 0;
2470 last = state = START;
2471 elem = NULL;
2472
2473 while (1)
2474 {
2475 switch (state)
2476 {
2477 case START:
2478 /* Nothing to do. */
2479 break;
2480
2481 case SINGLE:
2482 {
2483 int j;
2484
2485 /* We are outputting a single character
2486 (< options->repeat_count_threshold). */
2487
2488 if (last != SINGLE)
2489 {
2490 /* We were outputting some other type of content, so we
2491 must output and a comma and a quote. */
2492 if (last != START)
2493 obstack_grow_wstr (obstack, LCST (", "));
2494 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2495 }
2496 /* Output the character. */
2497 for (j = 0; j < elem->repeat_count; ++j)
2498 {
2499 if (elem->result == wchar_iterate_ok)
2500 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2501 byte_order, obstack, quote_char, &need_escape);
2502 else
2503 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2504 byte_order, obstack, quote_char, &need_escape);
2505 }
2506 }
2507 break;
2508
2509 case REPEAT:
2510 {
2511 int j;
2512
2513 /* We are outputting a character with a repeat count
2514 greater than options->repeat_count_threshold. */
2515
2516 if (last == SINGLE)
2517 {
2518 /* We were outputting a single string. Terminate the
2519 string. */
2520 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2521 }
2522 if (last != START)
2523 obstack_grow_wstr (obstack, LCST (", "));
2524
2525 /* Output the character and repeat string. */
2526 obstack_grow_wstr (obstack, LCST ("'"));
2527 if (elem->result == wchar_iterate_ok)
2528 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2529 byte_order, obstack, quote_char, &need_escape);
2530 else
2531 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2532 byte_order, obstack, quote_char, &need_escape);
2533 obstack_grow_wstr (obstack, LCST ("'"));
2534 std::string s = string_printf (_(" <repeats %u times>"),
2535 elem->repeat_count);
2536 for (j = 0; s[j]; ++j)
2537 {
2538 gdb_wchar_t w = gdb_btowc (s[j]);
2539 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2540 }
2541 }
2542 break;
2543
2544 case INCOMPLETE:
2545 /* We are outputting an incomplete sequence. */
2546 if (last == SINGLE)
2547 {
2548 /* If we were outputting a string of SINGLE characters,
2549 terminate the quote. */
2550 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2551 }
2552 if (last != START)
2553 obstack_grow_wstr (obstack, LCST (", "));
2554
2555 /* Output the incomplete sequence string. */
2556 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2557 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2558 obstack, 0, &need_escape);
2559 obstack_grow_wstr (obstack, LCST (">"));
2560
2561 /* We do not attempt to output anything after this. */
2562 state = FINISH;
2563 break;
2564
2565 case FINISH:
2566 /* All done. If we were outputting a string of SINGLE
2567 characters, the string must be terminated. Otherwise,
2568 REPEAT and INCOMPLETE are always left properly terminated. */
2569 if (last == SINGLE)
2570 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2571
2572 return;
2573 }
2574
2575 /* Get the next element and state. */
2576 last = state;
2577 if (state != FINISH)
2578 {
2579 elem = &chars[idx++];
2580 switch (elem->result)
2581 {
2582 case wchar_iterate_ok:
2583 case wchar_iterate_invalid:
2584 if (elem->repeat_count > options->repeat_count_threshold)
2585 state = REPEAT;
2586 else
2587 state = SINGLE;
2588 break;
2589
2590 case wchar_iterate_incomplete:
2591 state = INCOMPLETE;
2592 break;
2593
2594 case wchar_iterate_eof:
2595 state = FINISH;
2596 break;
2597 }
2598 }
2599 }
2600 }
2601
2602 /* Print the character string STRING, printing at most LENGTH
2603 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2604 the type of each character. OPTIONS holds the printing options;
2605 printing stops early if the number hits print_max; repeat counts
2606 are printed as appropriate. Print ellipses at the end if we had to
2607 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2608 QUOTE_CHAR is the character to print at each end of the string. If
2609 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2610 omitted. */
2611
2612 void
2613 generic_printstr (struct ui_file *stream, struct type *type,
2614 const gdb_byte *string, unsigned int length,
2615 const char *encoding, int force_ellipses,
2616 int quote_char, int c_style_terminator,
2617 const struct value_print_options *options)
2618 {
2619 enum bfd_endian byte_order = type_byte_order (type);
2620 unsigned int i;
2621 int width = TYPE_LENGTH (type);
2622 int finished = 0;
2623 struct converted_character *last;
2624
2625 if (length == -1)
2626 {
2627 unsigned long current_char = 1;
2628
2629 for (i = 0; current_char; ++i)
2630 {
2631 QUIT;
2632 current_char = extract_unsigned_integer (string + i * width,
2633 width, byte_order);
2634 }
2635 length = i;
2636 }
2637
2638 /* If the string was not truncated due to `set print elements', and
2639 the last byte of it is a null, we don't print that, in
2640 traditional C style. */
2641 if (c_style_terminator
2642 && !force_ellipses
2643 && length > 0
2644 && (extract_unsigned_integer (string + (length - 1) * width,
2645 width, byte_order) == 0))
2646 length--;
2647
2648 if (length == 0)
2649 {
2650 fputs_filtered ("\"\"", stream);
2651 return;
2652 }
2653
2654 /* Arrange to iterate over the characters, in wchar_t form. */
2655 wchar_iterator iter (string, length * width, encoding, width);
2656 std::vector<converted_character> converted_chars;
2657
2658 /* Convert characters until the string is over or the maximum
2659 number of printed characters has been reached. */
2660 i = 0;
2661 while (i < options->print_max)
2662 {
2663 int r;
2664
2665 QUIT;
2666
2667 /* Grab the next character and repeat count. */
2668 r = count_next_character (&iter, &converted_chars);
2669
2670 /* If less than zero, the end of the input string was reached. */
2671 if (r < 0)
2672 break;
2673
2674 /* Otherwise, add the count to the total print count and get
2675 the next character. */
2676 i += r;
2677 }
2678
2679 /* Get the last element and determine if the entire string was
2680 processed. */
2681 last = &converted_chars.back ();
2682 finished = (last->result == wchar_iterate_eof);
2683
2684 /* Ensure that CONVERTED_CHARS is terminated. */
2685 last->result = wchar_iterate_eof;
2686
2687 /* WCHAR_BUF is the obstack we use to represent the string in
2688 wchar_t form. */
2689 auto_obstack wchar_buf;
2690
2691 /* Print the output string to the obstack. */
2692 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2693 width, byte_order, options);
2694
2695 if (force_ellipses || !finished)
2696 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2697
2698 /* OUTPUT is where we collect `char's for printing. */
2699 auto_obstack output;
2700
2701 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2702 (gdb_byte *) obstack_base (&wchar_buf),
2703 obstack_object_size (&wchar_buf),
2704 sizeof (gdb_wchar_t), &output, translit_char);
2705 obstack_1grow (&output, '\0');
2706
2707 fputs_filtered ((const char *) obstack_base (&output), stream);
2708 }
2709
2710 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2711 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2712 stops at the first null byte, otherwise printing proceeds (including null
2713 bytes) until either print_max or LEN characters have been printed,
2714 whichever is smaller. ENCODING is the name of the string's
2715 encoding. It can be NULL, in which case the target encoding is
2716 assumed. */
2717
2718 int
2719 val_print_string (struct type *elttype, const char *encoding,
2720 CORE_ADDR addr, int len,
2721 struct ui_file *stream,
2722 const struct value_print_options *options)
2723 {
2724 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2725 int err; /* Non-zero if we got a bad read. */
2726 int found_nul; /* Non-zero if we found the nul char. */
2727 unsigned int fetchlimit; /* Maximum number of chars to print. */
2728 int bytes_read;
2729 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2730 struct gdbarch *gdbarch = get_type_arch (elttype);
2731 enum bfd_endian byte_order = type_byte_order (elttype);
2732 int width = TYPE_LENGTH (elttype);
2733
2734 /* First we need to figure out the limit on the number of characters we are
2735 going to attempt to fetch and print. This is actually pretty simple. If
2736 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2737 LEN is -1, then the limit is print_max. This is true regardless of
2738 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2739 because finding the null byte (or available memory) is what actually
2740 limits the fetch. */
2741
2742 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2743 options->print_max));
2744
2745 err = read_string (addr, len, width, fetchlimit, byte_order,
2746 &buffer, &bytes_read);
2747
2748 addr += bytes_read;
2749
2750 /* We now have either successfully filled the buffer to fetchlimit,
2751 or terminated early due to an error or finding a null char when
2752 LEN is -1. */
2753
2754 /* Determine found_nul by looking at the last character read. */
2755 found_nul = 0;
2756 if (bytes_read >= width)
2757 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2758 width, byte_order) == 0;
2759 if (len == -1 && !found_nul)
2760 {
2761 gdb_byte *peekbuf;
2762
2763 /* We didn't find a NUL terminator we were looking for. Attempt
2764 to peek at the next character. If not successful, or it is not
2765 a null byte, then force ellipsis to be printed. */
2766
2767 peekbuf = (gdb_byte *) alloca (width);
2768
2769 if (target_read_memory (addr, peekbuf, width) == 0
2770 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2771 force_ellipsis = 1;
2772 }
2773 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2774 {
2775 /* Getting an error when we have a requested length, or fetching less
2776 than the number of characters actually requested, always make us
2777 print ellipsis. */
2778 force_ellipsis = 1;
2779 }
2780
2781 /* If we get an error before fetching anything, don't print a string.
2782 But if we fetch something and then get an error, print the string
2783 and then the error message. */
2784 if (err == 0 || bytes_read > 0)
2785 {
2786 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2787 encoding, force_ellipsis, options);
2788 }
2789
2790 if (err != 0)
2791 {
2792 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2793
2794 fprintf_filtered (stream, _("<error: %ps>"),
2795 styled_string (metadata_style.style (),
2796 str.c_str ()));
2797 }
2798
2799 return (bytes_read / width);
2800 }
2801
2802 /* Handle 'show print max-depth'. */
2803
2804 static void
2805 show_print_max_depth (struct ui_file *file, int from_tty,
2806 struct cmd_list_element *c, const char *value)
2807 {
2808 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2809 }
2810 \f
2811
2812 /* The 'set input-radix' command writes to this auxiliary variable.
2813 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2814 it is left unchanged. */
2815
2816 static unsigned input_radix_1 = 10;
2817
2818 /* Validate an input or output radix setting, and make sure the user
2819 knows what they really did here. Radix setting is confusing, e.g.
2820 setting the input radix to "10" never changes it! */
2821
2822 static void
2823 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2824 {
2825 set_input_radix_1 (from_tty, input_radix_1);
2826 }
2827
2828 static void
2829 set_input_radix_1 (int from_tty, unsigned radix)
2830 {
2831 /* We don't currently disallow any input radix except 0 or 1, which don't
2832 make any mathematical sense. In theory, we can deal with any input
2833 radix greater than 1, even if we don't have unique digits for every
2834 value from 0 to radix-1, but in practice we lose on large radix values.
2835 We should either fix the lossage or restrict the radix range more.
2836 (FIXME). */
2837
2838 if (radix < 2)
2839 {
2840 input_radix_1 = input_radix;
2841 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2842 radix);
2843 }
2844 input_radix_1 = input_radix = radix;
2845 if (from_tty)
2846 {
2847 printf_filtered (_("Input radix now set to "
2848 "decimal %u, hex %x, octal %o.\n"),
2849 radix, radix, radix);
2850 }
2851 }
2852
2853 /* The 'set output-radix' command writes to this auxiliary variable.
2854 If the requested radix is valid, OUTPUT_RADIX is updated,
2855 otherwise, it is left unchanged. */
2856
2857 static unsigned output_radix_1 = 10;
2858
2859 static void
2860 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2861 {
2862 set_output_radix_1 (from_tty, output_radix_1);
2863 }
2864
2865 static void
2866 set_output_radix_1 (int from_tty, unsigned radix)
2867 {
2868 /* Validate the radix and disallow ones that we aren't prepared to
2869 handle correctly, leaving the radix unchanged. */
2870 switch (radix)
2871 {
2872 case 16:
2873 user_print_options.output_format = 'x'; /* hex */
2874 break;
2875 case 10:
2876 user_print_options.output_format = 0; /* decimal */
2877 break;
2878 case 8:
2879 user_print_options.output_format = 'o'; /* octal */
2880 break;
2881 default:
2882 output_radix_1 = output_radix;
2883 error (_("Unsupported output radix ``decimal %u''; "
2884 "output radix unchanged."),
2885 radix);
2886 }
2887 output_radix_1 = output_radix = radix;
2888 if (from_tty)
2889 {
2890 printf_filtered (_("Output radix now set to "
2891 "decimal %u, hex %x, octal %o.\n"),
2892 radix, radix, radix);
2893 }
2894 }
2895
2896 /* Set both the input and output radix at once. Try to set the output radix
2897 first, since it has the most restrictive range. An radix that is valid as
2898 an output radix is also valid as an input radix.
2899
2900 It may be useful to have an unusual input radix. If the user wishes to
2901 set an input radix that is not valid as an output radix, he needs to use
2902 the 'set input-radix' command. */
2903
2904 static void
2905 set_radix (const char *arg, int from_tty)
2906 {
2907 unsigned radix;
2908
2909 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2910 set_output_radix_1 (0, radix);
2911 set_input_radix_1 (0, radix);
2912 if (from_tty)
2913 {
2914 printf_filtered (_("Input and output radices now set to "
2915 "decimal %u, hex %x, octal %o.\n"),
2916 radix, radix, radix);
2917 }
2918 }
2919
2920 /* Show both the input and output radices. */
2921
2922 static void
2923 show_radix (const char *arg, int from_tty)
2924 {
2925 if (from_tty)
2926 {
2927 if (input_radix == output_radix)
2928 {
2929 printf_filtered (_("Input and output radices set to "
2930 "decimal %u, hex %x, octal %o.\n"),
2931 input_radix, input_radix, input_radix);
2932 }
2933 else
2934 {
2935 printf_filtered (_("Input radix set to decimal "
2936 "%u, hex %x, octal %o.\n"),
2937 input_radix, input_radix, input_radix);
2938 printf_filtered (_("Output radix set to decimal "
2939 "%u, hex %x, octal %o.\n"),
2940 output_radix, output_radix, output_radix);
2941 }
2942 }
2943 }
2944 \f
2945
2946 /* Controls printing of vtbl's. */
2947 static void
2948 show_vtblprint (struct ui_file *file, int from_tty,
2949 struct cmd_list_element *c, const char *value)
2950 {
2951 fprintf_filtered (file, _("\
2952 Printing of C++ virtual function tables is %s.\n"),
2953 value);
2954 }
2955
2956 /* Controls looking up an object's derived type using what we find in
2957 its vtables. */
2958 static void
2959 show_objectprint (struct ui_file *file, int from_tty,
2960 struct cmd_list_element *c,
2961 const char *value)
2962 {
2963 fprintf_filtered (file, _("\
2964 Printing of object's derived type based on vtable info is %s.\n"),
2965 value);
2966 }
2967
2968 static void
2969 show_static_field_print (struct ui_file *file, int from_tty,
2970 struct cmd_list_element *c,
2971 const char *value)
2972 {
2973 fprintf_filtered (file,
2974 _("Printing of C++ static members is %s.\n"),
2975 value);
2976 }
2977
2978 \f
2979
2980 /* A couple typedefs to make writing the options a bit more
2981 convenient. */
2982 using boolean_option_def
2983 = gdb::option::boolean_option_def<value_print_options>;
2984 using uinteger_option_def
2985 = gdb::option::uinteger_option_def<value_print_options>;
2986 using zuinteger_unlimited_option_def
2987 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
2988
2989 /* Definitions of options for the "print" and "compile print"
2990 commands. */
2991 static const gdb::option::option_def value_print_option_defs[] = {
2992
2993 boolean_option_def {
2994 "address",
2995 [] (value_print_options *opt) { return &opt->addressprint; },
2996 show_addressprint, /* show_cmd_cb */
2997 N_("Set printing of addresses."),
2998 N_("Show printing of addresses."),
2999 NULL, /* help_doc */
3000 },
3001
3002 boolean_option_def {
3003 "array",
3004 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3005 show_prettyformat_arrays, /* show_cmd_cb */
3006 N_("Set pretty formatting of arrays."),
3007 N_("Show pretty formatting of arrays."),
3008 NULL, /* help_doc */
3009 },
3010
3011 boolean_option_def {
3012 "array-indexes",
3013 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3014 show_print_array_indexes, /* show_cmd_cb */
3015 N_("Set printing of array indexes."),
3016 N_("Show printing of array indexes."),
3017 NULL, /* help_doc */
3018 },
3019
3020 uinteger_option_def {
3021 "elements",
3022 [] (value_print_options *opt) { return &opt->print_max; },
3023 show_print_max, /* show_cmd_cb */
3024 N_("Set limit on string chars or array elements to print."),
3025 N_("Show limit on string chars or array elements to print."),
3026 N_("\"unlimited\" causes there to be no limit."),
3027 },
3028
3029 zuinteger_unlimited_option_def {
3030 "max-depth",
3031 [] (value_print_options *opt) { return &opt->max_depth; },
3032 show_print_max_depth, /* show_cmd_cb */
3033 N_("Set maximum print depth for nested structures, unions and arrays."),
3034 N_("Show maximum print depth for nested structures, unions, and arrays."),
3035 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3036 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3037 Use \"unlimited\" to print the complete structure.")
3038 },
3039
3040 boolean_option_def {
3041 "null-stop",
3042 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3043 show_stop_print_at_null, /* show_cmd_cb */
3044 N_("Set printing of char arrays to stop at first null char."),
3045 N_("Show printing of char arrays to stop at first null char."),
3046 NULL, /* help_doc */
3047 },
3048
3049 boolean_option_def {
3050 "object",
3051 [] (value_print_options *opt) { return &opt->objectprint; },
3052 show_objectprint, /* show_cmd_cb */
3053 _("Set printing of C++ virtual function tables."),
3054 _("Show printing of C++ virtual function tables."),
3055 NULL, /* help_doc */
3056 },
3057
3058 boolean_option_def {
3059 "pretty",
3060 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3061 show_prettyformat_structs, /* show_cmd_cb */
3062 N_("Set pretty formatting of structures."),
3063 N_("Show pretty formatting of structures."),
3064 NULL, /* help_doc */
3065 },
3066
3067 boolean_option_def {
3068 "raw-values",
3069 [] (value_print_options *opt) { return &opt->raw; },
3070 NULL, /* show_cmd_cb */
3071 N_("Set whether to print values in raw form."),
3072 N_("Show whether to print values in raw form."),
3073 N_("If set, values are printed in raw form, bypassing any\n\
3074 pretty-printers for that value.")
3075 },
3076
3077 uinteger_option_def {
3078 "repeats",
3079 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3080 show_repeat_count_threshold, /* show_cmd_cb */
3081 N_("Set threshold for repeated print elements."),
3082 N_("Show threshold for repeated print elements."),
3083 N_("\"unlimited\" causes all elements to be individually printed."),
3084 },
3085
3086 boolean_option_def {
3087 "static-members",
3088 [] (value_print_options *opt) { return &opt->static_field_print; },
3089 show_static_field_print, /* show_cmd_cb */
3090 N_("Set printing of C++ static members."),
3091 N_("Show printing of C++ static members."),
3092 NULL, /* help_doc */
3093 },
3094
3095 boolean_option_def {
3096 "symbol",
3097 [] (value_print_options *opt) { return &opt->symbol_print; },
3098 show_symbol_print, /* show_cmd_cb */
3099 N_("Set printing of symbol names when printing pointers."),
3100 N_("Show printing of symbol names when printing pointers."),
3101 NULL, /* help_doc */
3102 },
3103
3104 boolean_option_def {
3105 "union",
3106 [] (value_print_options *opt) { return &opt->unionprint; },
3107 show_unionprint, /* show_cmd_cb */
3108 N_("Set printing of unions interior to structures."),
3109 N_("Show printing of unions interior to structures."),
3110 NULL, /* help_doc */
3111 },
3112
3113 boolean_option_def {
3114 "vtbl",
3115 [] (value_print_options *opt) { return &opt->vtblprint; },
3116 show_vtblprint, /* show_cmd_cb */
3117 N_("Set printing of C++ virtual function tables."),
3118 N_("Show printing of C++ virtual function tables."),
3119 NULL, /* help_doc */
3120 },
3121 };
3122
3123 /* See valprint.h. */
3124
3125 gdb::option::option_def_group
3126 make_value_print_options_def_group (value_print_options *opts)
3127 {
3128 return {{value_print_option_defs}, opts};
3129 }
3130
3131 void _initialize_valprint ();
3132 void
3133 _initialize_valprint ()
3134 {
3135 cmd_list_element *cmd;
3136
3137 add_basic_prefix_cmd ("print", no_class,
3138 _("Generic command for setting how things print."),
3139 &setprintlist, "set print ", 0, &setlist);
3140 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3141 /* Prefer set print to set prompt. */
3142 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3143
3144 add_show_prefix_cmd ("print", no_class,
3145 _("Generic command for showing print settings."),
3146 &showprintlist, "show print ", 0, &showlist);
3147 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3148 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3149
3150 cmd = add_basic_prefix_cmd ("raw", no_class,
3151 _("\
3152 Generic command for setting what things to print in \"raw\" mode."),
3153 &setprintrawlist, "set print raw ", 0,
3154 &setprintlist);
3155 deprecate_cmd (cmd, nullptr);
3156
3157 cmd = add_show_prefix_cmd ("raw", no_class,
3158 _("Generic command for showing \"print raw\" settings."),
3159 &showprintrawlist, "show print raw ", 0,
3160 &showprintlist);
3161 deprecate_cmd (cmd, nullptr);
3162
3163 gdb::option::add_setshow_cmds_for_options
3164 (class_support, &user_print_options, value_print_option_defs,
3165 &setprintlist, &showprintlist);
3166
3167 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3168 _("\
3169 Set default input radix for entering numbers."), _("\
3170 Show default input radix for entering numbers."), NULL,
3171 set_input_radix,
3172 show_input_radix,
3173 &setlist, &showlist);
3174
3175 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3176 _("\
3177 Set default output radix for printing of values."), _("\
3178 Show default output radix for printing of values."), NULL,
3179 set_output_radix,
3180 show_output_radix,
3181 &setlist, &showlist);
3182
3183 /* The "set radix" and "show radix" commands are special in that
3184 they are like normal set and show commands but allow two normally
3185 independent variables to be either set or shown with a single
3186 command. So the usual deprecated_add_set_cmd() and [deleted]
3187 add_show_from_set() commands aren't really appropriate. */
3188 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3189 longer true - show can display anything. */
3190 add_cmd ("radix", class_support, set_radix, _("\
3191 Set default input and output number radices.\n\
3192 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3193 Without an argument, sets both radices back to the default value of 10."),
3194 &setlist);
3195 add_cmd ("radix", class_support, show_radix, _("\
3196 Show the default input and output number radices.\n\
3197 Use 'show input-radix' or 'show output-radix' to independently show each."),
3198 &showlist);
3199 }
This page took 0.124028 seconds and 5 git commands to generate.