bfd:
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37 #include "python/python.h"
38
39 #include <errno.h>
40
41 /* Prototypes for local functions */
42
43 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
44 int len, int *errnoptr);
45
46 static void show_print (char *, int);
47
48 static void set_print (char *, int);
49
50 static void set_radix (char *, int);
51
52 static void show_radix (char *, int);
53
54 static void set_input_radix (char *, int, struct cmd_list_element *);
55
56 static void set_input_radix_1 (int, unsigned);
57
58 static void set_output_radix (char *, int, struct cmd_list_element *);
59
60 static void set_output_radix_1 (int, unsigned);
61
62 void _initialize_valprint (void);
63
64 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
65
66 struct value_print_options user_print_options =
67 {
68 Val_pretty_default, /* pretty */
69 0, /* prettyprint_arrays */
70 0, /* prettyprint_structs */
71 0, /* vtblprint */
72 1, /* unionprint */
73 1, /* addressprint */
74 0, /* objectprint */
75 PRINT_MAX_DEFAULT, /* print_max */
76 10, /* repeat_count_threshold */
77 0, /* output_format */
78 0, /* format */
79 0, /* stop_print_at_null */
80 0, /* inspect_it */
81 0, /* print_array_indexes */
82 0, /* deref_ref */
83 1, /* static_field_print */
84 1, /* pascal_static_field_print */
85 0, /* raw */
86 0 /* summary */
87 };
88
89 /* Initialize *OPTS to be a copy of the user print options. */
90 void
91 get_user_print_options (struct value_print_options *opts)
92 {
93 *opts = user_print_options;
94 }
95
96 /* Initialize *OPTS to be a copy of the user print options, but with
97 pretty-printing disabled. */
98 void
99 get_raw_print_options (struct value_print_options *opts)
100 {
101 *opts = user_print_options;
102 opts->pretty = Val_no_prettyprint;
103 }
104
105 /* Initialize *OPTS to be a copy of the user print options, but using
106 FORMAT as the formatting option. */
107 void
108 get_formatted_print_options (struct value_print_options *opts,
109 char format)
110 {
111 *opts = user_print_options;
112 opts->format = format;
113 }
114
115 static void
116 show_print_max (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("\
120 Limit on string chars or array elements to print is %s.\n"),
121 value);
122 }
123
124
125 /* Default input and output radixes, and output format letter. */
126
127 unsigned input_radix = 10;
128 static void
129 show_input_radix (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131 {
132 fprintf_filtered (file, _("\
133 Default input radix for entering numbers is %s.\n"),
134 value);
135 }
136
137 unsigned output_radix = 10;
138 static void
139 show_output_radix (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("\
143 Default output radix for printing of values is %s.\n"),
144 value);
145 }
146
147 /* By default we print arrays without printing the index of each element in
148 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
149
150 static void
151 show_print_array_indexes (struct ui_file *file, int from_tty,
152 struct cmd_list_element *c, const char *value)
153 {
154 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
155 }
156
157 /* Print repeat counts if there are more than this many repetitions of an
158 element in an array. Referenced by the low level language dependent
159 print routines. */
160
161 static void
162 show_repeat_count_threshold (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164 {
165 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
166 value);
167 }
168
169 /* If nonzero, stops printing of char arrays at first null. */
170
171 static void
172 show_stop_print_at_null (struct ui_file *file, int from_tty,
173 struct cmd_list_element *c, const char *value)
174 {
175 fprintf_filtered (file, _("\
176 Printing of char arrays to stop at first null char is %s.\n"),
177 value);
178 }
179
180 /* Controls pretty printing of structures. */
181
182 static void
183 show_prettyprint_structs (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185 {
186 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
187 }
188
189 /* Controls pretty printing of arrays. */
190
191 static void
192 show_prettyprint_arrays (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194 {
195 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
196 }
197
198 /* If nonzero, causes unions inside structures or other unions to be
199 printed. */
200
201 static void
202 show_unionprint (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("\
206 Printing of unions interior to structures is %s.\n"),
207 value);
208 }
209
210 /* If nonzero, causes machine addresses to be printed in certain contexts. */
211
212 static void
213 show_addressprint (struct ui_file *file, int from_tty,
214 struct cmd_list_element *c, const char *value)
215 {
216 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
217 }
218 \f
219
220 /* A helper function for val_print. When printing in "summary" mode,
221 we want to print scalar arguments, but not aggregate arguments.
222 This function distinguishes between the two. */
223
224 static int
225 scalar_type_p (struct type *type)
226 {
227 CHECK_TYPEDEF (type);
228 while (TYPE_CODE (type) == TYPE_CODE_REF)
229 {
230 type = TYPE_TARGET_TYPE (type);
231 CHECK_TYPEDEF (type);
232 }
233 switch (TYPE_CODE (type))
234 {
235 case TYPE_CODE_ARRAY:
236 case TYPE_CODE_STRUCT:
237 case TYPE_CODE_UNION:
238 case TYPE_CODE_SET:
239 case TYPE_CODE_STRING:
240 case TYPE_CODE_BITSTRING:
241 return 0;
242 default:
243 return 1;
244 }
245 }
246
247 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
248 (within GDB), which came from the inferior at address ADDRESS, onto
249 stdio stream STREAM according to OPTIONS.
250
251 If the data are a string pointer, returns the number of string characters
252 printed.
253
254 FIXME: The data at VALADDR is in target byte order. If gdb is ever
255 enhanced to be able to debug more than the single target it was compiled
256 for (specific CPU type and thus specific target byte ordering), then
257 either the print routines are going to have to take this into account,
258 or the data is going to have to be passed into here already converted
259 to the host byte ordering, whichever is more convenient. */
260
261
262 int
263 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
264 CORE_ADDR address, struct ui_file *stream, int recurse,
265 const struct value_print_options *options,
266 const struct language_defn *language)
267 {
268 volatile struct gdb_exception except;
269 int ret = 0;
270 struct value_print_options local_opts = *options;
271 struct type *real_type = check_typedef (type);
272
273 if (local_opts.pretty == Val_pretty_default)
274 local_opts.pretty = (local_opts.prettyprint_structs
275 ? Val_prettyprint : Val_no_prettyprint);
276
277 QUIT;
278
279 /* Ensure that the type is complete and not just a stub. If the type is
280 only a stub and we can't find and substitute its complete type, then
281 print appropriate string and return. */
282
283 if (TYPE_STUB (real_type))
284 {
285 fprintf_filtered (stream, "<incomplete type>");
286 gdb_flush (stream);
287 return (0);
288 }
289
290 if (!options->raw)
291 {
292 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
293 address, stream, recurse, options,
294 language);
295 if (ret)
296 return ret;
297 }
298
299 /* Handle summary mode. If the value is a scalar, print it;
300 otherwise, print an ellipsis. */
301 if (options->summary && !scalar_type_p (type))
302 {
303 fprintf_filtered (stream, "...");
304 return 0;
305 }
306
307 TRY_CATCH (except, RETURN_MASK_ERROR)
308 {
309 ret = language->la_val_print (type, valaddr, embedded_offset, address,
310 stream, recurse, &local_opts);
311 }
312 if (except.reason < 0)
313 fprintf_filtered (stream, _("<error reading variable>"));
314
315 return ret;
316 }
317
318 /* Check whether the value VAL is printable. Return 1 if it is;
319 return 0 and print an appropriate error message to STREAM if it
320 is not. */
321
322 static int
323 value_check_printable (struct value *val, struct ui_file *stream)
324 {
325 if (val == 0)
326 {
327 fprintf_filtered (stream, _("<address of value unknown>"));
328 return 0;
329 }
330
331 if (value_optimized_out (val))
332 {
333 fprintf_filtered (stream, _("<value optimized out>"));
334 return 0;
335 }
336
337 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
338 {
339 fprintf_filtered (stream, _("<internal function %s>"),
340 value_internal_function_name (val));
341 return 0;
342 }
343
344 return 1;
345 }
346
347 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
348 to OPTIONS.
349
350 If the data are a string pointer, returns the number of string characters
351 printed.
352
353 This is a preferable interface to val_print, above, because it uses
354 GDB's value mechanism. */
355
356 int
357 common_val_print (struct value *val, struct ui_file *stream, int recurse,
358 const struct value_print_options *options,
359 const struct language_defn *language)
360 {
361 if (!value_check_printable (val, stream))
362 return 0;
363
364 return val_print (value_type (val), value_contents_all (val),
365 value_embedded_offset (val), value_address (val),
366 stream, recurse, options, language);
367 }
368
369 /* Print on stream STREAM the value VAL according to OPTIONS. The value
370 is printed using the current_language syntax.
371
372 If the object printed is a string pointer, return the number of string
373 bytes printed. */
374
375 int
376 value_print (struct value *val, struct ui_file *stream,
377 const struct value_print_options *options)
378 {
379 if (!value_check_printable (val, stream))
380 return 0;
381
382 if (!options->raw)
383 {
384 int r = apply_val_pretty_printer (value_type (val),
385 value_contents_all (val),
386 value_embedded_offset (val),
387 value_address (val),
388 stream, 0, options,
389 current_language);
390 if (r)
391 return r;
392 }
393
394 return LA_VALUE_PRINT (val, stream, options);
395 }
396
397 /* Called by various <lang>_val_print routines to print
398 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
399 value. STREAM is where to print the value. */
400
401 void
402 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
403 struct ui_file *stream)
404 {
405 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
406
407 if (TYPE_LENGTH (type) > sizeof (LONGEST))
408 {
409 LONGEST val;
410
411 if (TYPE_UNSIGNED (type)
412 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
413 byte_order, &val))
414 {
415 print_longest (stream, 'u', 0, val);
416 }
417 else
418 {
419 /* Signed, or we couldn't turn an unsigned value into a
420 LONGEST. For signed values, one could assume two's
421 complement (a reasonable assumption, I think) and do
422 better than this. */
423 print_hex_chars (stream, (unsigned char *) valaddr,
424 TYPE_LENGTH (type), byte_order);
425 }
426 }
427 else
428 {
429 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
430 unpack_long (type, valaddr));
431 }
432 }
433
434 void
435 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
436 struct ui_file *stream)
437 {
438 ULONGEST val = unpack_long (type, valaddr);
439 int bitpos, nfields = TYPE_NFIELDS (type);
440
441 fputs_filtered ("[ ", stream);
442 for (bitpos = 0; bitpos < nfields; bitpos++)
443 {
444 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
445 && (val & ((ULONGEST)1 << bitpos)))
446 {
447 if (TYPE_FIELD_NAME (type, bitpos))
448 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
449 else
450 fprintf_filtered (stream, "#%d ", bitpos);
451 }
452 }
453 fputs_filtered ("]", stream);
454 }
455
456 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
457 The raison d'etre of this function is to consolidate printing of
458 LONG_LONG's into this one function. The format chars b,h,w,g are
459 from print_scalar_formatted(). Numbers are printed using C
460 format.
461
462 USE_C_FORMAT means to use C format in all cases. Without it,
463 'o' and 'x' format do not include the standard C radix prefix
464 (leading 0 or 0x).
465
466 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
467 and was intended to request formating according to the current
468 language and would be used for most integers that GDB prints. The
469 exceptional cases were things like protocols where the format of
470 the integer is a protocol thing, not a user-visible thing). The
471 parameter remains to preserve the information of what things might
472 be printed with language-specific format, should we ever resurrect
473 that capability. */
474
475 void
476 print_longest (struct ui_file *stream, int format, int use_c_format,
477 LONGEST val_long)
478 {
479 const char *val;
480
481 switch (format)
482 {
483 case 'd':
484 val = int_string (val_long, 10, 1, 0, 1); break;
485 case 'u':
486 val = int_string (val_long, 10, 0, 0, 1); break;
487 case 'x':
488 val = int_string (val_long, 16, 0, 0, use_c_format); break;
489 case 'b':
490 val = int_string (val_long, 16, 0, 2, 1); break;
491 case 'h':
492 val = int_string (val_long, 16, 0, 4, 1); break;
493 case 'w':
494 val = int_string (val_long, 16, 0, 8, 1); break;
495 case 'g':
496 val = int_string (val_long, 16, 0, 16, 1); break;
497 break;
498 case 'o':
499 val = int_string (val_long, 8, 0, 0, use_c_format); break;
500 default:
501 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
502 }
503 fputs_filtered (val, stream);
504 }
505
506 /* This used to be a macro, but I don't think it is called often enough
507 to merit such treatment. */
508 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
509 arguments to a function, number in a value history, register number, etc.)
510 where the value must not be larger than can fit in an int. */
511
512 int
513 longest_to_int (LONGEST arg)
514 {
515 /* Let the compiler do the work */
516 int rtnval = (int) arg;
517
518 /* Check for overflows or underflows */
519 if (sizeof (LONGEST) > sizeof (int))
520 {
521 if (rtnval != arg)
522 {
523 error (_("Value out of range."));
524 }
525 }
526 return (rtnval);
527 }
528
529 /* Print a floating point value of type TYPE (not always a
530 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
531
532 void
533 print_floating (const gdb_byte *valaddr, struct type *type,
534 struct ui_file *stream)
535 {
536 DOUBLEST doub;
537 int inv;
538 const struct floatformat *fmt = NULL;
539 unsigned len = TYPE_LENGTH (type);
540 enum float_kind kind;
541
542 /* If it is a floating-point, check for obvious problems. */
543 if (TYPE_CODE (type) == TYPE_CODE_FLT)
544 fmt = floatformat_from_type (type);
545 if (fmt != NULL)
546 {
547 kind = floatformat_classify (fmt, valaddr);
548 if (kind == float_nan)
549 {
550 if (floatformat_is_negative (fmt, valaddr))
551 fprintf_filtered (stream, "-");
552 fprintf_filtered (stream, "nan(");
553 fputs_filtered ("0x", stream);
554 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
555 fprintf_filtered (stream, ")");
556 return;
557 }
558 else if (kind == float_infinite)
559 {
560 if (floatformat_is_negative (fmt, valaddr))
561 fputs_filtered ("-", stream);
562 fputs_filtered ("inf", stream);
563 return;
564 }
565 }
566
567 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
568 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
569 needs to be used as that takes care of any necessary type
570 conversions. Such conversions are of course direct to DOUBLEST
571 and disregard any possible target floating point limitations.
572 For instance, a u64 would be converted and displayed exactly on a
573 host with 80 bit DOUBLEST but with loss of information on a host
574 with 64 bit DOUBLEST. */
575
576 doub = unpack_double (type, valaddr, &inv);
577 if (inv)
578 {
579 fprintf_filtered (stream, "<invalid float value>");
580 return;
581 }
582
583 /* FIXME: kettenis/2001-01-20: The following code makes too much
584 assumptions about the host and target floating point format. */
585
586 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
587 not necessarily be a TYPE_CODE_FLT, the below ignores that and
588 instead uses the type's length to determine the precision of the
589 floating-point value being printed. */
590
591 if (len < sizeof (double))
592 fprintf_filtered (stream, "%.9g", (double) doub);
593 else if (len == sizeof (double))
594 fprintf_filtered (stream, "%.17g", (double) doub);
595 else
596 #ifdef PRINTF_HAS_LONG_DOUBLE
597 fprintf_filtered (stream, "%.35Lg", doub);
598 #else
599 /* This at least wins with values that are representable as
600 doubles. */
601 fprintf_filtered (stream, "%.17g", (double) doub);
602 #endif
603 }
604
605 void
606 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
607 struct ui_file *stream)
608 {
609 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
610 char decstr[MAX_DECIMAL_STRING];
611 unsigned len = TYPE_LENGTH (type);
612
613 decimal_to_string (valaddr, len, byte_order, decstr);
614 fputs_filtered (decstr, stream);
615 return;
616 }
617
618 void
619 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
620 unsigned len, enum bfd_endian byte_order)
621 {
622
623 #define BITS_IN_BYTES 8
624
625 const gdb_byte *p;
626 unsigned int i;
627 int b;
628
629 /* Declared "int" so it will be signed.
630 * This ensures that right shift will shift in zeros.
631 */
632 const int mask = 0x080;
633
634 /* FIXME: We should be not printing leading zeroes in most cases. */
635
636 if (byte_order == BFD_ENDIAN_BIG)
637 {
638 for (p = valaddr;
639 p < valaddr + len;
640 p++)
641 {
642 /* Every byte has 8 binary characters; peel off
643 * and print from the MSB end.
644 */
645 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
646 {
647 if (*p & (mask >> i))
648 b = 1;
649 else
650 b = 0;
651
652 fprintf_filtered (stream, "%1d", b);
653 }
654 }
655 }
656 else
657 {
658 for (p = valaddr + len - 1;
659 p >= valaddr;
660 p--)
661 {
662 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
663 {
664 if (*p & (mask >> i))
665 b = 1;
666 else
667 b = 0;
668
669 fprintf_filtered (stream, "%1d", b);
670 }
671 }
672 }
673 }
674
675 /* VALADDR points to an integer of LEN bytes.
676 * Print it in octal on stream or format it in buf.
677 */
678 void
679 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
680 unsigned len, enum bfd_endian byte_order)
681 {
682 const gdb_byte *p;
683 unsigned char octa1, octa2, octa3, carry;
684 int cycle;
685
686 /* FIXME: We should be not printing leading zeroes in most cases. */
687
688
689 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
690 * the extra bits, which cycle every three bytes:
691 *
692 * Byte side: 0 1 2 3
693 * | | | |
694 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
695 *
696 * Octal side: 0 1 carry 3 4 carry ...
697 *
698 * Cycle number: 0 1 2
699 *
700 * But of course we are printing from the high side, so we have to
701 * figure out where in the cycle we are so that we end up with no
702 * left over bits at the end.
703 */
704 #define BITS_IN_OCTAL 3
705 #define HIGH_ZERO 0340
706 #define LOW_ZERO 0016
707 #define CARRY_ZERO 0003
708 #define HIGH_ONE 0200
709 #define MID_ONE 0160
710 #define LOW_ONE 0016
711 #define CARRY_ONE 0001
712 #define HIGH_TWO 0300
713 #define MID_TWO 0070
714 #define LOW_TWO 0007
715
716 /* For 32 we start in cycle 2, with two bits and one bit carry;
717 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
718 */
719 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
720 carry = 0;
721
722 fputs_filtered ("0", stream);
723 if (byte_order == BFD_ENDIAN_BIG)
724 {
725 for (p = valaddr;
726 p < valaddr + len;
727 p++)
728 {
729 switch (cycle)
730 {
731 case 0:
732 /* No carry in, carry out two bits.
733 */
734 octa1 = (HIGH_ZERO & *p) >> 5;
735 octa2 = (LOW_ZERO & *p) >> 2;
736 carry = (CARRY_ZERO & *p);
737 fprintf_filtered (stream, "%o", octa1);
738 fprintf_filtered (stream, "%o", octa2);
739 break;
740
741 case 1:
742 /* Carry in two bits, carry out one bit.
743 */
744 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
745 octa2 = (MID_ONE & *p) >> 4;
746 octa3 = (LOW_ONE & *p) >> 1;
747 carry = (CARRY_ONE & *p);
748 fprintf_filtered (stream, "%o", octa1);
749 fprintf_filtered (stream, "%o", octa2);
750 fprintf_filtered (stream, "%o", octa3);
751 break;
752
753 case 2:
754 /* Carry in one bit, no carry out.
755 */
756 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
757 octa2 = (MID_TWO & *p) >> 3;
758 octa3 = (LOW_TWO & *p);
759 carry = 0;
760 fprintf_filtered (stream, "%o", octa1);
761 fprintf_filtered (stream, "%o", octa2);
762 fprintf_filtered (stream, "%o", octa3);
763 break;
764
765 default:
766 error (_("Internal error in octal conversion;"));
767 }
768
769 cycle++;
770 cycle = cycle % BITS_IN_OCTAL;
771 }
772 }
773 else
774 {
775 for (p = valaddr + len - 1;
776 p >= valaddr;
777 p--)
778 {
779 switch (cycle)
780 {
781 case 0:
782 /* Carry out, no carry in */
783 octa1 = (HIGH_ZERO & *p) >> 5;
784 octa2 = (LOW_ZERO & *p) >> 2;
785 carry = (CARRY_ZERO & *p);
786 fprintf_filtered (stream, "%o", octa1);
787 fprintf_filtered (stream, "%o", octa2);
788 break;
789
790 case 1:
791 /* Carry in, carry out */
792 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
793 octa2 = (MID_ONE & *p) >> 4;
794 octa3 = (LOW_ONE & *p) >> 1;
795 carry = (CARRY_ONE & *p);
796 fprintf_filtered (stream, "%o", octa1);
797 fprintf_filtered (stream, "%o", octa2);
798 fprintf_filtered (stream, "%o", octa3);
799 break;
800
801 case 2:
802 /* Carry in, no carry out */
803 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
804 octa2 = (MID_TWO & *p) >> 3;
805 octa3 = (LOW_TWO & *p);
806 carry = 0;
807 fprintf_filtered (stream, "%o", octa1);
808 fprintf_filtered (stream, "%o", octa2);
809 fprintf_filtered (stream, "%o", octa3);
810 break;
811
812 default:
813 error (_("Internal error in octal conversion;"));
814 }
815
816 cycle++;
817 cycle = cycle % BITS_IN_OCTAL;
818 }
819 }
820
821 }
822
823 /* VALADDR points to an integer of LEN bytes.
824 * Print it in decimal on stream or format it in buf.
825 */
826 void
827 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
828 unsigned len, enum bfd_endian byte_order)
829 {
830 #define TEN 10
831 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
832 #define CARRY_LEFT( x ) ((x) % TEN)
833 #define SHIFT( x ) ((x) << 4)
834 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
835 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
836
837 const gdb_byte *p;
838 unsigned char *digits;
839 int carry;
840 int decimal_len;
841 int i, j, decimal_digits;
842 int dummy;
843 int flip;
844
845 /* Base-ten number is less than twice as many digits
846 * as the base 16 number, which is 2 digits per byte.
847 */
848 decimal_len = len * 2 * 2;
849 digits = xmalloc (decimal_len);
850
851 for (i = 0; i < decimal_len; i++)
852 {
853 digits[i] = 0;
854 }
855
856 /* Ok, we have an unknown number of bytes of data to be printed in
857 * decimal.
858 *
859 * Given a hex number (in nibbles) as XYZ, we start by taking X and
860 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
861 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
862 *
863 * The trick is that "digits" holds a base-10 number, but sometimes
864 * the individual digits are > 10.
865 *
866 * Outer loop is per nibble (hex digit) of input, from MSD end to
867 * LSD end.
868 */
869 decimal_digits = 0; /* Number of decimal digits so far */
870 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
871 flip = 0;
872 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
873 {
874 /*
875 * Multiply current base-ten number by 16 in place.
876 * Each digit was between 0 and 9, now is between
877 * 0 and 144.
878 */
879 for (j = 0; j < decimal_digits; j++)
880 {
881 digits[j] = SHIFT (digits[j]);
882 }
883
884 /* Take the next nibble off the input and add it to what
885 * we've got in the LSB position. Bottom 'digit' is now
886 * between 0 and 159.
887 *
888 * "flip" is used to run this loop twice for each byte.
889 */
890 if (flip == 0)
891 {
892 /* Take top nibble.
893 */
894 digits[0] += HIGH_NIBBLE (*p);
895 flip = 1;
896 }
897 else
898 {
899 /* Take low nibble and bump our pointer "p".
900 */
901 digits[0] += LOW_NIBBLE (*p);
902 if (byte_order == BFD_ENDIAN_BIG)
903 p++;
904 else
905 p--;
906 flip = 0;
907 }
908
909 /* Re-decimalize. We have to do this often enough
910 * that we don't overflow, but once per nibble is
911 * overkill. Easier this way, though. Note that the
912 * carry is often larger than 10 (e.g. max initial
913 * carry out of lowest nibble is 15, could bubble all
914 * the way up greater than 10). So we have to do
915 * the carrying beyond the last current digit.
916 */
917 carry = 0;
918 for (j = 0; j < decimal_len - 1; j++)
919 {
920 digits[j] += carry;
921
922 /* "/" won't handle an unsigned char with
923 * a value that if signed would be negative.
924 * So extend to longword int via "dummy".
925 */
926 dummy = digits[j];
927 carry = CARRY_OUT (dummy);
928 digits[j] = CARRY_LEFT (dummy);
929
930 if (j >= decimal_digits && carry == 0)
931 {
932 /*
933 * All higher digits are 0 and we
934 * no longer have a carry.
935 *
936 * Note: "j" is 0-based, "decimal_digits" is
937 * 1-based.
938 */
939 decimal_digits = j + 1;
940 break;
941 }
942 }
943 }
944
945 /* Ok, now "digits" is the decimal representation, with
946 * the "decimal_digits" actual digits. Print!
947 */
948 for (i = decimal_digits - 1; i >= 0; i--)
949 {
950 fprintf_filtered (stream, "%1d", digits[i]);
951 }
952 xfree (digits);
953 }
954
955 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
956
957 void
958 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
959 unsigned len, enum bfd_endian byte_order)
960 {
961 const gdb_byte *p;
962
963 /* FIXME: We should be not printing leading zeroes in most cases. */
964
965 fputs_filtered ("0x", stream);
966 if (byte_order == BFD_ENDIAN_BIG)
967 {
968 for (p = valaddr;
969 p < valaddr + len;
970 p++)
971 {
972 fprintf_filtered (stream, "%02x", *p);
973 }
974 }
975 else
976 {
977 for (p = valaddr + len - 1;
978 p >= valaddr;
979 p--)
980 {
981 fprintf_filtered (stream, "%02x", *p);
982 }
983 }
984 }
985
986 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
987 Omit any leading zero chars. */
988
989 void
990 print_char_chars (struct ui_file *stream, struct type *type,
991 const gdb_byte *valaddr,
992 unsigned len, enum bfd_endian byte_order)
993 {
994 const gdb_byte *p;
995
996 if (byte_order == BFD_ENDIAN_BIG)
997 {
998 p = valaddr;
999 while (p < valaddr + len - 1 && *p == 0)
1000 ++p;
1001
1002 while (p < valaddr + len)
1003 {
1004 LA_EMIT_CHAR (*p, type, stream, '\'');
1005 ++p;
1006 }
1007 }
1008 else
1009 {
1010 p = valaddr + len - 1;
1011 while (p > valaddr && *p == 0)
1012 --p;
1013
1014 while (p >= valaddr)
1015 {
1016 LA_EMIT_CHAR (*p, type, stream, '\'');
1017 --p;
1018 }
1019 }
1020 }
1021
1022 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1023 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1024 Save the high bound into HIGH_BOUND if not NULL.
1025
1026 Return 1 if the operation was successful. Return zero otherwise,
1027 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1028
1029 Computing the array upper and lower bounds is pretty easy, but this
1030 function does some additional verifications before returning them.
1031 If something incorrect is detected, it is better to return a status
1032 rather than throwing an error, making it easier for the caller to
1033 implement an error-recovery plan. For instance, it may decide to
1034 warn the user that the bounds were not found and then use some
1035 default values instead. */
1036
1037 int
1038 get_array_bounds (struct type *type, long *low_bound, long *high_bound)
1039 {
1040 struct type *index = TYPE_INDEX_TYPE (type);
1041 long low = 0;
1042 long high = 0;
1043
1044 if (index == NULL)
1045 return 0;
1046
1047 if (TYPE_CODE (index) == TYPE_CODE_RANGE)
1048 {
1049 low = TYPE_LOW_BOUND (index);
1050 high = TYPE_HIGH_BOUND (index);
1051 }
1052 else if (TYPE_CODE (index) == TYPE_CODE_ENUM)
1053 {
1054 const int n_enums = TYPE_NFIELDS (index);
1055
1056 low = TYPE_FIELD_BITPOS (index, 0);
1057 high = TYPE_FIELD_BITPOS (index, n_enums - 1);
1058 }
1059 else
1060 return 0;
1061
1062 /* Abort if the lower bound is greater than the higher bound, except
1063 when low = high + 1. This is a very common idiom used in Ada when
1064 defining empty ranges (for instance "range 1 .. 0"). */
1065 if (low > high + 1)
1066 return 0;
1067
1068 if (low_bound)
1069 *low_bound = low;
1070
1071 if (high_bound)
1072 *high_bound = high;
1073
1074 return 1;
1075 }
1076
1077 /* Print on STREAM using the given OPTIONS the index for the element
1078 at INDEX of an array whose index type is INDEX_TYPE. */
1079
1080 void
1081 maybe_print_array_index (struct type *index_type, LONGEST index,
1082 struct ui_file *stream,
1083 const struct value_print_options *options)
1084 {
1085 struct value *index_value;
1086
1087 if (!options->print_array_indexes)
1088 return;
1089
1090 index_value = value_from_longest (index_type, index);
1091
1092 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1093 }
1094
1095 /* Called by various <lang>_val_print routines to print elements of an
1096 array in the form "<elem1>, <elem2>, <elem3>, ...".
1097
1098 (FIXME?) Assumes array element separator is a comma, which is correct
1099 for all languages currently handled.
1100 (FIXME?) Some languages have a notation for repeated array elements,
1101 perhaps we should try to use that notation when appropriate.
1102 */
1103
1104 void
1105 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1106 CORE_ADDR address, struct ui_file *stream,
1107 int recurse,
1108 const struct value_print_options *options,
1109 unsigned int i)
1110 {
1111 unsigned int things_printed = 0;
1112 unsigned len;
1113 struct type *elttype, *index_type;
1114 unsigned eltlen;
1115 /* Position of the array element we are examining to see
1116 whether it is repeated. */
1117 unsigned int rep1;
1118 /* Number of repetitions we have detected so far. */
1119 unsigned int reps;
1120 long low_bound_index = 0;
1121
1122 elttype = TYPE_TARGET_TYPE (type);
1123 eltlen = TYPE_LENGTH (check_typedef (elttype));
1124 index_type = TYPE_INDEX_TYPE (type);
1125
1126 /* Compute the number of elements in the array. On most arrays,
1127 the size of its elements is not zero, and so the number of elements
1128 is simply the size of the array divided by the size of the elements.
1129 But for arrays of elements whose size is zero, we need to look at
1130 the bounds. */
1131 if (eltlen != 0)
1132 len = TYPE_LENGTH (type) / eltlen;
1133 else
1134 {
1135 long low, hi;
1136 if (get_array_bounds (type, &low, &hi))
1137 len = hi - low + 1;
1138 else
1139 {
1140 warning (_("unable to get bounds of array, assuming null array"));
1141 len = 0;
1142 }
1143 }
1144
1145 /* Get the array low bound. This only makes sense if the array
1146 has one or more element in it. */
1147 if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL))
1148 {
1149 warning (_("unable to get low bound of array, using zero as default"));
1150 low_bound_index = 0;
1151 }
1152
1153 annotate_array_section_begin (i, elttype);
1154
1155 for (; i < len && things_printed < options->print_max; i++)
1156 {
1157 if (i != 0)
1158 {
1159 if (options->prettyprint_arrays)
1160 {
1161 fprintf_filtered (stream, ",\n");
1162 print_spaces_filtered (2 + 2 * recurse, stream);
1163 }
1164 else
1165 {
1166 fprintf_filtered (stream, ", ");
1167 }
1168 }
1169 wrap_here (n_spaces (2 + 2 * recurse));
1170 maybe_print_array_index (index_type, i + low_bound_index,
1171 stream, options);
1172
1173 rep1 = i + 1;
1174 reps = 1;
1175 while ((rep1 < len) &&
1176 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1177 {
1178 ++reps;
1179 ++rep1;
1180 }
1181
1182 if (reps > options->repeat_count_threshold)
1183 {
1184 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1185 stream, recurse + 1, options, current_language);
1186 annotate_elt_rep (reps);
1187 fprintf_filtered (stream, " <repeats %u times>", reps);
1188 annotate_elt_rep_end ();
1189
1190 i = rep1 - 1;
1191 things_printed += options->repeat_count_threshold;
1192 }
1193 else
1194 {
1195 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1196 stream, recurse + 1, options, current_language);
1197 annotate_elt ();
1198 things_printed++;
1199 }
1200 }
1201 annotate_array_section_end ();
1202 if (i < len)
1203 {
1204 fprintf_filtered (stream, "...");
1205 }
1206 }
1207
1208 /* Read LEN bytes of target memory at address MEMADDR, placing the
1209 results in GDB's memory at MYADDR. Returns a count of the bytes
1210 actually read, and optionally an errno value in the location
1211 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1212
1213 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1214 function be eliminated. */
1215
1216 static int
1217 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
1218 {
1219 int nread; /* Number of bytes actually read. */
1220 int errcode; /* Error from last read. */
1221
1222 /* First try a complete read. */
1223 errcode = target_read_memory (memaddr, myaddr, len);
1224 if (errcode == 0)
1225 {
1226 /* Got it all. */
1227 nread = len;
1228 }
1229 else
1230 {
1231 /* Loop, reading one byte at a time until we get as much as we can. */
1232 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1233 {
1234 errcode = target_read_memory (memaddr++, myaddr++, 1);
1235 }
1236 /* If an error, the last read was unsuccessful, so adjust count. */
1237 if (errcode != 0)
1238 {
1239 nread--;
1240 }
1241 }
1242 if (errnoptr != NULL)
1243 {
1244 *errnoptr = errcode;
1245 }
1246 return (nread);
1247 }
1248
1249 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1250 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1251 allocated buffer containing the string, which the caller is responsible to
1252 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1253 success, or errno on failure.
1254
1255 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1256 the middle or end of the string). If LEN is -1, stops at the first
1257 null character (not necessarily the first null byte) up to a maximum
1258 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1259 characters as possible from the string.
1260
1261 Unless an exception is thrown, BUFFER will always be allocated, even on
1262 failure. In this case, some characters might have been read before the
1263 failure happened. Check BYTES_READ to recognize this situation.
1264
1265 Note: There was a FIXME asking to make this code use target_read_string,
1266 but this function is more general (can read past null characters, up to
1267 given LEN). Besides, it is used much more often than target_read_string
1268 so it is more tested. Perhaps callers of target_read_string should use
1269 this function instead? */
1270
1271 int
1272 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1273 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1274 {
1275 int found_nul; /* Non-zero if we found the nul char. */
1276 int errcode; /* Errno returned from bad reads. */
1277 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1278 unsigned int chunksize; /* Size of each fetch, in chars. */
1279 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1280 gdb_byte *limit; /* First location past end of fetch buffer. */
1281 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1282
1283 /* Decide how large of chunks to try to read in one operation. This
1284 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1285 so we might as well read them all in one operation. If LEN is -1, we
1286 are looking for a NUL terminator to end the fetching, so we might as
1287 well read in blocks that are large enough to be efficient, but not so
1288 large as to be slow if fetchlimit happens to be large. So we choose the
1289 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1290 200 is way too big for remote debugging over a serial line. */
1291
1292 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1293
1294 /* Loop until we either have all the characters, or we encounter
1295 some error, such as bumping into the end of the address space. */
1296
1297 found_nul = 0;
1298 *buffer = NULL;
1299
1300 old_chain = make_cleanup (free_current_contents, buffer);
1301
1302 if (len > 0)
1303 {
1304 *buffer = (gdb_byte *) xmalloc (len * width);
1305 bufptr = *buffer;
1306
1307 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1308 / width;
1309 addr += nfetch * width;
1310 bufptr += nfetch * width;
1311 }
1312 else if (len == -1)
1313 {
1314 unsigned long bufsize = 0;
1315
1316 do
1317 {
1318 QUIT;
1319 nfetch = min (chunksize, fetchlimit - bufsize);
1320
1321 if (*buffer == NULL)
1322 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1323 else
1324 *buffer = (gdb_byte *) xrealloc (*buffer,
1325 (nfetch + bufsize) * width);
1326
1327 bufptr = *buffer + bufsize * width;
1328 bufsize += nfetch;
1329
1330 /* Read as much as we can. */
1331 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1332 / width;
1333
1334 /* Scan this chunk for the null character that terminates the string
1335 to print. If found, we don't need to fetch any more. Note
1336 that bufptr is explicitly left pointing at the next character
1337 after the null character, or at the next character after the end
1338 of the buffer. */
1339
1340 limit = bufptr + nfetch * width;
1341 while (bufptr < limit)
1342 {
1343 unsigned long c;
1344
1345 c = extract_unsigned_integer (bufptr, width, byte_order);
1346 addr += width;
1347 bufptr += width;
1348 if (c == 0)
1349 {
1350 /* We don't care about any error which happened after
1351 the NUL terminator. */
1352 errcode = 0;
1353 found_nul = 1;
1354 break;
1355 }
1356 }
1357 }
1358 while (errcode == 0 /* no error */
1359 && bufptr - *buffer < fetchlimit * width /* no overrun */
1360 && !found_nul); /* haven't found NUL yet */
1361 }
1362 else
1363 { /* Length of string is really 0! */
1364 /* We always allocate *buffer. */
1365 *buffer = bufptr = xmalloc (1);
1366 errcode = 0;
1367 }
1368
1369 /* bufptr and addr now point immediately beyond the last byte which we
1370 consider part of the string (including a '\0' which ends the string). */
1371 *bytes_read = bufptr - *buffer;
1372
1373 QUIT;
1374
1375 discard_cleanups (old_chain);
1376
1377 return errcode;
1378 }
1379
1380 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1381 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1382 stops at the first null byte, otherwise printing proceeds (including null
1383 bytes) until either print_max or LEN characters have been printed,
1384 whichever is smaller. */
1385
1386 int
1387 val_print_string (struct type *elttype, CORE_ADDR addr, int len,
1388 struct ui_file *stream,
1389 const struct value_print_options *options)
1390 {
1391 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1392 int errcode; /* Errno returned from bad reads. */
1393 int found_nul; /* Non-zero if we found the nul char */
1394 unsigned int fetchlimit; /* Maximum number of chars to print. */
1395 int bytes_read;
1396 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1397 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1398 struct gdbarch *gdbarch = get_type_arch (elttype);
1399 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1400 int width = TYPE_LENGTH (elttype);
1401
1402 /* First we need to figure out the limit on the number of characters we are
1403 going to attempt to fetch and print. This is actually pretty simple. If
1404 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1405 LEN is -1, then the limit is print_max. This is true regardless of
1406 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1407 because finding the null byte (or available memory) is what actually
1408 limits the fetch. */
1409
1410 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1411
1412 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1413 &buffer, &bytes_read);
1414 old_chain = make_cleanup (xfree, buffer);
1415
1416 addr += bytes_read;
1417
1418 /* We now have either successfully filled the buffer to fetchlimit, or
1419 terminated early due to an error or finding a null char when LEN is -1. */
1420
1421 /* Determine found_nul by looking at the last character read. */
1422 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1423 byte_order) == 0;
1424 if (len == -1 && !found_nul)
1425 {
1426 gdb_byte *peekbuf;
1427
1428 /* We didn't find a NUL terminator we were looking for. Attempt
1429 to peek at the next character. If not successful, or it is not
1430 a null byte, then force ellipsis to be printed. */
1431
1432 peekbuf = (gdb_byte *) alloca (width);
1433
1434 if (target_read_memory (addr, peekbuf, width) == 0
1435 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
1436 force_ellipsis = 1;
1437 }
1438 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1439 {
1440 /* Getting an error when we have a requested length, or fetching less
1441 than the number of characters actually requested, always make us
1442 print ellipsis. */
1443 force_ellipsis = 1;
1444 }
1445
1446 /* If we get an error before fetching anything, don't print a string.
1447 But if we fetch something and then get an error, print the string
1448 and then the error message. */
1449 if (errcode == 0 || bytes_read > 0)
1450 {
1451 if (options->addressprint)
1452 {
1453 fputs_filtered (" ", stream);
1454 }
1455 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1456 NULL, force_ellipsis, options);
1457 }
1458
1459 if (errcode != 0)
1460 {
1461 if (errcode == EIO)
1462 {
1463 fprintf_filtered (stream, " <Address ");
1464 fputs_filtered (paddress (gdbarch, addr), stream);
1465 fprintf_filtered (stream, " out of bounds>");
1466 }
1467 else
1468 {
1469 fprintf_filtered (stream, " <Error reading address ");
1470 fputs_filtered (paddress (gdbarch, addr), stream);
1471 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1472 }
1473 }
1474
1475 gdb_flush (stream);
1476 do_cleanups (old_chain);
1477
1478 return (bytes_read / width);
1479 }
1480 \f
1481
1482 /* The 'set input-radix' command writes to this auxiliary variable.
1483 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1484 it is left unchanged. */
1485
1486 static unsigned input_radix_1 = 10;
1487
1488 /* Validate an input or output radix setting, and make sure the user
1489 knows what they really did here. Radix setting is confusing, e.g.
1490 setting the input radix to "10" never changes it! */
1491
1492 static void
1493 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1494 {
1495 set_input_radix_1 (from_tty, input_radix_1);
1496 }
1497
1498 static void
1499 set_input_radix_1 (int from_tty, unsigned radix)
1500 {
1501 /* We don't currently disallow any input radix except 0 or 1, which don't
1502 make any mathematical sense. In theory, we can deal with any input
1503 radix greater than 1, even if we don't have unique digits for every
1504 value from 0 to radix-1, but in practice we lose on large radix values.
1505 We should either fix the lossage or restrict the radix range more.
1506 (FIXME). */
1507
1508 if (radix < 2)
1509 {
1510 input_radix_1 = input_radix;
1511 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1512 radix);
1513 }
1514 input_radix_1 = input_radix = radix;
1515 if (from_tty)
1516 {
1517 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1518 radix, radix, radix);
1519 }
1520 }
1521
1522 /* The 'set output-radix' command writes to this auxiliary variable.
1523 If the requested radix is valid, OUTPUT_RADIX is updated,
1524 otherwise, it is left unchanged. */
1525
1526 static unsigned output_radix_1 = 10;
1527
1528 static void
1529 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1530 {
1531 set_output_radix_1 (from_tty, output_radix_1);
1532 }
1533
1534 static void
1535 set_output_radix_1 (int from_tty, unsigned radix)
1536 {
1537 /* Validate the radix and disallow ones that we aren't prepared to
1538 handle correctly, leaving the radix unchanged. */
1539 switch (radix)
1540 {
1541 case 16:
1542 user_print_options.output_format = 'x'; /* hex */
1543 break;
1544 case 10:
1545 user_print_options.output_format = 0; /* decimal */
1546 break;
1547 case 8:
1548 user_print_options.output_format = 'o'; /* octal */
1549 break;
1550 default:
1551 output_radix_1 = output_radix;
1552 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1553 radix);
1554 }
1555 output_radix_1 = output_radix = radix;
1556 if (from_tty)
1557 {
1558 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1559 radix, radix, radix);
1560 }
1561 }
1562
1563 /* Set both the input and output radix at once. Try to set the output radix
1564 first, since it has the most restrictive range. An radix that is valid as
1565 an output radix is also valid as an input radix.
1566
1567 It may be useful to have an unusual input radix. If the user wishes to
1568 set an input radix that is not valid as an output radix, he needs to use
1569 the 'set input-radix' command. */
1570
1571 static void
1572 set_radix (char *arg, int from_tty)
1573 {
1574 unsigned radix;
1575
1576 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1577 set_output_radix_1 (0, radix);
1578 set_input_radix_1 (0, radix);
1579 if (from_tty)
1580 {
1581 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1582 radix, radix, radix);
1583 }
1584 }
1585
1586 /* Show both the input and output radices. */
1587
1588 static void
1589 show_radix (char *arg, int from_tty)
1590 {
1591 if (from_tty)
1592 {
1593 if (input_radix == output_radix)
1594 {
1595 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1596 input_radix, input_radix, input_radix);
1597 }
1598 else
1599 {
1600 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1601 input_radix, input_radix, input_radix);
1602 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1603 output_radix, output_radix, output_radix);
1604 }
1605 }
1606 }
1607 \f
1608
1609 static void
1610 set_print (char *arg, int from_tty)
1611 {
1612 printf_unfiltered (
1613 "\"set print\" must be followed by the name of a print subcommand.\n");
1614 help_list (setprintlist, "set print ", -1, gdb_stdout);
1615 }
1616
1617 static void
1618 show_print (char *args, int from_tty)
1619 {
1620 cmd_show_list (showprintlist, from_tty, "");
1621 }
1622 \f
1623 void
1624 _initialize_valprint (void)
1625 {
1626 struct cmd_list_element *c;
1627
1628 add_prefix_cmd ("print", no_class, set_print,
1629 _("Generic command for setting how things print."),
1630 &setprintlist, "set print ", 0, &setlist);
1631 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1632 /* prefer set print to set prompt */
1633 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1634
1635 add_prefix_cmd ("print", no_class, show_print,
1636 _("Generic command for showing print settings."),
1637 &showprintlist, "show print ", 0, &showlist);
1638 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1639 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1640
1641 add_setshow_uinteger_cmd ("elements", no_class,
1642 &user_print_options.print_max, _("\
1643 Set limit on string chars or array elements to print."), _("\
1644 Show limit on string chars or array elements to print."), _("\
1645 \"set print elements 0\" causes there to be no limit."),
1646 NULL,
1647 show_print_max,
1648 &setprintlist, &showprintlist);
1649
1650 add_setshow_boolean_cmd ("null-stop", no_class,
1651 &user_print_options.stop_print_at_null, _("\
1652 Set printing of char arrays to stop at first null char."), _("\
1653 Show printing of char arrays to stop at first null char."), NULL,
1654 NULL,
1655 show_stop_print_at_null,
1656 &setprintlist, &showprintlist);
1657
1658 add_setshow_uinteger_cmd ("repeats", no_class,
1659 &user_print_options.repeat_count_threshold, _("\
1660 Set threshold for repeated print elements."), _("\
1661 Show threshold for repeated print elements."), _("\
1662 \"set print repeats 0\" causes all elements to be individually printed."),
1663 NULL,
1664 show_repeat_count_threshold,
1665 &setprintlist, &showprintlist);
1666
1667 add_setshow_boolean_cmd ("pretty", class_support,
1668 &user_print_options.prettyprint_structs, _("\
1669 Set prettyprinting of structures."), _("\
1670 Show prettyprinting of structures."), NULL,
1671 NULL,
1672 show_prettyprint_structs,
1673 &setprintlist, &showprintlist);
1674
1675 add_setshow_boolean_cmd ("union", class_support,
1676 &user_print_options.unionprint, _("\
1677 Set printing of unions interior to structures."), _("\
1678 Show printing of unions interior to structures."), NULL,
1679 NULL,
1680 show_unionprint,
1681 &setprintlist, &showprintlist);
1682
1683 add_setshow_boolean_cmd ("array", class_support,
1684 &user_print_options.prettyprint_arrays, _("\
1685 Set prettyprinting of arrays."), _("\
1686 Show prettyprinting of arrays."), NULL,
1687 NULL,
1688 show_prettyprint_arrays,
1689 &setprintlist, &showprintlist);
1690
1691 add_setshow_boolean_cmd ("address", class_support,
1692 &user_print_options.addressprint, _("\
1693 Set printing of addresses."), _("\
1694 Show printing of addresses."), NULL,
1695 NULL,
1696 show_addressprint,
1697 &setprintlist, &showprintlist);
1698
1699 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1700 _("\
1701 Set default input radix for entering numbers."), _("\
1702 Show default input radix for entering numbers."), NULL,
1703 set_input_radix,
1704 show_input_radix,
1705 &setlist, &showlist);
1706
1707 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1708 _("\
1709 Set default output radix for printing of values."), _("\
1710 Show default output radix for printing of values."), NULL,
1711 set_output_radix,
1712 show_output_radix,
1713 &setlist, &showlist);
1714
1715 /* The "set radix" and "show radix" commands are special in that
1716 they are like normal set and show commands but allow two normally
1717 independent variables to be either set or shown with a single
1718 command. So the usual deprecated_add_set_cmd() and [deleted]
1719 add_show_from_set() commands aren't really appropriate. */
1720 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1721 longer true - show can display anything. */
1722 add_cmd ("radix", class_support, set_radix, _("\
1723 Set default input and output number radices.\n\
1724 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1725 Without an argument, sets both radices back to the default value of 10."),
1726 &setlist);
1727 add_cmd ("radix", class_support, show_radix, _("\
1728 Show the default input and output number radices.\n\
1729 Use 'show input-radix' or 'show output-radix' to independently show each."),
1730 &showlist);
1731
1732 add_setshow_boolean_cmd ("array-indexes", class_support,
1733 &user_print_options.print_array_indexes, _("\
1734 Set printing of array indexes."), _("\
1735 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1736 &setprintlist, &showprintlist);
1737 }
This page took 0.065055 seconds and 5 git commands to generate.