Update copyright year in most headers.
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37 #include "python/python.h"
38
39 #include <errno.h>
40
41 /* Prototypes for local functions */
42
43 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
44 int len, int *errnoptr);
45
46 static void show_print (char *, int);
47
48 static void set_print (char *, int);
49
50 static void set_radix (char *, int);
51
52 static void show_radix (char *, int);
53
54 static void set_input_radix (char *, int, struct cmd_list_element *);
55
56 static void set_input_radix_1 (int, unsigned);
57
58 static void set_output_radix (char *, int, struct cmd_list_element *);
59
60 static void set_output_radix_1 (int, unsigned);
61
62 void _initialize_valprint (void);
63
64 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
65
66 struct value_print_options user_print_options =
67 {
68 Val_pretty_default, /* pretty */
69 0, /* prettyprint_arrays */
70 0, /* prettyprint_structs */
71 0, /* vtblprint */
72 1, /* unionprint */
73 1, /* addressprint */
74 0, /* objectprint */
75 PRINT_MAX_DEFAULT, /* print_max */
76 10, /* repeat_count_threshold */
77 0, /* output_format */
78 0, /* format */
79 0, /* stop_print_at_null */
80 0, /* inspect_it */
81 0, /* print_array_indexes */
82 0, /* deref_ref */
83 1, /* static_field_print */
84 1, /* pascal_static_field_print */
85 0, /* raw */
86 0 /* summary */
87 };
88
89 /* Initialize *OPTS to be a copy of the user print options. */
90 void
91 get_user_print_options (struct value_print_options *opts)
92 {
93 *opts = user_print_options;
94 }
95
96 /* Initialize *OPTS to be a copy of the user print options, but with
97 pretty-printing disabled. */
98 void
99 get_raw_print_options (struct value_print_options *opts)
100 {
101 *opts = user_print_options;
102 opts->pretty = Val_no_prettyprint;
103 }
104
105 /* Initialize *OPTS to be a copy of the user print options, but using
106 FORMAT as the formatting option. */
107 void
108 get_formatted_print_options (struct value_print_options *opts,
109 char format)
110 {
111 *opts = user_print_options;
112 opts->format = format;
113 }
114
115 static void
116 show_print_max (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("\
120 Limit on string chars or array elements to print is %s.\n"),
121 value);
122 }
123
124
125 /* Default input and output radixes, and output format letter. */
126
127 unsigned input_radix = 10;
128 static void
129 show_input_radix (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131 {
132 fprintf_filtered (file, _("\
133 Default input radix for entering numbers is %s.\n"),
134 value);
135 }
136
137 unsigned output_radix = 10;
138 static void
139 show_output_radix (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("\
143 Default output radix for printing of values is %s.\n"),
144 value);
145 }
146
147 /* By default we print arrays without printing the index of each element in
148 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
149
150 static void
151 show_print_array_indexes (struct ui_file *file, int from_tty,
152 struct cmd_list_element *c, const char *value)
153 {
154 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
155 }
156
157 /* Print repeat counts if there are more than this many repetitions of an
158 element in an array. Referenced by the low level language dependent
159 print routines. */
160
161 static void
162 show_repeat_count_threshold (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164 {
165 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
166 value);
167 }
168
169 /* If nonzero, stops printing of char arrays at first null. */
170
171 static void
172 show_stop_print_at_null (struct ui_file *file, int from_tty,
173 struct cmd_list_element *c, const char *value)
174 {
175 fprintf_filtered (file, _("\
176 Printing of char arrays to stop at first null char is %s.\n"),
177 value);
178 }
179
180 /* Controls pretty printing of structures. */
181
182 static void
183 show_prettyprint_structs (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185 {
186 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
187 }
188
189 /* Controls pretty printing of arrays. */
190
191 static void
192 show_prettyprint_arrays (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194 {
195 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
196 }
197
198 /* If nonzero, causes unions inside structures or other unions to be
199 printed. */
200
201 static void
202 show_unionprint (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("\
206 Printing of unions interior to structures is %s.\n"),
207 value);
208 }
209
210 /* If nonzero, causes machine addresses to be printed in certain contexts. */
211
212 static void
213 show_addressprint (struct ui_file *file, int from_tty,
214 struct cmd_list_element *c, const char *value)
215 {
216 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
217 }
218 \f
219
220 /* A helper function for val_print. When printing in "summary" mode,
221 we want to print scalar arguments, but not aggregate arguments.
222 This function distinguishes between the two. */
223
224 static int
225 scalar_type_p (struct type *type)
226 {
227 CHECK_TYPEDEF (type);
228 while (TYPE_CODE (type) == TYPE_CODE_REF)
229 {
230 type = TYPE_TARGET_TYPE (type);
231 CHECK_TYPEDEF (type);
232 }
233 switch (TYPE_CODE (type))
234 {
235 case TYPE_CODE_ARRAY:
236 case TYPE_CODE_STRUCT:
237 case TYPE_CODE_UNION:
238 case TYPE_CODE_SET:
239 case TYPE_CODE_STRING:
240 case TYPE_CODE_BITSTRING:
241 return 0;
242 default:
243 return 1;
244 }
245 }
246
247 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
248 (within GDB), which came from the inferior at address ADDRESS, onto
249 stdio stream STREAM according to OPTIONS.
250
251 If the data are a string pointer, returns the number of string characters
252 printed.
253
254 FIXME: The data at VALADDR is in target byte order. If gdb is ever
255 enhanced to be able to debug more than the single target it was compiled
256 for (specific CPU type and thus specific target byte ordering), then
257 either the print routines are going to have to take this into account,
258 or the data is going to have to be passed into here already converted
259 to the host byte ordering, whichever is more convenient. */
260
261
262 int
263 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
264 CORE_ADDR address, struct ui_file *stream, int recurse,
265 const struct value_print_options *options,
266 const struct language_defn *language)
267 {
268 volatile struct gdb_exception except;
269 int ret = 0;
270 struct value_print_options local_opts = *options;
271 struct type *real_type = check_typedef (type);
272
273 if (local_opts.pretty == Val_pretty_default)
274 local_opts.pretty = (local_opts.prettyprint_structs
275 ? Val_prettyprint : Val_no_prettyprint);
276
277 QUIT;
278
279 /* Ensure that the type is complete and not just a stub. If the type is
280 only a stub and we can't find and substitute its complete type, then
281 print appropriate string and return. */
282
283 if (TYPE_STUB (real_type))
284 {
285 fprintf_filtered (stream, "<incomplete type>");
286 gdb_flush (stream);
287 return (0);
288 }
289
290 if (!options->raw)
291 {
292 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
293 address, stream, recurse, options,
294 language);
295 if (ret)
296 return ret;
297 }
298
299 /* Handle summary mode. If the value is a scalar, print it;
300 otherwise, print an ellipsis. */
301 if (options->summary && !scalar_type_p (type))
302 {
303 fprintf_filtered (stream, "...");
304 return 0;
305 }
306
307 TRY_CATCH (except, RETURN_MASK_ERROR)
308 {
309 ret = language->la_val_print (type, valaddr, embedded_offset, address,
310 stream, recurse, &local_opts);
311 }
312 if (except.reason < 0)
313 fprintf_filtered (stream, _("<error reading variable>"));
314
315 return ret;
316 }
317
318 /* Check whether the value VAL is printable. Return 1 if it is;
319 return 0 and print an appropriate error message to STREAM if it
320 is not. */
321
322 static int
323 value_check_printable (struct value *val, struct ui_file *stream)
324 {
325 if (val == 0)
326 {
327 fprintf_filtered (stream, _("<address of value unknown>"));
328 return 0;
329 }
330
331 if (value_optimized_out (val))
332 {
333 fprintf_filtered (stream, _("<value optimized out>"));
334 return 0;
335 }
336
337 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
338 {
339 fprintf_filtered (stream, _("<internal function %s>"),
340 value_internal_function_name (val));
341 return 0;
342 }
343
344 return 1;
345 }
346
347 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
348 to OPTIONS.
349
350 If the data are a string pointer, returns the number of string characters
351 printed.
352
353 This is a preferable interface to val_print, above, because it uses
354 GDB's value mechanism. */
355
356 int
357 common_val_print (struct value *val, struct ui_file *stream, int recurse,
358 const struct value_print_options *options,
359 const struct language_defn *language)
360 {
361 if (!value_check_printable (val, stream))
362 return 0;
363
364 return val_print (value_type (val), value_contents_all (val),
365 value_embedded_offset (val), value_address (val),
366 stream, recurse, options, language);
367 }
368
369 /* Print the value VAL in C-ish syntax on stream STREAM according to
370 OPTIONS.
371 If the object printed is a string pointer, returns
372 the number of string bytes printed. */
373
374 int
375 value_print (struct value *val, struct ui_file *stream,
376 const struct value_print_options *options)
377 {
378 if (!value_check_printable (val, stream))
379 return 0;
380
381 if (!options->raw)
382 {
383 int r = apply_val_pretty_printer (value_type (val),
384 value_contents_all (val),
385 value_embedded_offset (val),
386 value_address (val),
387 stream, 0, options,
388 current_language);
389 if (r)
390 return r;
391 }
392
393 return LA_VALUE_PRINT (val, stream, options);
394 }
395
396 /* Called by various <lang>_val_print routines to print
397 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
398 value. STREAM is where to print the value. */
399
400 void
401 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
402 struct ui_file *stream)
403 {
404 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
405
406 if (TYPE_LENGTH (type) > sizeof (LONGEST))
407 {
408 LONGEST val;
409
410 if (TYPE_UNSIGNED (type)
411 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
412 byte_order, &val))
413 {
414 print_longest (stream, 'u', 0, val);
415 }
416 else
417 {
418 /* Signed, or we couldn't turn an unsigned value into a
419 LONGEST. For signed values, one could assume two's
420 complement (a reasonable assumption, I think) and do
421 better than this. */
422 print_hex_chars (stream, (unsigned char *) valaddr,
423 TYPE_LENGTH (type), byte_order);
424 }
425 }
426 else
427 {
428 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
429 unpack_long (type, valaddr));
430 }
431 }
432
433 void
434 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
435 struct ui_file *stream)
436 {
437 ULONGEST val = unpack_long (type, valaddr);
438 int bitpos, nfields = TYPE_NFIELDS (type);
439
440 fputs_filtered ("[ ", stream);
441 for (bitpos = 0; bitpos < nfields; bitpos++)
442 {
443 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
444 && (val & ((ULONGEST)1 << bitpos)))
445 {
446 if (TYPE_FIELD_NAME (type, bitpos))
447 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
448 else
449 fprintf_filtered (stream, "#%d ", bitpos);
450 }
451 }
452 fputs_filtered ("]", stream);
453 }
454
455 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
456 The raison d'etre of this function is to consolidate printing of
457 LONG_LONG's into this one function. The format chars b,h,w,g are
458 from print_scalar_formatted(). Numbers are printed using C
459 format.
460
461 USE_C_FORMAT means to use C format in all cases. Without it,
462 'o' and 'x' format do not include the standard C radix prefix
463 (leading 0 or 0x).
464
465 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
466 and was intended to request formating according to the current
467 language and would be used for most integers that GDB prints. The
468 exceptional cases were things like protocols where the format of
469 the integer is a protocol thing, not a user-visible thing). The
470 parameter remains to preserve the information of what things might
471 be printed with language-specific format, should we ever resurrect
472 that capability. */
473
474 void
475 print_longest (struct ui_file *stream, int format, int use_c_format,
476 LONGEST val_long)
477 {
478 const char *val;
479
480 switch (format)
481 {
482 case 'd':
483 val = int_string (val_long, 10, 1, 0, 1); break;
484 case 'u':
485 val = int_string (val_long, 10, 0, 0, 1); break;
486 case 'x':
487 val = int_string (val_long, 16, 0, 0, use_c_format); break;
488 case 'b':
489 val = int_string (val_long, 16, 0, 2, 1); break;
490 case 'h':
491 val = int_string (val_long, 16, 0, 4, 1); break;
492 case 'w':
493 val = int_string (val_long, 16, 0, 8, 1); break;
494 case 'g':
495 val = int_string (val_long, 16, 0, 16, 1); break;
496 break;
497 case 'o':
498 val = int_string (val_long, 8, 0, 0, use_c_format); break;
499 default:
500 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
501 }
502 fputs_filtered (val, stream);
503 }
504
505 /* This used to be a macro, but I don't think it is called often enough
506 to merit such treatment. */
507 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
508 arguments to a function, number in a value history, register number, etc.)
509 where the value must not be larger than can fit in an int. */
510
511 int
512 longest_to_int (LONGEST arg)
513 {
514 /* Let the compiler do the work */
515 int rtnval = (int) arg;
516
517 /* Check for overflows or underflows */
518 if (sizeof (LONGEST) > sizeof (int))
519 {
520 if (rtnval != arg)
521 {
522 error (_("Value out of range."));
523 }
524 }
525 return (rtnval);
526 }
527
528 /* Print a floating point value of type TYPE (not always a
529 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
530
531 void
532 print_floating (const gdb_byte *valaddr, struct type *type,
533 struct ui_file *stream)
534 {
535 DOUBLEST doub;
536 int inv;
537 const struct floatformat *fmt = NULL;
538 unsigned len = TYPE_LENGTH (type);
539 enum float_kind kind;
540
541 /* If it is a floating-point, check for obvious problems. */
542 if (TYPE_CODE (type) == TYPE_CODE_FLT)
543 fmt = floatformat_from_type (type);
544 if (fmt != NULL)
545 {
546 kind = floatformat_classify (fmt, valaddr);
547 if (kind == float_nan)
548 {
549 if (floatformat_is_negative (fmt, valaddr))
550 fprintf_filtered (stream, "-");
551 fprintf_filtered (stream, "nan(");
552 fputs_filtered ("0x", stream);
553 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
554 fprintf_filtered (stream, ")");
555 return;
556 }
557 else if (kind == float_infinite)
558 {
559 if (floatformat_is_negative (fmt, valaddr))
560 fputs_filtered ("-", stream);
561 fputs_filtered ("inf", stream);
562 return;
563 }
564 }
565
566 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
567 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
568 needs to be used as that takes care of any necessary type
569 conversions. Such conversions are of course direct to DOUBLEST
570 and disregard any possible target floating point limitations.
571 For instance, a u64 would be converted and displayed exactly on a
572 host with 80 bit DOUBLEST but with loss of information on a host
573 with 64 bit DOUBLEST. */
574
575 doub = unpack_double (type, valaddr, &inv);
576 if (inv)
577 {
578 fprintf_filtered (stream, "<invalid float value>");
579 return;
580 }
581
582 /* FIXME: kettenis/2001-01-20: The following code makes too much
583 assumptions about the host and target floating point format. */
584
585 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
586 not necessarily be a TYPE_CODE_FLT, the below ignores that and
587 instead uses the type's length to determine the precision of the
588 floating-point value being printed. */
589
590 if (len < sizeof (double))
591 fprintf_filtered (stream, "%.9g", (double) doub);
592 else if (len == sizeof (double))
593 fprintf_filtered (stream, "%.17g", (double) doub);
594 else
595 #ifdef PRINTF_HAS_LONG_DOUBLE
596 fprintf_filtered (stream, "%.35Lg", doub);
597 #else
598 /* This at least wins with values that are representable as
599 doubles. */
600 fprintf_filtered (stream, "%.17g", (double) doub);
601 #endif
602 }
603
604 void
605 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
606 struct ui_file *stream)
607 {
608 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
609 char decstr[MAX_DECIMAL_STRING];
610 unsigned len = TYPE_LENGTH (type);
611
612 decimal_to_string (valaddr, len, byte_order, decstr);
613 fputs_filtered (decstr, stream);
614 return;
615 }
616
617 void
618 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
619 unsigned len, enum bfd_endian byte_order)
620 {
621
622 #define BITS_IN_BYTES 8
623
624 const gdb_byte *p;
625 unsigned int i;
626 int b;
627
628 /* Declared "int" so it will be signed.
629 * This ensures that right shift will shift in zeros.
630 */
631 const int mask = 0x080;
632
633 /* FIXME: We should be not printing leading zeroes in most cases. */
634
635 if (byte_order == BFD_ENDIAN_BIG)
636 {
637 for (p = valaddr;
638 p < valaddr + len;
639 p++)
640 {
641 /* Every byte has 8 binary characters; peel off
642 * and print from the MSB end.
643 */
644 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
645 {
646 if (*p & (mask >> i))
647 b = 1;
648 else
649 b = 0;
650
651 fprintf_filtered (stream, "%1d", b);
652 }
653 }
654 }
655 else
656 {
657 for (p = valaddr + len - 1;
658 p >= valaddr;
659 p--)
660 {
661 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
662 {
663 if (*p & (mask >> i))
664 b = 1;
665 else
666 b = 0;
667
668 fprintf_filtered (stream, "%1d", b);
669 }
670 }
671 }
672 }
673
674 /* VALADDR points to an integer of LEN bytes.
675 * Print it in octal on stream or format it in buf.
676 */
677 void
678 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
679 unsigned len, enum bfd_endian byte_order)
680 {
681 const gdb_byte *p;
682 unsigned char octa1, octa2, octa3, carry;
683 int cycle;
684
685 /* FIXME: We should be not printing leading zeroes in most cases. */
686
687
688 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
689 * the extra bits, which cycle every three bytes:
690 *
691 * Byte side: 0 1 2 3
692 * | | | |
693 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
694 *
695 * Octal side: 0 1 carry 3 4 carry ...
696 *
697 * Cycle number: 0 1 2
698 *
699 * But of course we are printing from the high side, so we have to
700 * figure out where in the cycle we are so that we end up with no
701 * left over bits at the end.
702 */
703 #define BITS_IN_OCTAL 3
704 #define HIGH_ZERO 0340
705 #define LOW_ZERO 0016
706 #define CARRY_ZERO 0003
707 #define HIGH_ONE 0200
708 #define MID_ONE 0160
709 #define LOW_ONE 0016
710 #define CARRY_ONE 0001
711 #define HIGH_TWO 0300
712 #define MID_TWO 0070
713 #define LOW_TWO 0007
714
715 /* For 32 we start in cycle 2, with two bits and one bit carry;
716 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
717 */
718 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
719 carry = 0;
720
721 fputs_filtered ("0", stream);
722 if (byte_order == BFD_ENDIAN_BIG)
723 {
724 for (p = valaddr;
725 p < valaddr + len;
726 p++)
727 {
728 switch (cycle)
729 {
730 case 0:
731 /* No carry in, carry out two bits.
732 */
733 octa1 = (HIGH_ZERO & *p) >> 5;
734 octa2 = (LOW_ZERO & *p) >> 2;
735 carry = (CARRY_ZERO & *p);
736 fprintf_filtered (stream, "%o", octa1);
737 fprintf_filtered (stream, "%o", octa2);
738 break;
739
740 case 1:
741 /* Carry in two bits, carry out one bit.
742 */
743 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
744 octa2 = (MID_ONE & *p) >> 4;
745 octa3 = (LOW_ONE & *p) >> 1;
746 carry = (CARRY_ONE & *p);
747 fprintf_filtered (stream, "%o", octa1);
748 fprintf_filtered (stream, "%o", octa2);
749 fprintf_filtered (stream, "%o", octa3);
750 break;
751
752 case 2:
753 /* Carry in one bit, no carry out.
754 */
755 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
756 octa2 = (MID_TWO & *p) >> 3;
757 octa3 = (LOW_TWO & *p);
758 carry = 0;
759 fprintf_filtered (stream, "%o", octa1);
760 fprintf_filtered (stream, "%o", octa2);
761 fprintf_filtered (stream, "%o", octa3);
762 break;
763
764 default:
765 error (_("Internal error in octal conversion;"));
766 }
767
768 cycle++;
769 cycle = cycle % BITS_IN_OCTAL;
770 }
771 }
772 else
773 {
774 for (p = valaddr + len - 1;
775 p >= valaddr;
776 p--)
777 {
778 switch (cycle)
779 {
780 case 0:
781 /* Carry out, no carry in */
782 octa1 = (HIGH_ZERO & *p) >> 5;
783 octa2 = (LOW_ZERO & *p) >> 2;
784 carry = (CARRY_ZERO & *p);
785 fprintf_filtered (stream, "%o", octa1);
786 fprintf_filtered (stream, "%o", octa2);
787 break;
788
789 case 1:
790 /* Carry in, carry out */
791 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
792 octa2 = (MID_ONE & *p) >> 4;
793 octa3 = (LOW_ONE & *p) >> 1;
794 carry = (CARRY_ONE & *p);
795 fprintf_filtered (stream, "%o", octa1);
796 fprintf_filtered (stream, "%o", octa2);
797 fprintf_filtered (stream, "%o", octa3);
798 break;
799
800 case 2:
801 /* Carry in, no carry out */
802 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
803 octa2 = (MID_TWO & *p) >> 3;
804 octa3 = (LOW_TWO & *p);
805 carry = 0;
806 fprintf_filtered (stream, "%o", octa1);
807 fprintf_filtered (stream, "%o", octa2);
808 fprintf_filtered (stream, "%o", octa3);
809 break;
810
811 default:
812 error (_("Internal error in octal conversion;"));
813 }
814
815 cycle++;
816 cycle = cycle % BITS_IN_OCTAL;
817 }
818 }
819
820 }
821
822 /* VALADDR points to an integer of LEN bytes.
823 * Print it in decimal on stream or format it in buf.
824 */
825 void
826 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
827 unsigned len, enum bfd_endian byte_order)
828 {
829 #define TEN 10
830 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
831 #define CARRY_LEFT( x ) ((x) % TEN)
832 #define SHIFT( x ) ((x) << 4)
833 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
834 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
835
836 const gdb_byte *p;
837 unsigned char *digits;
838 int carry;
839 int decimal_len;
840 int i, j, decimal_digits;
841 int dummy;
842 int flip;
843
844 /* Base-ten number is less than twice as many digits
845 * as the base 16 number, which is 2 digits per byte.
846 */
847 decimal_len = len * 2 * 2;
848 digits = xmalloc (decimal_len);
849
850 for (i = 0; i < decimal_len; i++)
851 {
852 digits[i] = 0;
853 }
854
855 /* Ok, we have an unknown number of bytes of data to be printed in
856 * decimal.
857 *
858 * Given a hex number (in nibbles) as XYZ, we start by taking X and
859 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
860 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
861 *
862 * The trick is that "digits" holds a base-10 number, but sometimes
863 * the individual digits are > 10.
864 *
865 * Outer loop is per nibble (hex digit) of input, from MSD end to
866 * LSD end.
867 */
868 decimal_digits = 0; /* Number of decimal digits so far */
869 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
870 flip = 0;
871 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
872 {
873 /*
874 * Multiply current base-ten number by 16 in place.
875 * Each digit was between 0 and 9, now is between
876 * 0 and 144.
877 */
878 for (j = 0; j < decimal_digits; j++)
879 {
880 digits[j] = SHIFT (digits[j]);
881 }
882
883 /* Take the next nibble off the input and add it to what
884 * we've got in the LSB position. Bottom 'digit' is now
885 * between 0 and 159.
886 *
887 * "flip" is used to run this loop twice for each byte.
888 */
889 if (flip == 0)
890 {
891 /* Take top nibble.
892 */
893 digits[0] += HIGH_NIBBLE (*p);
894 flip = 1;
895 }
896 else
897 {
898 /* Take low nibble and bump our pointer "p".
899 */
900 digits[0] += LOW_NIBBLE (*p);
901 if (byte_order == BFD_ENDIAN_BIG)
902 p++;
903 else
904 p--;
905 flip = 0;
906 }
907
908 /* Re-decimalize. We have to do this often enough
909 * that we don't overflow, but once per nibble is
910 * overkill. Easier this way, though. Note that the
911 * carry is often larger than 10 (e.g. max initial
912 * carry out of lowest nibble is 15, could bubble all
913 * the way up greater than 10). So we have to do
914 * the carrying beyond the last current digit.
915 */
916 carry = 0;
917 for (j = 0; j < decimal_len - 1; j++)
918 {
919 digits[j] += carry;
920
921 /* "/" won't handle an unsigned char with
922 * a value that if signed would be negative.
923 * So extend to longword int via "dummy".
924 */
925 dummy = digits[j];
926 carry = CARRY_OUT (dummy);
927 digits[j] = CARRY_LEFT (dummy);
928
929 if (j >= decimal_digits && carry == 0)
930 {
931 /*
932 * All higher digits are 0 and we
933 * no longer have a carry.
934 *
935 * Note: "j" is 0-based, "decimal_digits" is
936 * 1-based.
937 */
938 decimal_digits = j + 1;
939 break;
940 }
941 }
942 }
943
944 /* Ok, now "digits" is the decimal representation, with
945 * the "decimal_digits" actual digits. Print!
946 */
947 for (i = decimal_digits - 1; i >= 0; i--)
948 {
949 fprintf_filtered (stream, "%1d", digits[i]);
950 }
951 xfree (digits);
952 }
953
954 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
955
956 void
957 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
958 unsigned len, enum bfd_endian byte_order)
959 {
960 const gdb_byte *p;
961
962 /* FIXME: We should be not printing leading zeroes in most cases. */
963
964 fputs_filtered ("0x", stream);
965 if (byte_order == BFD_ENDIAN_BIG)
966 {
967 for (p = valaddr;
968 p < valaddr + len;
969 p++)
970 {
971 fprintf_filtered (stream, "%02x", *p);
972 }
973 }
974 else
975 {
976 for (p = valaddr + len - 1;
977 p >= valaddr;
978 p--)
979 {
980 fprintf_filtered (stream, "%02x", *p);
981 }
982 }
983 }
984
985 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
986 Omit any leading zero chars. */
987
988 void
989 print_char_chars (struct ui_file *stream, struct type *type,
990 const gdb_byte *valaddr,
991 unsigned len, enum bfd_endian byte_order)
992 {
993 const gdb_byte *p;
994
995 if (byte_order == BFD_ENDIAN_BIG)
996 {
997 p = valaddr;
998 while (p < valaddr + len - 1 && *p == 0)
999 ++p;
1000
1001 while (p < valaddr + len)
1002 {
1003 LA_EMIT_CHAR (*p, type, stream, '\'');
1004 ++p;
1005 }
1006 }
1007 else
1008 {
1009 p = valaddr + len - 1;
1010 while (p > valaddr && *p == 0)
1011 --p;
1012
1013 while (p >= valaddr)
1014 {
1015 LA_EMIT_CHAR (*p, type, stream, '\'');
1016 --p;
1017 }
1018 }
1019 }
1020
1021 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1022 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1023 Save the high bound into HIGH_BOUND if not NULL.
1024
1025 Return 1 if the operation was successful. Return zero otherwise,
1026 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1027
1028 Computing the array upper and lower bounds is pretty easy, but this
1029 function does some additional verifications before returning them.
1030 If something incorrect is detected, it is better to return a status
1031 rather than throwing an error, making it easier for the caller to
1032 implement an error-recovery plan. For instance, it may decide to
1033 warn the user that the bounds were not found and then use some
1034 default values instead. */
1035
1036 int
1037 get_array_bounds (struct type *type, long *low_bound, long *high_bound)
1038 {
1039 struct type *index = TYPE_INDEX_TYPE (type);
1040 long low = 0;
1041 long high = 0;
1042
1043 if (index == NULL)
1044 return 0;
1045
1046 if (TYPE_CODE (index) == TYPE_CODE_RANGE)
1047 {
1048 low = TYPE_LOW_BOUND (index);
1049 high = TYPE_HIGH_BOUND (index);
1050 }
1051 else if (TYPE_CODE (index) == TYPE_CODE_ENUM)
1052 {
1053 const int n_enums = TYPE_NFIELDS (index);
1054
1055 low = TYPE_FIELD_BITPOS (index, 0);
1056 high = TYPE_FIELD_BITPOS (index, n_enums - 1);
1057 }
1058 else
1059 return 0;
1060
1061 /* Abort if the lower bound is greater than the higher bound, except
1062 when low = high + 1. This is a very common idiom used in Ada when
1063 defining empty ranges (for instance "range 1 .. 0"). */
1064 if (low > high + 1)
1065 return 0;
1066
1067 if (low_bound)
1068 *low_bound = low;
1069
1070 if (high_bound)
1071 *high_bound = high;
1072
1073 return 1;
1074 }
1075
1076 /* Print on STREAM using the given OPTIONS the index for the element
1077 at INDEX of an array whose index type is INDEX_TYPE. */
1078
1079 void
1080 maybe_print_array_index (struct type *index_type, LONGEST index,
1081 struct ui_file *stream,
1082 const struct value_print_options *options)
1083 {
1084 struct value *index_value;
1085
1086 if (!options->print_array_indexes)
1087 return;
1088
1089 index_value = value_from_longest (index_type, index);
1090
1091 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1092 }
1093
1094 /* Called by various <lang>_val_print routines to print elements of an
1095 array in the form "<elem1>, <elem2>, <elem3>, ...".
1096
1097 (FIXME?) Assumes array element separator is a comma, which is correct
1098 for all languages currently handled.
1099 (FIXME?) Some languages have a notation for repeated array elements,
1100 perhaps we should try to use that notation when appropriate.
1101 */
1102
1103 void
1104 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1105 CORE_ADDR address, struct ui_file *stream,
1106 int recurse,
1107 const struct value_print_options *options,
1108 unsigned int i)
1109 {
1110 unsigned int things_printed = 0;
1111 unsigned len;
1112 struct type *elttype, *index_type;
1113 unsigned eltlen;
1114 /* Position of the array element we are examining to see
1115 whether it is repeated. */
1116 unsigned int rep1;
1117 /* Number of repetitions we have detected so far. */
1118 unsigned int reps;
1119 long low_bound_index = 0;
1120
1121 elttype = TYPE_TARGET_TYPE (type);
1122 eltlen = TYPE_LENGTH (check_typedef (elttype));
1123 index_type = TYPE_INDEX_TYPE (type);
1124
1125 /* Compute the number of elements in the array. On most arrays,
1126 the size of its elements is not zero, and so the number of elements
1127 is simply the size of the array divided by the size of the elements.
1128 But for arrays of elements whose size is zero, we need to look at
1129 the bounds. */
1130 if (eltlen != 0)
1131 len = TYPE_LENGTH (type) / eltlen;
1132 else
1133 {
1134 long low, hi;
1135 if (get_array_bounds (type, &low, &hi))
1136 len = hi - low + 1;
1137 else
1138 {
1139 warning (_("unable to get bounds of array, assuming null array"));
1140 len = 0;
1141 }
1142 }
1143
1144 /* Get the array low bound. This only makes sense if the array
1145 has one or more element in it. */
1146 if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL))
1147 {
1148 warning (_("unable to get low bound of array, using zero as default"));
1149 low_bound_index = 0;
1150 }
1151
1152 annotate_array_section_begin (i, elttype);
1153
1154 for (; i < len && things_printed < options->print_max; i++)
1155 {
1156 if (i != 0)
1157 {
1158 if (options->prettyprint_arrays)
1159 {
1160 fprintf_filtered (stream, ",\n");
1161 print_spaces_filtered (2 + 2 * recurse, stream);
1162 }
1163 else
1164 {
1165 fprintf_filtered (stream, ", ");
1166 }
1167 }
1168 wrap_here (n_spaces (2 + 2 * recurse));
1169 maybe_print_array_index (index_type, i + low_bound_index,
1170 stream, options);
1171
1172 rep1 = i + 1;
1173 reps = 1;
1174 while ((rep1 < len) &&
1175 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1176 {
1177 ++reps;
1178 ++rep1;
1179 }
1180
1181 if (reps > options->repeat_count_threshold)
1182 {
1183 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1184 stream, recurse + 1, options, current_language);
1185 annotate_elt_rep (reps);
1186 fprintf_filtered (stream, " <repeats %u times>", reps);
1187 annotate_elt_rep_end ();
1188
1189 i = rep1 - 1;
1190 things_printed += options->repeat_count_threshold;
1191 }
1192 else
1193 {
1194 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1195 stream, recurse + 1, options, current_language);
1196 annotate_elt ();
1197 things_printed++;
1198 }
1199 }
1200 annotate_array_section_end ();
1201 if (i < len)
1202 {
1203 fprintf_filtered (stream, "...");
1204 }
1205 }
1206
1207 /* Read LEN bytes of target memory at address MEMADDR, placing the
1208 results in GDB's memory at MYADDR. Returns a count of the bytes
1209 actually read, and optionally an errno value in the location
1210 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1211
1212 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1213 function be eliminated. */
1214
1215 static int
1216 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
1217 {
1218 int nread; /* Number of bytes actually read. */
1219 int errcode; /* Error from last read. */
1220
1221 /* First try a complete read. */
1222 errcode = target_read_memory (memaddr, myaddr, len);
1223 if (errcode == 0)
1224 {
1225 /* Got it all. */
1226 nread = len;
1227 }
1228 else
1229 {
1230 /* Loop, reading one byte at a time until we get as much as we can. */
1231 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1232 {
1233 errcode = target_read_memory (memaddr++, myaddr++, 1);
1234 }
1235 /* If an error, the last read was unsuccessful, so adjust count. */
1236 if (errcode != 0)
1237 {
1238 nread--;
1239 }
1240 }
1241 if (errnoptr != NULL)
1242 {
1243 *errnoptr = errcode;
1244 }
1245 return (nread);
1246 }
1247
1248 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1249 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1250 allocated buffer containing the string, which the caller is responsible to
1251 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1252 success, or errno on failure.
1253
1254 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1255 the middle or end of the string). If LEN is -1, stops at the first
1256 null character (not necessarily the first null byte) up to a maximum
1257 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1258 characters as possible from the string.
1259
1260 Unless an exception is thrown, BUFFER will always be allocated, even on
1261 failure. In this case, some characters might have been read before the
1262 failure happened. Check BYTES_READ to recognize this situation.
1263
1264 Note: There was a FIXME asking to make this code use target_read_string,
1265 but this function is more general (can read past null characters, up to
1266 given LEN). Besides, it is used much more often than target_read_string
1267 so it is more tested. Perhaps callers of target_read_string should use
1268 this function instead? */
1269
1270 int
1271 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1272 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1273 {
1274 int found_nul; /* Non-zero if we found the nul char. */
1275 int errcode; /* Errno returned from bad reads. */
1276 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1277 unsigned int chunksize; /* Size of each fetch, in chars. */
1278 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1279 gdb_byte *limit; /* First location past end of fetch buffer. */
1280 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1281
1282 /* Decide how large of chunks to try to read in one operation. This
1283 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1284 so we might as well read them all in one operation. If LEN is -1, we
1285 are looking for a NUL terminator to end the fetching, so we might as
1286 well read in blocks that are large enough to be efficient, but not so
1287 large as to be slow if fetchlimit happens to be large. So we choose the
1288 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1289 200 is way too big for remote debugging over a serial line. */
1290
1291 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1292
1293 /* Loop until we either have all the characters, or we encounter
1294 some error, such as bumping into the end of the address space. */
1295
1296 found_nul = 0;
1297 *buffer = NULL;
1298
1299 old_chain = make_cleanup (free_current_contents, buffer);
1300
1301 if (len > 0)
1302 {
1303 *buffer = (gdb_byte *) xmalloc (len * width);
1304 bufptr = *buffer;
1305
1306 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1307 / width;
1308 addr += nfetch * width;
1309 bufptr += nfetch * width;
1310 }
1311 else if (len == -1)
1312 {
1313 unsigned long bufsize = 0;
1314
1315 do
1316 {
1317 QUIT;
1318 nfetch = min (chunksize, fetchlimit - bufsize);
1319
1320 if (*buffer == NULL)
1321 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1322 else
1323 *buffer = (gdb_byte *) xrealloc (*buffer,
1324 (nfetch + bufsize) * width);
1325
1326 bufptr = *buffer + bufsize * width;
1327 bufsize += nfetch;
1328
1329 /* Read as much as we can. */
1330 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1331 / width;
1332
1333 /* Scan this chunk for the null character that terminates the string
1334 to print. If found, we don't need to fetch any more. Note
1335 that bufptr is explicitly left pointing at the next character
1336 after the null character, or at the next character after the end
1337 of the buffer. */
1338
1339 limit = bufptr + nfetch * width;
1340 while (bufptr < limit)
1341 {
1342 unsigned long c;
1343
1344 c = extract_unsigned_integer (bufptr, width, byte_order);
1345 addr += width;
1346 bufptr += width;
1347 if (c == 0)
1348 {
1349 /* We don't care about any error which happened after
1350 the NUL terminator. */
1351 errcode = 0;
1352 found_nul = 1;
1353 break;
1354 }
1355 }
1356 }
1357 while (errcode == 0 /* no error */
1358 && bufptr - *buffer < fetchlimit * width /* no overrun */
1359 && !found_nul); /* haven't found NUL yet */
1360 }
1361 else
1362 { /* Length of string is really 0! */
1363 /* We always allocate *buffer. */
1364 *buffer = bufptr = xmalloc (1);
1365 errcode = 0;
1366 }
1367
1368 /* bufptr and addr now point immediately beyond the last byte which we
1369 consider part of the string (including a '\0' which ends the string). */
1370 *bytes_read = bufptr - *buffer;
1371
1372 QUIT;
1373
1374 discard_cleanups (old_chain);
1375
1376 return errcode;
1377 }
1378
1379 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1380 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1381 stops at the first null byte, otherwise printing proceeds (including null
1382 bytes) until either print_max or LEN characters have been printed,
1383 whichever is smaller. */
1384
1385 int
1386 val_print_string (struct type *elttype, CORE_ADDR addr, int len,
1387 struct ui_file *stream,
1388 const struct value_print_options *options)
1389 {
1390 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1391 int errcode; /* Errno returned from bad reads. */
1392 int found_nul; /* Non-zero if we found the nul char */
1393 unsigned int fetchlimit; /* Maximum number of chars to print. */
1394 int bytes_read;
1395 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1396 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1397 struct gdbarch *gdbarch = get_type_arch (elttype);
1398 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1399 int width = TYPE_LENGTH (elttype);
1400
1401 /* First we need to figure out the limit on the number of characters we are
1402 going to attempt to fetch and print. This is actually pretty simple. If
1403 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1404 LEN is -1, then the limit is print_max. This is true regardless of
1405 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1406 because finding the null byte (or available memory) is what actually
1407 limits the fetch. */
1408
1409 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1410
1411 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1412 &buffer, &bytes_read);
1413 old_chain = make_cleanup (xfree, buffer);
1414
1415 addr += bytes_read;
1416
1417 /* We now have either successfully filled the buffer to fetchlimit, or
1418 terminated early due to an error or finding a null char when LEN is -1. */
1419
1420 /* Determine found_nul by looking at the last character read. */
1421 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1422 byte_order) == 0;
1423 if (len == -1 && !found_nul)
1424 {
1425 gdb_byte *peekbuf;
1426
1427 /* We didn't find a NUL terminator we were looking for. Attempt
1428 to peek at the next character. If not successful, or it is not
1429 a null byte, then force ellipsis to be printed. */
1430
1431 peekbuf = (gdb_byte *) alloca (width);
1432
1433 if (target_read_memory (addr, peekbuf, width) == 0
1434 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
1435 force_ellipsis = 1;
1436 }
1437 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1438 {
1439 /* Getting an error when we have a requested length, or fetching less
1440 than the number of characters actually requested, always make us
1441 print ellipsis. */
1442 force_ellipsis = 1;
1443 }
1444
1445 /* If we get an error before fetching anything, don't print a string.
1446 But if we fetch something and then get an error, print the string
1447 and then the error message. */
1448 if (errcode == 0 || bytes_read > 0)
1449 {
1450 if (options->addressprint)
1451 {
1452 fputs_filtered (" ", stream);
1453 }
1454 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width, force_ellipsis, options);
1455 }
1456
1457 if (errcode != 0)
1458 {
1459 if (errcode == EIO)
1460 {
1461 fprintf_filtered (stream, " <Address ");
1462 fputs_filtered (paddress (gdbarch, addr), stream);
1463 fprintf_filtered (stream, " out of bounds>");
1464 }
1465 else
1466 {
1467 fprintf_filtered (stream, " <Error reading address ");
1468 fputs_filtered (paddress (gdbarch, addr), stream);
1469 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1470 }
1471 }
1472
1473 gdb_flush (stream);
1474 do_cleanups (old_chain);
1475
1476 return (bytes_read / width);
1477 }
1478 \f
1479
1480 /* The 'set input-radix' command writes to this auxiliary variable.
1481 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1482 it is left unchanged. */
1483
1484 static unsigned input_radix_1 = 10;
1485
1486 /* Validate an input or output radix setting, and make sure the user
1487 knows what they really did here. Radix setting is confusing, e.g.
1488 setting the input radix to "10" never changes it! */
1489
1490 static void
1491 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1492 {
1493 set_input_radix_1 (from_tty, input_radix_1);
1494 }
1495
1496 static void
1497 set_input_radix_1 (int from_tty, unsigned radix)
1498 {
1499 /* We don't currently disallow any input radix except 0 or 1, which don't
1500 make any mathematical sense. In theory, we can deal with any input
1501 radix greater than 1, even if we don't have unique digits for every
1502 value from 0 to radix-1, but in practice we lose on large radix values.
1503 We should either fix the lossage or restrict the radix range more.
1504 (FIXME). */
1505
1506 if (radix < 2)
1507 {
1508 input_radix_1 = input_radix;
1509 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1510 radix);
1511 }
1512 input_radix_1 = input_radix = radix;
1513 if (from_tty)
1514 {
1515 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1516 radix, radix, radix);
1517 }
1518 }
1519
1520 /* The 'set output-radix' command writes to this auxiliary variable.
1521 If the requested radix is valid, OUTPUT_RADIX is updated,
1522 otherwise, it is left unchanged. */
1523
1524 static unsigned output_radix_1 = 10;
1525
1526 static void
1527 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1528 {
1529 set_output_radix_1 (from_tty, output_radix_1);
1530 }
1531
1532 static void
1533 set_output_radix_1 (int from_tty, unsigned radix)
1534 {
1535 /* Validate the radix and disallow ones that we aren't prepared to
1536 handle correctly, leaving the radix unchanged. */
1537 switch (radix)
1538 {
1539 case 16:
1540 user_print_options.output_format = 'x'; /* hex */
1541 break;
1542 case 10:
1543 user_print_options.output_format = 0; /* decimal */
1544 break;
1545 case 8:
1546 user_print_options.output_format = 'o'; /* octal */
1547 break;
1548 default:
1549 output_radix_1 = output_radix;
1550 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1551 radix);
1552 }
1553 output_radix_1 = output_radix = radix;
1554 if (from_tty)
1555 {
1556 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1557 radix, radix, radix);
1558 }
1559 }
1560
1561 /* Set both the input and output radix at once. Try to set the output radix
1562 first, since it has the most restrictive range. An radix that is valid as
1563 an output radix is also valid as an input radix.
1564
1565 It may be useful to have an unusual input radix. If the user wishes to
1566 set an input radix that is not valid as an output radix, he needs to use
1567 the 'set input-radix' command. */
1568
1569 static void
1570 set_radix (char *arg, int from_tty)
1571 {
1572 unsigned radix;
1573
1574 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1575 set_output_radix_1 (0, radix);
1576 set_input_radix_1 (0, radix);
1577 if (from_tty)
1578 {
1579 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1580 radix, radix, radix);
1581 }
1582 }
1583
1584 /* Show both the input and output radices. */
1585
1586 static void
1587 show_radix (char *arg, int from_tty)
1588 {
1589 if (from_tty)
1590 {
1591 if (input_radix == output_radix)
1592 {
1593 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1594 input_radix, input_radix, input_radix);
1595 }
1596 else
1597 {
1598 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1599 input_radix, input_radix, input_radix);
1600 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1601 output_radix, output_radix, output_radix);
1602 }
1603 }
1604 }
1605 \f
1606
1607 static void
1608 set_print (char *arg, int from_tty)
1609 {
1610 printf_unfiltered (
1611 "\"set print\" must be followed by the name of a print subcommand.\n");
1612 help_list (setprintlist, "set print ", -1, gdb_stdout);
1613 }
1614
1615 static void
1616 show_print (char *args, int from_tty)
1617 {
1618 cmd_show_list (showprintlist, from_tty, "");
1619 }
1620 \f
1621 void
1622 _initialize_valprint (void)
1623 {
1624 struct cmd_list_element *c;
1625
1626 add_prefix_cmd ("print", no_class, set_print,
1627 _("Generic command for setting how things print."),
1628 &setprintlist, "set print ", 0, &setlist);
1629 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1630 /* prefer set print to set prompt */
1631 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1632
1633 add_prefix_cmd ("print", no_class, show_print,
1634 _("Generic command for showing print settings."),
1635 &showprintlist, "show print ", 0, &showlist);
1636 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1637 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1638
1639 add_setshow_uinteger_cmd ("elements", no_class,
1640 &user_print_options.print_max, _("\
1641 Set limit on string chars or array elements to print."), _("\
1642 Show limit on string chars or array elements to print."), _("\
1643 \"set print elements 0\" causes there to be no limit."),
1644 NULL,
1645 show_print_max,
1646 &setprintlist, &showprintlist);
1647
1648 add_setshow_boolean_cmd ("null-stop", no_class,
1649 &user_print_options.stop_print_at_null, _("\
1650 Set printing of char arrays to stop at first null char."), _("\
1651 Show printing of char arrays to stop at first null char."), NULL,
1652 NULL,
1653 show_stop_print_at_null,
1654 &setprintlist, &showprintlist);
1655
1656 add_setshow_uinteger_cmd ("repeats", no_class,
1657 &user_print_options.repeat_count_threshold, _("\
1658 Set threshold for repeated print elements."), _("\
1659 Show threshold for repeated print elements."), _("\
1660 \"set print repeats 0\" causes all elements to be individually printed."),
1661 NULL,
1662 show_repeat_count_threshold,
1663 &setprintlist, &showprintlist);
1664
1665 add_setshow_boolean_cmd ("pretty", class_support,
1666 &user_print_options.prettyprint_structs, _("\
1667 Set prettyprinting of structures."), _("\
1668 Show prettyprinting of structures."), NULL,
1669 NULL,
1670 show_prettyprint_structs,
1671 &setprintlist, &showprintlist);
1672
1673 add_setshow_boolean_cmd ("union", class_support,
1674 &user_print_options.unionprint, _("\
1675 Set printing of unions interior to structures."), _("\
1676 Show printing of unions interior to structures."), NULL,
1677 NULL,
1678 show_unionprint,
1679 &setprintlist, &showprintlist);
1680
1681 add_setshow_boolean_cmd ("array", class_support,
1682 &user_print_options.prettyprint_arrays, _("\
1683 Set prettyprinting of arrays."), _("\
1684 Show prettyprinting of arrays."), NULL,
1685 NULL,
1686 show_prettyprint_arrays,
1687 &setprintlist, &showprintlist);
1688
1689 add_setshow_boolean_cmd ("address", class_support,
1690 &user_print_options.addressprint, _("\
1691 Set printing of addresses."), _("\
1692 Show printing of addresses."), NULL,
1693 NULL,
1694 show_addressprint,
1695 &setprintlist, &showprintlist);
1696
1697 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1698 _("\
1699 Set default input radix for entering numbers."), _("\
1700 Show default input radix for entering numbers."), NULL,
1701 set_input_radix,
1702 show_input_radix,
1703 &setlist, &showlist);
1704
1705 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1706 _("\
1707 Set default output radix for printing of values."), _("\
1708 Show default output radix for printing of values."), NULL,
1709 set_output_radix,
1710 show_output_radix,
1711 &setlist, &showlist);
1712
1713 /* The "set radix" and "show radix" commands are special in that
1714 they are like normal set and show commands but allow two normally
1715 independent variables to be either set or shown with a single
1716 command. So the usual deprecated_add_set_cmd() and [deleted]
1717 add_show_from_set() commands aren't really appropriate. */
1718 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1719 longer true - show can display anything. */
1720 add_cmd ("radix", class_support, set_radix, _("\
1721 Set default input and output number radices.\n\
1722 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1723 Without an argument, sets both radices back to the default value of 10."),
1724 &setlist);
1725 add_cmd ("radix", class_support, show_radix, _("\
1726 Show the default input and output number radices.\n\
1727 Use 'show input-radix' or 'show output-radix' to independently show each."),
1728 &showlist);
1729
1730 add_setshow_boolean_cmd ("array-indexes", class_support,
1731 &user_print_options.print_array_indexes, _("\
1732 Set printing of array indexes."), _("\
1733 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1734 &setprintlist, &showprintlist);
1735 }
This page took 0.075147 seconds and 5 git commands to generate.