Use scoped_value_mark in value_print
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43
44 /* Maximum number of wchars returned from wchar_iterate. */
45 #define MAX_WCHARS 4
46
47 /* A convenience macro to compute the size of a wchar_t buffer containing X
48 characters. */
49 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
50
51 /* Character buffer size saved while iterating over wchars. */
52 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
53
54 /* A structure to encapsulate state information from iterated
55 character conversions. */
56 struct converted_character
57 {
58 /* The number of characters converted. */
59 int num_chars;
60
61 /* The result of the conversion. See charset.h for more. */
62 enum wchar_iterate_result result;
63
64 /* The (saved) converted character(s). */
65 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
66
67 /* The first converted target byte. */
68 const gdb_byte *buf;
69
70 /* The number of bytes converted. */
71 size_t buflen;
72
73 /* How many times this character(s) is repeated. */
74 int repeat_count;
75 };
76
77 /* Command lists for set/show print raw. */
78 struct cmd_list_element *setprintrawlist;
79 struct cmd_list_element *showprintrawlist;
80
81 /* Prototypes for local functions */
82
83 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
84 int len, int *errptr);
85
86 static void set_input_radix_1 (int, unsigned);
87
88 static void set_output_radix_1 (int, unsigned);
89
90 static void val_print_type_code_flags (struct type *type,
91 const gdb_byte *valaddr,
92 struct ui_file *stream);
93
94 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
95 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
96
97 struct value_print_options user_print_options =
98 {
99 Val_prettyformat_default, /* prettyformat */
100 0, /* prettyformat_arrays */
101 0, /* prettyformat_structs */
102 0, /* vtblprint */
103 1, /* unionprint */
104 1, /* addressprint */
105 0, /* objectprint */
106 PRINT_MAX_DEFAULT, /* print_max */
107 10, /* repeat_count_threshold */
108 0, /* output_format */
109 0, /* format */
110 0, /* stop_print_at_null */
111 0, /* print_array_indexes */
112 0, /* deref_ref */
113 1, /* static_field_print */
114 1, /* pascal_static_field_print */
115 0, /* raw */
116 0, /* summary */
117 1, /* symbol_print */
118 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
119 1 /* finish_print */
120 };
121
122 /* Initialize *OPTS to be a copy of the user print options. */
123 void
124 get_user_print_options (struct value_print_options *opts)
125 {
126 *opts = user_print_options;
127 }
128
129 /* Initialize *OPTS to be a copy of the user print options, but with
130 pretty-formatting disabled. */
131 void
132 get_no_prettyformat_print_options (struct value_print_options *opts)
133 {
134 *opts = user_print_options;
135 opts->prettyformat = Val_no_prettyformat;
136 }
137
138 /* Initialize *OPTS to be a copy of the user print options, but using
139 FORMAT as the formatting option. */
140 void
141 get_formatted_print_options (struct value_print_options *opts,
142 char format)
143 {
144 *opts = user_print_options;
145 opts->format = format;
146 }
147
148 static void
149 show_print_max (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file,
153 _("Limit on string chars or array "
154 "elements to print is %s.\n"),
155 value);
156 }
157
158
159 /* Default input and output radixes, and output format letter. */
160
161 unsigned input_radix = 10;
162 static void
163 show_input_radix (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file,
167 _("Default input radix for entering numbers is %s.\n"),
168 value);
169 }
170
171 unsigned output_radix = 10;
172 static void
173 show_output_radix (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file,
177 _("Default output radix for printing of values is %s.\n"),
178 value);
179 }
180
181 /* By default we print arrays without printing the index of each element in
182 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
183
184 static void
185 show_print_array_indexes (struct ui_file *file, int from_tty,
186 struct cmd_list_element *c, const char *value)
187 {
188 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
189 }
190
191 /* Print repeat counts if there are more than this many repetitions of an
192 element in an array. Referenced by the low level language dependent
193 print routines. */
194
195 static void
196 show_repeat_count_threshold (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
200 value);
201 }
202
203 /* If nonzero, stops printing of char arrays at first null. */
204
205 static void
206 show_stop_print_at_null (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file,
210 _("Printing of char arrays to stop "
211 "at first null char is %s.\n"),
212 value);
213 }
214
215 /* Controls pretty printing of structures. */
216
217 static void
218 show_prettyformat_structs (struct ui_file *file, int from_tty,
219 struct cmd_list_element *c, const char *value)
220 {
221 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
222 }
223
224 /* Controls pretty printing of arrays. */
225
226 static void
227 show_prettyformat_arrays (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
231 }
232
233 /* If nonzero, causes unions inside structures or other unions to be
234 printed. */
235
236 static void
237 show_unionprint (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239 {
240 fprintf_filtered (file,
241 _("Printing of unions interior to structures is %s.\n"),
242 value);
243 }
244
245 /* If nonzero, causes machine addresses to be printed in certain contexts. */
246
247 static void
248 show_addressprint (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
252 }
253
254 static void
255 show_symbol_print (struct ui_file *file, int from_tty,
256 struct cmd_list_element *c, const char *value)
257 {
258 fprintf_filtered (file,
259 _("Printing of symbols when printing pointers is %s.\n"),
260 value);
261 }
262
263 \f
264
265 /* A helper function for val_print. When printing in "summary" mode,
266 we want to print scalar arguments, but not aggregate arguments.
267 This function distinguishes between the two. */
268
269 int
270 val_print_scalar_type_p (struct type *type)
271 {
272 type = check_typedef (type);
273 while (TYPE_IS_REFERENCE (type))
274 {
275 type = TYPE_TARGET_TYPE (type);
276 type = check_typedef (type);
277 }
278 switch (TYPE_CODE (type))
279 {
280 case TYPE_CODE_ARRAY:
281 case TYPE_CODE_STRUCT:
282 case TYPE_CODE_UNION:
283 case TYPE_CODE_SET:
284 case TYPE_CODE_STRING:
285 return 0;
286 default:
287 return 1;
288 }
289 }
290
291 /* A helper function for val_print. When printing with limited depth we
292 want to print string and scalar arguments, but not aggregate arguments.
293 This function distinguishes between the two. */
294
295 static bool
296 val_print_scalar_or_string_type_p (struct type *type,
297 const struct language_defn *language)
298 {
299 return (val_print_scalar_type_p (type)
300 || language->la_is_string_type_p (type));
301 }
302
303 /* See its definition in value.h. */
304
305 int
306 valprint_check_validity (struct ui_file *stream,
307 struct type *type,
308 LONGEST embedded_offset,
309 const struct value *val)
310 {
311 type = check_typedef (type);
312
313 if (type_not_associated (type))
314 {
315 val_print_not_associated (stream);
316 return 0;
317 }
318
319 if (type_not_allocated (type))
320 {
321 val_print_not_allocated (stream);
322 return 0;
323 }
324
325 if (TYPE_CODE (type) != TYPE_CODE_UNION
326 && TYPE_CODE (type) != TYPE_CODE_STRUCT
327 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
328 {
329 if (value_bits_any_optimized_out (val,
330 TARGET_CHAR_BIT * embedded_offset,
331 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
332 {
333 val_print_optimized_out (val, stream);
334 return 0;
335 }
336
337 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
338 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
339 {
340 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
341 int ref_is_addressable = 0;
342
343 if (is_ref)
344 {
345 const struct value *deref_val = coerce_ref_if_computed (val);
346
347 if (deref_val != NULL)
348 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
349 }
350
351 if (!is_ref || !ref_is_addressable)
352 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
353 stream);
354
355 /* C++ references should be valid even if they're synthetic. */
356 return is_ref;
357 }
358
359 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
360 {
361 val_print_unavailable (stream);
362 return 0;
363 }
364 }
365
366 return 1;
367 }
368
369 void
370 val_print_optimized_out (const struct value *val, struct ui_file *stream)
371 {
372 if (val != NULL && value_lval_const (val) == lval_register)
373 val_print_not_saved (stream);
374 else
375 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
376 }
377
378 void
379 val_print_not_saved (struct ui_file *stream)
380 {
381 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
382 }
383
384 void
385 val_print_unavailable (struct ui_file *stream)
386 {
387 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
388 }
389
390 void
391 val_print_invalid_address (struct ui_file *stream)
392 {
393 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
394 }
395
396 /* Print a pointer based on the type of its target.
397
398 Arguments to this functions are roughly the same as those in
399 generic_val_print. A difference is that ADDRESS is the address to print,
400 with embedded_offset already added. ELTTYPE represents
401 the pointed type after check_typedef. */
402
403 static void
404 print_unpacked_pointer (struct type *type, struct type *elttype,
405 CORE_ADDR address, struct ui_file *stream,
406 const struct value_print_options *options)
407 {
408 struct gdbarch *gdbarch = get_type_arch (type);
409
410 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
411 {
412 /* Try to print what function it points to. */
413 print_function_pointer_address (options, gdbarch, address, stream);
414 return;
415 }
416
417 if (options->symbol_print)
418 print_address_demangle (options, gdbarch, address, stream, demangle);
419 else if (options->addressprint)
420 fputs_filtered (paddress (gdbarch, address), stream);
421 }
422
423 /* generic_val_print helper for TYPE_CODE_ARRAY. */
424
425 static void
426 generic_val_print_array (struct type *type,
427 int embedded_offset, CORE_ADDR address,
428 struct ui_file *stream, int recurse,
429 struct value *original_value,
430 const struct value_print_options *options,
431 const struct
432 generic_val_print_decorations *decorations)
433 {
434 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
435 struct type *elttype = check_typedef (unresolved_elttype);
436
437 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
438 {
439 LONGEST low_bound, high_bound;
440
441 if (!get_array_bounds (type, &low_bound, &high_bound))
442 error (_("Could not determine the array high bound"));
443
444 if (options->prettyformat_arrays)
445 {
446 print_spaces_filtered (2 + 2 * recurse, stream);
447 }
448
449 fputs_filtered (decorations->array_start, stream);
450 val_print_array_elements (type, embedded_offset,
451 address, stream,
452 recurse, original_value, options, 0);
453 fputs_filtered (decorations->array_end, stream);
454 }
455 else
456 {
457 /* Array of unspecified length: treat like pointer to first elt. */
458 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
459 options);
460 }
461
462 }
463
464 /* generic_val_print helper for TYPE_CODE_PTR. */
465
466 static void
467 generic_val_print_ptr (struct type *type,
468 int embedded_offset, struct ui_file *stream,
469 struct value *original_value,
470 const struct value_print_options *options)
471 {
472 struct gdbarch *gdbarch = get_type_arch (type);
473 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
474
475 if (options->format && options->format != 's')
476 {
477 val_print_scalar_formatted (type, embedded_offset,
478 original_value, options, 0, stream);
479 }
480 else
481 {
482 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
483 struct type *elttype = check_typedef (unresolved_elttype);
484 const gdb_byte *valaddr = value_contents_for_printing (original_value);
485 CORE_ADDR addr = unpack_pointer (type,
486 valaddr + embedded_offset * unit_size);
487
488 print_unpacked_pointer (type, elttype, addr, stream, options);
489 }
490 }
491
492
493 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
494
495 static void
496 generic_val_print_memberptr (struct type *type,
497 int embedded_offset, struct ui_file *stream,
498 struct value *original_value,
499 const struct value_print_options *options)
500 {
501 val_print_scalar_formatted (type, embedded_offset,
502 original_value, options, 0, stream);
503 }
504
505 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
506
507 static void
508 print_ref_address (struct type *type, const gdb_byte *address_buffer,
509 int embedded_offset, struct ui_file *stream)
510 {
511 struct gdbarch *gdbarch = get_type_arch (type);
512
513 if (address_buffer != NULL)
514 {
515 CORE_ADDR address
516 = extract_typed_address (address_buffer + embedded_offset, type);
517
518 fprintf_filtered (stream, "@");
519 fputs_filtered (paddress (gdbarch, address), stream);
520 }
521 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
522 }
523
524 /* If VAL is addressable, return the value contents buffer of a value that
525 represents a pointer to VAL. Otherwise return NULL. */
526
527 static const gdb_byte *
528 get_value_addr_contents (struct value *deref_val)
529 {
530 gdb_assert (deref_val != NULL);
531
532 if (value_lval_const (deref_val) == lval_memory)
533 return value_contents_for_printing_const (value_addr (deref_val));
534 else
535 {
536 /* We have a non-addressable value, such as a DW_AT_const_value. */
537 return NULL;
538 }
539 }
540
541 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
542
543 static void
544 generic_val_print_ref (struct type *type,
545 int embedded_offset, struct ui_file *stream, int recurse,
546 struct value *original_value,
547 const struct value_print_options *options)
548 {
549 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
550 struct value *deref_val = NULL;
551 const int value_is_synthetic
552 = value_bits_synthetic_pointer (original_value,
553 TARGET_CHAR_BIT * embedded_offset,
554 TARGET_CHAR_BIT * TYPE_LENGTH (type));
555 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
556 || options->deref_ref);
557 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
558 const gdb_byte *valaddr = value_contents_for_printing (original_value);
559
560 if (must_coerce_ref && type_is_defined)
561 {
562 deref_val = coerce_ref_if_computed (original_value);
563
564 if (deref_val != NULL)
565 {
566 /* More complicated computed references are not supported. */
567 gdb_assert (embedded_offset == 0);
568 }
569 else
570 deref_val = value_at (TYPE_TARGET_TYPE (type),
571 unpack_pointer (type, valaddr + embedded_offset));
572 }
573 /* Else, original_value isn't a synthetic reference or we don't have to print
574 the reference's contents.
575
576 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
577 cause original_value to be a not_lval instead of an lval_computed,
578 which will make value_bits_synthetic_pointer return false.
579 This happens because if options->objectprint is true, c_value_print will
580 overwrite original_value's contents with the result of coercing
581 the reference through value_addr, and then set its type back to
582 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
583 we can simply treat it as non-synthetic and move on. */
584
585 if (options->addressprint)
586 {
587 const gdb_byte *address = (value_is_synthetic && type_is_defined
588 ? get_value_addr_contents (deref_val)
589 : valaddr);
590
591 print_ref_address (type, address, embedded_offset, stream);
592
593 if (options->deref_ref)
594 fputs_filtered (": ", stream);
595 }
596
597 if (options->deref_ref)
598 {
599 if (type_is_defined)
600 common_val_print (deref_val, stream, recurse, options,
601 current_language);
602 else
603 fputs_filtered ("???", stream);
604 }
605 }
606
607 /* Helper function for generic_val_print_enum.
608 This is also used to print enums in TYPE_CODE_FLAGS values. */
609
610 static void
611 generic_val_print_enum_1 (struct type *type, LONGEST val,
612 struct ui_file *stream)
613 {
614 unsigned int i;
615 unsigned int len;
616
617 len = TYPE_NFIELDS (type);
618 for (i = 0; i < len; i++)
619 {
620 QUIT;
621 if (val == TYPE_FIELD_ENUMVAL (type, i))
622 {
623 break;
624 }
625 }
626 if (i < len)
627 {
628 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
629 stream);
630 }
631 else if (TYPE_FLAG_ENUM (type))
632 {
633 int first = 1;
634
635 /* We have a "flag" enum, so we try to decompose it into pieces as
636 appropriate. The enum may have multiple enumerators representing
637 the same bit, in which case we choose to only print the first one
638 we find. */
639 for (i = 0; i < len; ++i)
640 {
641 QUIT;
642
643 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
644 int nbits = count_one_bits_ll (enumval);
645
646 gdb_assert (nbits == 0 || nbits == 1);
647
648 if ((val & enumval) != 0)
649 {
650 if (first)
651 {
652 fputs_filtered ("(", stream);
653 first = 0;
654 }
655 else
656 fputs_filtered (" | ", stream);
657
658 val &= ~TYPE_FIELD_ENUMVAL (type, i);
659 fputs_styled (TYPE_FIELD_NAME (type, i),
660 variable_name_style.style (), stream);
661 }
662 }
663
664 if (val != 0)
665 {
666 /* There are leftover bits, print them. */
667 if (first)
668 fputs_filtered ("(", stream);
669 else
670 fputs_filtered (" | ", stream);
671
672 fputs_filtered ("unknown: 0x", stream);
673 print_longest (stream, 'x', 0, val);
674 fputs_filtered (")", stream);
675 }
676 else if (first)
677 {
678 /* Nothing has been printed and the value is 0, the enum value must
679 have been 0. */
680 fputs_filtered ("0", stream);
681 }
682 else
683 {
684 /* Something has been printed, close the parenthesis. */
685 fputs_filtered (")", stream);
686 }
687 }
688 else
689 print_longest (stream, 'd', 0, val);
690 }
691
692 /* generic_val_print helper for TYPE_CODE_ENUM. */
693
694 static void
695 generic_val_print_enum (struct type *type,
696 int embedded_offset, struct ui_file *stream,
697 struct value *original_value,
698 const struct value_print_options *options)
699 {
700 LONGEST val;
701 struct gdbarch *gdbarch = get_type_arch (type);
702 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
703
704 if (options->format)
705 {
706 val_print_scalar_formatted (type, embedded_offset,
707 original_value, options, 0, stream);
708 }
709 else
710 {
711 const gdb_byte *valaddr = value_contents_for_printing (original_value);
712
713 val = unpack_long (type, valaddr + embedded_offset * unit_size);
714
715 generic_val_print_enum_1 (type, val, stream);
716 }
717 }
718
719 /* generic_val_print helper for TYPE_CODE_FLAGS. */
720
721 static void
722 generic_val_print_flags (struct type *type,
723 int embedded_offset, struct ui_file *stream,
724 struct value *original_value,
725 const struct value_print_options *options)
726
727 {
728 if (options->format)
729 val_print_scalar_formatted (type, embedded_offset, original_value,
730 options, 0, stream);
731 else
732 {
733 const gdb_byte *valaddr = value_contents_for_printing (original_value);
734
735 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
736 }
737 }
738
739 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
740
741 static void
742 generic_val_print_func (struct type *type,
743 int embedded_offset, CORE_ADDR address,
744 struct ui_file *stream,
745 struct value *original_value,
746 const struct value_print_options *options)
747 {
748 struct gdbarch *gdbarch = get_type_arch (type);
749
750 if (options->format)
751 {
752 val_print_scalar_formatted (type, embedded_offset,
753 original_value, options, 0, stream);
754 }
755 else
756 {
757 /* FIXME, we should consider, at least for ANSI C language,
758 eliminating the distinction made between FUNCs and POINTERs
759 to FUNCs. */
760 fprintf_filtered (stream, "{");
761 type_print (type, "", stream, -1);
762 fprintf_filtered (stream, "} ");
763 /* Try to print what function it points to, and its address. */
764 print_address_demangle (options, gdbarch, address, stream, demangle);
765 }
766 }
767
768 /* generic_val_print helper for TYPE_CODE_BOOL. */
769
770 static void
771 generic_val_print_bool (struct type *type,
772 int embedded_offset, struct ui_file *stream,
773 struct value *original_value,
774 const struct value_print_options *options,
775 const struct generic_val_print_decorations *decorations)
776 {
777 LONGEST val;
778 struct gdbarch *gdbarch = get_type_arch (type);
779 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
780
781 if (options->format || options->output_format)
782 {
783 struct value_print_options opts = *options;
784 opts.format = (options->format ? options->format
785 : options->output_format);
786 val_print_scalar_formatted (type, embedded_offset,
787 original_value, &opts, 0, stream);
788 }
789 else
790 {
791 const gdb_byte *valaddr = value_contents_for_printing (original_value);
792
793 val = unpack_long (type, valaddr + embedded_offset * unit_size);
794 if (val == 0)
795 fputs_filtered (decorations->false_name, stream);
796 else if (val == 1)
797 fputs_filtered (decorations->true_name, stream);
798 else
799 print_longest (stream, 'd', 0, val);
800 }
801 }
802
803 /* generic_val_print helper for TYPE_CODE_INT. */
804
805 static void
806 generic_val_print_int (struct type *type,
807 int embedded_offset, struct ui_file *stream,
808 struct value *original_value,
809 const struct value_print_options *options)
810 {
811 struct value_print_options opts = *options;
812
813 opts.format = (options->format ? options->format
814 : options->output_format);
815 val_print_scalar_formatted (type, embedded_offset,
816 original_value, &opts, 0, stream);
817 }
818
819 /* generic_val_print helper for TYPE_CODE_CHAR. */
820
821 static void
822 generic_val_print_char (struct type *type, struct type *unresolved_type,
823 int embedded_offset,
824 struct ui_file *stream,
825 struct value *original_value,
826 const struct value_print_options *options)
827 {
828 LONGEST val;
829 struct gdbarch *gdbarch = get_type_arch (type);
830 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
831
832 if (options->format || options->output_format)
833 {
834 struct value_print_options opts = *options;
835
836 opts.format = (options->format ? options->format
837 : options->output_format);
838 val_print_scalar_formatted (type, embedded_offset,
839 original_value, &opts, 0, stream);
840 }
841 else
842 {
843 const gdb_byte *valaddr = value_contents_for_printing (original_value);
844
845 val = unpack_long (type, valaddr + embedded_offset * unit_size);
846 if (TYPE_UNSIGNED (type))
847 fprintf_filtered (stream, "%u", (unsigned int) val);
848 else
849 fprintf_filtered (stream, "%d", (int) val);
850 fputs_filtered (" ", stream);
851 LA_PRINT_CHAR (val, unresolved_type, stream);
852 }
853 }
854
855 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
856
857 static void
858 generic_val_print_float (struct type *type,
859 int embedded_offset, struct ui_file *stream,
860 struct value *original_value,
861 const struct value_print_options *options)
862 {
863 struct gdbarch *gdbarch = get_type_arch (type);
864 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
865
866 if (options->format)
867 {
868 val_print_scalar_formatted (type, embedded_offset,
869 original_value, options, 0, stream);
870 }
871 else
872 {
873 const gdb_byte *valaddr = value_contents_for_printing (original_value);
874
875 print_floating (valaddr + embedded_offset * unit_size, type, stream);
876 }
877 }
878
879 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
880
881 static void
882 generic_val_print_complex (struct type *type,
883 int embedded_offset, struct ui_file *stream,
884 struct value *original_value,
885 const struct value_print_options *options,
886 const struct generic_val_print_decorations
887 *decorations)
888 {
889 struct gdbarch *gdbarch = get_type_arch (type);
890 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
891 const gdb_byte *valaddr = value_contents_for_printing (original_value);
892
893 fprintf_filtered (stream, "%s", decorations->complex_prefix);
894 if (options->format)
895 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
896 embedded_offset, original_value, options, 0,
897 stream);
898 else
899 print_floating (valaddr + embedded_offset * unit_size,
900 TYPE_TARGET_TYPE (type), stream);
901 fprintf_filtered (stream, "%s", decorations->complex_infix);
902 if (options->format)
903 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
904 embedded_offset
905 + type_length_units (TYPE_TARGET_TYPE (type)),
906 original_value, options, 0, stream);
907 else
908 print_floating (valaddr + embedded_offset * unit_size
909 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
910 TYPE_TARGET_TYPE (type), stream);
911 fprintf_filtered (stream, "%s", decorations->complex_suffix);
912 }
913
914 /* A generic val_print that is suitable for use by language
915 implementations of the la_val_print method. This function can
916 handle most type codes, though not all, notably exception
917 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
918 the caller.
919
920 Most arguments are as to val_print.
921
922 The additional DECORATIONS argument can be used to customize the
923 output in some small, language-specific ways. */
924
925 void
926 generic_val_print (struct type *type,
927 int embedded_offset, CORE_ADDR address,
928 struct ui_file *stream, int recurse,
929 struct value *original_value,
930 const struct value_print_options *options,
931 const struct generic_val_print_decorations *decorations)
932 {
933 struct type *unresolved_type = type;
934
935 type = check_typedef (type);
936 switch (TYPE_CODE (type))
937 {
938 case TYPE_CODE_ARRAY:
939 generic_val_print_array (type, embedded_offset, address, stream,
940 recurse, original_value, options, decorations);
941 break;
942
943 case TYPE_CODE_MEMBERPTR:
944 generic_val_print_memberptr (type, embedded_offset, stream,
945 original_value, options);
946 break;
947
948 case TYPE_CODE_PTR:
949 generic_val_print_ptr (type, embedded_offset, stream,
950 original_value, options);
951 break;
952
953 case TYPE_CODE_REF:
954 case TYPE_CODE_RVALUE_REF:
955 generic_val_print_ref (type, embedded_offset, stream, recurse,
956 original_value, options);
957 break;
958
959 case TYPE_CODE_ENUM:
960 generic_val_print_enum (type, embedded_offset, stream,
961 original_value, options);
962 break;
963
964 case TYPE_CODE_FLAGS:
965 generic_val_print_flags (type, embedded_offset, stream,
966 original_value, options);
967 break;
968
969 case TYPE_CODE_FUNC:
970 case TYPE_CODE_METHOD:
971 generic_val_print_func (type, embedded_offset, address, stream,
972 original_value, options);
973 break;
974
975 case TYPE_CODE_BOOL:
976 generic_val_print_bool (type, embedded_offset, stream,
977 original_value, options, decorations);
978 break;
979
980 case TYPE_CODE_RANGE:
981 /* FIXME: create_static_range_type does not set the unsigned bit in a
982 range type (I think it probably should copy it from the
983 target type), so we won't print values which are too large to
984 fit in a signed integer correctly. */
985 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
986 print with the target type, though, because the size of our
987 type and the target type might differ). */
988
989 /* FALLTHROUGH */
990
991 case TYPE_CODE_INT:
992 generic_val_print_int (type, embedded_offset, stream,
993 original_value, options);
994 break;
995
996 case TYPE_CODE_CHAR:
997 generic_val_print_char (type, unresolved_type, embedded_offset,
998 stream, original_value, options);
999 break;
1000
1001 case TYPE_CODE_FLT:
1002 case TYPE_CODE_DECFLOAT:
1003 generic_val_print_float (type, embedded_offset, stream,
1004 original_value, options);
1005 break;
1006
1007 case TYPE_CODE_VOID:
1008 fputs_filtered (decorations->void_name, stream);
1009 break;
1010
1011 case TYPE_CODE_ERROR:
1012 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1013 break;
1014
1015 case TYPE_CODE_UNDEF:
1016 /* This happens (without TYPE_STUB set) on systems which don't use
1017 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1018 and no complete type for struct foo in that file. */
1019 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1020 break;
1021
1022 case TYPE_CODE_COMPLEX:
1023 generic_val_print_complex (type, embedded_offset, stream,
1024 original_value, options, decorations);
1025 break;
1026
1027 case TYPE_CODE_UNION:
1028 case TYPE_CODE_STRUCT:
1029 case TYPE_CODE_METHODPTR:
1030 default:
1031 error (_("Unhandled type code %d in symbol table."),
1032 TYPE_CODE (type));
1033 }
1034 }
1035
1036 /* Print using the given LANGUAGE the data of type TYPE located at
1037 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1038 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1039 stdio stream STREAM according to OPTIONS. VAL is the whole object
1040 that came from ADDRESS.
1041
1042 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1043 further helper subroutines as subfields of TYPE are printed. In
1044 such cases, VAL is passed down unadjusted, so
1045 that VAL can be queried for metadata about the contents data being
1046 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1047 buffer. For example: "has this field been optimized out", or "I'm
1048 printing an object while inspecting a traceframe; has this
1049 particular piece of data been collected?".
1050
1051 RECURSE indicates the amount of indentation to supply before
1052 continuation lines; this amount is roughly twice the value of
1053 RECURSE. */
1054
1055 void
1056 val_print (struct type *type, LONGEST embedded_offset,
1057 CORE_ADDR address, struct ui_file *stream, int recurse,
1058 struct value *val,
1059 const struct value_print_options *options,
1060 const struct language_defn *language)
1061 {
1062 int ret = 0;
1063 struct value_print_options local_opts = *options;
1064 struct type *real_type = check_typedef (type);
1065
1066 if (local_opts.prettyformat == Val_prettyformat_default)
1067 local_opts.prettyformat = (local_opts.prettyformat_structs
1068 ? Val_prettyformat : Val_no_prettyformat);
1069
1070 QUIT;
1071
1072 /* Ensure that the type is complete and not just a stub. If the type is
1073 only a stub and we can't find and substitute its complete type, then
1074 print appropriate string and return. */
1075
1076 if (TYPE_STUB (real_type))
1077 {
1078 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1079 return;
1080 }
1081
1082 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1083 return;
1084
1085 if (!options->raw)
1086 {
1087 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1088 address, stream, recurse,
1089 val, options, language);
1090 if (ret)
1091 return;
1092 }
1093
1094 /* Handle summary mode. If the value is a scalar, print it;
1095 otherwise, print an ellipsis. */
1096 if (options->summary && !val_print_scalar_type_p (type))
1097 {
1098 fprintf_filtered (stream, "...");
1099 return;
1100 }
1101
1102 /* If this value is too deep then don't print it. */
1103 if (!val_print_scalar_or_string_type_p (type, language)
1104 && val_print_check_max_depth (stream, recurse, options, language))
1105 return;
1106
1107 try
1108 {
1109 language->la_val_print (type, embedded_offset, address,
1110 stream, recurse, val,
1111 &local_opts);
1112 }
1113 catch (const gdb_exception_error &except)
1114 {
1115 fprintf_styled (stream, metadata_style.style (),
1116 _("<error reading variable>"));
1117 }
1118 }
1119
1120 /* See valprint.h. */
1121
1122 bool
1123 val_print_check_max_depth (struct ui_file *stream, int recurse,
1124 const struct value_print_options *options,
1125 const struct language_defn *language)
1126 {
1127 if (options->max_depth > -1 && recurse >= options->max_depth)
1128 {
1129 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1130 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1131 return true;
1132 }
1133
1134 return false;
1135 }
1136
1137 /* Check whether the value VAL is printable. Return 1 if it is;
1138 return 0 and print an appropriate error message to STREAM according to
1139 OPTIONS if it is not. */
1140
1141 static int
1142 value_check_printable (struct value *val, struct ui_file *stream,
1143 const struct value_print_options *options)
1144 {
1145 if (val == 0)
1146 {
1147 fprintf_styled (stream, metadata_style.style (),
1148 _("<address of value unknown>"));
1149 return 0;
1150 }
1151
1152 if (value_entirely_optimized_out (val))
1153 {
1154 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1155 fprintf_filtered (stream, "...");
1156 else
1157 val_print_optimized_out (val, stream);
1158 return 0;
1159 }
1160
1161 if (value_entirely_unavailable (val))
1162 {
1163 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1164 fprintf_filtered (stream, "...");
1165 else
1166 val_print_unavailable (stream);
1167 return 0;
1168 }
1169
1170 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1171 {
1172 fprintf_styled (stream, metadata_style.style (),
1173 _("<internal function %s>"),
1174 value_internal_function_name (val));
1175 return 0;
1176 }
1177
1178 if (type_not_associated (value_type (val)))
1179 {
1180 val_print_not_associated (stream);
1181 return 0;
1182 }
1183
1184 if (type_not_allocated (value_type (val)))
1185 {
1186 val_print_not_allocated (stream);
1187 return 0;
1188 }
1189
1190 return 1;
1191 }
1192
1193 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1194 to OPTIONS.
1195
1196 This is a preferable interface to val_print, above, because it uses
1197 GDB's value mechanism. */
1198
1199 void
1200 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1201 const struct value_print_options *options,
1202 const struct language_defn *language)
1203 {
1204 if (!value_check_printable (val, stream, options))
1205 return;
1206
1207 if (language->la_language == language_ada)
1208 /* The value might have a dynamic type, which would cause trouble
1209 below when trying to extract the value contents (since the value
1210 size is determined from the type size which is unknown). So
1211 get a fixed representation of our value. */
1212 val = ada_to_fixed_value (val);
1213
1214 if (value_lazy (val))
1215 value_fetch_lazy (val);
1216
1217 val_print (value_type (val),
1218 value_embedded_offset (val), value_address (val),
1219 stream, recurse,
1220 val, options, language);
1221 }
1222
1223 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1224 is printed using the current_language syntax. */
1225
1226 void
1227 value_print (struct value *val, struct ui_file *stream,
1228 const struct value_print_options *options)
1229 {
1230 scoped_value_mark free_values;
1231
1232 if (!value_check_printable (val, stream, options))
1233 return;
1234
1235 if (!options->raw)
1236 {
1237 int r
1238 = apply_ext_lang_val_pretty_printer (value_type (val),
1239 value_embedded_offset (val),
1240 value_address (val),
1241 stream, 0,
1242 val, options, current_language);
1243
1244 if (r)
1245 return;
1246 }
1247
1248 LA_VALUE_PRINT (val, stream, options);
1249 }
1250
1251 static void
1252 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1253 struct ui_file *stream)
1254 {
1255 ULONGEST val = unpack_long (type, valaddr);
1256 int field, nfields = TYPE_NFIELDS (type);
1257 struct gdbarch *gdbarch = get_type_arch (type);
1258 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1259
1260 fputs_filtered ("[", stream);
1261 for (field = 0; field < nfields; field++)
1262 {
1263 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1264 {
1265 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1266
1267 if (field_type == bool_type
1268 /* We require boolean types here to be one bit wide. This is a
1269 problematic place to notify the user of an internal error
1270 though. Instead just fall through and print the field as an
1271 int. */
1272 && TYPE_FIELD_BITSIZE (type, field) == 1)
1273 {
1274 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1275 fprintf_filtered
1276 (stream, " %ps",
1277 styled_string (variable_name_style.style (),
1278 TYPE_FIELD_NAME (type, field)));
1279 }
1280 else
1281 {
1282 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1283 ULONGEST field_val
1284 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1285
1286 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1287 field_val &= ((ULONGEST) 1 << field_len) - 1;
1288 fprintf_filtered (stream, " %ps=",
1289 styled_string (variable_name_style.style (),
1290 TYPE_FIELD_NAME (type, field)));
1291 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1292 generic_val_print_enum_1 (field_type, field_val, stream);
1293 else
1294 print_longest (stream, 'd', 0, field_val);
1295 }
1296 }
1297 }
1298 fputs_filtered (" ]", stream);
1299 }
1300
1301 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1302 according to OPTIONS and SIZE on STREAM. Format i is not supported
1303 at this level.
1304
1305 This is how the elements of an array or structure are printed
1306 with a format. */
1307
1308 void
1309 val_print_scalar_formatted (struct type *type,
1310 LONGEST embedded_offset,
1311 struct value *val,
1312 const struct value_print_options *options,
1313 int size,
1314 struct ui_file *stream)
1315 {
1316 struct gdbarch *arch = get_type_arch (type);
1317 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1318
1319 gdb_assert (val != NULL);
1320
1321 /* If we get here with a string format, try again without it. Go
1322 all the way back to the language printers, which may call us
1323 again. */
1324 if (options->format == 's')
1325 {
1326 struct value_print_options opts = *options;
1327 opts.format = 0;
1328 opts.deref_ref = 0;
1329 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1330 current_language);
1331 return;
1332 }
1333
1334 /* value_contents_for_printing fetches all VAL's contents. They are
1335 needed to check whether VAL is optimized-out or unavailable
1336 below. */
1337 const gdb_byte *valaddr = value_contents_for_printing (val);
1338
1339 /* A scalar object that does not have all bits available can't be
1340 printed, because all bits contribute to its representation. */
1341 if (value_bits_any_optimized_out (val,
1342 TARGET_CHAR_BIT * embedded_offset,
1343 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1344 val_print_optimized_out (val, stream);
1345 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1346 val_print_unavailable (stream);
1347 else
1348 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1349 options, size, stream);
1350 }
1351
1352 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1353 The raison d'etre of this function is to consolidate printing of
1354 LONG_LONG's into this one function. The format chars b,h,w,g are
1355 from print_scalar_formatted(). Numbers are printed using C
1356 format.
1357
1358 USE_C_FORMAT means to use C format in all cases. Without it,
1359 'o' and 'x' format do not include the standard C radix prefix
1360 (leading 0 or 0x).
1361
1362 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1363 and was intended to request formatting according to the current
1364 language and would be used for most integers that GDB prints. The
1365 exceptional cases were things like protocols where the format of
1366 the integer is a protocol thing, not a user-visible thing). The
1367 parameter remains to preserve the information of what things might
1368 be printed with language-specific format, should we ever resurrect
1369 that capability. */
1370
1371 void
1372 print_longest (struct ui_file *stream, int format, int use_c_format,
1373 LONGEST val_long)
1374 {
1375 const char *val;
1376
1377 switch (format)
1378 {
1379 case 'd':
1380 val = int_string (val_long, 10, 1, 0, 1); break;
1381 case 'u':
1382 val = int_string (val_long, 10, 0, 0, 1); break;
1383 case 'x':
1384 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1385 case 'b':
1386 val = int_string (val_long, 16, 0, 2, 1); break;
1387 case 'h':
1388 val = int_string (val_long, 16, 0, 4, 1); break;
1389 case 'w':
1390 val = int_string (val_long, 16, 0, 8, 1); break;
1391 case 'g':
1392 val = int_string (val_long, 16, 0, 16, 1); break;
1393 break;
1394 case 'o':
1395 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1396 default:
1397 internal_error (__FILE__, __LINE__,
1398 _("failed internal consistency check"));
1399 }
1400 fputs_filtered (val, stream);
1401 }
1402
1403 /* This used to be a macro, but I don't think it is called often enough
1404 to merit such treatment. */
1405 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1406 arguments to a function, number in a value history, register number, etc.)
1407 where the value must not be larger than can fit in an int. */
1408
1409 int
1410 longest_to_int (LONGEST arg)
1411 {
1412 /* Let the compiler do the work. */
1413 int rtnval = (int) arg;
1414
1415 /* Check for overflows or underflows. */
1416 if (sizeof (LONGEST) > sizeof (int))
1417 {
1418 if (rtnval != arg)
1419 {
1420 error (_("Value out of range."));
1421 }
1422 }
1423 return (rtnval);
1424 }
1425
1426 /* Print a floating point value of floating-point type TYPE,
1427 pointed to in GDB by VALADDR, on STREAM. */
1428
1429 void
1430 print_floating (const gdb_byte *valaddr, struct type *type,
1431 struct ui_file *stream)
1432 {
1433 std::string str = target_float_to_string (valaddr, type);
1434 fputs_filtered (str.c_str (), stream);
1435 }
1436
1437 void
1438 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1439 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1440 {
1441 const gdb_byte *p;
1442 unsigned int i;
1443 int b;
1444 bool seen_a_one = false;
1445
1446 /* Declared "int" so it will be signed.
1447 This ensures that right shift will shift in zeros. */
1448
1449 const int mask = 0x080;
1450
1451 if (byte_order == BFD_ENDIAN_BIG)
1452 {
1453 for (p = valaddr;
1454 p < valaddr + len;
1455 p++)
1456 {
1457 /* Every byte has 8 binary characters; peel off
1458 and print from the MSB end. */
1459
1460 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1461 {
1462 if (*p & (mask >> i))
1463 b = '1';
1464 else
1465 b = '0';
1466
1467 if (zero_pad || seen_a_one || b == '1')
1468 fputc_filtered (b, stream);
1469 if (b == '1')
1470 seen_a_one = true;
1471 }
1472 }
1473 }
1474 else
1475 {
1476 for (p = valaddr + len - 1;
1477 p >= valaddr;
1478 p--)
1479 {
1480 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1481 {
1482 if (*p & (mask >> i))
1483 b = '1';
1484 else
1485 b = '0';
1486
1487 if (zero_pad || seen_a_one || b == '1')
1488 fputc_filtered (b, stream);
1489 if (b == '1')
1490 seen_a_one = true;
1491 }
1492 }
1493 }
1494
1495 /* When not zero-padding, ensure that something is printed when the
1496 input is 0. */
1497 if (!zero_pad && !seen_a_one)
1498 fputc_filtered ('0', stream);
1499 }
1500
1501 /* A helper for print_octal_chars that emits a single octal digit,
1502 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1503
1504 static void
1505 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1506 {
1507 if (*seen_a_one || digit != 0)
1508 fprintf_filtered (stream, "%o", digit);
1509 if (digit != 0)
1510 *seen_a_one = true;
1511 }
1512
1513 /* VALADDR points to an integer of LEN bytes.
1514 Print it in octal on stream or format it in buf. */
1515
1516 void
1517 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1518 unsigned len, enum bfd_endian byte_order)
1519 {
1520 const gdb_byte *p;
1521 unsigned char octa1, octa2, octa3, carry;
1522 int cycle;
1523
1524 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1525 * the extra bits, which cycle every three bytes:
1526 *
1527 * Byte side: 0 1 2 3
1528 * | | | |
1529 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1530 *
1531 * Octal side: 0 1 carry 3 4 carry ...
1532 *
1533 * Cycle number: 0 1 2
1534 *
1535 * But of course we are printing from the high side, so we have to
1536 * figure out where in the cycle we are so that we end up with no
1537 * left over bits at the end.
1538 */
1539 #define BITS_IN_OCTAL 3
1540 #define HIGH_ZERO 0340
1541 #define LOW_ZERO 0034
1542 #define CARRY_ZERO 0003
1543 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1544 "cycle zero constants are wrong");
1545 #define HIGH_ONE 0200
1546 #define MID_ONE 0160
1547 #define LOW_ONE 0016
1548 #define CARRY_ONE 0001
1549 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1550 "cycle one constants are wrong");
1551 #define HIGH_TWO 0300
1552 #define MID_TWO 0070
1553 #define LOW_TWO 0007
1554 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1555 "cycle two constants are wrong");
1556
1557 /* For 32 we start in cycle 2, with two bits and one bit carry;
1558 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1559
1560 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1561 carry = 0;
1562
1563 fputs_filtered ("0", stream);
1564 bool seen_a_one = false;
1565 if (byte_order == BFD_ENDIAN_BIG)
1566 {
1567 for (p = valaddr;
1568 p < valaddr + len;
1569 p++)
1570 {
1571 switch (cycle)
1572 {
1573 case 0:
1574 /* No carry in, carry out two bits. */
1575
1576 octa1 = (HIGH_ZERO & *p) >> 5;
1577 octa2 = (LOW_ZERO & *p) >> 2;
1578 carry = (CARRY_ZERO & *p);
1579 emit_octal_digit (stream, &seen_a_one, octa1);
1580 emit_octal_digit (stream, &seen_a_one, octa2);
1581 break;
1582
1583 case 1:
1584 /* Carry in two bits, carry out one bit. */
1585
1586 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1587 octa2 = (MID_ONE & *p) >> 4;
1588 octa3 = (LOW_ONE & *p) >> 1;
1589 carry = (CARRY_ONE & *p);
1590 emit_octal_digit (stream, &seen_a_one, octa1);
1591 emit_octal_digit (stream, &seen_a_one, octa2);
1592 emit_octal_digit (stream, &seen_a_one, octa3);
1593 break;
1594
1595 case 2:
1596 /* Carry in one bit, no carry out. */
1597
1598 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1599 octa2 = (MID_TWO & *p) >> 3;
1600 octa3 = (LOW_TWO & *p);
1601 carry = 0;
1602 emit_octal_digit (stream, &seen_a_one, octa1);
1603 emit_octal_digit (stream, &seen_a_one, octa2);
1604 emit_octal_digit (stream, &seen_a_one, octa3);
1605 break;
1606
1607 default:
1608 error (_("Internal error in octal conversion;"));
1609 }
1610
1611 cycle++;
1612 cycle = cycle % BITS_IN_OCTAL;
1613 }
1614 }
1615 else
1616 {
1617 for (p = valaddr + len - 1;
1618 p >= valaddr;
1619 p--)
1620 {
1621 switch (cycle)
1622 {
1623 case 0:
1624 /* Carry out, no carry in */
1625
1626 octa1 = (HIGH_ZERO & *p) >> 5;
1627 octa2 = (LOW_ZERO & *p) >> 2;
1628 carry = (CARRY_ZERO & *p);
1629 emit_octal_digit (stream, &seen_a_one, octa1);
1630 emit_octal_digit (stream, &seen_a_one, octa2);
1631 break;
1632
1633 case 1:
1634 /* Carry in, carry out */
1635
1636 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1637 octa2 = (MID_ONE & *p) >> 4;
1638 octa3 = (LOW_ONE & *p) >> 1;
1639 carry = (CARRY_ONE & *p);
1640 emit_octal_digit (stream, &seen_a_one, octa1);
1641 emit_octal_digit (stream, &seen_a_one, octa2);
1642 emit_octal_digit (stream, &seen_a_one, octa3);
1643 break;
1644
1645 case 2:
1646 /* Carry in, no carry out */
1647
1648 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1649 octa2 = (MID_TWO & *p) >> 3;
1650 octa3 = (LOW_TWO & *p);
1651 carry = 0;
1652 emit_octal_digit (stream, &seen_a_one, octa1);
1653 emit_octal_digit (stream, &seen_a_one, octa2);
1654 emit_octal_digit (stream, &seen_a_one, octa3);
1655 break;
1656
1657 default:
1658 error (_("Internal error in octal conversion;"));
1659 }
1660
1661 cycle++;
1662 cycle = cycle % BITS_IN_OCTAL;
1663 }
1664 }
1665
1666 }
1667
1668 /* Possibly negate the integer represented by BYTES. It contains LEN
1669 bytes in the specified byte order. If the integer is negative,
1670 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1671 nothing and return false. */
1672
1673 static bool
1674 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1675 enum bfd_endian byte_order,
1676 gdb::byte_vector *out_vec)
1677 {
1678 gdb_byte sign_byte;
1679 gdb_assert (len > 0);
1680 if (byte_order == BFD_ENDIAN_BIG)
1681 sign_byte = bytes[0];
1682 else
1683 sign_byte = bytes[len - 1];
1684 if ((sign_byte & 0x80) == 0)
1685 return false;
1686
1687 out_vec->resize (len);
1688
1689 /* Compute -x == 1 + ~x. */
1690 if (byte_order == BFD_ENDIAN_LITTLE)
1691 {
1692 unsigned carry = 1;
1693 for (unsigned i = 0; i < len; ++i)
1694 {
1695 unsigned tem = (0xff & ~bytes[i]) + carry;
1696 (*out_vec)[i] = tem & 0xff;
1697 carry = tem / 256;
1698 }
1699 }
1700 else
1701 {
1702 unsigned carry = 1;
1703 for (unsigned i = len; i > 0; --i)
1704 {
1705 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1706 (*out_vec)[i - 1] = tem & 0xff;
1707 carry = tem / 256;
1708 }
1709 }
1710
1711 return true;
1712 }
1713
1714 /* VALADDR points to an integer of LEN bytes.
1715 Print it in decimal on stream or format it in buf. */
1716
1717 void
1718 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1719 unsigned len, bool is_signed,
1720 enum bfd_endian byte_order)
1721 {
1722 #define TEN 10
1723 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1724 #define CARRY_LEFT( x ) ((x) % TEN)
1725 #define SHIFT( x ) ((x) << 4)
1726 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1727 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1728
1729 const gdb_byte *p;
1730 int carry;
1731 int decimal_len;
1732 int i, j, decimal_digits;
1733 int dummy;
1734 int flip;
1735
1736 gdb::byte_vector negated_bytes;
1737 if (is_signed
1738 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1739 {
1740 fputs_filtered ("-", stream);
1741 valaddr = negated_bytes.data ();
1742 }
1743
1744 /* Base-ten number is less than twice as many digits
1745 as the base 16 number, which is 2 digits per byte. */
1746
1747 decimal_len = len * 2 * 2;
1748 std::vector<unsigned char> digits (decimal_len, 0);
1749
1750 /* Ok, we have an unknown number of bytes of data to be printed in
1751 * decimal.
1752 *
1753 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1754 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1755 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1756 *
1757 * The trick is that "digits" holds a base-10 number, but sometimes
1758 * the individual digits are > 10.
1759 *
1760 * Outer loop is per nibble (hex digit) of input, from MSD end to
1761 * LSD end.
1762 */
1763 decimal_digits = 0; /* Number of decimal digits so far */
1764 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1765 flip = 0;
1766 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1767 {
1768 /*
1769 * Multiply current base-ten number by 16 in place.
1770 * Each digit was between 0 and 9, now is between
1771 * 0 and 144.
1772 */
1773 for (j = 0; j < decimal_digits; j++)
1774 {
1775 digits[j] = SHIFT (digits[j]);
1776 }
1777
1778 /* Take the next nibble off the input and add it to what
1779 * we've got in the LSB position. Bottom 'digit' is now
1780 * between 0 and 159.
1781 *
1782 * "flip" is used to run this loop twice for each byte.
1783 */
1784 if (flip == 0)
1785 {
1786 /* Take top nibble. */
1787
1788 digits[0] += HIGH_NIBBLE (*p);
1789 flip = 1;
1790 }
1791 else
1792 {
1793 /* Take low nibble and bump our pointer "p". */
1794
1795 digits[0] += LOW_NIBBLE (*p);
1796 if (byte_order == BFD_ENDIAN_BIG)
1797 p++;
1798 else
1799 p--;
1800 flip = 0;
1801 }
1802
1803 /* Re-decimalize. We have to do this often enough
1804 * that we don't overflow, but once per nibble is
1805 * overkill. Easier this way, though. Note that the
1806 * carry is often larger than 10 (e.g. max initial
1807 * carry out of lowest nibble is 15, could bubble all
1808 * the way up greater than 10). So we have to do
1809 * the carrying beyond the last current digit.
1810 */
1811 carry = 0;
1812 for (j = 0; j < decimal_len - 1; j++)
1813 {
1814 digits[j] += carry;
1815
1816 /* "/" won't handle an unsigned char with
1817 * a value that if signed would be negative.
1818 * So extend to longword int via "dummy".
1819 */
1820 dummy = digits[j];
1821 carry = CARRY_OUT (dummy);
1822 digits[j] = CARRY_LEFT (dummy);
1823
1824 if (j >= decimal_digits && carry == 0)
1825 {
1826 /*
1827 * All higher digits are 0 and we
1828 * no longer have a carry.
1829 *
1830 * Note: "j" is 0-based, "decimal_digits" is
1831 * 1-based.
1832 */
1833 decimal_digits = j + 1;
1834 break;
1835 }
1836 }
1837 }
1838
1839 /* Ok, now "digits" is the decimal representation, with
1840 the "decimal_digits" actual digits. Print! */
1841
1842 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1843 ;
1844
1845 for (; i >= 0; i--)
1846 {
1847 fprintf_filtered (stream, "%1d", digits[i]);
1848 }
1849 }
1850
1851 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1852
1853 void
1854 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1855 unsigned len, enum bfd_endian byte_order,
1856 bool zero_pad)
1857 {
1858 const gdb_byte *p;
1859
1860 fputs_filtered ("0x", stream);
1861 if (byte_order == BFD_ENDIAN_BIG)
1862 {
1863 p = valaddr;
1864
1865 if (!zero_pad)
1866 {
1867 /* Strip leading 0 bytes, but be sure to leave at least a
1868 single byte at the end. */
1869 for (; p < valaddr + len - 1 && !*p; ++p)
1870 ;
1871 }
1872
1873 const gdb_byte *first = p;
1874 for (;
1875 p < valaddr + len;
1876 p++)
1877 {
1878 /* When not zero-padding, use a different format for the
1879 very first byte printed. */
1880 if (!zero_pad && p == first)
1881 fprintf_filtered (stream, "%x", *p);
1882 else
1883 fprintf_filtered (stream, "%02x", *p);
1884 }
1885 }
1886 else
1887 {
1888 p = valaddr + len - 1;
1889
1890 if (!zero_pad)
1891 {
1892 /* Strip leading 0 bytes, but be sure to leave at least a
1893 single byte at the end. */
1894 for (; p >= valaddr + 1 && !*p; --p)
1895 ;
1896 }
1897
1898 const gdb_byte *first = p;
1899 for (;
1900 p >= valaddr;
1901 p--)
1902 {
1903 /* When not zero-padding, use a different format for the
1904 very first byte printed. */
1905 if (!zero_pad && p == first)
1906 fprintf_filtered (stream, "%x", *p);
1907 else
1908 fprintf_filtered (stream, "%02x", *p);
1909 }
1910 }
1911 }
1912
1913 /* VALADDR points to a char integer of LEN bytes.
1914 Print it out in appropriate language form on stream.
1915 Omit any leading zero chars. */
1916
1917 void
1918 print_char_chars (struct ui_file *stream, struct type *type,
1919 const gdb_byte *valaddr,
1920 unsigned len, enum bfd_endian byte_order)
1921 {
1922 const gdb_byte *p;
1923
1924 if (byte_order == BFD_ENDIAN_BIG)
1925 {
1926 p = valaddr;
1927 while (p < valaddr + len - 1 && *p == 0)
1928 ++p;
1929
1930 while (p < valaddr + len)
1931 {
1932 LA_EMIT_CHAR (*p, type, stream, '\'');
1933 ++p;
1934 }
1935 }
1936 else
1937 {
1938 p = valaddr + len - 1;
1939 while (p > valaddr && *p == 0)
1940 --p;
1941
1942 while (p >= valaddr)
1943 {
1944 LA_EMIT_CHAR (*p, type, stream, '\'');
1945 --p;
1946 }
1947 }
1948 }
1949
1950 /* Print function pointer with inferior address ADDRESS onto stdio
1951 stream STREAM. */
1952
1953 void
1954 print_function_pointer_address (const struct value_print_options *options,
1955 struct gdbarch *gdbarch,
1956 CORE_ADDR address,
1957 struct ui_file *stream)
1958 {
1959 CORE_ADDR func_addr
1960 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1961 current_top_target ());
1962
1963 /* If the function pointer is represented by a description, print
1964 the address of the description. */
1965 if (options->addressprint && func_addr != address)
1966 {
1967 fputs_filtered ("@", stream);
1968 fputs_filtered (paddress (gdbarch, address), stream);
1969 fputs_filtered (": ", stream);
1970 }
1971 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1972 }
1973
1974
1975 /* Print on STREAM using the given OPTIONS the index for the element
1976 at INDEX of an array whose index type is INDEX_TYPE. */
1977
1978 void
1979 maybe_print_array_index (struct type *index_type, LONGEST index,
1980 struct ui_file *stream,
1981 const struct value_print_options *options)
1982 {
1983 struct value *index_value;
1984
1985 if (!options->print_array_indexes)
1986 return;
1987
1988 index_value = value_from_longest (index_type, index);
1989
1990 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1991 }
1992
1993 /* Called by various <lang>_val_print routines to print elements of an
1994 array in the form "<elem1>, <elem2>, <elem3>, ...".
1995
1996 (FIXME?) Assumes array element separator is a comma, which is correct
1997 for all languages currently handled.
1998 (FIXME?) Some languages have a notation for repeated array elements,
1999 perhaps we should try to use that notation when appropriate. */
2000
2001 void
2002 val_print_array_elements (struct type *type,
2003 LONGEST embedded_offset,
2004 CORE_ADDR address, struct ui_file *stream,
2005 int recurse,
2006 struct value *val,
2007 const struct value_print_options *options,
2008 unsigned int i)
2009 {
2010 unsigned int things_printed = 0;
2011 unsigned len;
2012 struct type *elttype, *index_type, *base_index_type;
2013 unsigned eltlen;
2014 /* Position of the array element we are examining to see
2015 whether it is repeated. */
2016 unsigned int rep1;
2017 /* Number of repetitions we have detected so far. */
2018 unsigned int reps;
2019 LONGEST low_bound, high_bound;
2020 LONGEST low_pos, high_pos;
2021
2022 elttype = TYPE_TARGET_TYPE (type);
2023 eltlen = type_length_units (check_typedef (elttype));
2024 index_type = TYPE_INDEX_TYPE (type);
2025
2026 if (get_array_bounds (type, &low_bound, &high_bound))
2027 {
2028 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2029 base_index_type = TYPE_TARGET_TYPE (index_type);
2030 else
2031 base_index_type = index_type;
2032
2033 /* Non-contiguous enumerations types can by used as index types
2034 in some languages (e.g. Ada). In this case, the array length
2035 shall be computed from the positions of the first and last
2036 literal in the enumeration type, and not from the values
2037 of these literals. */
2038 if (!discrete_position (base_index_type, low_bound, &low_pos)
2039 || !discrete_position (base_index_type, high_bound, &high_pos))
2040 {
2041 warning (_("unable to get positions in array, use bounds instead"));
2042 low_pos = low_bound;
2043 high_pos = high_bound;
2044 }
2045
2046 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2047 But we have to be a little extra careful, because some languages
2048 such as Ada allow LOW_POS to be greater than HIGH_POS for
2049 empty arrays. In that situation, the array length is just zero,
2050 not negative! */
2051 if (low_pos > high_pos)
2052 len = 0;
2053 else
2054 len = high_pos - low_pos + 1;
2055 }
2056 else
2057 {
2058 warning (_("unable to get bounds of array, assuming null array"));
2059 low_bound = 0;
2060 len = 0;
2061 }
2062
2063 annotate_array_section_begin (i, elttype);
2064
2065 for (; i < len && things_printed < options->print_max; i++)
2066 {
2067 if (i != 0)
2068 {
2069 if (options->prettyformat_arrays)
2070 {
2071 fprintf_filtered (stream, ",\n");
2072 print_spaces_filtered (2 + 2 * recurse, stream);
2073 }
2074 else
2075 {
2076 fprintf_filtered (stream, ", ");
2077 }
2078 }
2079 wrap_here (n_spaces (2 + 2 * recurse));
2080 maybe_print_array_index (index_type, i + low_bound,
2081 stream, options);
2082
2083 rep1 = i + 1;
2084 reps = 1;
2085 /* Only check for reps if repeat_count_threshold is not set to
2086 UINT_MAX (unlimited). */
2087 if (options->repeat_count_threshold < UINT_MAX)
2088 {
2089 while (rep1 < len
2090 && value_contents_eq (val,
2091 embedded_offset + i * eltlen,
2092 val,
2093 (embedded_offset
2094 + rep1 * eltlen),
2095 eltlen))
2096 {
2097 ++reps;
2098 ++rep1;
2099 }
2100 }
2101
2102 if (reps > options->repeat_count_threshold)
2103 {
2104 val_print (elttype, embedded_offset + i * eltlen,
2105 address, stream, recurse + 1, val, options,
2106 current_language);
2107 annotate_elt_rep (reps);
2108 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
2109 metadata_style.style ().ptr (), reps, nullptr);
2110 annotate_elt_rep_end ();
2111
2112 i = rep1 - 1;
2113 things_printed += options->repeat_count_threshold;
2114 }
2115 else
2116 {
2117 val_print (elttype, embedded_offset + i * eltlen,
2118 address,
2119 stream, recurse + 1, val, options, current_language);
2120 annotate_elt ();
2121 things_printed++;
2122 }
2123 }
2124 annotate_array_section_end ();
2125 if (i < len)
2126 {
2127 fprintf_filtered (stream, "...");
2128 }
2129 }
2130
2131 /* Read LEN bytes of target memory at address MEMADDR, placing the
2132 results in GDB's memory at MYADDR. Returns a count of the bytes
2133 actually read, and optionally a target_xfer_status value in the
2134 location pointed to by ERRPTR if ERRPTR is non-null. */
2135
2136 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2137 function be eliminated. */
2138
2139 static int
2140 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2141 int len, int *errptr)
2142 {
2143 int nread; /* Number of bytes actually read. */
2144 int errcode; /* Error from last read. */
2145
2146 /* First try a complete read. */
2147 errcode = target_read_memory (memaddr, myaddr, len);
2148 if (errcode == 0)
2149 {
2150 /* Got it all. */
2151 nread = len;
2152 }
2153 else
2154 {
2155 /* Loop, reading one byte at a time until we get as much as we can. */
2156 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2157 {
2158 errcode = target_read_memory (memaddr++, myaddr++, 1);
2159 }
2160 /* If an error, the last read was unsuccessful, so adjust count. */
2161 if (errcode != 0)
2162 {
2163 nread--;
2164 }
2165 }
2166 if (errptr != NULL)
2167 {
2168 *errptr = errcode;
2169 }
2170 return (nread);
2171 }
2172
2173 /* Read a string from the inferior, at ADDR, with LEN characters of
2174 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2175 will be set to a newly allocated buffer containing the string, and
2176 BYTES_READ will be set to the number of bytes read. Returns 0 on
2177 success, or a target_xfer_status on failure.
2178
2179 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2180 (including eventual NULs in the middle or end of the string).
2181
2182 If LEN is -1, stops at the first null character (not necessarily
2183 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2184 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2185 the string.
2186
2187 Unless an exception is thrown, BUFFER will always be allocated, even on
2188 failure. In this case, some characters might have been read before the
2189 failure happened. Check BYTES_READ to recognize this situation.
2190
2191 Note: There was a FIXME asking to make this code use target_read_string,
2192 but this function is more general (can read past null characters, up to
2193 given LEN). Besides, it is used much more often than target_read_string
2194 so it is more tested. Perhaps callers of target_read_string should use
2195 this function instead? */
2196
2197 int
2198 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2199 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2200 int *bytes_read)
2201 {
2202 int errcode; /* Errno returned from bad reads. */
2203 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2204 gdb_byte *bufptr; /* Pointer to next available byte in
2205 buffer. */
2206
2207 /* Loop until we either have all the characters, or we encounter
2208 some error, such as bumping into the end of the address space. */
2209
2210 buffer->reset (nullptr);
2211
2212 if (len > 0)
2213 {
2214 /* We want fetchlimit chars, so we might as well read them all in
2215 one operation. */
2216 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2217
2218 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2219 bufptr = buffer->get ();
2220
2221 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2222 / width;
2223 addr += nfetch * width;
2224 bufptr += nfetch * width;
2225 }
2226 else if (len == -1)
2227 {
2228 unsigned long bufsize = 0;
2229 unsigned int chunksize; /* Size of each fetch, in chars. */
2230 int found_nul; /* Non-zero if we found the nul char. */
2231 gdb_byte *limit; /* First location past end of fetch buffer. */
2232
2233 found_nul = 0;
2234 /* We are looking for a NUL terminator to end the fetching, so we
2235 might as well read in blocks that are large enough to be efficient,
2236 but not so large as to be slow if fetchlimit happens to be large.
2237 So we choose the minimum of 8 and fetchlimit. We used to use 200
2238 instead of 8 but 200 is way too big for remote debugging over a
2239 serial line. */
2240 chunksize = std::min (8u, fetchlimit);
2241
2242 do
2243 {
2244 QUIT;
2245 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2246
2247 if (*buffer == NULL)
2248 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2249 else
2250 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2251 (nfetch + bufsize) * width));
2252
2253 bufptr = buffer->get () + bufsize * width;
2254 bufsize += nfetch;
2255
2256 /* Read as much as we can. */
2257 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2258 / width;
2259
2260 /* Scan this chunk for the null character that terminates the string
2261 to print. If found, we don't need to fetch any more. Note
2262 that bufptr is explicitly left pointing at the next character
2263 after the null character, or at the next character after the end
2264 of the buffer. */
2265
2266 limit = bufptr + nfetch * width;
2267 while (bufptr < limit)
2268 {
2269 unsigned long c;
2270
2271 c = extract_unsigned_integer (bufptr, width, byte_order);
2272 addr += width;
2273 bufptr += width;
2274 if (c == 0)
2275 {
2276 /* We don't care about any error which happened after
2277 the NUL terminator. */
2278 errcode = 0;
2279 found_nul = 1;
2280 break;
2281 }
2282 }
2283 }
2284 while (errcode == 0 /* no error */
2285 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2286 && !found_nul); /* haven't found NUL yet */
2287 }
2288 else
2289 { /* Length of string is really 0! */
2290 /* We always allocate *buffer. */
2291 buffer->reset ((gdb_byte *) xmalloc (1));
2292 bufptr = buffer->get ();
2293 errcode = 0;
2294 }
2295
2296 /* bufptr and addr now point immediately beyond the last byte which we
2297 consider part of the string (including a '\0' which ends the string). */
2298 *bytes_read = bufptr - buffer->get ();
2299
2300 QUIT;
2301
2302 return errcode;
2303 }
2304
2305 /* Return true if print_wchar can display W without resorting to a
2306 numeric escape, false otherwise. */
2307
2308 static int
2309 wchar_printable (gdb_wchar_t w)
2310 {
2311 return (gdb_iswprint (w)
2312 || w == LCST ('\a') || w == LCST ('\b')
2313 || w == LCST ('\f') || w == LCST ('\n')
2314 || w == LCST ('\r') || w == LCST ('\t')
2315 || w == LCST ('\v'));
2316 }
2317
2318 /* A helper function that converts the contents of STRING to wide
2319 characters and then appends them to OUTPUT. */
2320
2321 static void
2322 append_string_as_wide (const char *string,
2323 struct obstack *output)
2324 {
2325 for (; *string; ++string)
2326 {
2327 gdb_wchar_t w = gdb_btowc (*string);
2328 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2329 }
2330 }
2331
2332 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2333 original (target) bytes representing the character, ORIG_LEN is the
2334 number of valid bytes. WIDTH is the number of bytes in a base
2335 characters of the type. OUTPUT is an obstack to which wide
2336 characters are emitted. QUOTER is a (narrow) character indicating
2337 the style of quotes surrounding the character to be printed.
2338 NEED_ESCAPE is an in/out flag which is used to track numeric
2339 escapes across calls. */
2340
2341 static void
2342 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2343 int orig_len, int width,
2344 enum bfd_endian byte_order,
2345 struct obstack *output,
2346 int quoter, int *need_escapep)
2347 {
2348 int need_escape = *need_escapep;
2349
2350 *need_escapep = 0;
2351
2352 /* iswprint implementation on Windows returns 1 for tab character.
2353 In order to avoid different printout on this host, we explicitly
2354 use wchar_printable function. */
2355 switch (w)
2356 {
2357 case LCST ('\a'):
2358 obstack_grow_wstr (output, LCST ("\\a"));
2359 break;
2360 case LCST ('\b'):
2361 obstack_grow_wstr (output, LCST ("\\b"));
2362 break;
2363 case LCST ('\f'):
2364 obstack_grow_wstr (output, LCST ("\\f"));
2365 break;
2366 case LCST ('\n'):
2367 obstack_grow_wstr (output, LCST ("\\n"));
2368 break;
2369 case LCST ('\r'):
2370 obstack_grow_wstr (output, LCST ("\\r"));
2371 break;
2372 case LCST ('\t'):
2373 obstack_grow_wstr (output, LCST ("\\t"));
2374 break;
2375 case LCST ('\v'):
2376 obstack_grow_wstr (output, LCST ("\\v"));
2377 break;
2378 default:
2379 {
2380 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2381 && w != LCST ('8')
2382 && w != LCST ('9'))))
2383 {
2384 gdb_wchar_t wchar = w;
2385
2386 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2387 obstack_grow_wstr (output, LCST ("\\"));
2388 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2389 }
2390 else
2391 {
2392 int i;
2393
2394 for (i = 0; i + width <= orig_len; i += width)
2395 {
2396 char octal[30];
2397 ULONGEST value;
2398
2399 value = extract_unsigned_integer (&orig[i], width,
2400 byte_order);
2401 /* If the value fits in 3 octal digits, print it that
2402 way. Otherwise, print it as a hex escape. */
2403 if (value <= 0777)
2404 xsnprintf (octal, sizeof (octal), "\\%.3o",
2405 (int) (value & 0777));
2406 else
2407 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2408 append_string_as_wide (octal, output);
2409 }
2410 /* If we somehow have extra bytes, print them now. */
2411 while (i < orig_len)
2412 {
2413 char octal[5];
2414
2415 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2416 append_string_as_wide (octal, output);
2417 ++i;
2418 }
2419
2420 *need_escapep = 1;
2421 }
2422 break;
2423 }
2424 }
2425 }
2426
2427 /* Print the character C on STREAM as part of the contents of a
2428 literal string whose delimiter is QUOTER. ENCODING names the
2429 encoding of C. */
2430
2431 void
2432 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2433 int quoter, const char *encoding)
2434 {
2435 enum bfd_endian byte_order
2436 = type_byte_order (type);
2437 gdb_byte *c_buf;
2438 int need_escape = 0;
2439
2440 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2441 pack_long (c_buf, type, c);
2442
2443 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2444
2445 /* This holds the printable form of the wchar_t data. */
2446 auto_obstack wchar_buf;
2447
2448 while (1)
2449 {
2450 int num_chars;
2451 gdb_wchar_t *chars;
2452 const gdb_byte *buf;
2453 size_t buflen;
2454 int print_escape = 1;
2455 enum wchar_iterate_result result;
2456
2457 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2458 if (num_chars < 0)
2459 break;
2460 if (num_chars > 0)
2461 {
2462 /* If all characters are printable, print them. Otherwise,
2463 we're going to have to print an escape sequence. We
2464 check all characters because we want to print the target
2465 bytes in the escape sequence, and we don't know character
2466 boundaries there. */
2467 int i;
2468
2469 print_escape = 0;
2470 for (i = 0; i < num_chars; ++i)
2471 if (!wchar_printable (chars[i]))
2472 {
2473 print_escape = 1;
2474 break;
2475 }
2476
2477 if (!print_escape)
2478 {
2479 for (i = 0; i < num_chars; ++i)
2480 print_wchar (chars[i], buf, buflen,
2481 TYPE_LENGTH (type), byte_order,
2482 &wchar_buf, quoter, &need_escape);
2483 }
2484 }
2485
2486 /* This handles the NUM_CHARS == 0 case as well. */
2487 if (print_escape)
2488 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2489 byte_order, &wchar_buf, quoter, &need_escape);
2490 }
2491
2492 /* The output in the host encoding. */
2493 auto_obstack output;
2494
2495 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2496 (gdb_byte *) obstack_base (&wchar_buf),
2497 obstack_object_size (&wchar_buf),
2498 sizeof (gdb_wchar_t), &output, translit_char);
2499 obstack_1grow (&output, '\0');
2500
2501 fputs_filtered ((const char *) obstack_base (&output), stream);
2502 }
2503
2504 /* Return the repeat count of the next character/byte in ITER,
2505 storing the result in VEC. */
2506
2507 static int
2508 count_next_character (wchar_iterator *iter,
2509 std::vector<converted_character> *vec)
2510 {
2511 struct converted_character *current;
2512
2513 if (vec->empty ())
2514 {
2515 struct converted_character tmp;
2516 gdb_wchar_t *chars;
2517
2518 tmp.num_chars
2519 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2520 if (tmp.num_chars > 0)
2521 {
2522 gdb_assert (tmp.num_chars < MAX_WCHARS);
2523 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2524 }
2525 vec->push_back (tmp);
2526 }
2527
2528 current = &vec->back ();
2529
2530 /* Count repeated characters or bytes. */
2531 current->repeat_count = 1;
2532 if (current->num_chars == -1)
2533 {
2534 /* EOF */
2535 return -1;
2536 }
2537 else
2538 {
2539 gdb_wchar_t *chars;
2540 struct converted_character d;
2541 int repeat;
2542
2543 d.repeat_count = 0;
2544
2545 while (1)
2546 {
2547 /* Get the next character. */
2548 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2549
2550 /* If a character was successfully converted, save the character
2551 into the converted character. */
2552 if (d.num_chars > 0)
2553 {
2554 gdb_assert (d.num_chars < MAX_WCHARS);
2555 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2556 }
2557
2558 /* Determine if the current character is the same as this
2559 new character. */
2560 if (d.num_chars == current->num_chars && d.result == current->result)
2561 {
2562 /* There are two cases to consider:
2563
2564 1) Equality of converted character (num_chars > 0)
2565 2) Equality of non-converted character (num_chars == 0) */
2566 if ((current->num_chars > 0
2567 && memcmp (current->chars, d.chars,
2568 WCHAR_BUFLEN (current->num_chars)) == 0)
2569 || (current->num_chars == 0
2570 && current->buflen == d.buflen
2571 && memcmp (current->buf, d.buf, current->buflen) == 0))
2572 ++current->repeat_count;
2573 else
2574 break;
2575 }
2576 else
2577 break;
2578 }
2579
2580 /* Push this next converted character onto the result vector. */
2581 repeat = current->repeat_count;
2582 vec->push_back (d);
2583 return repeat;
2584 }
2585 }
2586
2587 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2588 character to use with string output. WIDTH is the size of the output
2589 character type. BYTE_ORDER is the target byte order. OPTIONS
2590 is the user's print options. */
2591
2592 static void
2593 print_converted_chars_to_obstack (struct obstack *obstack,
2594 const std::vector<converted_character> &chars,
2595 int quote_char, int width,
2596 enum bfd_endian byte_order,
2597 const struct value_print_options *options)
2598 {
2599 unsigned int idx;
2600 const converted_character *elem;
2601 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2602 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2603 int need_escape = 0;
2604
2605 /* Set the start state. */
2606 idx = 0;
2607 last = state = START;
2608 elem = NULL;
2609
2610 while (1)
2611 {
2612 switch (state)
2613 {
2614 case START:
2615 /* Nothing to do. */
2616 break;
2617
2618 case SINGLE:
2619 {
2620 int j;
2621
2622 /* We are outputting a single character
2623 (< options->repeat_count_threshold). */
2624
2625 if (last != SINGLE)
2626 {
2627 /* We were outputting some other type of content, so we
2628 must output and a comma and a quote. */
2629 if (last != START)
2630 obstack_grow_wstr (obstack, LCST (", "));
2631 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2632 }
2633 /* Output the character. */
2634 for (j = 0; j < elem->repeat_count; ++j)
2635 {
2636 if (elem->result == wchar_iterate_ok)
2637 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2638 byte_order, obstack, quote_char, &need_escape);
2639 else
2640 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2641 byte_order, obstack, quote_char, &need_escape);
2642 }
2643 }
2644 break;
2645
2646 case REPEAT:
2647 {
2648 int j;
2649
2650 /* We are outputting a character with a repeat count
2651 greater than options->repeat_count_threshold. */
2652
2653 if (last == SINGLE)
2654 {
2655 /* We were outputting a single string. Terminate the
2656 string. */
2657 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2658 }
2659 if (last != START)
2660 obstack_grow_wstr (obstack, LCST (", "));
2661
2662 /* Output the character and repeat string. */
2663 obstack_grow_wstr (obstack, LCST ("'"));
2664 if (elem->result == wchar_iterate_ok)
2665 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2666 byte_order, obstack, quote_char, &need_escape);
2667 else
2668 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2669 byte_order, obstack, quote_char, &need_escape);
2670 obstack_grow_wstr (obstack, LCST ("'"));
2671 std::string s = string_printf (_(" <repeats %u times>"),
2672 elem->repeat_count);
2673 for (j = 0; s[j]; ++j)
2674 {
2675 gdb_wchar_t w = gdb_btowc (s[j]);
2676 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2677 }
2678 }
2679 break;
2680
2681 case INCOMPLETE:
2682 /* We are outputting an incomplete sequence. */
2683 if (last == SINGLE)
2684 {
2685 /* If we were outputting a string of SINGLE characters,
2686 terminate the quote. */
2687 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2688 }
2689 if (last != START)
2690 obstack_grow_wstr (obstack, LCST (", "));
2691
2692 /* Output the incomplete sequence string. */
2693 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2694 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2695 obstack, 0, &need_escape);
2696 obstack_grow_wstr (obstack, LCST (">"));
2697
2698 /* We do not attempt to output anything after this. */
2699 state = FINISH;
2700 break;
2701
2702 case FINISH:
2703 /* All done. If we were outputting a string of SINGLE
2704 characters, the string must be terminated. Otherwise,
2705 REPEAT and INCOMPLETE are always left properly terminated. */
2706 if (last == SINGLE)
2707 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2708
2709 return;
2710 }
2711
2712 /* Get the next element and state. */
2713 last = state;
2714 if (state != FINISH)
2715 {
2716 elem = &chars[idx++];
2717 switch (elem->result)
2718 {
2719 case wchar_iterate_ok:
2720 case wchar_iterate_invalid:
2721 if (elem->repeat_count > options->repeat_count_threshold)
2722 state = REPEAT;
2723 else
2724 state = SINGLE;
2725 break;
2726
2727 case wchar_iterate_incomplete:
2728 state = INCOMPLETE;
2729 break;
2730
2731 case wchar_iterate_eof:
2732 state = FINISH;
2733 break;
2734 }
2735 }
2736 }
2737 }
2738
2739 /* Print the character string STRING, printing at most LENGTH
2740 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2741 the type of each character. OPTIONS holds the printing options;
2742 printing stops early if the number hits print_max; repeat counts
2743 are printed as appropriate. Print ellipses at the end if we had to
2744 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2745 QUOTE_CHAR is the character to print at each end of the string. If
2746 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2747 omitted. */
2748
2749 void
2750 generic_printstr (struct ui_file *stream, struct type *type,
2751 const gdb_byte *string, unsigned int length,
2752 const char *encoding, int force_ellipses,
2753 int quote_char, int c_style_terminator,
2754 const struct value_print_options *options)
2755 {
2756 enum bfd_endian byte_order = type_byte_order (type);
2757 unsigned int i;
2758 int width = TYPE_LENGTH (type);
2759 int finished = 0;
2760 struct converted_character *last;
2761
2762 if (length == -1)
2763 {
2764 unsigned long current_char = 1;
2765
2766 for (i = 0; current_char; ++i)
2767 {
2768 QUIT;
2769 current_char = extract_unsigned_integer (string + i * width,
2770 width, byte_order);
2771 }
2772 length = i;
2773 }
2774
2775 /* If the string was not truncated due to `set print elements', and
2776 the last byte of it is a null, we don't print that, in
2777 traditional C style. */
2778 if (c_style_terminator
2779 && !force_ellipses
2780 && length > 0
2781 && (extract_unsigned_integer (string + (length - 1) * width,
2782 width, byte_order) == 0))
2783 length--;
2784
2785 if (length == 0)
2786 {
2787 fputs_filtered ("\"\"", stream);
2788 return;
2789 }
2790
2791 /* Arrange to iterate over the characters, in wchar_t form. */
2792 wchar_iterator iter (string, length * width, encoding, width);
2793 std::vector<converted_character> converted_chars;
2794
2795 /* Convert characters until the string is over or the maximum
2796 number of printed characters has been reached. */
2797 i = 0;
2798 while (i < options->print_max)
2799 {
2800 int r;
2801
2802 QUIT;
2803
2804 /* Grab the next character and repeat count. */
2805 r = count_next_character (&iter, &converted_chars);
2806
2807 /* If less than zero, the end of the input string was reached. */
2808 if (r < 0)
2809 break;
2810
2811 /* Otherwise, add the count to the total print count and get
2812 the next character. */
2813 i += r;
2814 }
2815
2816 /* Get the last element and determine if the entire string was
2817 processed. */
2818 last = &converted_chars.back ();
2819 finished = (last->result == wchar_iterate_eof);
2820
2821 /* Ensure that CONVERTED_CHARS is terminated. */
2822 last->result = wchar_iterate_eof;
2823
2824 /* WCHAR_BUF is the obstack we use to represent the string in
2825 wchar_t form. */
2826 auto_obstack wchar_buf;
2827
2828 /* Print the output string to the obstack. */
2829 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2830 width, byte_order, options);
2831
2832 if (force_ellipses || !finished)
2833 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2834
2835 /* OUTPUT is where we collect `char's for printing. */
2836 auto_obstack output;
2837
2838 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2839 (gdb_byte *) obstack_base (&wchar_buf),
2840 obstack_object_size (&wchar_buf),
2841 sizeof (gdb_wchar_t), &output, translit_char);
2842 obstack_1grow (&output, '\0');
2843
2844 fputs_filtered ((const char *) obstack_base (&output), stream);
2845 }
2846
2847 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2848 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2849 stops at the first null byte, otherwise printing proceeds (including null
2850 bytes) until either print_max or LEN characters have been printed,
2851 whichever is smaller. ENCODING is the name of the string's
2852 encoding. It can be NULL, in which case the target encoding is
2853 assumed. */
2854
2855 int
2856 val_print_string (struct type *elttype, const char *encoding,
2857 CORE_ADDR addr, int len,
2858 struct ui_file *stream,
2859 const struct value_print_options *options)
2860 {
2861 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2862 int err; /* Non-zero if we got a bad read. */
2863 int found_nul; /* Non-zero if we found the nul char. */
2864 unsigned int fetchlimit; /* Maximum number of chars to print. */
2865 int bytes_read;
2866 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2867 struct gdbarch *gdbarch = get_type_arch (elttype);
2868 enum bfd_endian byte_order = type_byte_order (elttype);
2869 int width = TYPE_LENGTH (elttype);
2870
2871 /* First we need to figure out the limit on the number of characters we are
2872 going to attempt to fetch and print. This is actually pretty simple. If
2873 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2874 LEN is -1, then the limit is print_max. This is true regardless of
2875 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2876 because finding the null byte (or available memory) is what actually
2877 limits the fetch. */
2878
2879 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2880 options->print_max));
2881
2882 err = read_string (addr, len, width, fetchlimit, byte_order,
2883 &buffer, &bytes_read);
2884
2885 addr += bytes_read;
2886
2887 /* We now have either successfully filled the buffer to fetchlimit,
2888 or terminated early due to an error or finding a null char when
2889 LEN is -1. */
2890
2891 /* Determine found_nul by looking at the last character read. */
2892 found_nul = 0;
2893 if (bytes_read >= width)
2894 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2895 width, byte_order) == 0;
2896 if (len == -1 && !found_nul)
2897 {
2898 gdb_byte *peekbuf;
2899
2900 /* We didn't find a NUL terminator we were looking for. Attempt
2901 to peek at the next character. If not successful, or it is not
2902 a null byte, then force ellipsis to be printed. */
2903
2904 peekbuf = (gdb_byte *) alloca (width);
2905
2906 if (target_read_memory (addr, peekbuf, width) == 0
2907 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2908 force_ellipsis = 1;
2909 }
2910 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2911 {
2912 /* Getting an error when we have a requested length, or fetching less
2913 than the number of characters actually requested, always make us
2914 print ellipsis. */
2915 force_ellipsis = 1;
2916 }
2917
2918 /* If we get an error before fetching anything, don't print a string.
2919 But if we fetch something and then get an error, print the string
2920 and then the error message. */
2921 if (err == 0 || bytes_read > 0)
2922 {
2923 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2924 encoding, force_ellipsis, options);
2925 }
2926
2927 if (err != 0)
2928 {
2929 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2930
2931 fprintf_filtered (stream, _("<error: %ps>"),
2932 styled_string (metadata_style.style (),
2933 str.c_str ()));
2934 }
2935
2936 return (bytes_read / width);
2937 }
2938
2939 /* Handle 'show print max-depth'. */
2940
2941 static void
2942 show_print_max_depth (struct ui_file *file, int from_tty,
2943 struct cmd_list_element *c, const char *value)
2944 {
2945 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2946 }
2947 \f
2948
2949 /* The 'set input-radix' command writes to this auxiliary variable.
2950 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2951 it is left unchanged. */
2952
2953 static unsigned input_radix_1 = 10;
2954
2955 /* Validate an input or output radix setting, and make sure the user
2956 knows what they really did here. Radix setting is confusing, e.g.
2957 setting the input radix to "10" never changes it! */
2958
2959 static void
2960 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2961 {
2962 set_input_radix_1 (from_tty, input_radix_1);
2963 }
2964
2965 static void
2966 set_input_radix_1 (int from_tty, unsigned radix)
2967 {
2968 /* We don't currently disallow any input radix except 0 or 1, which don't
2969 make any mathematical sense. In theory, we can deal with any input
2970 radix greater than 1, even if we don't have unique digits for every
2971 value from 0 to radix-1, but in practice we lose on large radix values.
2972 We should either fix the lossage or restrict the radix range more.
2973 (FIXME). */
2974
2975 if (radix < 2)
2976 {
2977 input_radix_1 = input_radix;
2978 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2979 radix);
2980 }
2981 input_radix_1 = input_radix = radix;
2982 if (from_tty)
2983 {
2984 printf_filtered (_("Input radix now set to "
2985 "decimal %u, hex %x, octal %o.\n"),
2986 radix, radix, radix);
2987 }
2988 }
2989
2990 /* The 'set output-radix' command writes to this auxiliary variable.
2991 If the requested radix is valid, OUTPUT_RADIX is updated,
2992 otherwise, it is left unchanged. */
2993
2994 static unsigned output_radix_1 = 10;
2995
2996 static void
2997 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2998 {
2999 set_output_radix_1 (from_tty, output_radix_1);
3000 }
3001
3002 static void
3003 set_output_radix_1 (int from_tty, unsigned radix)
3004 {
3005 /* Validate the radix and disallow ones that we aren't prepared to
3006 handle correctly, leaving the radix unchanged. */
3007 switch (radix)
3008 {
3009 case 16:
3010 user_print_options.output_format = 'x'; /* hex */
3011 break;
3012 case 10:
3013 user_print_options.output_format = 0; /* decimal */
3014 break;
3015 case 8:
3016 user_print_options.output_format = 'o'; /* octal */
3017 break;
3018 default:
3019 output_radix_1 = output_radix;
3020 error (_("Unsupported output radix ``decimal %u''; "
3021 "output radix unchanged."),
3022 radix);
3023 }
3024 output_radix_1 = output_radix = radix;
3025 if (from_tty)
3026 {
3027 printf_filtered (_("Output radix now set to "
3028 "decimal %u, hex %x, octal %o.\n"),
3029 radix, radix, radix);
3030 }
3031 }
3032
3033 /* Set both the input and output radix at once. Try to set the output radix
3034 first, since it has the most restrictive range. An radix that is valid as
3035 an output radix is also valid as an input radix.
3036
3037 It may be useful to have an unusual input radix. If the user wishes to
3038 set an input radix that is not valid as an output radix, he needs to use
3039 the 'set input-radix' command. */
3040
3041 static void
3042 set_radix (const char *arg, int from_tty)
3043 {
3044 unsigned radix;
3045
3046 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3047 set_output_radix_1 (0, radix);
3048 set_input_radix_1 (0, radix);
3049 if (from_tty)
3050 {
3051 printf_filtered (_("Input and output radices now set to "
3052 "decimal %u, hex %x, octal %o.\n"),
3053 radix, radix, radix);
3054 }
3055 }
3056
3057 /* Show both the input and output radices. */
3058
3059 static void
3060 show_radix (const char *arg, int from_tty)
3061 {
3062 if (from_tty)
3063 {
3064 if (input_radix == output_radix)
3065 {
3066 printf_filtered (_("Input and output radices set to "
3067 "decimal %u, hex %x, octal %o.\n"),
3068 input_radix, input_radix, input_radix);
3069 }
3070 else
3071 {
3072 printf_filtered (_("Input radix set to decimal "
3073 "%u, hex %x, octal %o.\n"),
3074 input_radix, input_radix, input_radix);
3075 printf_filtered (_("Output radix set to decimal "
3076 "%u, hex %x, octal %o.\n"),
3077 output_radix, output_radix, output_radix);
3078 }
3079 }
3080 }
3081 \f
3082
3083 static void
3084 set_print (const char *arg, int from_tty)
3085 {
3086 printf_unfiltered (
3087 "\"set print\" must be followed by the name of a print subcommand.\n");
3088 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3089 }
3090
3091 static void
3092 show_print (const char *args, int from_tty)
3093 {
3094 cmd_show_list (showprintlist, from_tty, "");
3095 }
3096
3097 static void
3098 set_print_raw (const char *arg, int from_tty)
3099 {
3100 printf_unfiltered (
3101 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3102 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3103 }
3104
3105 static void
3106 show_print_raw (const char *args, int from_tty)
3107 {
3108 cmd_show_list (showprintrawlist, from_tty, "");
3109 }
3110
3111 /* Controls printing of vtbl's. */
3112 static void
3113 show_vtblprint (struct ui_file *file, int from_tty,
3114 struct cmd_list_element *c, const char *value)
3115 {
3116 fprintf_filtered (file, _("\
3117 Printing of C++ virtual function tables is %s.\n"),
3118 value);
3119 }
3120
3121 /* Controls looking up an object's derived type using what we find in
3122 its vtables. */
3123 static void
3124 show_objectprint (struct ui_file *file, int from_tty,
3125 struct cmd_list_element *c,
3126 const char *value)
3127 {
3128 fprintf_filtered (file, _("\
3129 Printing of object's derived type based on vtable info is %s.\n"),
3130 value);
3131 }
3132
3133 static void
3134 show_static_field_print (struct ui_file *file, int from_tty,
3135 struct cmd_list_element *c,
3136 const char *value)
3137 {
3138 fprintf_filtered (file,
3139 _("Printing of C++ static members is %s.\n"),
3140 value);
3141 }
3142
3143 \f
3144
3145 /* A couple typedefs to make writing the options a bit more
3146 convenient. */
3147 using boolean_option_def
3148 = gdb::option::boolean_option_def<value_print_options>;
3149 using uinteger_option_def
3150 = gdb::option::uinteger_option_def<value_print_options>;
3151 using zuinteger_unlimited_option_def
3152 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
3153
3154 /* Definitions of options for the "print" and "compile print"
3155 commands. */
3156 static const gdb::option::option_def value_print_option_defs[] = {
3157
3158 boolean_option_def {
3159 "address",
3160 [] (value_print_options *opt) { return &opt->addressprint; },
3161 show_addressprint, /* show_cmd_cb */
3162 N_("Set printing of addresses."),
3163 N_("Show printing of addresses."),
3164 NULL, /* help_doc */
3165 },
3166
3167 boolean_option_def {
3168 "array",
3169 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
3170 show_prettyformat_arrays, /* show_cmd_cb */
3171 N_("Set pretty formatting of arrays."),
3172 N_("Show pretty formatting of arrays."),
3173 NULL, /* help_doc */
3174 },
3175
3176 boolean_option_def {
3177 "array-indexes",
3178 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3179 show_print_array_indexes, /* show_cmd_cb */
3180 N_("Set printing of array indexes."),
3181 N_("Show printing of array indexes."),
3182 NULL, /* help_doc */
3183 },
3184
3185 uinteger_option_def {
3186 "elements",
3187 [] (value_print_options *opt) { return &opt->print_max; },
3188 show_print_max, /* show_cmd_cb */
3189 N_("Set limit on string chars or array elements to print."),
3190 N_("Show limit on string chars or array elements to print."),
3191 N_("\"unlimited\" causes there to be no limit."),
3192 },
3193
3194 zuinteger_unlimited_option_def {
3195 "max-depth",
3196 [] (value_print_options *opt) { return &opt->max_depth; },
3197 show_print_max_depth, /* show_cmd_cb */
3198 N_("Set maximum print depth for nested structures, unions and arrays."),
3199 N_("Show maximum print depth for nested structures, unions, and arrays."),
3200 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3201 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3202 Use \"unlimited\" to print the complete structure.")
3203 },
3204
3205 boolean_option_def {
3206 "null-stop",
3207 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3208 show_stop_print_at_null, /* show_cmd_cb */
3209 N_("Set printing of char arrays to stop at first null char."),
3210 N_("Show printing of char arrays to stop at first null char."),
3211 NULL, /* help_doc */
3212 },
3213
3214 boolean_option_def {
3215 "object",
3216 [] (value_print_options *opt) { return &opt->objectprint; },
3217 show_objectprint, /* show_cmd_cb */
3218 _("Set printing of C++ virtual function tables."),
3219 _("Show printing of C++ virtual function tables."),
3220 NULL, /* help_doc */
3221 },
3222
3223 boolean_option_def {
3224 "pretty",
3225 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3226 show_prettyformat_structs, /* show_cmd_cb */
3227 N_("Set pretty formatting of structures."),
3228 N_("Show pretty formatting of structures."),
3229 NULL, /* help_doc */
3230 },
3231
3232 boolean_option_def {
3233 "raw-values",
3234 [] (value_print_options *opt) { return &opt->raw; },
3235 NULL, /* show_cmd_cb */
3236 N_("Set whether to print values in raw form."),
3237 N_("Show whether to print values in raw form."),
3238 N_("If set, values are printed in raw form, bypassing any\n\
3239 pretty-printers for that value.")
3240 },
3241
3242 uinteger_option_def {
3243 "repeats",
3244 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3245 show_repeat_count_threshold, /* show_cmd_cb */
3246 N_("Set threshold for repeated print elements."),
3247 N_("Show threshold for repeated print elements."),
3248 N_("\"unlimited\" causes all elements to be individually printed."),
3249 },
3250
3251 boolean_option_def {
3252 "static-members",
3253 [] (value_print_options *opt) { return &opt->static_field_print; },
3254 show_static_field_print, /* show_cmd_cb */
3255 N_("Set printing of C++ static members."),
3256 N_("Show printing of C++ static members."),
3257 NULL, /* help_doc */
3258 },
3259
3260 boolean_option_def {
3261 "symbol",
3262 [] (value_print_options *opt) { return &opt->symbol_print; },
3263 show_symbol_print, /* show_cmd_cb */
3264 N_("Set printing of symbol names when printing pointers."),
3265 N_("Show printing of symbol names when printing pointers."),
3266 NULL, /* help_doc */
3267 },
3268
3269 boolean_option_def {
3270 "union",
3271 [] (value_print_options *opt) { return &opt->unionprint; },
3272 show_unionprint, /* show_cmd_cb */
3273 N_("Set printing of unions interior to structures."),
3274 N_("Show printing of unions interior to structures."),
3275 NULL, /* help_doc */
3276 },
3277
3278 boolean_option_def {
3279 "vtbl",
3280 [] (value_print_options *opt) { return &opt->vtblprint; },
3281 show_vtblprint, /* show_cmd_cb */
3282 N_("Set printing of C++ virtual function tables."),
3283 N_("Show printing of C++ virtual function tables."),
3284 NULL, /* help_doc */
3285 },
3286 };
3287
3288 /* See valprint.h. */
3289
3290 gdb::option::option_def_group
3291 make_value_print_options_def_group (value_print_options *opts)
3292 {
3293 return {{value_print_option_defs}, opts};
3294 }
3295
3296 void _initialize_valprint ();
3297 void
3298 _initialize_valprint ()
3299 {
3300 cmd_list_element *cmd;
3301
3302 add_prefix_cmd ("print", no_class, set_print,
3303 _("Generic command for setting how things print."),
3304 &setprintlist, "set print ", 0, &setlist);
3305 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3306 /* Prefer set print to set prompt. */
3307 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3308
3309 add_prefix_cmd ("print", no_class, show_print,
3310 _("Generic command for showing print settings."),
3311 &showprintlist, "show print ", 0, &showlist);
3312 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3313 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3314
3315 cmd = add_prefix_cmd ("raw", no_class, set_print_raw,
3316 _("\
3317 Generic command for setting what things to print in \"raw\" mode."),
3318 &setprintrawlist, "set print raw ", 0,
3319 &setprintlist);
3320 deprecate_cmd (cmd, nullptr);
3321
3322 cmd = add_prefix_cmd ("raw", no_class, show_print_raw,
3323 _("Generic command for showing \"print raw\" settings."),
3324 &showprintrawlist, "show print raw ", 0,
3325 &showprintlist);
3326 deprecate_cmd (cmd, nullptr);
3327
3328 gdb::option::add_setshow_cmds_for_options
3329 (class_support, &user_print_options, value_print_option_defs,
3330 &setprintlist, &showprintlist);
3331
3332 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3333 _("\
3334 Set default input radix for entering numbers."), _("\
3335 Show default input radix for entering numbers."), NULL,
3336 set_input_radix,
3337 show_input_radix,
3338 &setlist, &showlist);
3339
3340 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3341 _("\
3342 Set default output radix for printing of values."), _("\
3343 Show default output radix for printing of values."), NULL,
3344 set_output_radix,
3345 show_output_radix,
3346 &setlist, &showlist);
3347
3348 /* The "set radix" and "show radix" commands are special in that
3349 they are like normal set and show commands but allow two normally
3350 independent variables to be either set or shown with a single
3351 command. So the usual deprecated_add_set_cmd() and [deleted]
3352 add_show_from_set() commands aren't really appropriate. */
3353 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3354 longer true - show can display anything. */
3355 add_cmd ("radix", class_support, set_radix, _("\
3356 Set default input and output number radices.\n\
3357 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3358 Without an argument, sets both radices back to the default value of 10."),
3359 &setlist);
3360 add_cmd ("radix", class_support, show_radix, _("\
3361 Show the default input and output number radices.\n\
3362 Use 'show input-radix' or 'show output-radix' to independently show each."),
3363 &showlist);
3364 }
This page took 0.093956 seconds and 5 git commands to generate.