002270f63446a2d82fe68a1dfe82dbf7429ba754
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "regcache.h"
32 #include "block.h"
33 #include "target-float.h"
34 #include "objfiles.h"
35 #include "valprint.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
38 #include <ctype.h>
39 #include "tracepoint.h"
40 #include "cp-abi.h"
41 #include "user-regs.h"
42 #include <algorithm>
43 #include "completer.h"
44
45 /* Definition of a user function. */
46 struct internal_function
47 {
48 /* The name of the function. It is a bit odd to have this in the
49 function itself -- the user might use a differently-named
50 convenience variable to hold the function. */
51 char *name;
52
53 /* The handler. */
54 internal_function_fn handler;
55
56 /* User data for the handler. */
57 void *cookie;
58 };
59
60 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
61
62 struct range
63 {
64 /* Lowest offset in the range. */
65 LONGEST offset;
66
67 /* Length of the range. */
68 LONGEST length;
69 };
70
71 typedef struct range range_s;
72
73 DEF_VEC_O(range_s);
74
75 /* Returns true if the ranges defined by [offset1, offset1+len1) and
76 [offset2, offset2+len2) overlap. */
77
78 static int
79 ranges_overlap (LONGEST offset1, LONGEST len1,
80 LONGEST offset2, LONGEST len2)
81 {
82 ULONGEST h, l;
83
84 l = std::max (offset1, offset2);
85 h = std::min (offset1 + len1, offset2 + len2);
86 return (l < h);
87 }
88
89 /* Returns true if the first argument is strictly less than the
90 second, useful for VEC_lower_bound. We keep ranges sorted by
91 offset and coalesce overlapping and contiguous ranges, so this just
92 compares the starting offset. */
93
94 static int
95 range_lessthan (const range_s *r1, const range_s *r2)
96 {
97 return r1->offset < r2->offset;
98 }
99
100 /* Returns true if RANGES contains any range that overlaps [OFFSET,
101 OFFSET+LENGTH). */
102
103 static int
104 ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
105 {
106 range_s what;
107 LONGEST i;
108
109 what.offset = offset;
110 what.length = length;
111
112 /* We keep ranges sorted by offset and coalesce overlapping and
113 contiguous ranges, so to check if a range list contains a given
114 range, we can do a binary search for the position the given range
115 would be inserted if we only considered the starting OFFSET of
116 ranges. We call that position I. Since we also have LENGTH to
117 care for (this is a range afterall), we need to check if the
118 _previous_ range overlaps the I range. E.g.,
119
120 R
121 |---|
122 |---| |---| |------| ... |--|
123 0 1 2 N
124
125 I=1
126
127 In the case above, the binary search would return `I=1', meaning,
128 this OFFSET should be inserted at position 1, and the current
129 position 1 should be pushed further (and before 2). But, `0'
130 overlaps with R.
131
132 Then we need to check if the I range overlaps the I range itself.
133 E.g.,
134
135 R
136 |---|
137 |---| |---| |-------| ... |--|
138 0 1 2 N
139
140 I=1
141 */
142
143 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
144
145 if (i > 0)
146 {
147 struct range *bef = VEC_index (range_s, ranges, i - 1);
148
149 if (ranges_overlap (bef->offset, bef->length, offset, length))
150 return 1;
151 }
152
153 if (i < VEC_length (range_s, ranges))
154 {
155 struct range *r = VEC_index (range_s, ranges, i);
156
157 if (ranges_overlap (r->offset, r->length, offset, length))
158 return 1;
159 }
160
161 return 0;
162 }
163
164 static struct cmd_list_element *functionlist;
165
166 /* Note that the fields in this structure are arranged to save a bit
167 of memory. */
168
169 struct value
170 {
171 /* Type of value; either not an lval, or one of the various
172 different possible kinds of lval. */
173 enum lval_type lval;
174
175 /* Is it modifiable? Only relevant if lval != not_lval. */
176 unsigned int modifiable : 1;
177
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
182
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 unsigned int lazy : 1;
193
194 /* If value is a variable, is it initialized or not. */
195 unsigned int initialized : 1;
196
197 /* If value is from the stack. If this is set, read_stack will be
198 used instead of read_memory to enable extra caching. */
199 unsigned int stack : 1;
200
201 /* If the value has been released. */
202 unsigned int released : 1;
203
204 /* Location of value (if lval). */
205 union
206 {
207 /* If lval == lval_memory, this is the address in the inferior */
208 CORE_ADDR address;
209
210 /*If lval == lval_register, the value is from a register. */
211 struct
212 {
213 /* Register number. */
214 int regnum;
215 /* Frame ID of "next" frame to which a register value is relative.
216 If the register value is found relative to frame F, then the
217 frame id of F->next will be stored in next_frame_id. */
218 struct frame_id next_frame_id;
219 } reg;
220
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
223
224 /* Pointer to xmethod worker. */
225 struct xmethod_worker *xm_worker;
226
227 /* If lval == lval_computed, this is a set of function pointers
228 to use to access and describe the value, and a closure pointer
229 for them to use. */
230 struct
231 {
232 /* Functions to call. */
233 const struct lval_funcs *funcs;
234
235 /* Closure for those functions to use. */
236 void *closure;
237 } computed;
238 } location;
239
240 /* Describes offset of a value within lval of a structure in target
241 addressable memory units. Note also the member embedded_offset
242 below. */
243 LONGEST offset;
244
245 /* Only used for bitfields; number of bits contained in them. */
246 LONGEST bitsize;
247
248 /* Only used for bitfields; position of start of field. For
249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
251 LONGEST bitpos;
252
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
265 /* Type of the value. */
266 struct type *type;
267
268 /* If a value represents a C++ object, then the `type' field gives
269 the object's compile-time type. If the object actually belongs
270 to some class derived from `type', perhaps with other base
271 classes and additional members, then `type' is just a subobject
272 of the real thing, and the full object is probably larger than
273 `type' would suggest.
274
275 If `type' is a dynamic class (i.e. one with a vtable), then GDB
276 can actually determine the object's run-time type by looking at
277 the run-time type information in the vtable. When this
278 information is available, we may elect to read in the entire
279 object, for several reasons:
280
281 - When printing the value, the user would probably rather see the
282 full object, not just the limited portion apparent from the
283 compile-time type.
284
285 - If `type' has virtual base classes, then even printing `type'
286 alone may require reaching outside the `type' portion of the
287 object to wherever the virtual base class has been stored.
288
289 When we store the entire object, `enclosing_type' is the run-time
290 type -- the complete object -- and `embedded_offset' is the
291 offset of `type' within that larger type, in target addressable memory
292 units. The value_contents() macro takes `embedded_offset' into account,
293 so most GDB code continues to see the `type' portion of the value, just
294 as the inferior would.
295
296 If `type' is a pointer to an object, then `enclosing_type' is a
297 pointer to the object's run-time type, and `pointed_to_offset' is
298 the offset in target addressable memory units from the full object
299 to the pointed-to object -- that is, the value `embedded_offset' would
300 have if we followed the pointer and fetched the complete object.
301 (I don't really see the point. Why not just determine the
302 run-time type when you indirect, and avoid the special case? The
303 contents don't matter until you indirect anyway.)
304
305 If we're not doing anything fancy, `enclosing_type' is equal to
306 `type', and `embedded_offset' is zero, so everything works
307 normally. */
308 struct type *enclosing_type;
309 LONGEST embedded_offset;
310 LONGEST pointed_to_offset;
311
312 /* Values are stored in a chain, so that they can be deleted easily
313 over calls to the inferior. Values assigned to internal
314 variables, put into the value history or exposed to Python are
315 taken off this list. */
316 struct value *next;
317
318 /* Actual contents of the value. Target byte-order. NULL or not
319 valid if lazy is nonzero. */
320 gdb_byte *contents;
321
322 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
323 rather than available, since the common and default case is for a
324 value to be available. This is filled in at value read time.
325 The unavailable ranges are tracked in bits. Note that a contents
326 bit that has been optimized out doesn't really exist in the
327 program, so it can't be marked unavailable either. */
328 VEC(range_s) *unavailable;
329
330 /* Likewise, but for optimized out contents (a chunk of the value of
331 a variable that does not actually exist in the program). If LVAL
332 is lval_register, this is a register ($pc, $sp, etc., never a
333 program variable) that has not been saved in the frame. Not
334 saved registers and optimized-out program variables values are
335 treated pretty much the same, except not-saved registers have a
336 different string representation and related error strings. */
337 VEC(range_s) *optimized_out;
338 };
339
340 /* See value.h. */
341
342 struct gdbarch *
343 get_value_arch (const struct value *value)
344 {
345 return get_type_arch (value_type (value));
346 }
347
348 int
349 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
350 {
351 gdb_assert (!value->lazy);
352
353 return !ranges_contain (value->unavailable, offset, length);
354 }
355
356 int
357 value_bytes_available (const struct value *value,
358 LONGEST offset, LONGEST length)
359 {
360 return value_bits_available (value,
361 offset * TARGET_CHAR_BIT,
362 length * TARGET_CHAR_BIT);
363 }
364
365 int
366 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
367 {
368 gdb_assert (!value->lazy);
369
370 return ranges_contain (value->optimized_out, bit_offset, bit_length);
371 }
372
373 int
374 value_entirely_available (struct value *value)
375 {
376 /* We can only tell whether the whole value is available when we try
377 to read it. */
378 if (value->lazy)
379 value_fetch_lazy (value);
380
381 if (VEC_empty (range_s, value->unavailable))
382 return 1;
383 return 0;
384 }
385
386 /* Returns true if VALUE is entirely covered by RANGES. If the value
387 is lazy, it'll be read now. Note that RANGE is a pointer to
388 pointer because reading the value might change *RANGE. */
389
390 static int
391 value_entirely_covered_by_range_vector (struct value *value,
392 VEC(range_s) **ranges)
393 {
394 /* We can only tell whether the whole value is optimized out /
395 unavailable when we try to read it. */
396 if (value->lazy)
397 value_fetch_lazy (value);
398
399 if (VEC_length (range_s, *ranges) == 1)
400 {
401 struct range *t = VEC_index (range_s, *ranges, 0);
402
403 if (t->offset == 0
404 && t->length == (TARGET_CHAR_BIT
405 * TYPE_LENGTH (value_enclosing_type (value))))
406 return 1;
407 }
408
409 return 0;
410 }
411
412 int
413 value_entirely_unavailable (struct value *value)
414 {
415 return value_entirely_covered_by_range_vector (value, &value->unavailable);
416 }
417
418 int
419 value_entirely_optimized_out (struct value *value)
420 {
421 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
422 }
423
424 /* Insert into the vector pointed to by VECTORP the bit range starting of
425 OFFSET bits, and extending for the next LENGTH bits. */
426
427 static void
428 insert_into_bit_range_vector (VEC(range_s) **vectorp,
429 LONGEST offset, LONGEST length)
430 {
431 range_s newr;
432 int i;
433
434 /* Insert the range sorted. If there's overlap or the new range
435 would be contiguous with an existing range, merge. */
436
437 newr.offset = offset;
438 newr.length = length;
439
440 /* Do a binary search for the position the given range would be
441 inserted if we only considered the starting OFFSET of ranges.
442 Call that position I. Since we also have LENGTH to care for
443 (this is a range afterall), we need to check if the _previous_
444 range overlaps the I range. E.g., calling R the new range:
445
446 #1 - overlaps with previous
447
448 R
449 |-...-|
450 |---| |---| |------| ... |--|
451 0 1 2 N
452
453 I=1
454
455 In the case #1 above, the binary search would return `I=1',
456 meaning, this OFFSET should be inserted at position 1, and the
457 current position 1 should be pushed further (and become 2). But,
458 note that `0' overlaps with R, so we want to merge them.
459
460 A similar consideration needs to be taken if the new range would
461 be contiguous with the previous range:
462
463 #2 - contiguous with previous
464
465 R
466 |-...-|
467 |--| |---| |------| ... |--|
468 0 1 2 N
469
470 I=1
471
472 If there's no overlap with the previous range, as in:
473
474 #3 - not overlapping and not contiguous
475
476 R
477 |-...-|
478 |--| |---| |------| ... |--|
479 0 1 2 N
480
481 I=1
482
483 or if I is 0:
484
485 #4 - R is the range with lowest offset
486
487 R
488 |-...-|
489 |--| |---| |------| ... |--|
490 0 1 2 N
491
492 I=0
493
494 ... we just push the new range to I.
495
496 All the 4 cases above need to consider that the new range may
497 also overlap several of the ranges that follow, or that R may be
498 contiguous with the following range, and merge. E.g.,
499
500 #5 - overlapping following ranges
501
502 R
503 |------------------------|
504 |--| |---| |------| ... |--|
505 0 1 2 N
506
507 I=0
508
509 or:
510
511 R
512 |-------|
513 |--| |---| |------| ... |--|
514 0 1 2 N
515
516 I=1
517
518 */
519
520 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
521 if (i > 0)
522 {
523 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
524
525 if (ranges_overlap (bef->offset, bef->length, offset, length))
526 {
527 /* #1 */
528 ULONGEST l = std::min (bef->offset, offset);
529 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
530
531 bef->offset = l;
532 bef->length = h - l;
533 i--;
534 }
535 else if (offset == bef->offset + bef->length)
536 {
537 /* #2 */
538 bef->length += length;
539 i--;
540 }
541 else
542 {
543 /* #3 */
544 VEC_safe_insert (range_s, *vectorp, i, &newr);
545 }
546 }
547 else
548 {
549 /* #4 */
550 VEC_safe_insert (range_s, *vectorp, i, &newr);
551 }
552
553 /* Check whether the ranges following the one we've just added or
554 touched can be folded in (#5 above). */
555 if (i + 1 < VEC_length (range_s, *vectorp))
556 {
557 struct range *t;
558 struct range *r;
559 int removed = 0;
560 int next = i + 1;
561
562 /* Get the range we just touched. */
563 t = VEC_index (range_s, *vectorp, i);
564 removed = 0;
565
566 i = next;
567 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
568 if (r->offset <= t->offset + t->length)
569 {
570 ULONGEST l, h;
571
572 l = std::min (t->offset, r->offset);
573 h = std::max (t->offset + t->length, r->offset + r->length);
574
575 t->offset = l;
576 t->length = h - l;
577
578 removed++;
579 }
580 else
581 {
582 /* If we couldn't merge this one, we won't be able to
583 merge following ones either, since the ranges are
584 always sorted by OFFSET. */
585 break;
586 }
587
588 if (removed != 0)
589 VEC_block_remove (range_s, *vectorp, next, removed);
590 }
591 }
592
593 void
594 mark_value_bits_unavailable (struct value *value,
595 LONGEST offset, LONGEST length)
596 {
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598 }
599
600 void
601 mark_value_bytes_unavailable (struct value *value,
602 LONGEST offset, LONGEST length)
603 {
604 mark_value_bits_unavailable (value,
605 offset * TARGET_CHAR_BIT,
606 length * TARGET_CHAR_BIT);
607 }
608
609 /* Find the first range in RANGES that overlaps the range defined by
610 OFFSET and LENGTH, starting at element POS in the RANGES vector,
611 Returns the index into RANGES where such overlapping range was
612 found, or -1 if none was found. */
613
614 static int
615 find_first_range_overlap (VEC(range_s) *ranges, int pos,
616 LONGEST offset, LONGEST length)
617 {
618 range_s *r;
619 int i;
620
621 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
622 if (ranges_overlap (r->offset, r->length, offset, length))
623 return i;
624
625 return -1;
626 }
627
628 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
629 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
630 return non-zero.
631
632 It must always be the case that:
633 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
634
635 It is assumed that memory can be accessed from:
636 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
637 to:
638 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
639 / TARGET_CHAR_BIT) */
640 static int
641 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
642 const gdb_byte *ptr2, size_t offset2_bits,
643 size_t length_bits)
644 {
645 gdb_assert (offset1_bits % TARGET_CHAR_BIT
646 == offset2_bits % TARGET_CHAR_BIT);
647
648 if (offset1_bits % TARGET_CHAR_BIT != 0)
649 {
650 size_t bits;
651 gdb_byte mask, b1, b2;
652
653 /* The offset from the base pointers PTR1 and PTR2 is not a complete
654 number of bytes. A number of bits up to either the next exact
655 byte boundary, or LENGTH_BITS (which ever is sooner) will be
656 compared. */
657 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
658 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
659 mask = (1 << bits) - 1;
660
661 if (length_bits < bits)
662 {
663 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
664 bits = length_bits;
665 }
666
667 /* Now load the two bytes and mask off the bits we care about. */
668 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
669 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
670
671 if (b1 != b2)
672 return 1;
673
674 /* Now update the length and offsets to take account of the bits
675 we've just compared. */
676 length_bits -= bits;
677 offset1_bits += bits;
678 offset2_bits += bits;
679 }
680
681 if (length_bits % TARGET_CHAR_BIT != 0)
682 {
683 size_t bits;
684 size_t o1, o2;
685 gdb_byte mask, b1, b2;
686
687 /* The length is not an exact number of bytes. After the previous
688 IF.. block then the offsets are byte aligned, or the
689 length is zero (in which case this code is not reached). Compare
690 a number of bits at the end of the region, starting from an exact
691 byte boundary. */
692 bits = length_bits % TARGET_CHAR_BIT;
693 o1 = offset1_bits + length_bits - bits;
694 o2 = offset2_bits + length_bits - bits;
695
696 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
697 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
698
699 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
700 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
701
702 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
703 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
704
705 if (b1 != b2)
706 return 1;
707
708 length_bits -= bits;
709 }
710
711 if (length_bits > 0)
712 {
713 /* We've now taken care of any stray "bits" at the start, or end of
714 the region to compare, the remainder can be covered with a simple
715 memcmp. */
716 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
719
720 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
721 ptr2 + offset2_bits / TARGET_CHAR_BIT,
722 length_bits / TARGET_CHAR_BIT);
723 }
724
725 /* Length is zero, regions match. */
726 return 0;
727 }
728
729 /* Helper struct for find_first_range_overlap_and_match and
730 value_contents_bits_eq. Keep track of which slot of a given ranges
731 vector have we last looked at. */
732
733 struct ranges_and_idx
734 {
735 /* The ranges. */
736 VEC(range_s) *ranges;
737
738 /* The range we've last found in RANGES. Given ranges are sorted,
739 we can start the next lookup here. */
740 int idx;
741 };
742
743 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
744 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
745 ranges starting at OFFSET2 bits. Return true if the ranges match
746 and fill in *L and *H with the overlapping window relative to
747 (both) OFFSET1 or OFFSET2. */
748
749 static int
750 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
751 struct ranges_and_idx *rp2,
752 LONGEST offset1, LONGEST offset2,
753 LONGEST length, ULONGEST *l, ULONGEST *h)
754 {
755 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
756 offset1, length);
757 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
758 offset2, length);
759
760 if (rp1->idx == -1 && rp2->idx == -1)
761 {
762 *l = length;
763 *h = length;
764 return 1;
765 }
766 else if (rp1->idx == -1 || rp2->idx == -1)
767 return 0;
768 else
769 {
770 range_s *r1, *r2;
771 ULONGEST l1, h1;
772 ULONGEST l2, h2;
773
774 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
775 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
776
777 /* Get the unavailable windows intersected by the incoming
778 ranges. The first and last ranges that overlap the argument
779 range may be wider than said incoming arguments ranges. */
780 l1 = std::max (offset1, r1->offset);
781 h1 = std::min (offset1 + length, r1->offset + r1->length);
782
783 l2 = std::max (offset2, r2->offset);
784 h2 = std::min (offset2 + length, offset2 + r2->length);
785
786 /* Make them relative to the respective start offsets, so we can
787 compare them for equality. */
788 l1 -= offset1;
789 h1 -= offset1;
790
791 l2 -= offset2;
792 h2 -= offset2;
793
794 /* Different ranges, no match. */
795 if (l1 != l2 || h1 != h2)
796 return 0;
797
798 *h = h1;
799 *l = l1;
800 return 1;
801 }
802 }
803
804 /* Helper function for value_contents_eq. The only difference is that
805 this function is bit rather than byte based.
806
807 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
808 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
809 Return true if the available bits match. */
810
811 static bool
812 value_contents_bits_eq (const struct value *val1, int offset1,
813 const struct value *val2, int offset2,
814 int length)
815 {
816 /* Each array element corresponds to a ranges source (unavailable,
817 optimized out). '1' is for VAL1, '2' for VAL2. */
818 struct ranges_and_idx rp1[2], rp2[2];
819
820 /* See function description in value.h. */
821 gdb_assert (!val1->lazy && !val2->lazy);
822
823 /* We shouldn't be trying to compare past the end of the values. */
824 gdb_assert (offset1 + length
825 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
826 gdb_assert (offset2 + length
827 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
828
829 memset (&rp1, 0, sizeof (rp1));
830 memset (&rp2, 0, sizeof (rp2));
831 rp1[0].ranges = val1->unavailable;
832 rp2[0].ranges = val2->unavailable;
833 rp1[1].ranges = val1->optimized_out;
834 rp2[1].ranges = val2->optimized_out;
835
836 while (length > 0)
837 {
838 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
839 int i;
840
841 for (i = 0; i < 2; i++)
842 {
843 ULONGEST l_tmp, h_tmp;
844
845 /* The contents only match equal if the invalid/unavailable
846 contents ranges match as well. */
847 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
848 offset1, offset2, length,
849 &l_tmp, &h_tmp))
850 return false;
851
852 /* We're interested in the lowest/first range found. */
853 if (i == 0 || l_tmp < l)
854 {
855 l = l_tmp;
856 h = h_tmp;
857 }
858 }
859
860 /* Compare the available/valid contents. */
861 if (memcmp_with_bit_offsets (val1->contents, offset1,
862 val2->contents, offset2, l) != 0)
863 return false;
864
865 length -= h;
866 offset1 += h;
867 offset2 += h;
868 }
869
870 return true;
871 }
872
873 bool
874 value_contents_eq (const struct value *val1, LONGEST offset1,
875 const struct value *val2, LONGEST offset2,
876 LONGEST length)
877 {
878 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
879 val2, offset2 * TARGET_CHAR_BIT,
880 length * TARGET_CHAR_BIT);
881 }
882
883
884 /* The value-history records all the values printed
885 by print commands during this session. Each chunk
886 records 60 consecutive values. The first chunk on
887 the chain records the most recent values.
888 The total number of values is in value_history_count. */
889
890 #define VALUE_HISTORY_CHUNK 60
891
892 struct value_history_chunk
893 {
894 struct value_history_chunk *next;
895 struct value *values[VALUE_HISTORY_CHUNK];
896 };
897
898 /* Chain of chunks now in use. */
899
900 static struct value_history_chunk *value_history_chain;
901
902 static int value_history_count; /* Abs number of last entry stored. */
903
904 \f
905 /* List of all value objects currently allocated
906 (except for those released by calls to release_value)
907 This is so they can be freed after each command. */
908
909 static struct value *all_values;
910
911 /* Allocate a lazy value for type TYPE. Its actual content is
912 "lazily" allocated too: the content field of the return value is
913 NULL; it will be allocated when it is fetched from the target. */
914
915 struct value *
916 allocate_value_lazy (struct type *type)
917 {
918 struct value *val;
919
920 /* Call check_typedef on our type to make sure that, if TYPE
921 is a TYPE_CODE_TYPEDEF, its length is set to the length
922 of the target type instead of zero. However, we do not
923 replace the typedef type by the target type, because we want
924 to keep the typedef in order to be able to set the VAL's type
925 description correctly. */
926 check_typedef (type);
927
928 val = XCNEW (struct value);
929 val->contents = NULL;
930 val->next = all_values;
931 all_values = val;
932 val->type = type;
933 val->enclosing_type = type;
934 VALUE_LVAL (val) = not_lval;
935 val->location.address = 0;
936 val->offset = 0;
937 val->bitpos = 0;
938 val->bitsize = 0;
939 val->lazy = 1;
940 val->embedded_offset = 0;
941 val->pointed_to_offset = 0;
942 val->modifiable = 1;
943 val->initialized = 1; /* Default to initialized. */
944
945 /* Values start out on the all_values chain. */
946 val->reference_count = 1;
947
948 return val;
949 }
950
951 /* The maximum size, in bytes, that GDB will try to allocate for a value.
952 The initial value of 64k was not selected for any specific reason, it is
953 just a reasonable starting point. */
954
955 static int max_value_size = 65536; /* 64k bytes */
956
957 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
958 LONGEST, otherwise GDB will not be able to parse integer values from the
959 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
960 be unable to parse "set max-value-size 2".
961
962 As we want a consistent GDB experience across hosts with different sizes
963 of LONGEST, this arbitrary minimum value was selected, so long as this
964 is bigger than LONGEST on all GDB supported hosts we're fine. */
965
966 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
967 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
968
969 /* Implement the "set max-value-size" command. */
970
971 static void
972 set_max_value_size (const char *args, int from_tty,
973 struct cmd_list_element *c)
974 {
975 gdb_assert (max_value_size == -1 || max_value_size >= 0);
976
977 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
978 {
979 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
980 error (_("max-value-size set too low, increasing to %d bytes"),
981 max_value_size);
982 }
983 }
984
985 /* Implement the "show max-value-size" command. */
986
987 static void
988 show_max_value_size (struct ui_file *file, int from_tty,
989 struct cmd_list_element *c, const char *value)
990 {
991 if (max_value_size == -1)
992 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
993 else
994 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
995 max_value_size);
996 }
997
998 /* Called before we attempt to allocate or reallocate a buffer for the
999 contents of a value. TYPE is the type of the value for which we are
1000 allocating the buffer. If the buffer is too large (based on the user
1001 controllable setting) then throw an error. If this function returns
1002 then we should attempt to allocate the buffer. */
1003
1004 static void
1005 check_type_length_before_alloc (const struct type *type)
1006 {
1007 unsigned int length = TYPE_LENGTH (type);
1008
1009 if (max_value_size > -1 && length > max_value_size)
1010 {
1011 if (TYPE_NAME (type) != NULL)
1012 error (_("value of type `%s' requires %u bytes, which is more "
1013 "than max-value-size"), TYPE_NAME (type), length);
1014 else
1015 error (_("value requires %u bytes, which is more than "
1016 "max-value-size"), length);
1017 }
1018 }
1019
1020 /* Allocate the contents of VAL if it has not been allocated yet. */
1021
1022 static void
1023 allocate_value_contents (struct value *val)
1024 {
1025 if (!val->contents)
1026 {
1027 check_type_length_before_alloc (val->enclosing_type);
1028 val->contents
1029 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1030 }
1031 }
1032
1033 /* Allocate a value and its contents for type TYPE. */
1034
1035 struct value *
1036 allocate_value (struct type *type)
1037 {
1038 struct value *val = allocate_value_lazy (type);
1039
1040 allocate_value_contents (val);
1041 val->lazy = 0;
1042 return val;
1043 }
1044
1045 /* Allocate a value that has the correct length
1046 for COUNT repetitions of type TYPE. */
1047
1048 struct value *
1049 allocate_repeat_value (struct type *type, int count)
1050 {
1051 int low_bound = current_language->string_lower_bound; /* ??? */
1052 /* FIXME-type-allocation: need a way to free this type when we are
1053 done with it. */
1054 struct type *array_type
1055 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1056
1057 return allocate_value (array_type);
1058 }
1059
1060 struct value *
1061 allocate_computed_value (struct type *type,
1062 const struct lval_funcs *funcs,
1063 void *closure)
1064 {
1065 struct value *v = allocate_value_lazy (type);
1066
1067 VALUE_LVAL (v) = lval_computed;
1068 v->location.computed.funcs = funcs;
1069 v->location.computed.closure = closure;
1070
1071 return v;
1072 }
1073
1074 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1075
1076 struct value *
1077 allocate_optimized_out_value (struct type *type)
1078 {
1079 struct value *retval = allocate_value_lazy (type);
1080
1081 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1082 set_value_lazy (retval, 0);
1083 return retval;
1084 }
1085
1086 /* Accessor methods. */
1087
1088 struct value *
1089 value_next (const struct value *value)
1090 {
1091 return value->next;
1092 }
1093
1094 struct type *
1095 value_type (const struct value *value)
1096 {
1097 return value->type;
1098 }
1099 void
1100 deprecated_set_value_type (struct value *value, struct type *type)
1101 {
1102 value->type = type;
1103 }
1104
1105 LONGEST
1106 value_offset (const struct value *value)
1107 {
1108 return value->offset;
1109 }
1110 void
1111 set_value_offset (struct value *value, LONGEST offset)
1112 {
1113 value->offset = offset;
1114 }
1115
1116 LONGEST
1117 value_bitpos (const struct value *value)
1118 {
1119 return value->bitpos;
1120 }
1121 void
1122 set_value_bitpos (struct value *value, LONGEST bit)
1123 {
1124 value->bitpos = bit;
1125 }
1126
1127 LONGEST
1128 value_bitsize (const struct value *value)
1129 {
1130 return value->bitsize;
1131 }
1132 void
1133 set_value_bitsize (struct value *value, LONGEST bit)
1134 {
1135 value->bitsize = bit;
1136 }
1137
1138 struct value *
1139 value_parent (const struct value *value)
1140 {
1141 return value->parent;
1142 }
1143
1144 /* See value.h. */
1145
1146 void
1147 set_value_parent (struct value *value, struct value *parent)
1148 {
1149 struct value *old = value->parent;
1150
1151 value->parent = parent;
1152 if (parent != NULL)
1153 value_incref (parent);
1154 value_decref (old);
1155 }
1156
1157 gdb_byte *
1158 value_contents_raw (struct value *value)
1159 {
1160 struct gdbarch *arch = get_value_arch (value);
1161 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1162
1163 allocate_value_contents (value);
1164 return value->contents + value->embedded_offset * unit_size;
1165 }
1166
1167 gdb_byte *
1168 value_contents_all_raw (struct value *value)
1169 {
1170 allocate_value_contents (value);
1171 return value->contents;
1172 }
1173
1174 struct type *
1175 value_enclosing_type (const struct value *value)
1176 {
1177 return value->enclosing_type;
1178 }
1179
1180 /* Look at value.h for description. */
1181
1182 struct type *
1183 value_actual_type (struct value *value, int resolve_simple_types,
1184 int *real_type_found)
1185 {
1186 struct value_print_options opts;
1187 struct type *result;
1188
1189 get_user_print_options (&opts);
1190
1191 if (real_type_found)
1192 *real_type_found = 0;
1193 result = value_type (value);
1194 if (opts.objectprint)
1195 {
1196 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1197 fetch its rtti type. */
1198 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1199 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1200 == TYPE_CODE_STRUCT
1201 && !value_optimized_out (value))
1202 {
1203 struct type *real_type;
1204
1205 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1206 if (real_type)
1207 {
1208 if (real_type_found)
1209 *real_type_found = 1;
1210 result = real_type;
1211 }
1212 }
1213 else if (resolve_simple_types)
1214 {
1215 if (real_type_found)
1216 *real_type_found = 1;
1217 result = value_enclosing_type (value);
1218 }
1219 }
1220
1221 return result;
1222 }
1223
1224 void
1225 error_value_optimized_out (void)
1226 {
1227 error (_("value has been optimized out"));
1228 }
1229
1230 static void
1231 require_not_optimized_out (const struct value *value)
1232 {
1233 if (!VEC_empty (range_s, value->optimized_out))
1234 {
1235 if (value->lval == lval_register)
1236 error (_("register has not been saved in frame"));
1237 else
1238 error_value_optimized_out ();
1239 }
1240 }
1241
1242 static void
1243 require_available (const struct value *value)
1244 {
1245 if (!VEC_empty (range_s, value->unavailable))
1246 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1247 }
1248
1249 const gdb_byte *
1250 value_contents_for_printing (struct value *value)
1251 {
1252 if (value->lazy)
1253 value_fetch_lazy (value);
1254 return value->contents;
1255 }
1256
1257 const gdb_byte *
1258 value_contents_for_printing_const (const struct value *value)
1259 {
1260 gdb_assert (!value->lazy);
1261 return value->contents;
1262 }
1263
1264 const gdb_byte *
1265 value_contents_all (struct value *value)
1266 {
1267 const gdb_byte *result = value_contents_for_printing (value);
1268 require_not_optimized_out (value);
1269 require_available (value);
1270 return result;
1271 }
1272
1273 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1274 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1275
1276 static void
1277 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1278 VEC (range_s) *src_range, int src_bit_offset,
1279 int bit_length)
1280 {
1281 range_s *r;
1282 int i;
1283
1284 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1285 {
1286 ULONGEST h, l;
1287
1288 l = std::max (r->offset, (LONGEST) src_bit_offset);
1289 h = std::min (r->offset + r->length,
1290 (LONGEST) src_bit_offset + bit_length);
1291
1292 if (l < h)
1293 insert_into_bit_range_vector (dst_range,
1294 dst_bit_offset + (l - src_bit_offset),
1295 h - l);
1296 }
1297 }
1298
1299 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1300 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1301
1302 static void
1303 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1304 const struct value *src, int src_bit_offset,
1305 int bit_length)
1306 {
1307 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1308 src->unavailable, src_bit_offset,
1309 bit_length);
1310 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1311 src->optimized_out, src_bit_offset,
1312 bit_length);
1313 }
1314
1315 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1316 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1317 contents, starting at DST_OFFSET. If unavailable contents are
1318 being copied from SRC, the corresponding DST contents are marked
1319 unavailable accordingly. Neither DST nor SRC may be lazy
1320 values.
1321
1322 It is assumed the contents of DST in the [DST_OFFSET,
1323 DST_OFFSET+LENGTH) range are wholly available. */
1324
1325 void
1326 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1327 struct value *src, LONGEST src_offset, LONGEST length)
1328 {
1329 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1330 struct gdbarch *arch = get_value_arch (src);
1331 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1332
1333 /* A lazy DST would make that this copy operation useless, since as
1334 soon as DST's contents were un-lazied (by a later value_contents
1335 call, say), the contents would be overwritten. A lazy SRC would
1336 mean we'd be copying garbage. */
1337 gdb_assert (!dst->lazy && !src->lazy);
1338
1339 /* The overwritten DST range gets unavailability ORed in, not
1340 replaced. Make sure to remember to implement replacing if it
1341 turns out actually necessary. */
1342 gdb_assert (value_bytes_available (dst, dst_offset, length));
1343 gdb_assert (!value_bits_any_optimized_out (dst,
1344 TARGET_CHAR_BIT * dst_offset,
1345 TARGET_CHAR_BIT * length));
1346
1347 /* Copy the data. */
1348 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1349 value_contents_all_raw (src) + src_offset * unit_size,
1350 length * unit_size);
1351
1352 /* Copy the meta-data, adjusted. */
1353 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1354 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1355 bit_length = length * unit_size * HOST_CHAR_BIT;
1356
1357 value_ranges_copy_adjusted (dst, dst_bit_offset,
1358 src, src_bit_offset,
1359 bit_length);
1360 }
1361
1362 /* Copy LENGTH bytes of SRC value's (all) contents
1363 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1364 (all) contents, starting at DST_OFFSET. If unavailable contents
1365 are being copied from SRC, the corresponding DST contents are
1366 marked unavailable accordingly. DST must not be lazy. If SRC is
1367 lazy, it will be fetched now.
1368
1369 It is assumed the contents of DST in the [DST_OFFSET,
1370 DST_OFFSET+LENGTH) range are wholly available. */
1371
1372 void
1373 value_contents_copy (struct value *dst, LONGEST dst_offset,
1374 struct value *src, LONGEST src_offset, LONGEST length)
1375 {
1376 if (src->lazy)
1377 value_fetch_lazy (src);
1378
1379 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1380 }
1381
1382 int
1383 value_lazy (const struct value *value)
1384 {
1385 return value->lazy;
1386 }
1387
1388 void
1389 set_value_lazy (struct value *value, int val)
1390 {
1391 value->lazy = val;
1392 }
1393
1394 int
1395 value_stack (const struct value *value)
1396 {
1397 return value->stack;
1398 }
1399
1400 void
1401 set_value_stack (struct value *value, int val)
1402 {
1403 value->stack = val;
1404 }
1405
1406 const gdb_byte *
1407 value_contents (struct value *value)
1408 {
1409 const gdb_byte *result = value_contents_writeable (value);
1410 require_not_optimized_out (value);
1411 require_available (value);
1412 return result;
1413 }
1414
1415 gdb_byte *
1416 value_contents_writeable (struct value *value)
1417 {
1418 if (value->lazy)
1419 value_fetch_lazy (value);
1420 return value_contents_raw (value);
1421 }
1422
1423 int
1424 value_optimized_out (struct value *value)
1425 {
1426 /* We can only know if a value is optimized out once we have tried to
1427 fetch it. */
1428 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1429 {
1430 TRY
1431 {
1432 value_fetch_lazy (value);
1433 }
1434 CATCH (ex, RETURN_MASK_ERROR)
1435 {
1436 /* Fall back to checking value->optimized_out. */
1437 }
1438 END_CATCH
1439 }
1440
1441 return !VEC_empty (range_s, value->optimized_out);
1442 }
1443
1444 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1445 the following LENGTH bytes. */
1446
1447 void
1448 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1449 {
1450 mark_value_bits_optimized_out (value,
1451 offset * TARGET_CHAR_BIT,
1452 length * TARGET_CHAR_BIT);
1453 }
1454
1455 /* See value.h. */
1456
1457 void
1458 mark_value_bits_optimized_out (struct value *value,
1459 LONGEST offset, LONGEST length)
1460 {
1461 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1462 }
1463
1464 int
1465 value_bits_synthetic_pointer (const struct value *value,
1466 LONGEST offset, LONGEST length)
1467 {
1468 if (value->lval != lval_computed
1469 || !value->location.computed.funcs->check_synthetic_pointer)
1470 return 0;
1471 return value->location.computed.funcs->check_synthetic_pointer (value,
1472 offset,
1473 length);
1474 }
1475
1476 LONGEST
1477 value_embedded_offset (const struct value *value)
1478 {
1479 return value->embedded_offset;
1480 }
1481
1482 void
1483 set_value_embedded_offset (struct value *value, LONGEST val)
1484 {
1485 value->embedded_offset = val;
1486 }
1487
1488 LONGEST
1489 value_pointed_to_offset (const struct value *value)
1490 {
1491 return value->pointed_to_offset;
1492 }
1493
1494 void
1495 set_value_pointed_to_offset (struct value *value, LONGEST val)
1496 {
1497 value->pointed_to_offset = val;
1498 }
1499
1500 const struct lval_funcs *
1501 value_computed_funcs (const struct value *v)
1502 {
1503 gdb_assert (value_lval_const (v) == lval_computed);
1504
1505 return v->location.computed.funcs;
1506 }
1507
1508 void *
1509 value_computed_closure (const struct value *v)
1510 {
1511 gdb_assert (v->lval == lval_computed);
1512
1513 return v->location.computed.closure;
1514 }
1515
1516 enum lval_type *
1517 deprecated_value_lval_hack (struct value *value)
1518 {
1519 return &value->lval;
1520 }
1521
1522 enum lval_type
1523 value_lval_const (const struct value *value)
1524 {
1525 return value->lval;
1526 }
1527
1528 CORE_ADDR
1529 value_address (const struct value *value)
1530 {
1531 if (value->lval != lval_memory)
1532 return 0;
1533 if (value->parent != NULL)
1534 return value_address (value->parent) + value->offset;
1535 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1536 {
1537 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1538 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1539 }
1540
1541 return value->location.address + value->offset;
1542 }
1543
1544 CORE_ADDR
1545 value_raw_address (const struct value *value)
1546 {
1547 if (value->lval != lval_memory)
1548 return 0;
1549 return value->location.address;
1550 }
1551
1552 void
1553 set_value_address (struct value *value, CORE_ADDR addr)
1554 {
1555 gdb_assert (value->lval == lval_memory);
1556 value->location.address = addr;
1557 }
1558
1559 struct internalvar **
1560 deprecated_value_internalvar_hack (struct value *value)
1561 {
1562 return &value->location.internalvar;
1563 }
1564
1565 struct frame_id *
1566 deprecated_value_next_frame_id_hack (struct value *value)
1567 {
1568 gdb_assert (value->lval == lval_register);
1569 return &value->location.reg.next_frame_id;
1570 }
1571
1572 int *
1573 deprecated_value_regnum_hack (struct value *value)
1574 {
1575 gdb_assert (value->lval == lval_register);
1576 return &value->location.reg.regnum;
1577 }
1578
1579 int
1580 deprecated_value_modifiable (const struct value *value)
1581 {
1582 return value->modifiable;
1583 }
1584 \f
1585 /* Return a mark in the value chain. All values allocated after the
1586 mark is obtained (except for those released) are subject to being freed
1587 if a subsequent value_free_to_mark is passed the mark. */
1588 struct value *
1589 value_mark (void)
1590 {
1591 return all_values;
1592 }
1593
1594 /* Take a reference to VAL. VAL will not be deallocated until all
1595 references are released. */
1596
1597 struct value *
1598 value_incref (struct value *val)
1599 {
1600 val->reference_count++;
1601 return val;
1602 }
1603
1604 /* Release a reference to VAL, which was acquired with value_incref.
1605 This function is also called to deallocate values from the value
1606 chain. */
1607
1608 void
1609 value_decref (struct value *val)
1610 {
1611 if (val)
1612 {
1613 gdb_assert (val->reference_count > 0);
1614 val->reference_count--;
1615 if (val->reference_count > 0)
1616 return;
1617
1618 /* If there's an associated parent value, drop our reference to
1619 it. */
1620 if (val->parent != NULL)
1621 value_decref (val->parent);
1622
1623 if (VALUE_LVAL (val) == lval_computed)
1624 {
1625 const struct lval_funcs *funcs = val->location.computed.funcs;
1626
1627 if (funcs->free_closure)
1628 funcs->free_closure (val);
1629 }
1630 else if (VALUE_LVAL (val) == lval_xcallable)
1631 delete val->location.xm_worker;
1632
1633 xfree (val->contents);
1634 VEC_free (range_s, val->unavailable);
1635 }
1636 xfree (val);
1637 }
1638
1639 /* Free all values allocated since MARK was obtained by value_mark
1640 (except for those released). */
1641 void
1642 value_free_to_mark (const struct value *mark)
1643 {
1644 struct value *val;
1645 struct value *next;
1646
1647 for (val = all_values; val && val != mark; val = next)
1648 {
1649 next = val->next;
1650 val->released = 1;
1651 value_decref (val);
1652 }
1653 all_values = val;
1654 }
1655
1656 /* Free all the values that have been allocated (except for those released).
1657 Call after each command, successful or not.
1658 In practice this is called before each command, which is sufficient. */
1659
1660 void
1661 free_all_values (void)
1662 {
1663 struct value *val;
1664 struct value *next;
1665
1666 for (val = all_values; val; val = next)
1667 {
1668 next = val->next;
1669 val->released = 1;
1670 value_decref (val);
1671 }
1672
1673 all_values = 0;
1674 }
1675
1676 /* Frees all the elements in a chain of values. */
1677
1678 void
1679 free_value_chain (struct value *v)
1680 {
1681 struct value *next;
1682
1683 for (; v; v = next)
1684 {
1685 next = value_next (v);
1686 value_decref (v);
1687 }
1688 }
1689
1690 /* Remove VAL from the chain all_values
1691 so it will not be freed automatically. */
1692
1693 value_ref_ptr
1694 release_value (struct value *val)
1695 {
1696 struct value *v;
1697 bool released = false;
1698
1699 if (all_values == val)
1700 {
1701 all_values = val->next;
1702 val->next = NULL;
1703 released = true;
1704 }
1705 else
1706 {
1707 for (v = all_values; v; v = v->next)
1708 {
1709 if (v->next == val)
1710 {
1711 v->next = val->next;
1712 val->next = NULL;
1713 released = true;
1714 break;
1715 }
1716 }
1717 }
1718
1719 if (!released)
1720 {
1721 /* We must always return an owned reference. Normally this
1722 happens because we transfer the reference from the value
1723 chain, but in this case the value was not on the chain. */
1724 value_incref (val);
1725 }
1726
1727 return value_ref_ptr (val);
1728 }
1729
1730 /* Release all values up to mark */
1731 struct value *
1732 value_release_to_mark (const struct value *mark)
1733 {
1734 struct value *val;
1735 struct value *next;
1736
1737 for (val = next = all_values; next; next = next->next)
1738 {
1739 if (next->next == mark)
1740 {
1741 all_values = next->next;
1742 next->next = NULL;
1743 return val;
1744 }
1745 next->released = 1;
1746 }
1747 all_values = 0;
1748 return val;
1749 }
1750
1751 /* Return a copy of the value ARG.
1752 It contains the same contents, for same memory address,
1753 but it's a different block of storage. */
1754
1755 struct value *
1756 value_copy (struct value *arg)
1757 {
1758 struct type *encl_type = value_enclosing_type (arg);
1759 struct value *val;
1760
1761 if (value_lazy (arg))
1762 val = allocate_value_lazy (encl_type);
1763 else
1764 val = allocate_value (encl_type);
1765 val->type = arg->type;
1766 VALUE_LVAL (val) = VALUE_LVAL (arg);
1767 val->location = arg->location;
1768 val->offset = arg->offset;
1769 val->bitpos = arg->bitpos;
1770 val->bitsize = arg->bitsize;
1771 val->lazy = arg->lazy;
1772 val->embedded_offset = value_embedded_offset (arg);
1773 val->pointed_to_offset = arg->pointed_to_offset;
1774 val->modifiable = arg->modifiable;
1775 if (!value_lazy (val))
1776 {
1777 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1778 TYPE_LENGTH (value_enclosing_type (arg)));
1779
1780 }
1781 val->unavailable = VEC_copy (range_s, arg->unavailable);
1782 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1783 set_value_parent (val, arg->parent);
1784 if (VALUE_LVAL (val) == lval_computed)
1785 {
1786 const struct lval_funcs *funcs = val->location.computed.funcs;
1787
1788 if (funcs->copy_closure)
1789 val->location.computed.closure = funcs->copy_closure (val);
1790 }
1791 return val;
1792 }
1793
1794 /* Return a "const" and/or "volatile" qualified version of the value V.
1795 If CNST is true, then the returned value will be qualified with
1796 "const".
1797 if VOLTL is true, then the returned value will be qualified with
1798 "volatile". */
1799
1800 struct value *
1801 make_cv_value (int cnst, int voltl, struct value *v)
1802 {
1803 struct type *val_type = value_type (v);
1804 struct type *enclosing_type = value_enclosing_type (v);
1805 struct value *cv_val = value_copy (v);
1806
1807 deprecated_set_value_type (cv_val,
1808 make_cv_type (cnst, voltl, val_type, NULL));
1809 set_value_enclosing_type (cv_val,
1810 make_cv_type (cnst, voltl, enclosing_type, NULL));
1811
1812 return cv_val;
1813 }
1814
1815 /* Return a version of ARG that is non-lvalue. */
1816
1817 struct value *
1818 value_non_lval (struct value *arg)
1819 {
1820 if (VALUE_LVAL (arg) != not_lval)
1821 {
1822 struct type *enc_type = value_enclosing_type (arg);
1823 struct value *val = allocate_value (enc_type);
1824
1825 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1826 TYPE_LENGTH (enc_type));
1827 val->type = arg->type;
1828 set_value_embedded_offset (val, value_embedded_offset (arg));
1829 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1830 return val;
1831 }
1832 return arg;
1833 }
1834
1835 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1836
1837 void
1838 value_force_lval (struct value *v, CORE_ADDR addr)
1839 {
1840 gdb_assert (VALUE_LVAL (v) == not_lval);
1841
1842 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1843 v->lval = lval_memory;
1844 v->location.address = addr;
1845 }
1846
1847 void
1848 set_value_component_location (struct value *component,
1849 const struct value *whole)
1850 {
1851 struct type *type;
1852
1853 gdb_assert (whole->lval != lval_xcallable);
1854
1855 if (whole->lval == lval_internalvar)
1856 VALUE_LVAL (component) = lval_internalvar_component;
1857 else
1858 VALUE_LVAL (component) = whole->lval;
1859
1860 component->location = whole->location;
1861 if (whole->lval == lval_computed)
1862 {
1863 const struct lval_funcs *funcs = whole->location.computed.funcs;
1864
1865 if (funcs->copy_closure)
1866 component->location.computed.closure = funcs->copy_closure (whole);
1867 }
1868
1869 /* If type has a dynamic resolved location property
1870 update it's value address. */
1871 type = value_type (whole);
1872 if (NULL != TYPE_DATA_LOCATION (type)
1873 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1874 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1875 }
1876
1877 /* Access to the value history. */
1878
1879 /* Record a new value in the value history.
1880 Returns the absolute history index of the entry. */
1881
1882 int
1883 record_latest_value (struct value *val)
1884 {
1885 int i;
1886
1887 /* We don't want this value to have anything to do with the inferior anymore.
1888 In particular, "set $1 = 50" should not affect the variable from which
1889 the value was taken, and fast watchpoints should be able to assume that
1890 a value on the value history never changes. */
1891 if (value_lazy (val))
1892 value_fetch_lazy (val);
1893 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1894 from. This is a bit dubious, because then *&$1 does not just return $1
1895 but the current contents of that location. c'est la vie... */
1896 val->modifiable = 0;
1897
1898 /* Here we treat value_history_count as origin-zero
1899 and applying to the value being stored now. */
1900
1901 i = value_history_count % VALUE_HISTORY_CHUNK;
1902 if (i == 0)
1903 {
1904 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
1905
1906 newobj->next = value_history_chain;
1907 value_history_chain = newobj;
1908 }
1909
1910 value_history_chain->values[i] = release_value (val).release ();
1911
1912 /* Now we regard value_history_count as origin-one
1913 and applying to the value just stored. */
1914
1915 return ++value_history_count;
1916 }
1917
1918 /* Return a copy of the value in the history with sequence number NUM. */
1919
1920 struct value *
1921 access_value_history (int num)
1922 {
1923 struct value_history_chunk *chunk;
1924 int i;
1925 int absnum = num;
1926
1927 if (absnum <= 0)
1928 absnum += value_history_count;
1929
1930 if (absnum <= 0)
1931 {
1932 if (num == 0)
1933 error (_("The history is empty."));
1934 else if (num == 1)
1935 error (_("There is only one value in the history."));
1936 else
1937 error (_("History does not go back to $$%d."), -num);
1938 }
1939 if (absnum > value_history_count)
1940 error (_("History has not yet reached $%d."), absnum);
1941
1942 absnum--;
1943
1944 /* Now absnum is always absolute and origin zero. */
1945
1946 chunk = value_history_chain;
1947 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1948 - absnum / VALUE_HISTORY_CHUNK;
1949 i > 0; i--)
1950 chunk = chunk->next;
1951
1952 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1953 }
1954
1955 static void
1956 show_values (const char *num_exp, int from_tty)
1957 {
1958 int i;
1959 struct value *val;
1960 static int num = 1;
1961
1962 if (num_exp)
1963 {
1964 /* "show values +" should print from the stored position.
1965 "show values <exp>" should print around value number <exp>. */
1966 if (num_exp[0] != '+' || num_exp[1] != '\0')
1967 num = parse_and_eval_long (num_exp) - 5;
1968 }
1969 else
1970 {
1971 /* "show values" means print the last 10 values. */
1972 num = value_history_count - 9;
1973 }
1974
1975 if (num <= 0)
1976 num = 1;
1977
1978 for (i = num; i < num + 10 && i <= value_history_count; i++)
1979 {
1980 struct value_print_options opts;
1981
1982 val = access_value_history (i);
1983 printf_filtered (("$%d = "), i);
1984 get_user_print_options (&opts);
1985 value_print (val, gdb_stdout, &opts);
1986 printf_filtered (("\n"));
1987 }
1988
1989 /* The next "show values +" should start after what we just printed. */
1990 num += 10;
1991
1992 /* Hitting just return after this command should do the same thing as
1993 "show values +". If num_exp is null, this is unnecessary, since
1994 "show values +" is not useful after "show values". */
1995 if (from_tty && num_exp)
1996 set_repeat_arguments ("+");
1997 }
1998 \f
1999 enum internalvar_kind
2000 {
2001 /* The internal variable is empty. */
2002 INTERNALVAR_VOID,
2003
2004 /* The value of the internal variable is provided directly as
2005 a GDB value object. */
2006 INTERNALVAR_VALUE,
2007
2008 /* A fresh value is computed via a call-back routine on every
2009 access to the internal variable. */
2010 INTERNALVAR_MAKE_VALUE,
2011
2012 /* The internal variable holds a GDB internal convenience function. */
2013 INTERNALVAR_FUNCTION,
2014
2015 /* The variable holds an integer value. */
2016 INTERNALVAR_INTEGER,
2017
2018 /* The variable holds a GDB-provided string. */
2019 INTERNALVAR_STRING,
2020 };
2021
2022 union internalvar_data
2023 {
2024 /* A value object used with INTERNALVAR_VALUE. */
2025 struct value *value;
2026
2027 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2028 struct
2029 {
2030 /* The functions to call. */
2031 const struct internalvar_funcs *functions;
2032
2033 /* The function's user-data. */
2034 void *data;
2035 } make_value;
2036
2037 /* The internal function used with INTERNALVAR_FUNCTION. */
2038 struct
2039 {
2040 struct internal_function *function;
2041 /* True if this is the canonical name for the function. */
2042 int canonical;
2043 } fn;
2044
2045 /* An integer value used with INTERNALVAR_INTEGER. */
2046 struct
2047 {
2048 /* If type is non-NULL, it will be used as the type to generate
2049 a value for this internal variable. If type is NULL, a default
2050 integer type for the architecture is used. */
2051 struct type *type;
2052 LONGEST val;
2053 } integer;
2054
2055 /* A string value used with INTERNALVAR_STRING. */
2056 char *string;
2057 };
2058
2059 /* Internal variables. These are variables within the debugger
2060 that hold values assigned by debugger commands.
2061 The user refers to them with a '$' prefix
2062 that does not appear in the variable names stored internally. */
2063
2064 struct internalvar
2065 {
2066 struct internalvar *next;
2067 char *name;
2068
2069 /* We support various different kinds of content of an internal variable.
2070 enum internalvar_kind specifies the kind, and union internalvar_data
2071 provides the data associated with this particular kind. */
2072
2073 enum internalvar_kind kind;
2074
2075 union internalvar_data u;
2076 };
2077
2078 static struct internalvar *internalvars;
2079
2080 /* If the variable does not already exist create it and give it the
2081 value given. If no value is given then the default is zero. */
2082 static void
2083 init_if_undefined_command (const char* args, int from_tty)
2084 {
2085 struct internalvar* intvar;
2086
2087 /* Parse the expression - this is taken from set_command(). */
2088 expression_up expr = parse_expression (args);
2089
2090 /* Validate the expression.
2091 Was the expression an assignment?
2092 Or even an expression at all? */
2093 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2094 error (_("Init-if-undefined requires an assignment expression."));
2095
2096 /* Extract the variable from the parsed expression.
2097 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2098 if (expr->elts[1].opcode != OP_INTERNALVAR)
2099 error (_("The first parameter to init-if-undefined "
2100 "should be a GDB variable."));
2101 intvar = expr->elts[2].internalvar;
2102
2103 /* Only evaluate the expression if the lvalue is void.
2104 This may still fail if the expresssion is invalid. */
2105 if (intvar->kind == INTERNALVAR_VOID)
2106 evaluate_expression (expr.get ());
2107 }
2108
2109
2110 /* Look up an internal variable with name NAME. NAME should not
2111 normally include a dollar sign.
2112
2113 If the specified internal variable does not exist,
2114 the return value is NULL. */
2115
2116 struct internalvar *
2117 lookup_only_internalvar (const char *name)
2118 {
2119 struct internalvar *var;
2120
2121 for (var = internalvars; var; var = var->next)
2122 if (strcmp (var->name, name) == 0)
2123 return var;
2124
2125 return NULL;
2126 }
2127
2128 /* Complete NAME by comparing it to the names of internal
2129 variables. */
2130
2131 void
2132 complete_internalvar (completion_tracker &tracker, const char *name)
2133 {
2134 struct internalvar *var;
2135 int len;
2136
2137 len = strlen (name);
2138
2139 for (var = internalvars; var; var = var->next)
2140 if (strncmp (var->name, name, len) == 0)
2141 {
2142 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
2143
2144 tracker.add_completion (std::move (copy));
2145 }
2146 }
2147
2148 /* Create an internal variable with name NAME and with a void value.
2149 NAME should not normally include a dollar sign. */
2150
2151 struct internalvar *
2152 create_internalvar (const char *name)
2153 {
2154 struct internalvar *var = XNEW (struct internalvar);
2155
2156 var->name = concat (name, (char *)NULL);
2157 var->kind = INTERNALVAR_VOID;
2158 var->next = internalvars;
2159 internalvars = var;
2160 return var;
2161 }
2162
2163 /* Create an internal variable with name NAME and register FUN as the
2164 function that value_of_internalvar uses to create a value whenever
2165 this variable is referenced. NAME should not normally include a
2166 dollar sign. DATA is passed uninterpreted to FUN when it is
2167 called. CLEANUP, if not NULL, is called when the internal variable
2168 is destroyed. It is passed DATA as its only argument. */
2169
2170 struct internalvar *
2171 create_internalvar_type_lazy (const char *name,
2172 const struct internalvar_funcs *funcs,
2173 void *data)
2174 {
2175 struct internalvar *var = create_internalvar (name);
2176
2177 var->kind = INTERNALVAR_MAKE_VALUE;
2178 var->u.make_value.functions = funcs;
2179 var->u.make_value.data = data;
2180 return var;
2181 }
2182
2183 /* See documentation in value.h. */
2184
2185 int
2186 compile_internalvar_to_ax (struct internalvar *var,
2187 struct agent_expr *expr,
2188 struct axs_value *value)
2189 {
2190 if (var->kind != INTERNALVAR_MAKE_VALUE
2191 || var->u.make_value.functions->compile_to_ax == NULL)
2192 return 0;
2193
2194 var->u.make_value.functions->compile_to_ax (var, expr, value,
2195 var->u.make_value.data);
2196 return 1;
2197 }
2198
2199 /* Look up an internal variable with name NAME. NAME should not
2200 normally include a dollar sign.
2201
2202 If the specified internal variable does not exist,
2203 one is created, with a void value. */
2204
2205 struct internalvar *
2206 lookup_internalvar (const char *name)
2207 {
2208 struct internalvar *var;
2209
2210 var = lookup_only_internalvar (name);
2211 if (var)
2212 return var;
2213
2214 return create_internalvar (name);
2215 }
2216
2217 /* Return current value of internal variable VAR. For variables that
2218 are not inherently typed, use a value type appropriate for GDBARCH. */
2219
2220 struct value *
2221 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2222 {
2223 struct value *val;
2224 struct trace_state_variable *tsv;
2225
2226 /* If there is a trace state variable of the same name, assume that
2227 is what we really want to see. */
2228 tsv = find_trace_state_variable (var->name);
2229 if (tsv)
2230 {
2231 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2232 &(tsv->value));
2233 if (tsv->value_known)
2234 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2235 tsv->value);
2236 else
2237 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2238 return val;
2239 }
2240
2241 switch (var->kind)
2242 {
2243 case INTERNALVAR_VOID:
2244 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2245 break;
2246
2247 case INTERNALVAR_FUNCTION:
2248 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2249 break;
2250
2251 case INTERNALVAR_INTEGER:
2252 if (!var->u.integer.type)
2253 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2254 var->u.integer.val);
2255 else
2256 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2257 break;
2258
2259 case INTERNALVAR_STRING:
2260 val = value_cstring (var->u.string, strlen (var->u.string),
2261 builtin_type (gdbarch)->builtin_char);
2262 break;
2263
2264 case INTERNALVAR_VALUE:
2265 val = value_copy (var->u.value);
2266 if (value_lazy (val))
2267 value_fetch_lazy (val);
2268 break;
2269
2270 case INTERNALVAR_MAKE_VALUE:
2271 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2272 var->u.make_value.data);
2273 break;
2274
2275 default:
2276 internal_error (__FILE__, __LINE__, _("bad kind"));
2277 }
2278
2279 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2280 on this value go back to affect the original internal variable.
2281
2282 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2283 no underlying modifyable state in the internal variable.
2284
2285 Likewise, if the variable's value is a computed lvalue, we want
2286 references to it to produce another computed lvalue, where
2287 references and assignments actually operate through the
2288 computed value's functions.
2289
2290 This means that internal variables with computed values
2291 behave a little differently from other internal variables:
2292 assignments to them don't just replace the previous value
2293 altogether. At the moment, this seems like the behavior we
2294 want. */
2295
2296 if (var->kind != INTERNALVAR_MAKE_VALUE
2297 && val->lval != lval_computed)
2298 {
2299 VALUE_LVAL (val) = lval_internalvar;
2300 VALUE_INTERNALVAR (val) = var;
2301 }
2302
2303 return val;
2304 }
2305
2306 int
2307 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2308 {
2309 if (var->kind == INTERNALVAR_INTEGER)
2310 {
2311 *result = var->u.integer.val;
2312 return 1;
2313 }
2314
2315 if (var->kind == INTERNALVAR_VALUE)
2316 {
2317 struct type *type = check_typedef (value_type (var->u.value));
2318
2319 if (TYPE_CODE (type) == TYPE_CODE_INT)
2320 {
2321 *result = value_as_long (var->u.value);
2322 return 1;
2323 }
2324 }
2325
2326 return 0;
2327 }
2328
2329 static int
2330 get_internalvar_function (struct internalvar *var,
2331 struct internal_function **result)
2332 {
2333 switch (var->kind)
2334 {
2335 case INTERNALVAR_FUNCTION:
2336 *result = var->u.fn.function;
2337 return 1;
2338
2339 default:
2340 return 0;
2341 }
2342 }
2343
2344 void
2345 set_internalvar_component (struct internalvar *var,
2346 LONGEST offset, LONGEST bitpos,
2347 LONGEST bitsize, struct value *newval)
2348 {
2349 gdb_byte *addr;
2350 struct gdbarch *arch;
2351 int unit_size;
2352
2353 switch (var->kind)
2354 {
2355 case INTERNALVAR_VALUE:
2356 addr = value_contents_writeable (var->u.value);
2357 arch = get_value_arch (var->u.value);
2358 unit_size = gdbarch_addressable_memory_unit_size (arch);
2359
2360 if (bitsize)
2361 modify_field (value_type (var->u.value), addr + offset,
2362 value_as_long (newval), bitpos, bitsize);
2363 else
2364 memcpy (addr + offset * unit_size, value_contents (newval),
2365 TYPE_LENGTH (value_type (newval)));
2366 break;
2367
2368 default:
2369 /* We can never get a component of any other kind. */
2370 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2371 }
2372 }
2373
2374 void
2375 set_internalvar (struct internalvar *var, struct value *val)
2376 {
2377 enum internalvar_kind new_kind;
2378 union internalvar_data new_data = { 0 };
2379
2380 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2381 error (_("Cannot overwrite convenience function %s"), var->name);
2382
2383 /* Prepare new contents. */
2384 switch (TYPE_CODE (check_typedef (value_type (val))))
2385 {
2386 case TYPE_CODE_VOID:
2387 new_kind = INTERNALVAR_VOID;
2388 break;
2389
2390 case TYPE_CODE_INTERNAL_FUNCTION:
2391 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2392 new_kind = INTERNALVAR_FUNCTION;
2393 get_internalvar_function (VALUE_INTERNALVAR (val),
2394 &new_data.fn.function);
2395 /* Copies created here are never canonical. */
2396 break;
2397
2398 default:
2399 new_kind = INTERNALVAR_VALUE;
2400 new_data.value = value_copy (val);
2401 new_data.value->modifiable = 1;
2402
2403 /* Force the value to be fetched from the target now, to avoid problems
2404 later when this internalvar is referenced and the target is gone or
2405 has changed. */
2406 if (value_lazy (new_data.value))
2407 value_fetch_lazy (new_data.value);
2408
2409 /* Release the value from the value chain to prevent it from being
2410 deleted by free_all_values. From here on this function should not
2411 call error () until new_data is installed into the var->u to avoid
2412 leaking memory. */
2413 release_value (new_data.value).release ();
2414
2415 /* Internal variables which are created from values with a dynamic
2416 location don't need the location property of the origin anymore.
2417 The resolved dynamic location is used prior then any other address
2418 when accessing the value.
2419 If we keep it, we would still refer to the origin value.
2420 Remove the location property in case it exist. */
2421 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2422
2423 break;
2424 }
2425
2426 /* Clean up old contents. */
2427 clear_internalvar (var);
2428
2429 /* Switch over. */
2430 var->kind = new_kind;
2431 var->u = new_data;
2432 /* End code which must not call error(). */
2433 }
2434
2435 void
2436 set_internalvar_integer (struct internalvar *var, LONGEST l)
2437 {
2438 /* Clean up old contents. */
2439 clear_internalvar (var);
2440
2441 var->kind = INTERNALVAR_INTEGER;
2442 var->u.integer.type = NULL;
2443 var->u.integer.val = l;
2444 }
2445
2446 void
2447 set_internalvar_string (struct internalvar *var, const char *string)
2448 {
2449 /* Clean up old contents. */
2450 clear_internalvar (var);
2451
2452 var->kind = INTERNALVAR_STRING;
2453 var->u.string = xstrdup (string);
2454 }
2455
2456 static void
2457 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2458 {
2459 /* Clean up old contents. */
2460 clear_internalvar (var);
2461
2462 var->kind = INTERNALVAR_FUNCTION;
2463 var->u.fn.function = f;
2464 var->u.fn.canonical = 1;
2465 /* Variables installed here are always the canonical version. */
2466 }
2467
2468 void
2469 clear_internalvar (struct internalvar *var)
2470 {
2471 /* Clean up old contents. */
2472 switch (var->kind)
2473 {
2474 case INTERNALVAR_VALUE:
2475 value_decref (var->u.value);
2476 break;
2477
2478 case INTERNALVAR_STRING:
2479 xfree (var->u.string);
2480 break;
2481
2482 case INTERNALVAR_MAKE_VALUE:
2483 if (var->u.make_value.functions->destroy != NULL)
2484 var->u.make_value.functions->destroy (var->u.make_value.data);
2485 break;
2486
2487 default:
2488 break;
2489 }
2490
2491 /* Reset to void kind. */
2492 var->kind = INTERNALVAR_VOID;
2493 }
2494
2495 char *
2496 internalvar_name (const struct internalvar *var)
2497 {
2498 return var->name;
2499 }
2500
2501 static struct internal_function *
2502 create_internal_function (const char *name,
2503 internal_function_fn handler, void *cookie)
2504 {
2505 struct internal_function *ifn = XNEW (struct internal_function);
2506
2507 ifn->name = xstrdup (name);
2508 ifn->handler = handler;
2509 ifn->cookie = cookie;
2510 return ifn;
2511 }
2512
2513 char *
2514 value_internal_function_name (struct value *val)
2515 {
2516 struct internal_function *ifn;
2517 int result;
2518
2519 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2520 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2521 gdb_assert (result);
2522
2523 return ifn->name;
2524 }
2525
2526 struct value *
2527 call_internal_function (struct gdbarch *gdbarch,
2528 const struct language_defn *language,
2529 struct value *func, int argc, struct value **argv)
2530 {
2531 struct internal_function *ifn;
2532 int result;
2533
2534 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2535 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2536 gdb_assert (result);
2537
2538 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2539 }
2540
2541 /* The 'function' command. This does nothing -- it is just a
2542 placeholder to let "help function NAME" work. This is also used as
2543 the implementation of the sub-command that is created when
2544 registering an internal function. */
2545 static void
2546 function_command (const char *command, int from_tty)
2547 {
2548 /* Do nothing. */
2549 }
2550
2551 /* Clean up if an internal function's command is destroyed. */
2552 static void
2553 function_destroyer (struct cmd_list_element *self, void *ignore)
2554 {
2555 xfree ((char *) self->name);
2556 xfree ((char *) self->doc);
2557 }
2558
2559 /* Add a new internal function. NAME is the name of the function; DOC
2560 is a documentation string describing the function. HANDLER is
2561 called when the function is invoked. COOKIE is an arbitrary
2562 pointer which is passed to HANDLER and is intended for "user
2563 data". */
2564 void
2565 add_internal_function (const char *name, const char *doc,
2566 internal_function_fn handler, void *cookie)
2567 {
2568 struct cmd_list_element *cmd;
2569 struct internal_function *ifn;
2570 struct internalvar *var = lookup_internalvar (name);
2571
2572 ifn = create_internal_function (name, handler, cookie);
2573 set_internalvar_function (var, ifn);
2574
2575 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2576 &functionlist);
2577 cmd->destroyer = function_destroyer;
2578 }
2579
2580 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2581 prevent cycles / duplicates. */
2582
2583 void
2584 preserve_one_value (struct value *value, struct objfile *objfile,
2585 htab_t copied_types)
2586 {
2587 if (TYPE_OBJFILE (value->type) == objfile)
2588 value->type = copy_type_recursive (objfile, value->type, copied_types);
2589
2590 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2591 value->enclosing_type = copy_type_recursive (objfile,
2592 value->enclosing_type,
2593 copied_types);
2594 }
2595
2596 /* Likewise for internal variable VAR. */
2597
2598 static void
2599 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2600 htab_t copied_types)
2601 {
2602 switch (var->kind)
2603 {
2604 case INTERNALVAR_INTEGER:
2605 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2606 var->u.integer.type
2607 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2608 break;
2609
2610 case INTERNALVAR_VALUE:
2611 preserve_one_value (var->u.value, objfile, copied_types);
2612 break;
2613 }
2614 }
2615
2616 /* Update the internal variables and value history when OBJFILE is
2617 discarded; we must copy the types out of the objfile. New global types
2618 will be created for every convenience variable which currently points to
2619 this objfile's types, and the convenience variables will be adjusted to
2620 use the new global types. */
2621
2622 void
2623 preserve_values (struct objfile *objfile)
2624 {
2625 htab_t copied_types;
2626 struct value_history_chunk *cur;
2627 struct internalvar *var;
2628 int i;
2629
2630 /* Create the hash table. We allocate on the objfile's obstack, since
2631 it is soon to be deleted. */
2632 copied_types = create_copied_types_hash (objfile);
2633
2634 for (cur = value_history_chain; cur; cur = cur->next)
2635 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2636 if (cur->values[i])
2637 preserve_one_value (cur->values[i], objfile, copied_types);
2638
2639 for (var = internalvars; var; var = var->next)
2640 preserve_one_internalvar (var, objfile, copied_types);
2641
2642 preserve_ext_lang_values (objfile, copied_types);
2643
2644 htab_delete (copied_types);
2645 }
2646
2647 static void
2648 show_convenience (const char *ignore, int from_tty)
2649 {
2650 struct gdbarch *gdbarch = get_current_arch ();
2651 struct internalvar *var;
2652 int varseen = 0;
2653 struct value_print_options opts;
2654
2655 get_user_print_options (&opts);
2656 for (var = internalvars; var; var = var->next)
2657 {
2658
2659 if (!varseen)
2660 {
2661 varseen = 1;
2662 }
2663 printf_filtered (("$%s = "), var->name);
2664
2665 TRY
2666 {
2667 struct value *val;
2668
2669 val = value_of_internalvar (gdbarch, var);
2670 value_print (val, gdb_stdout, &opts);
2671 }
2672 CATCH (ex, RETURN_MASK_ERROR)
2673 {
2674 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2675 }
2676 END_CATCH
2677
2678 printf_filtered (("\n"));
2679 }
2680 if (!varseen)
2681 {
2682 /* This text does not mention convenience functions on purpose.
2683 The user can't create them except via Python, and if Python support
2684 is installed this message will never be printed ($_streq will
2685 exist). */
2686 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2687 "Convenience variables have "
2688 "names starting with \"$\";\n"
2689 "use \"set\" as in \"set "
2690 "$foo = 5\" to define them.\n"));
2691 }
2692 }
2693 \f
2694
2695 /* See value.h. */
2696
2697 struct value *
2698 value_from_xmethod (xmethod_worker_up &&worker)
2699 {
2700 struct value *v;
2701
2702 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2703 v->lval = lval_xcallable;
2704 v->location.xm_worker = worker.release ();
2705 v->modifiable = 0;
2706
2707 return v;
2708 }
2709
2710 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2711
2712 struct type *
2713 result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2714 {
2715 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2716 && method->lval == lval_xcallable && argc > 0);
2717
2718 return method->location.xm_worker->get_result_type
2719 (argv[0], argv + 1, argc - 1);
2720 }
2721
2722 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2723
2724 struct value *
2725 call_xmethod (struct value *method, int argc, struct value **argv)
2726 {
2727 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2728 && method->lval == lval_xcallable && argc > 0);
2729
2730 return method->location.xm_worker->invoke (argv[0], argv + 1, argc - 1);
2731 }
2732 \f
2733 /* Extract a value as a C number (either long or double).
2734 Knows how to convert fixed values to double, or
2735 floating values to long.
2736 Does not deallocate the value. */
2737
2738 LONGEST
2739 value_as_long (struct value *val)
2740 {
2741 /* This coerces arrays and functions, which is necessary (e.g.
2742 in disassemble_command). It also dereferences references, which
2743 I suspect is the most logical thing to do. */
2744 val = coerce_array (val);
2745 return unpack_long (value_type (val), value_contents (val));
2746 }
2747
2748 /* Extract a value as a C pointer. Does not deallocate the value.
2749 Note that val's type may not actually be a pointer; value_as_long
2750 handles all the cases. */
2751 CORE_ADDR
2752 value_as_address (struct value *val)
2753 {
2754 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2755
2756 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2757 whether we want this to be true eventually. */
2758 #if 0
2759 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2760 non-address (e.g. argument to "signal", "info break", etc.), or
2761 for pointers to char, in which the low bits *are* significant. */
2762 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2763 #else
2764
2765 /* There are several targets (IA-64, PowerPC, and others) which
2766 don't represent pointers to functions as simply the address of
2767 the function's entry point. For example, on the IA-64, a
2768 function pointer points to a two-word descriptor, generated by
2769 the linker, which contains the function's entry point, and the
2770 value the IA-64 "global pointer" register should have --- to
2771 support position-independent code. The linker generates
2772 descriptors only for those functions whose addresses are taken.
2773
2774 On such targets, it's difficult for GDB to convert an arbitrary
2775 function address into a function pointer; it has to either find
2776 an existing descriptor for that function, or call malloc and
2777 build its own. On some targets, it is impossible for GDB to
2778 build a descriptor at all: the descriptor must contain a jump
2779 instruction; data memory cannot be executed; and code memory
2780 cannot be modified.
2781
2782 Upon entry to this function, if VAL is a value of type `function'
2783 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2784 value_address (val) is the address of the function. This is what
2785 you'll get if you evaluate an expression like `main'. The call
2786 to COERCE_ARRAY below actually does all the usual unary
2787 conversions, which includes converting values of type `function'
2788 to `pointer to function'. This is the challenging conversion
2789 discussed above. Then, `unpack_long' will convert that pointer
2790 back into an address.
2791
2792 So, suppose the user types `disassemble foo' on an architecture
2793 with a strange function pointer representation, on which GDB
2794 cannot build its own descriptors, and suppose further that `foo'
2795 has no linker-built descriptor. The address->pointer conversion
2796 will signal an error and prevent the command from running, even
2797 though the next step would have been to convert the pointer
2798 directly back into the same address.
2799
2800 The following shortcut avoids this whole mess. If VAL is a
2801 function, just return its address directly. */
2802 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2803 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2804 return value_address (val);
2805
2806 val = coerce_array (val);
2807
2808 /* Some architectures (e.g. Harvard), map instruction and data
2809 addresses onto a single large unified address space. For
2810 instance: An architecture may consider a large integer in the
2811 range 0x10000000 .. 0x1000ffff to already represent a data
2812 addresses (hence not need a pointer to address conversion) while
2813 a small integer would still need to be converted integer to
2814 pointer to address. Just assume such architectures handle all
2815 integer conversions in a single function. */
2816
2817 /* JimB writes:
2818
2819 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2820 must admonish GDB hackers to make sure its behavior matches the
2821 compiler's, whenever possible.
2822
2823 In general, I think GDB should evaluate expressions the same way
2824 the compiler does. When the user copies an expression out of
2825 their source code and hands it to a `print' command, they should
2826 get the same value the compiler would have computed. Any
2827 deviation from this rule can cause major confusion and annoyance,
2828 and needs to be justified carefully. In other words, GDB doesn't
2829 really have the freedom to do these conversions in clever and
2830 useful ways.
2831
2832 AndrewC pointed out that users aren't complaining about how GDB
2833 casts integers to pointers; they are complaining that they can't
2834 take an address from a disassembly listing and give it to `x/i'.
2835 This is certainly important.
2836
2837 Adding an architecture method like integer_to_address() certainly
2838 makes it possible for GDB to "get it right" in all circumstances
2839 --- the target has complete control over how things get done, so
2840 people can Do The Right Thing for their target without breaking
2841 anyone else. The standard doesn't specify how integers get
2842 converted to pointers; usually, the ABI doesn't either, but
2843 ABI-specific code is a more reasonable place to handle it. */
2844
2845 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2846 && !TYPE_IS_REFERENCE (value_type (val))
2847 && gdbarch_integer_to_address_p (gdbarch))
2848 return gdbarch_integer_to_address (gdbarch, value_type (val),
2849 value_contents (val));
2850
2851 return unpack_long (value_type (val), value_contents (val));
2852 #endif
2853 }
2854 \f
2855 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2856 as a long, or as a double, assuming the raw data is described
2857 by type TYPE. Knows how to convert different sizes of values
2858 and can convert between fixed and floating point. We don't assume
2859 any alignment for the raw data. Return value is in host byte order.
2860
2861 If you want functions and arrays to be coerced to pointers, and
2862 references to be dereferenced, call value_as_long() instead.
2863
2864 C++: It is assumed that the front-end has taken care of
2865 all matters concerning pointers to members. A pointer
2866 to member which reaches here is considered to be equivalent
2867 to an INT (or some size). After all, it is only an offset. */
2868
2869 LONGEST
2870 unpack_long (struct type *type, const gdb_byte *valaddr)
2871 {
2872 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2873 enum type_code code = TYPE_CODE (type);
2874 int len = TYPE_LENGTH (type);
2875 int nosign = TYPE_UNSIGNED (type);
2876
2877 switch (code)
2878 {
2879 case TYPE_CODE_TYPEDEF:
2880 return unpack_long (check_typedef (type), valaddr);
2881 case TYPE_CODE_ENUM:
2882 case TYPE_CODE_FLAGS:
2883 case TYPE_CODE_BOOL:
2884 case TYPE_CODE_INT:
2885 case TYPE_CODE_CHAR:
2886 case TYPE_CODE_RANGE:
2887 case TYPE_CODE_MEMBERPTR:
2888 if (nosign)
2889 return extract_unsigned_integer (valaddr, len, byte_order);
2890 else
2891 return extract_signed_integer (valaddr, len, byte_order);
2892
2893 case TYPE_CODE_FLT:
2894 case TYPE_CODE_DECFLOAT:
2895 return target_float_to_longest (valaddr, type);
2896
2897 case TYPE_CODE_PTR:
2898 case TYPE_CODE_REF:
2899 case TYPE_CODE_RVALUE_REF:
2900 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2901 whether we want this to be true eventually. */
2902 return extract_typed_address (valaddr, type);
2903
2904 default:
2905 error (_("Value can't be converted to integer."));
2906 }
2907 return 0; /* Placate lint. */
2908 }
2909
2910 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2911 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2912 We don't assume any alignment for the raw data. Return value is in
2913 host byte order.
2914
2915 If you want functions and arrays to be coerced to pointers, and
2916 references to be dereferenced, call value_as_address() instead.
2917
2918 C++: It is assumed that the front-end has taken care of
2919 all matters concerning pointers to members. A pointer
2920 to member which reaches here is considered to be equivalent
2921 to an INT (or some size). After all, it is only an offset. */
2922
2923 CORE_ADDR
2924 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2925 {
2926 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2927 whether we want this to be true eventually. */
2928 return unpack_long (type, valaddr);
2929 }
2930
2931 bool
2932 is_floating_value (struct value *val)
2933 {
2934 struct type *type = check_typedef (value_type (val));
2935
2936 if (is_floating_type (type))
2937 {
2938 if (!target_float_is_valid (value_contents (val), type))
2939 error (_("Invalid floating value found in program."));
2940 return true;
2941 }
2942
2943 return false;
2944 }
2945
2946 \f
2947 /* Get the value of the FIELDNO'th field (which must be static) of
2948 TYPE. */
2949
2950 struct value *
2951 value_static_field (struct type *type, int fieldno)
2952 {
2953 struct value *retval;
2954
2955 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2956 {
2957 case FIELD_LOC_KIND_PHYSADDR:
2958 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2959 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2960 break;
2961 case FIELD_LOC_KIND_PHYSNAME:
2962 {
2963 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2964 /* TYPE_FIELD_NAME (type, fieldno); */
2965 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2966
2967 if (sym.symbol == NULL)
2968 {
2969 /* With some compilers, e.g. HP aCC, static data members are
2970 reported as non-debuggable symbols. */
2971 struct bound_minimal_symbol msym
2972 = lookup_minimal_symbol (phys_name, NULL, NULL);
2973 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2974
2975 if (!msym.minsym)
2976 retval = allocate_optimized_out_value (field_type);
2977 else
2978 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
2979 }
2980 else
2981 retval = value_of_variable (sym.symbol, sym.block);
2982 break;
2983 }
2984 default:
2985 gdb_assert_not_reached ("unexpected field location kind");
2986 }
2987
2988 return retval;
2989 }
2990
2991 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2992 You have to be careful here, since the size of the data area for the value
2993 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2994 than the old enclosing type, you have to allocate more space for the
2995 data. */
2996
2997 void
2998 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2999 {
3000 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3001 {
3002 check_type_length_before_alloc (new_encl_type);
3003 val->contents
3004 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3005 }
3006
3007 val->enclosing_type = new_encl_type;
3008 }
3009
3010 /* Given a value ARG1 (offset by OFFSET bytes)
3011 of a struct or union type ARG_TYPE,
3012 extract and return the value of one of its (non-static) fields.
3013 FIELDNO says which field. */
3014
3015 struct value *
3016 value_primitive_field (struct value *arg1, LONGEST offset,
3017 int fieldno, struct type *arg_type)
3018 {
3019 struct value *v;
3020 struct type *type;
3021 struct gdbarch *arch = get_value_arch (arg1);
3022 int unit_size = gdbarch_addressable_memory_unit_size (arch);
3023
3024 arg_type = check_typedef (arg_type);
3025 type = TYPE_FIELD_TYPE (arg_type, fieldno);
3026
3027 /* Call check_typedef on our type to make sure that, if TYPE
3028 is a TYPE_CODE_TYPEDEF, its length is set to the length
3029 of the target type instead of zero. However, we do not
3030 replace the typedef type by the target type, because we want
3031 to keep the typedef in order to be able to print the type
3032 description correctly. */
3033 check_typedef (type);
3034
3035 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
3036 {
3037 /* Handle packed fields.
3038
3039 Create a new value for the bitfield, with bitpos and bitsize
3040 set. If possible, arrange offset and bitpos so that we can
3041 do a single aligned read of the size of the containing type.
3042 Otherwise, adjust offset to the byte containing the first
3043 bit. Assume that the address, offset, and embedded offset
3044 are sufficiently aligned. */
3045
3046 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3047 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
3048
3049 v = allocate_value_lazy (type);
3050 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3051 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3052 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3053 v->bitpos = bitpos % container_bitsize;
3054 else
3055 v->bitpos = bitpos % 8;
3056 v->offset = (value_embedded_offset (arg1)
3057 + offset
3058 + (bitpos - v->bitpos) / 8);
3059 set_value_parent (v, arg1);
3060 if (!value_lazy (arg1))
3061 value_fetch_lazy (v);
3062 }
3063 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3064 {
3065 /* This field is actually a base subobject, so preserve the
3066 entire object's contents for later references to virtual
3067 bases, etc. */
3068 LONGEST boffset;
3069
3070 /* Lazy register values with offsets are not supported. */
3071 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3072 value_fetch_lazy (arg1);
3073
3074 /* We special case virtual inheritance here because this
3075 requires access to the contents, which we would rather avoid
3076 for references to ordinary fields of unavailable values. */
3077 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3078 boffset = baseclass_offset (arg_type, fieldno,
3079 value_contents (arg1),
3080 value_embedded_offset (arg1),
3081 value_address (arg1),
3082 arg1);
3083 else
3084 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3085
3086 if (value_lazy (arg1))
3087 v = allocate_value_lazy (value_enclosing_type (arg1));
3088 else
3089 {
3090 v = allocate_value (value_enclosing_type (arg1));
3091 value_contents_copy_raw (v, 0, arg1, 0,
3092 TYPE_LENGTH (value_enclosing_type (arg1)));
3093 }
3094 v->type = type;
3095 v->offset = value_offset (arg1);
3096 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3097 }
3098 else if (NULL != TYPE_DATA_LOCATION (type))
3099 {
3100 /* Field is a dynamic data member. */
3101
3102 gdb_assert (0 == offset);
3103 /* We expect an already resolved data location. */
3104 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3105 /* For dynamic data types defer memory allocation
3106 until we actual access the value. */
3107 v = allocate_value_lazy (type);
3108 }
3109 else
3110 {
3111 /* Plain old data member */
3112 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3113 / (HOST_CHAR_BIT * unit_size));
3114
3115 /* Lazy register values with offsets are not supported. */
3116 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3117 value_fetch_lazy (arg1);
3118
3119 if (value_lazy (arg1))
3120 v = allocate_value_lazy (type);
3121 else
3122 {
3123 v = allocate_value (type);
3124 value_contents_copy_raw (v, value_embedded_offset (v),
3125 arg1, value_embedded_offset (arg1) + offset,
3126 type_length_units (type));
3127 }
3128 v->offset = (value_offset (arg1) + offset
3129 + value_embedded_offset (arg1));
3130 }
3131 set_value_component_location (v, arg1);
3132 return v;
3133 }
3134
3135 /* Given a value ARG1 of a struct or union type,
3136 extract and return the value of one of its (non-static) fields.
3137 FIELDNO says which field. */
3138
3139 struct value *
3140 value_field (struct value *arg1, int fieldno)
3141 {
3142 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3143 }
3144
3145 /* Return a non-virtual function as a value.
3146 F is the list of member functions which contains the desired method.
3147 J is an index into F which provides the desired method.
3148
3149 We only use the symbol for its address, so be happy with either a
3150 full symbol or a minimal symbol. */
3151
3152 struct value *
3153 value_fn_field (struct value **arg1p, struct fn_field *f,
3154 int j, struct type *type,
3155 LONGEST offset)
3156 {
3157 struct value *v;
3158 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3159 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3160 struct symbol *sym;
3161 struct bound_minimal_symbol msym;
3162
3163 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3164 if (sym != NULL)
3165 {
3166 memset (&msym, 0, sizeof (msym));
3167 }
3168 else
3169 {
3170 gdb_assert (sym == NULL);
3171 msym = lookup_bound_minimal_symbol (physname);
3172 if (msym.minsym == NULL)
3173 return NULL;
3174 }
3175
3176 v = allocate_value (ftype);
3177 VALUE_LVAL (v) = lval_memory;
3178 if (sym)
3179 {
3180 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3181 }
3182 else
3183 {
3184 /* The minimal symbol might point to a function descriptor;
3185 resolve it to the actual code address instead. */
3186 struct objfile *objfile = msym.objfile;
3187 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3188
3189 set_value_address (v,
3190 gdbarch_convert_from_func_ptr_addr
3191 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
3192 }
3193
3194 if (arg1p)
3195 {
3196 if (type != value_type (*arg1p))
3197 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3198 value_addr (*arg1p)));
3199
3200 /* Move the `this' pointer according to the offset.
3201 VALUE_OFFSET (*arg1p) += offset; */
3202 }
3203
3204 return v;
3205 }
3206
3207 \f
3208
3209 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3210 VALADDR, and store the result in *RESULT.
3211 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3212 BITSIZE is zero, then the length is taken from FIELD_TYPE.
3213
3214 Extracting bits depends on endianness of the machine. Compute the
3215 number of least significant bits to discard. For big endian machines,
3216 we compute the total number of bits in the anonymous object, subtract
3217 off the bit count from the MSB of the object to the MSB of the
3218 bitfield, then the size of the bitfield, which leaves the LSB discard
3219 count. For little endian machines, the discard count is simply the
3220 number of bits from the LSB of the anonymous object to the LSB of the
3221 bitfield.
3222
3223 If the field is signed, we also do sign extension. */
3224
3225 static LONGEST
3226 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3227 LONGEST bitpos, LONGEST bitsize)
3228 {
3229 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3230 ULONGEST val;
3231 ULONGEST valmask;
3232 int lsbcount;
3233 LONGEST bytes_read;
3234 LONGEST read_offset;
3235
3236 /* Read the minimum number of bytes required; there may not be
3237 enough bytes to read an entire ULONGEST. */
3238 field_type = check_typedef (field_type);
3239 if (bitsize)
3240 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3241 else
3242 {
3243 bytes_read = TYPE_LENGTH (field_type);
3244 bitsize = 8 * bytes_read;
3245 }
3246
3247 read_offset = bitpos / 8;
3248
3249 val = extract_unsigned_integer (valaddr + read_offset,
3250 bytes_read, byte_order);
3251
3252 /* Extract bits. See comment above. */
3253
3254 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3255 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3256 else
3257 lsbcount = (bitpos % 8);
3258 val >>= lsbcount;
3259
3260 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3261 If the field is signed, and is negative, then sign extend. */
3262
3263 if (bitsize < 8 * (int) sizeof (val))
3264 {
3265 valmask = (((ULONGEST) 1) << bitsize) - 1;
3266 val &= valmask;
3267 if (!TYPE_UNSIGNED (field_type))
3268 {
3269 if (val & (valmask ^ (valmask >> 1)))
3270 {
3271 val |= ~valmask;
3272 }
3273 }
3274 }
3275
3276 return val;
3277 }
3278
3279 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3280 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3281 ORIGINAL_VALUE, which must not be NULL. See
3282 unpack_value_bits_as_long for more details. */
3283
3284 int
3285 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3286 LONGEST embedded_offset, int fieldno,
3287 const struct value *val, LONGEST *result)
3288 {
3289 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3290 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3291 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3292 int bit_offset;
3293
3294 gdb_assert (val != NULL);
3295
3296 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3297 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3298 || !value_bits_available (val, bit_offset, bitsize))
3299 return 0;
3300
3301 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3302 bitpos, bitsize);
3303 return 1;
3304 }
3305
3306 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3307 object at VALADDR. See unpack_bits_as_long for more details. */
3308
3309 LONGEST
3310 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3311 {
3312 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3313 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3314 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3315
3316 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3317 }
3318
3319 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3320 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3321 the contents in DEST_VAL, zero or sign extending if the type of
3322 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3323 VAL. If the VAL's contents required to extract the bitfield from
3324 are unavailable/optimized out, DEST_VAL is correspondingly
3325 marked unavailable/optimized out. */
3326
3327 void
3328 unpack_value_bitfield (struct value *dest_val,
3329 LONGEST bitpos, LONGEST bitsize,
3330 const gdb_byte *valaddr, LONGEST embedded_offset,
3331 const struct value *val)
3332 {
3333 enum bfd_endian byte_order;
3334 int src_bit_offset;
3335 int dst_bit_offset;
3336 struct type *field_type = value_type (dest_val);
3337
3338 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3339
3340 /* First, unpack and sign extend the bitfield as if it was wholly
3341 valid. Optimized out/unavailable bits are read as zero, but
3342 that's OK, as they'll end up marked below. If the VAL is
3343 wholly-invalid we may have skipped allocating its contents,
3344 though. See allocate_optimized_out_value. */
3345 if (valaddr != NULL)
3346 {
3347 LONGEST num;
3348
3349 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3350 bitpos, bitsize);
3351 store_signed_integer (value_contents_raw (dest_val),
3352 TYPE_LENGTH (field_type), byte_order, num);
3353 }
3354
3355 /* Now copy the optimized out / unavailability ranges to the right
3356 bits. */
3357 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3358 if (byte_order == BFD_ENDIAN_BIG)
3359 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3360 else
3361 dst_bit_offset = 0;
3362 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3363 val, src_bit_offset, bitsize);
3364 }
3365
3366 /* Return a new value with type TYPE, which is FIELDNO field of the
3367 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3368 of VAL. If the VAL's contents required to extract the bitfield
3369 from are unavailable/optimized out, the new value is
3370 correspondingly marked unavailable/optimized out. */
3371
3372 struct value *
3373 value_field_bitfield (struct type *type, int fieldno,
3374 const gdb_byte *valaddr,
3375 LONGEST embedded_offset, const struct value *val)
3376 {
3377 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3378 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3379 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3380
3381 unpack_value_bitfield (res_val, bitpos, bitsize,
3382 valaddr, embedded_offset, val);
3383
3384 return res_val;
3385 }
3386
3387 /* Modify the value of a bitfield. ADDR points to a block of memory in
3388 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3389 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3390 indicate which bits (in target bit order) comprise the bitfield.
3391 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3392 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3393
3394 void
3395 modify_field (struct type *type, gdb_byte *addr,
3396 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3397 {
3398 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3399 ULONGEST oword;
3400 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3401 LONGEST bytesize;
3402
3403 /* Normalize BITPOS. */
3404 addr += bitpos / 8;
3405 bitpos %= 8;
3406
3407 /* If a negative fieldval fits in the field in question, chop
3408 off the sign extension bits. */
3409 if ((~fieldval & ~(mask >> 1)) == 0)
3410 fieldval &= mask;
3411
3412 /* Warn if value is too big to fit in the field in question. */
3413 if (0 != (fieldval & ~mask))
3414 {
3415 /* FIXME: would like to include fieldval in the message, but
3416 we don't have a sprintf_longest. */
3417 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3418
3419 /* Truncate it, otherwise adjoining fields may be corrupted. */
3420 fieldval &= mask;
3421 }
3422
3423 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3424 false valgrind reports. */
3425
3426 bytesize = (bitpos + bitsize + 7) / 8;
3427 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3428
3429 /* Shifting for bit field depends on endianness of the target machine. */
3430 if (gdbarch_bits_big_endian (get_type_arch (type)))
3431 bitpos = bytesize * 8 - bitpos - bitsize;
3432
3433 oword &= ~(mask << bitpos);
3434 oword |= fieldval << bitpos;
3435
3436 store_unsigned_integer (addr, bytesize, byte_order, oword);
3437 }
3438 \f
3439 /* Pack NUM into BUF using a target format of TYPE. */
3440
3441 void
3442 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3443 {
3444 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3445 LONGEST len;
3446
3447 type = check_typedef (type);
3448 len = TYPE_LENGTH (type);
3449
3450 switch (TYPE_CODE (type))
3451 {
3452 case TYPE_CODE_INT:
3453 case TYPE_CODE_CHAR:
3454 case TYPE_CODE_ENUM:
3455 case TYPE_CODE_FLAGS:
3456 case TYPE_CODE_BOOL:
3457 case TYPE_CODE_RANGE:
3458 case TYPE_CODE_MEMBERPTR:
3459 store_signed_integer (buf, len, byte_order, num);
3460 break;
3461
3462 case TYPE_CODE_REF:
3463 case TYPE_CODE_RVALUE_REF:
3464 case TYPE_CODE_PTR:
3465 store_typed_address (buf, type, (CORE_ADDR) num);
3466 break;
3467
3468 case TYPE_CODE_FLT:
3469 case TYPE_CODE_DECFLOAT:
3470 target_float_from_longest (buf, type, num);
3471 break;
3472
3473 default:
3474 error (_("Unexpected type (%d) encountered for integer constant."),
3475 TYPE_CODE (type));
3476 }
3477 }
3478
3479
3480 /* Pack NUM into BUF using a target format of TYPE. */
3481
3482 static void
3483 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3484 {
3485 LONGEST len;
3486 enum bfd_endian byte_order;
3487
3488 type = check_typedef (type);
3489 len = TYPE_LENGTH (type);
3490 byte_order = gdbarch_byte_order (get_type_arch (type));
3491
3492 switch (TYPE_CODE (type))
3493 {
3494 case TYPE_CODE_INT:
3495 case TYPE_CODE_CHAR:
3496 case TYPE_CODE_ENUM:
3497 case TYPE_CODE_FLAGS:
3498 case TYPE_CODE_BOOL:
3499 case TYPE_CODE_RANGE:
3500 case TYPE_CODE_MEMBERPTR:
3501 store_unsigned_integer (buf, len, byte_order, num);
3502 break;
3503
3504 case TYPE_CODE_REF:
3505 case TYPE_CODE_RVALUE_REF:
3506 case TYPE_CODE_PTR:
3507 store_typed_address (buf, type, (CORE_ADDR) num);
3508 break;
3509
3510 case TYPE_CODE_FLT:
3511 case TYPE_CODE_DECFLOAT:
3512 target_float_from_ulongest (buf, type, num);
3513 break;
3514
3515 default:
3516 error (_("Unexpected type (%d) encountered "
3517 "for unsigned integer constant."),
3518 TYPE_CODE (type));
3519 }
3520 }
3521
3522
3523 /* Convert C numbers into newly allocated values. */
3524
3525 struct value *
3526 value_from_longest (struct type *type, LONGEST num)
3527 {
3528 struct value *val = allocate_value (type);
3529
3530 pack_long (value_contents_raw (val), type, num);
3531 return val;
3532 }
3533
3534
3535 /* Convert C unsigned numbers into newly allocated values. */
3536
3537 struct value *
3538 value_from_ulongest (struct type *type, ULONGEST num)
3539 {
3540 struct value *val = allocate_value (type);
3541
3542 pack_unsigned_long (value_contents_raw (val), type, num);
3543
3544 return val;
3545 }
3546
3547
3548 /* Create a value representing a pointer of type TYPE to the address
3549 ADDR. */
3550
3551 struct value *
3552 value_from_pointer (struct type *type, CORE_ADDR addr)
3553 {
3554 struct value *val = allocate_value (type);
3555
3556 store_typed_address (value_contents_raw (val),
3557 check_typedef (type), addr);
3558 return val;
3559 }
3560
3561
3562 /* Create a value of type TYPE whose contents come from VALADDR, if it
3563 is non-null, and whose memory address (in the inferior) is
3564 ADDRESS. The type of the created value may differ from the passed
3565 type TYPE. Make sure to retrieve values new type after this call.
3566 Note that TYPE is not passed through resolve_dynamic_type; this is
3567 a special API intended for use only by Ada. */
3568
3569 struct value *
3570 value_from_contents_and_address_unresolved (struct type *type,
3571 const gdb_byte *valaddr,
3572 CORE_ADDR address)
3573 {
3574 struct value *v;
3575
3576 if (valaddr == NULL)
3577 v = allocate_value_lazy (type);
3578 else
3579 v = value_from_contents (type, valaddr);
3580 VALUE_LVAL (v) = lval_memory;
3581 set_value_address (v, address);
3582 return v;
3583 }
3584
3585 /* Create a value of type TYPE whose contents come from VALADDR, if it
3586 is non-null, and whose memory address (in the inferior) is
3587 ADDRESS. The type of the created value may differ from the passed
3588 type TYPE. Make sure to retrieve values new type after this call. */
3589
3590 struct value *
3591 value_from_contents_and_address (struct type *type,
3592 const gdb_byte *valaddr,
3593 CORE_ADDR address)
3594 {
3595 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3596 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3597 struct value *v;
3598
3599 if (valaddr == NULL)
3600 v = allocate_value_lazy (resolved_type);
3601 else
3602 v = value_from_contents (resolved_type, valaddr);
3603 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3604 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3605 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3606 VALUE_LVAL (v) = lval_memory;
3607 set_value_address (v, address);
3608 return v;
3609 }
3610
3611 /* Create a value of type TYPE holding the contents CONTENTS.
3612 The new value is `not_lval'. */
3613
3614 struct value *
3615 value_from_contents (struct type *type, const gdb_byte *contents)
3616 {
3617 struct value *result;
3618
3619 result = allocate_value (type);
3620 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3621 return result;
3622 }
3623
3624 /* Extract a value from the history file. Input will be of the form
3625 $digits or $$digits. See block comment above 'write_dollar_variable'
3626 for details. */
3627
3628 struct value *
3629 value_from_history_ref (const char *h, const char **endp)
3630 {
3631 int index, len;
3632
3633 if (h[0] == '$')
3634 len = 1;
3635 else
3636 return NULL;
3637
3638 if (h[1] == '$')
3639 len = 2;
3640
3641 /* Find length of numeral string. */
3642 for (; isdigit (h[len]); len++)
3643 ;
3644
3645 /* Make sure numeral string is not part of an identifier. */
3646 if (h[len] == '_' || isalpha (h[len]))
3647 return NULL;
3648
3649 /* Now collect the index value. */
3650 if (h[1] == '$')
3651 {
3652 if (len == 2)
3653 {
3654 /* For some bizarre reason, "$$" is equivalent to "$$1",
3655 rather than to "$$0" as it ought to be! */
3656 index = -1;
3657 *endp += len;
3658 }
3659 else
3660 {
3661 char *local_end;
3662
3663 index = -strtol (&h[2], &local_end, 10);
3664 *endp = local_end;
3665 }
3666 }
3667 else
3668 {
3669 if (len == 1)
3670 {
3671 /* "$" is equivalent to "$0". */
3672 index = 0;
3673 *endp += len;
3674 }
3675 else
3676 {
3677 char *local_end;
3678
3679 index = strtol (&h[1], &local_end, 10);
3680 *endp = local_end;
3681 }
3682 }
3683
3684 return access_value_history (index);
3685 }
3686
3687 /* Get the component value (offset by OFFSET bytes) of a struct or
3688 union WHOLE. Component's type is TYPE. */
3689
3690 struct value *
3691 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3692 {
3693 struct value *v;
3694
3695 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3696 v = allocate_value_lazy (type);
3697 else
3698 {
3699 v = allocate_value (type);
3700 value_contents_copy (v, value_embedded_offset (v),
3701 whole, value_embedded_offset (whole) + offset,
3702 type_length_units (type));
3703 }
3704 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3705 set_value_component_location (v, whole);
3706
3707 return v;
3708 }
3709
3710 struct value *
3711 coerce_ref_if_computed (const struct value *arg)
3712 {
3713 const struct lval_funcs *funcs;
3714
3715 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3716 return NULL;
3717
3718 if (value_lval_const (arg) != lval_computed)
3719 return NULL;
3720
3721 funcs = value_computed_funcs (arg);
3722 if (funcs->coerce_ref == NULL)
3723 return NULL;
3724
3725 return funcs->coerce_ref (arg);
3726 }
3727
3728 /* Look at value.h for description. */
3729
3730 struct value *
3731 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3732 const struct type *original_type,
3733 const struct value *original_value)
3734 {
3735 /* Re-adjust type. */
3736 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3737
3738 /* Add embedding info. */
3739 set_value_enclosing_type (value, enc_type);
3740 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3741
3742 /* We may be pointing to an object of some derived type. */
3743 return value_full_object (value, NULL, 0, 0, 0);
3744 }
3745
3746 struct value *
3747 coerce_ref (struct value *arg)
3748 {
3749 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3750 struct value *retval;
3751 struct type *enc_type;
3752
3753 retval = coerce_ref_if_computed (arg);
3754 if (retval)
3755 return retval;
3756
3757 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3758 return arg;
3759
3760 enc_type = check_typedef (value_enclosing_type (arg));
3761 enc_type = TYPE_TARGET_TYPE (enc_type);
3762
3763 retval = value_at_lazy (enc_type,
3764 unpack_pointer (value_type (arg),
3765 value_contents (arg)));
3766 enc_type = value_type (retval);
3767 return readjust_indirect_value_type (retval, enc_type,
3768 value_type_arg_tmp, arg);
3769 }
3770
3771 struct value *
3772 coerce_array (struct value *arg)
3773 {
3774 struct type *type;
3775
3776 arg = coerce_ref (arg);
3777 type = check_typedef (value_type (arg));
3778
3779 switch (TYPE_CODE (type))
3780 {
3781 case TYPE_CODE_ARRAY:
3782 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3783 arg = value_coerce_array (arg);
3784 break;
3785 case TYPE_CODE_FUNC:
3786 arg = value_coerce_function (arg);
3787 break;
3788 }
3789 return arg;
3790 }
3791 \f
3792
3793 /* Return the return value convention that will be used for the
3794 specified type. */
3795
3796 enum return_value_convention
3797 struct_return_convention (struct gdbarch *gdbarch,
3798 struct value *function, struct type *value_type)
3799 {
3800 enum type_code code = TYPE_CODE (value_type);
3801
3802 if (code == TYPE_CODE_ERROR)
3803 error (_("Function return type unknown."));
3804
3805 /* Probe the architecture for the return-value convention. */
3806 return gdbarch_return_value (gdbarch, function, value_type,
3807 NULL, NULL, NULL);
3808 }
3809
3810 /* Return true if the function returning the specified type is using
3811 the convention of returning structures in memory (passing in the
3812 address as a hidden first parameter). */
3813
3814 int
3815 using_struct_return (struct gdbarch *gdbarch,
3816 struct value *function, struct type *value_type)
3817 {
3818 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3819 /* A void return value is never in memory. See also corresponding
3820 code in "print_return_value". */
3821 return 0;
3822
3823 return (struct_return_convention (gdbarch, function, value_type)
3824 != RETURN_VALUE_REGISTER_CONVENTION);
3825 }
3826
3827 /* Set the initialized field in a value struct. */
3828
3829 void
3830 set_value_initialized (struct value *val, int status)
3831 {
3832 val->initialized = status;
3833 }
3834
3835 /* Return the initialized field in a value struct. */
3836
3837 int
3838 value_initialized (const struct value *val)
3839 {
3840 return val->initialized;
3841 }
3842
3843 /* Load the actual content of a lazy value. Fetch the data from the
3844 user's process and clear the lazy flag to indicate that the data in
3845 the buffer is valid.
3846
3847 If the value is zero-length, we avoid calling read_memory, which
3848 would abort. We mark the value as fetched anyway -- all 0 bytes of
3849 it. */
3850
3851 void
3852 value_fetch_lazy (struct value *val)
3853 {
3854 gdb_assert (value_lazy (val));
3855 allocate_value_contents (val);
3856 /* A value is either lazy, or fully fetched. The
3857 availability/validity is only established as we try to fetch a
3858 value. */
3859 gdb_assert (VEC_empty (range_s, val->optimized_out));
3860 gdb_assert (VEC_empty (range_s, val->unavailable));
3861 if (value_bitsize (val))
3862 {
3863 /* To read a lazy bitfield, read the entire enclosing value. This
3864 prevents reading the same block of (possibly volatile) memory once
3865 per bitfield. It would be even better to read only the containing
3866 word, but we have no way to record that just specific bits of a
3867 value have been fetched. */
3868 struct type *type = check_typedef (value_type (val));
3869 struct value *parent = value_parent (val);
3870
3871 if (value_lazy (parent))
3872 value_fetch_lazy (parent);
3873
3874 unpack_value_bitfield (val,
3875 value_bitpos (val), value_bitsize (val),
3876 value_contents_for_printing (parent),
3877 value_offset (val), parent);
3878 }
3879 else if (VALUE_LVAL (val) == lval_memory)
3880 {
3881 CORE_ADDR addr = value_address (val);
3882 struct type *type = check_typedef (value_enclosing_type (val));
3883
3884 if (TYPE_LENGTH (type))
3885 read_value_memory (val, 0, value_stack (val),
3886 addr, value_contents_all_raw (val),
3887 type_length_units (type));
3888 }
3889 else if (VALUE_LVAL (val) == lval_register)
3890 {
3891 struct frame_info *next_frame;
3892 int regnum;
3893 struct type *type = check_typedef (value_type (val));
3894 struct value *new_val = val, *mark = value_mark ();
3895
3896 /* Offsets are not supported here; lazy register values must
3897 refer to the entire register. */
3898 gdb_assert (value_offset (val) == 0);
3899
3900 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3901 {
3902 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3903
3904 next_frame = frame_find_by_id (next_frame_id);
3905 regnum = VALUE_REGNUM (new_val);
3906
3907 gdb_assert (next_frame != NULL);
3908
3909 /* Convertible register routines are used for multi-register
3910 values and for interpretation in different types
3911 (e.g. float or int from a double register). Lazy
3912 register values should have the register's natural type,
3913 so they do not apply. */
3914 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3915 regnum, type));
3916
3917 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3918 Since a "->next" operation was performed when setting
3919 this field, we do not need to perform a "next" operation
3920 again when unwinding the register. That's why
3921 frame_unwind_register_value() is called here instead of
3922 get_frame_register_value(). */
3923 new_val = frame_unwind_register_value (next_frame, regnum);
3924
3925 /* If we get another lazy lval_register value, it means the
3926 register is found by reading it from NEXT_FRAME's next frame.
3927 frame_unwind_register_value should never return a value with
3928 the frame id pointing to NEXT_FRAME. If it does, it means we
3929 either have two consecutive frames with the same frame id
3930 in the frame chain, or some code is trying to unwind
3931 behind get_prev_frame's back (e.g., a frame unwind
3932 sniffer trying to unwind), bypassing its validations. In
3933 any case, it should always be an internal error to end up
3934 in this situation. */
3935 if (VALUE_LVAL (new_val) == lval_register
3936 && value_lazy (new_val)
3937 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3938 internal_error (__FILE__, __LINE__,
3939 _("infinite loop while fetching a register"));
3940 }
3941
3942 /* If it's still lazy (for instance, a saved register on the
3943 stack), fetch it. */
3944 if (value_lazy (new_val))
3945 value_fetch_lazy (new_val);
3946
3947 /* Copy the contents and the unavailability/optimized-out
3948 meta-data from NEW_VAL to VAL. */
3949 set_value_lazy (val, 0);
3950 value_contents_copy (val, value_embedded_offset (val),
3951 new_val, value_embedded_offset (new_val),
3952 type_length_units (type));
3953
3954 if (frame_debug)
3955 {
3956 struct gdbarch *gdbarch;
3957 struct frame_info *frame;
3958 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3959 so that the frame level will be shown correctly. */
3960 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3961 regnum = VALUE_REGNUM (val);
3962 gdbarch = get_frame_arch (frame);
3963
3964 fprintf_unfiltered (gdb_stdlog,
3965 "{ value_fetch_lazy "
3966 "(frame=%d,regnum=%d(%s),...) ",
3967 frame_relative_level (frame), regnum,
3968 user_reg_map_regnum_to_name (gdbarch, regnum));
3969
3970 fprintf_unfiltered (gdb_stdlog, "->");
3971 if (value_optimized_out (new_val))
3972 {
3973 fprintf_unfiltered (gdb_stdlog, " ");
3974 val_print_optimized_out (new_val, gdb_stdlog);
3975 }
3976 else
3977 {
3978 int i;
3979 const gdb_byte *buf = value_contents (new_val);
3980
3981 if (VALUE_LVAL (new_val) == lval_register)
3982 fprintf_unfiltered (gdb_stdlog, " register=%d",
3983 VALUE_REGNUM (new_val));
3984 else if (VALUE_LVAL (new_val) == lval_memory)
3985 fprintf_unfiltered (gdb_stdlog, " address=%s",
3986 paddress (gdbarch,
3987 value_address (new_val)));
3988 else
3989 fprintf_unfiltered (gdb_stdlog, " computed");
3990
3991 fprintf_unfiltered (gdb_stdlog, " bytes=");
3992 fprintf_unfiltered (gdb_stdlog, "[");
3993 for (i = 0; i < register_size (gdbarch, regnum); i++)
3994 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3995 fprintf_unfiltered (gdb_stdlog, "]");
3996 }
3997
3998 fprintf_unfiltered (gdb_stdlog, " }\n");
3999 }
4000
4001 /* Dispose of the intermediate values. This prevents
4002 watchpoints from trying to watch the saved frame pointer. */
4003 value_free_to_mark (mark);
4004 }
4005 else if (VALUE_LVAL (val) == lval_computed
4006 && value_computed_funcs (val)->read != NULL)
4007 value_computed_funcs (val)->read (val);
4008 else
4009 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4010
4011 set_value_lazy (val, 0);
4012 }
4013
4014 /* Implementation of the convenience function $_isvoid. */
4015
4016 static struct value *
4017 isvoid_internal_fn (struct gdbarch *gdbarch,
4018 const struct language_defn *language,
4019 void *cookie, int argc, struct value **argv)
4020 {
4021 int ret;
4022
4023 if (argc != 1)
4024 error (_("You must provide one argument for $_isvoid."));
4025
4026 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4027
4028 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4029 }
4030
4031 void
4032 _initialize_values (void)
4033 {
4034 add_cmd ("convenience", no_class, show_convenience, _("\
4035 Debugger convenience (\"$foo\") variables and functions.\n\
4036 Convenience variables are created when you assign them values;\n\
4037 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4038 \n\
4039 A few convenience variables are given values automatically:\n\
4040 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4041 \"$__\" holds the contents of the last address examined with \"x\"."
4042 #ifdef HAVE_PYTHON
4043 "\n\n\
4044 Convenience functions are defined via the Python API."
4045 #endif
4046 ), &showlist);
4047 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4048
4049 add_cmd ("values", no_set_class, show_values, _("\
4050 Elements of value history around item number IDX (or last ten)."),
4051 &showlist);
4052
4053 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4054 Initialize a convenience variable if necessary.\n\
4055 init-if-undefined VARIABLE = EXPRESSION\n\
4056 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4057 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4058 VARIABLE is already initialized."));
4059
4060 add_prefix_cmd ("function", no_class, function_command, _("\
4061 Placeholder command for showing help on convenience functions."),
4062 &functionlist, "function ", 0, &cmdlist);
4063
4064 add_internal_function ("_isvoid", _("\
4065 Check whether an expression is void.\n\
4066 Usage: $_isvoid (expression)\n\
4067 Return 1 if the expression is void, zero otherwise."),
4068 isvoid_internal_fn, NULL);
4069
4070 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4071 class_support, &max_value_size, _("\
4072 Set maximum sized value gdb will load from the inferior."), _("\
4073 Show maximum sized value gdb will load from the inferior."), _("\
4074 Use this to control the maximum size, in bytes, of a value that gdb\n\
4075 will load from the inferior. Setting this value to 'unlimited'\n\
4076 disables checking.\n\
4077 Setting this does not invalidate already allocated values, it only\n\
4078 prevents future values, larger than this size, from being allocated."),
4079 set_max_value_size,
4080 show_max_value_size,
4081 &setlist, &showlist);
4082 }
This page took 0.140673 seconds and 4 git commands to generate.