Add inclusive range support for Rust
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "regcache.h"
32 #include "block.h"
33 #include "target-float.h"
34 #include "objfiles.h"
35 #include "valprint.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
38 #include <ctype.h>
39 #include "tracepoint.h"
40 #include "cp-abi.h"
41 #include "user-regs.h"
42 #include <algorithm>
43 #include "completer.h"
44 #include "selftest.h"
45 #include "common/array-view.h"
46
47 /* Definition of a user function. */
48 struct internal_function
49 {
50 /* The name of the function. It is a bit odd to have this in the
51 function itself -- the user might use a differently-named
52 convenience variable to hold the function. */
53 char *name;
54
55 /* The handler. */
56 internal_function_fn handler;
57
58 /* User data for the handler. */
59 void *cookie;
60 };
61
62 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
63
64 struct range
65 {
66 /* Lowest offset in the range. */
67 LONGEST offset;
68
69 /* Length of the range. */
70 LONGEST length;
71
72 /* Returns true if THIS is strictly less than OTHER, useful for
73 searching. We keep ranges sorted by offset and coalesce
74 overlapping and contiguous ranges, so this just compares the
75 starting offset. */
76
77 bool operator< (const range &other) const
78 {
79 return offset < other.offset;
80 }
81
82 /* Returns true if THIS is equal to OTHER. */
83 bool operator== (const range &other) const
84 {
85 return offset == other.offset && length == other.length;
86 }
87 };
88
89 /* Returns true if the ranges defined by [offset1, offset1+len1) and
90 [offset2, offset2+len2) overlap. */
91
92 static int
93 ranges_overlap (LONGEST offset1, LONGEST len1,
94 LONGEST offset2, LONGEST len2)
95 {
96 ULONGEST h, l;
97
98 l = std::max (offset1, offset2);
99 h = std::min (offset1 + len1, offset2 + len2);
100 return (l < h);
101 }
102
103 /* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106 static int
107 ranges_contain (const std::vector<range> &ranges, LONGEST offset,
108 LONGEST length)
109 {
110 range what;
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
146
147 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
148
149 if (i > ranges.begin ())
150 {
151 const struct range &bef = *(i - 1);
152
153 if (ranges_overlap (bef.offset, bef.length, offset, length))
154 return 1;
155 }
156
157 if (i < ranges.end ())
158 {
159 const struct range &r = *i;
160
161 if (ranges_overlap (r.offset, r.length, offset, length))
162 return 1;
163 }
164
165 return 0;
166 }
167
168 static struct cmd_list_element *functionlist;
169
170 /* Note that the fields in this structure are arranged to save a bit
171 of memory. */
172
173 struct value
174 {
175 explicit value (struct type *type_)
176 : modifiable (1),
177 lazy (1),
178 initialized (1),
179 stack (0),
180 type (type_),
181 enclosing_type (type_)
182 {
183 location.address = 0;
184 }
185
186 ~value ()
187 {
188 if (VALUE_LVAL (this) == lval_computed)
189 {
190 const struct lval_funcs *funcs = location.computed.funcs;
191
192 if (funcs->free_closure)
193 funcs->free_closure (this);
194 }
195 else if (VALUE_LVAL (this) == lval_xcallable)
196 delete location.xm_worker;
197 }
198
199 DISABLE_COPY_AND_ASSIGN (value);
200
201 /* Type of value; either not an lval, or one of the various
202 different possible kinds of lval. */
203 enum lval_type lval = not_lval;
204
205 /* Is it modifiable? Only relevant if lval != not_lval. */
206 unsigned int modifiable : 1;
207
208 /* If zero, contents of this value are in the contents field. If
209 nonzero, contents are in inferior. If the lval field is lval_memory,
210 the contents are in inferior memory at location.address plus offset.
211 The lval field may also be lval_register.
212
213 WARNING: This field is used by the code which handles watchpoints
214 (see breakpoint.c) to decide whether a particular value can be
215 watched by hardware watchpoints. If the lazy flag is set for
216 some member of a value chain, it is assumed that this member of
217 the chain doesn't need to be watched as part of watching the
218 value itself. This is how GDB avoids watching the entire struct
219 or array when the user wants to watch a single struct member or
220 array element. If you ever change the way lazy flag is set and
221 reset, be sure to consider this use as well! */
222 unsigned int lazy : 1;
223
224 /* If value is a variable, is it initialized or not. */
225 unsigned int initialized : 1;
226
227 /* If value is from the stack. If this is set, read_stack will be
228 used instead of read_memory to enable extra caching. */
229 unsigned int stack : 1;
230
231 /* Location of value (if lval). */
232 union
233 {
234 /* If lval == lval_memory, this is the address in the inferior */
235 CORE_ADDR address;
236
237 /*If lval == lval_register, the value is from a register. */
238 struct
239 {
240 /* Register number. */
241 int regnum;
242 /* Frame ID of "next" frame to which a register value is relative.
243 If the register value is found relative to frame F, then the
244 frame id of F->next will be stored in next_frame_id. */
245 struct frame_id next_frame_id;
246 } reg;
247
248 /* Pointer to internal variable. */
249 struct internalvar *internalvar;
250
251 /* Pointer to xmethod worker. */
252 struct xmethod_worker *xm_worker;
253
254 /* If lval == lval_computed, this is a set of function pointers
255 to use to access and describe the value, and a closure pointer
256 for them to use. */
257 struct
258 {
259 /* Functions to call. */
260 const struct lval_funcs *funcs;
261
262 /* Closure for those functions to use. */
263 void *closure;
264 } computed;
265 } location;
266
267 /* Describes offset of a value within lval of a structure in target
268 addressable memory units. Note also the member embedded_offset
269 below. */
270 LONGEST offset = 0;
271
272 /* Only used for bitfields; number of bits contained in them. */
273 LONGEST bitsize = 0;
274
275 /* Only used for bitfields; position of start of field. For
276 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
277 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
278 LONGEST bitpos = 0;
279
280 /* The number of references to this value. When a value is created,
281 the value chain holds a reference, so REFERENCE_COUNT is 1. If
282 release_value is called, this value is removed from the chain but
283 the caller of release_value now has a reference to this value.
284 The caller must arrange for a call to value_free later. */
285 int reference_count = 1;
286
287 /* Only used for bitfields; the containing value. This allows a
288 single read from the target when displaying multiple
289 bitfields. */
290 value_ref_ptr parent;
291
292 /* Type of the value. */
293 struct type *type;
294
295 /* If a value represents a C++ object, then the `type' field gives
296 the object's compile-time type. If the object actually belongs
297 to some class derived from `type', perhaps with other base
298 classes and additional members, then `type' is just a subobject
299 of the real thing, and the full object is probably larger than
300 `type' would suggest.
301
302 If `type' is a dynamic class (i.e. one with a vtable), then GDB
303 can actually determine the object's run-time type by looking at
304 the run-time type information in the vtable. When this
305 information is available, we may elect to read in the entire
306 object, for several reasons:
307
308 - When printing the value, the user would probably rather see the
309 full object, not just the limited portion apparent from the
310 compile-time type.
311
312 - If `type' has virtual base classes, then even printing `type'
313 alone may require reaching outside the `type' portion of the
314 object to wherever the virtual base class has been stored.
315
316 When we store the entire object, `enclosing_type' is the run-time
317 type -- the complete object -- and `embedded_offset' is the
318 offset of `type' within that larger type, in target addressable memory
319 units. The value_contents() macro takes `embedded_offset' into account,
320 so most GDB code continues to see the `type' portion of the value, just
321 as the inferior would.
322
323 If `type' is a pointer to an object, then `enclosing_type' is a
324 pointer to the object's run-time type, and `pointed_to_offset' is
325 the offset in target addressable memory units from the full object
326 to the pointed-to object -- that is, the value `embedded_offset' would
327 have if we followed the pointer and fetched the complete object.
328 (I don't really see the point. Why not just determine the
329 run-time type when you indirect, and avoid the special case? The
330 contents don't matter until you indirect anyway.)
331
332 If we're not doing anything fancy, `enclosing_type' is equal to
333 `type', and `embedded_offset' is zero, so everything works
334 normally. */
335 struct type *enclosing_type;
336 LONGEST embedded_offset = 0;
337 LONGEST pointed_to_offset = 0;
338
339 /* Actual contents of the value. Target byte-order. NULL or not
340 valid if lazy is nonzero. */
341 gdb::unique_xmalloc_ptr<gdb_byte> contents;
342
343 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
344 rather than available, since the common and default case is for a
345 value to be available. This is filled in at value read time.
346 The unavailable ranges are tracked in bits. Note that a contents
347 bit that has been optimized out doesn't really exist in the
348 program, so it can't be marked unavailable either. */
349 std::vector<range> unavailable;
350
351 /* Likewise, but for optimized out contents (a chunk of the value of
352 a variable that does not actually exist in the program). If LVAL
353 is lval_register, this is a register ($pc, $sp, etc., never a
354 program variable) that has not been saved in the frame. Not
355 saved registers and optimized-out program variables values are
356 treated pretty much the same, except not-saved registers have a
357 different string representation and related error strings. */
358 std::vector<range> optimized_out;
359 };
360
361 /* See value.h. */
362
363 struct gdbarch *
364 get_value_arch (const struct value *value)
365 {
366 return get_type_arch (value_type (value));
367 }
368
369 int
370 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
371 {
372 gdb_assert (!value->lazy);
373
374 return !ranges_contain (value->unavailable, offset, length);
375 }
376
377 int
378 value_bytes_available (const struct value *value,
379 LONGEST offset, LONGEST length)
380 {
381 return value_bits_available (value,
382 offset * TARGET_CHAR_BIT,
383 length * TARGET_CHAR_BIT);
384 }
385
386 int
387 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
388 {
389 gdb_assert (!value->lazy);
390
391 return ranges_contain (value->optimized_out, bit_offset, bit_length);
392 }
393
394 int
395 value_entirely_available (struct value *value)
396 {
397 /* We can only tell whether the whole value is available when we try
398 to read it. */
399 if (value->lazy)
400 value_fetch_lazy (value);
401
402 if (value->unavailable.empty ())
403 return 1;
404 return 0;
405 }
406
407 /* Returns true if VALUE is entirely covered by RANGES. If the value
408 is lazy, it'll be read now. Note that RANGE is a pointer to
409 pointer because reading the value might change *RANGE. */
410
411 static int
412 value_entirely_covered_by_range_vector (struct value *value,
413 const std::vector<range> &ranges)
414 {
415 /* We can only tell whether the whole value is optimized out /
416 unavailable when we try to read it. */
417 if (value->lazy)
418 value_fetch_lazy (value);
419
420 if (ranges.size () == 1)
421 {
422 const struct range &t = ranges[0];
423
424 if (t.offset == 0
425 && t.length == (TARGET_CHAR_BIT
426 * TYPE_LENGTH (value_enclosing_type (value))))
427 return 1;
428 }
429
430 return 0;
431 }
432
433 int
434 value_entirely_unavailable (struct value *value)
435 {
436 return value_entirely_covered_by_range_vector (value, value->unavailable);
437 }
438
439 int
440 value_entirely_optimized_out (struct value *value)
441 {
442 return value_entirely_covered_by_range_vector (value, value->optimized_out);
443 }
444
445 /* Insert into the vector pointed to by VECTORP the bit range starting of
446 OFFSET bits, and extending for the next LENGTH bits. */
447
448 static void
449 insert_into_bit_range_vector (std::vector<range> *vectorp,
450 LONGEST offset, LONGEST length)
451 {
452 range newr;
453
454 /* Insert the range sorted. If there's overlap or the new range
455 would be contiguous with an existing range, merge. */
456
457 newr.offset = offset;
458 newr.length = length;
459
460 /* Do a binary search for the position the given range would be
461 inserted if we only considered the starting OFFSET of ranges.
462 Call that position I. Since we also have LENGTH to care for
463 (this is a range afterall), we need to check if the _previous_
464 range overlaps the I range. E.g., calling R the new range:
465
466 #1 - overlaps with previous
467
468 R
469 |-...-|
470 |---| |---| |------| ... |--|
471 0 1 2 N
472
473 I=1
474
475 In the case #1 above, the binary search would return `I=1',
476 meaning, this OFFSET should be inserted at position 1, and the
477 current position 1 should be pushed further (and become 2). But,
478 note that `0' overlaps with R, so we want to merge them.
479
480 A similar consideration needs to be taken if the new range would
481 be contiguous with the previous range:
482
483 #2 - contiguous with previous
484
485 R
486 |-...-|
487 |--| |---| |------| ... |--|
488 0 1 2 N
489
490 I=1
491
492 If there's no overlap with the previous range, as in:
493
494 #3 - not overlapping and not contiguous
495
496 R
497 |-...-|
498 |--| |---| |------| ... |--|
499 0 1 2 N
500
501 I=1
502
503 or if I is 0:
504
505 #4 - R is the range with lowest offset
506
507 R
508 |-...-|
509 |--| |---| |------| ... |--|
510 0 1 2 N
511
512 I=0
513
514 ... we just push the new range to I.
515
516 All the 4 cases above need to consider that the new range may
517 also overlap several of the ranges that follow, or that R may be
518 contiguous with the following range, and merge. E.g.,
519
520 #5 - overlapping following ranges
521
522 R
523 |------------------------|
524 |--| |---| |------| ... |--|
525 0 1 2 N
526
527 I=0
528
529 or:
530
531 R
532 |-------|
533 |--| |---| |------| ... |--|
534 0 1 2 N
535
536 I=1
537
538 */
539
540 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
541 if (i > vectorp->begin ())
542 {
543 struct range &bef = *(i - 1);
544
545 if (ranges_overlap (bef.offset, bef.length, offset, length))
546 {
547 /* #1 */
548 ULONGEST l = std::min (bef.offset, offset);
549 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
550
551 bef.offset = l;
552 bef.length = h - l;
553 i--;
554 }
555 else if (offset == bef.offset + bef.length)
556 {
557 /* #2 */
558 bef.length += length;
559 i--;
560 }
561 else
562 {
563 /* #3 */
564 i = vectorp->insert (i, newr);
565 }
566 }
567 else
568 {
569 /* #4 */
570 i = vectorp->insert (i, newr);
571 }
572
573 /* Check whether the ranges following the one we've just added or
574 touched can be folded in (#5 above). */
575 if (i != vectorp->end () && i + 1 < vectorp->end ())
576 {
577 int removed = 0;
578 auto next = i + 1;
579
580 /* Get the range we just touched. */
581 struct range &t = *i;
582 removed = 0;
583
584 i = next;
585 for (; i < vectorp->end (); i++)
586 {
587 struct range &r = *i;
588 if (r.offset <= t.offset + t.length)
589 {
590 ULONGEST l, h;
591
592 l = std::min (t.offset, r.offset);
593 h = std::max (t.offset + t.length, r.offset + r.length);
594
595 t.offset = l;
596 t.length = h - l;
597
598 removed++;
599 }
600 else
601 {
602 /* If we couldn't merge this one, we won't be able to
603 merge following ones either, since the ranges are
604 always sorted by OFFSET. */
605 break;
606 }
607 }
608
609 if (removed != 0)
610 vectorp->erase (next, next + removed);
611 }
612 }
613
614 void
615 mark_value_bits_unavailable (struct value *value,
616 LONGEST offset, LONGEST length)
617 {
618 insert_into_bit_range_vector (&value->unavailable, offset, length);
619 }
620
621 void
622 mark_value_bytes_unavailable (struct value *value,
623 LONGEST offset, LONGEST length)
624 {
625 mark_value_bits_unavailable (value,
626 offset * TARGET_CHAR_BIT,
627 length * TARGET_CHAR_BIT);
628 }
629
630 /* Find the first range in RANGES that overlaps the range defined by
631 OFFSET and LENGTH, starting at element POS in the RANGES vector,
632 Returns the index into RANGES where such overlapping range was
633 found, or -1 if none was found. */
634
635 static int
636 find_first_range_overlap (const std::vector<range> *ranges, int pos,
637 LONGEST offset, LONGEST length)
638 {
639 int i;
640
641 for (i = pos; i < ranges->size (); i++)
642 {
643 const range &r = (*ranges)[i];
644 if (ranges_overlap (r.offset, r.length, offset, length))
645 return i;
646 }
647
648 return -1;
649 }
650
651 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
652 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
653 return non-zero.
654
655 It must always be the case that:
656 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
657
658 It is assumed that memory can be accessed from:
659 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
660 to:
661 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
662 / TARGET_CHAR_BIT) */
663 static int
664 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
665 const gdb_byte *ptr2, size_t offset2_bits,
666 size_t length_bits)
667 {
668 gdb_assert (offset1_bits % TARGET_CHAR_BIT
669 == offset2_bits % TARGET_CHAR_BIT);
670
671 if (offset1_bits % TARGET_CHAR_BIT != 0)
672 {
673 size_t bits;
674 gdb_byte mask, b1, b2;
675
676 /* The offset from the base pointers PTR1 and PTR2 is not a complete
677 number of bytes. A number of bits up to either the next exact
678 byte boundary, or LENGTH_BITS (which ever is sooner) will be
679 compared. */
680 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
681 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
682 mask = (1 << bits) - 1;
683
684 if (length_bits < bits)
685 {
686 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
687 bits = length_bits;
688 }
689
690 /* Now load the two bytes and mask off the bits we care about. */
691 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
692 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
693
694 if (b1 != b2)
695 return 1;
696
697 /* Now update the length and offsets to take account of the bits
698 we've just compared. */
699 length_bits -= bits;
700 offset1_bits += bits;
701 offset2_bits += bits;
702 }
703
704 if (length_bits % TARGET_CHAR_BIT != 0)
705 {
706 size_t bits;
707 size_t o1, o2;
708 gdb_byte mask, b1, b2;
709
710 /* The length is not an exact number of bytes. After the previous
711 IF.. block then the offsets are byte aligned, or the
712 length is zero (in which case this code is not reached). Compare
713 a number of bits at the end of the region, starting from an exact
714 byte boundary. */
715 bits = length_bits % TARGET_CHAR_BIT;
716 o1 = offset1_bits + length_bits - bits;
717 o2 = offset2_bits + length_bits - bits;
718
719 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
720 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
721
722 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
723 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
724
725 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
726 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
727
728 if (b1 != b2)
729 return 1;
730
731 length_bits -= bits;
732 }
733
734 if (length_bits > 0)
735 {
736 /* We've now taken care of any stray "bits" at the start, or end of
737 the region to compare, the remainder can be covered with a simple
738 memcmp. */
739 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
740 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
741 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
742
743 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
744 ptr2 + offset2_bits / TARGET_CHAR_BIT,
745 length_bits / TARGET_CHAR_BIT);
746 }
747
748 /* Length is zero, regions match. */
749 return 0;
750 }
751
752 /* Helper struct for find_first_range_overlap_and_match and
753 value_contents_bits_eq. Keep track of which slot of a given ranges
754 vector have we last looked at. */
755
756 struct ranges_and_idx
757 {
758 /* The ranges. */
759 const std::vector<range> *ranges;
760
761 /* The range we've last found in RANGES. Given ranges are sorted,
762 we can start the next lookup here. */
763 int idx;
764 };
765
766 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
767 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
768 ranges starting at OFFSET2 bits. Return true if the ranges match
769 and fill in *L and *H with the overlapping window relative to
770 (both) OFFSET1 or OFFSET2. */
771
772 static int
773 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
774 struct ranges_and_idx *rp2,
775 LONGEST offset1, LONGEST offset2,
776 LONGEST length, ULONGEST *l, ULONGEST *h)
777 {
778 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
779 offset1, length);
780 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
781 offset2, length);
782
783 if (rp1->idx == -1 && rp2->idx == -1)
784 {
785 *l = length;
786 *h = length;
787 return 1;
788 }
789 else if (rp1->idx == -1 || rp2->idx == -1)
790 return 0;
791 else
792 {
793 const range *r1, *r2;
794 ULONGEST l1, h1;
795 ULONGEST l2, h2;
796
797 r1 = &(*rp1->ranges)[rp1->idx];
798 r2 = &(*rp2->ranges)[rp2->idx];
799
800 /* Get the unavailable windows intersected by the incoming
801 ranges. The first and last ranges that overlap the argument
802 range may be wider than said incoming arguments ranges. */
803 l1 = std::max (offset1, r1->offset);
804 h1 = std::min (offset1 + length, r1->offset + r1->length);
805
806 l2 = std::max (offset2, r2->offset);
807 h2 = std::min (offset2 + length, offset2 + r2->length);
808
809 /* Make them relative to the respective start offsets, so we can
810 compare them for equality. */
811 l1 -= offset1;
812 h1 -= offset1;
813
814 l2 -= offset2;
815 h2 -= offset2;
816
817 /* Different ranges, no match. */
818 if (l1 != l2 || h1 != h2)
819 return 0;
820
821 *h = h1;
822 *l = l1;
823 return 1;
824 }
825 }
826
827 /* Helper function for value_contents_eq. The only difference is that
828 this function is bit rather than byte based.
829
830 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
831 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
832 Return true if the available bits match. */
833
834 static bool
835 value_contents_bits_eq (const struct value *val1, int offset1,
836 const struct value *val2, int offset2,
837 int length)
838 {
839 /* Each array element corresponds to a ranges source (unavailable,
840 optimized out). '1' is for VAL1, '2' for VAL2. */
841 struct ranges_and_idx rp1[2], rp2[2];
842
843 /* See function description in value.h. */
844 gdb_assert (!val1->lazy && !val2->lazy);
845
846 /* We shouldn't be trying to compare past the end of the values. */
847 gdb_assert (offset1 + length
848 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
849 gdb_assert (offset2 + length
850 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
851
852 memset (&rp1, 0, sizeof (rp1));
853 memset (&rp2, 0, sizeof (rp2));
854 rp1[0].ranges = &val1->unavailable;
855 rp2[0].ranges = &val2->unavailable;
856 rp1[1].ranges = &val1->optimized_out;
857 rp2[1].ranges = &val2->optimized_out;
858
859 while (length > 0)
860 {
861 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
862 int i;
863
864 for (i = 0; i < 2; i++)
865 {
866 ULONGEST l_tmp, h_tmp;
867
868 /* The contents only match equal if the invalid/unavailable
869 contents ranges match as well. */
870 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
871 offset1, offset2, length,
872 &l_tmp, &h_tmp))
873 return false;
874
875 /* We're interested in the lowest/first range found. */
876 if (i == 0 || l_tmp < l)
877 {
878 l = l_tmp;
879 h = h_tmp;
880 }
881 }
882
883 /* Compare the available/valid contents. */
884 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
885 val2->contents.get (), offset2, l) != 0)
886 return false;
887
888 length -= h;
889 offset1 += h;
890 offset2 += h;
891 }
892
893 return true;
894 }
895
896 bool
897 value_contents_eq (const struct value *val1, LONGEST offset1,
898 const struct value *val2, LONGEST offset2,
899 LONGEST length)
900 {
901 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
902 val2, offset2 * TARGET_CHAR_BIT,
903 length * TARGET_CHAR_BIT);
904 }
905
906
907 /* The value-history records all the values printed by print commands
908 during this session. */
909
910 static std::vector<value_ref_ptr> value_history;
911
912 \f
913 /* List of all value objects currently allocated
914 (except for those released by calls to release_value)
915 This is so they can be freed after each command. */
916
917 static std::vector<value_ref_ptr> all_values;
918
919 /* Allocate a lazy value for type TYPE. Its actual content is
920 "lazily" allocated too: the content field of the return value is
921 NULL; it will be allocated when it is fetched from the target. */
922
923 struct value *
924 allocate_value_lazy (struct type *type)
925 {
926 struct value *val;
927
928 /* Call check_typedef on our type to make sure that, if TYPE
929 is a TYPE_CODE_TYPEDEF, its length is set to the length
930 of the target type instead of zero. However, we do not
931 replace the typedef type by the target type, because we want
932 to keep the typedef in order to be able to set the VAL's type
933 description correctly. */
934 check_typedef (type);
935
936 val = new struct value (type);
937
938 /* Values start out on the all_values chain. */
939 all_values.emplace_back (val);
940
941 return val;
942 }
943
944 /* The maximum size, in bytes, that GDB will try to allocate for a value.
945 The initial value of 64k was not selected for any specific reason, it is
946 just a reasonable starting point. */
947
948 static int max_value_size = 65536; /* 64k bytes */
949
950 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
951 LONGEST, otherwise GDB will not be able to parse integer values from the
952 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
953 be unable to parse "set max-value-size 2".
954
955 As we want a consistent GDB experience across hosts with different sizes
956 of LONGEST, this arbitrary minimum value was selected, so long as this
957 is bigger than LONGEST on all GDB supported hosts we're fine. */
958
959 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
960 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
961
962 /* Implement the "set max-value-size" command. */
963
964 static void
965 set_max_value_size (const char *args, int from_tty,
966 struct cmd_list_element *c)
967 {
968 gdb_assert (max_value_size == -1 || max_value_size >= 0);
969
970 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
971 {
972 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
973 error (_("max-value-size set too low, increasing to %d bytes"),
974 max_value_size);
975 }
976 }
977
978 /* Implement the "show max-value-size" command. */
979
980 static void
981 show_max_value_size (struct ui_file *file, int from_tty,
982 struct cmd_list_element *c, const char *value)
983 {
984 if (max_value_size == -1)
985 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
986 else
987 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
988 max_value_size);
989 }
990
991 /* Called before we attempt to allocate or reallocate a buffer for the
992 contents of a value. TYPE is the type of the value for which we are
993 allocating the buffer. If the buffer is too large (based on the user
994 controllable setting) then throw an error. If this function returns
995 then we should attempt to allocate the buffer. */
996
997 static void
998 check_type_length_before_alloc (const struct type *type)
999 {
1000 unsigned int length = TYPE_LENGTH (type);
1001
1002 if (max_value_size > -1 && length > max_value_size)
1003 {
1004 if (TYPE_NAME (type) != NULL)
1005 error (_("value of type `%s' requires %u bytes, which is more "
1006 "than max-value-size"), TYPE_NAME (type), length);
1007 else
1008 error (_("value requires %u bytes, which is more than "
1009 "max-value-size"), length);
1010 }
1011 }
1012
1013 /* Allocate the contents of VAL if it has not been allocated yet. */
1014
1015 static void
1016 allocate_value_contents (struct value *val)
1017 {
1018 if (!val->contents)
1019 {
1020 check_type_length_before_alloc (val->enclosing_type);
1021 val->contents.reset
1022 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
1023 }
1024 }
1025
1026 /* Allocate a value and its contents for type TYPE. */
1027
1028 struct value *
1029 allocate_value (struct type *type)
1030 {
1031 struct value *val = allocate_value_lazy (type);
1032
1033 allocate_value_contents (val);
1034 val->lazy = 0;
1035 return val;
1036 }
1037
1038 /* Allocate a value that has the correct length
1039 for COUNT repetitions of type TYPE. */
1040
1041 struct value *
1042 allocate_repeat_value (struct type *type, int count)
1043 {
1044 int low_bound = current_language->string_lower_bound; /* ??? */
1045 /* FIXME-type-allocation: need a way to free this type when we are
1046 done with it. */
1047 struct type *array_type
1048 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1049
1050 return allocate_value (array_type);
1051 }
1052
1053 struct value *
1054 allocate_computed_value (struct type *type,
1055 const struct lval_funcs *funcs,
1056 void *closure)
1057 {
1058 struct value *v = allocate_value_lazy (type);
1059
1060 VALUE_LVAL (v) = lval_computed;
1061 v->location.computed.funcs = funcs;
1062 v->location.computed.closure = closure;
1063
1064 return v;
1065 }
1066
1067 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1068
1069 struct value *
1070 allocate_optimized_out_value (struct type *type)
1071 {
1072 struct value *retval = allocate_value_lazy (type);
1073
1074 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1075 set_value_lazy (retval, 0);
1076 return retval;
1077 }
1078
1079 /* Accessor methods. */
1080
1081 struct type *
1082 value_type (const struct value *value)
1083 {
1084 return value->type;
1085 }
1086 void
1087 deprecated_set_value_type (struct value *value, struct type *type)
1088 {
1089 value->type = type;
1090 }
1091
1092 LONGEST
1093 value_offset (const struct value *value)
1094 {
1095 return value->offset;
1096 }
1097 void
1098 set_value_offset (struct value *value, LONGEST offset)
1099 {
1100 value->offset = offset;
1101 }
1102
1103 LONGEST
1104 value_bitpos (const struct value *value)
1105 {
1106 return value->bitpos;
1107 }
1108 void
1109 set_value_bitpos (struct value *value, LONGEST bit)
1110 {
1111 value->bitpos = bit;
1112 }
1113
1114 LONGEST
1115 value_bitsize (const struct value *value)
1116 {
1117 return value->bitsize;
1118 }
1119 void
1120 set_value_bitsize (struct value *value, LONGEST bit)
1121 {
1122 value->bitsize = bit;
1123 }
1124
1125 struct value *
1126 value_parent (const struct value *value)
1127 {
1128 return value->parent.get ();
1129 }
1130
1131 /* See value.h. */
1132
1133 void
1134 set_value_parent (struct value *value, struct value *parent)
1135 {
1136 value->parent = value_ref_ptr (value_incref (parent));
1137 }
1138
1139 gdb_byte *
1140 value_contents_raw (struct value *value)
1141 {
1142 struct gdbarch *arch = get_value_arch (value);
1143 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1144
1145 allocate_value_contents (value);
1146 return value->contents.get () + value->embedded_offset * unit_size;
1147 }
1148
1149 gdb_byte *
1150 value_contents_all_raw (struct value *value)
1151 {
1152 allocate_value_contents (value);
1153 return value->contents.get ();
1154 }
1155
1156 struct type *
1157 value_enclosing_type (const struct value *value)
1158 {
1159 return value->enclosing_type;
1160 }
1161
1162 /* Look at value.h for description. */
1163
1164 struct type *
1165 value_actual_type (struct value *value, int resolve_simple_types,
1166 int *real_type_found)
1167 {
1168 struct value_print_options opts;
1169 struct type *result;
1170
1171 get_user_print_options (&opts);
1172
1173 if (real_type_found)
1174 *real_type_found = 0;
1175 result = value_type (value);
1176 if (opts.objectprint)
1177 {
1178 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1179 fetch its rtti type. */
1180 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1181 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1182 == TYPE_CODE_STRUCT
1183 && !value_optimized_out (value))
1184 {
1185 struct type *real_type;
1186
1187 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1188 if (real_type)
1189 {
1190 if (real_type_found)
1191 *real_type_found = 1;
1192 result = real_type;
1193 }
1194 }
1195 else if (resolve_simple_types)
1196 {
1197 if (real_type_found)
1198 *real_type_found = 1;
1199 result = value_enclosing_type (value);
1200 }
1201 }
1202
1203 return result;
1204 }
1205
1206 void
1207 error_value_optimized_out (void)
1208 {
1209 error (_("value has been optimized out"));
1210 }
1211
1212 static void
1213 require_not_optimized_out (const struct value *value)
1214 {
1215 if (!value->optimized_out.empty ())
1216 {
1217 if (value->lval == lval_register)
1218 error (_("register has not been saved in frame"));
1219 else
1220 error_value_optimized_out ();
1221 }
1222 }
1223
1224 static void
1225 require_available (const struct value *value)
1226 {
1227 if (!value->unavailable.empty ())
1228 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1229 }
1230
1231 const gdb_byte *
1232 value_contents_for_printing (struct value *value)
1233 {
1234 if (value->lazy)
1235 value_fetch_lazy (value);
1236 return value->contents.get ();
1237 }
1238
1239 const gdb_byte *
1240 value_contents_for_printing_const (const struct value *value)
1241 {
1242 gdb_assert (!value->lazy);
1243 return value->contents.get ();
1244 }
1245
1246 const gdb_byte *
1247 value_contents_all (struct value *value)
1248 {
1249 const gdb_byte *result = value_contents_for_printing (value);
1250 require_not_optimized_out (value);
1251 require_available (value);
1252 return result;
1253 }
1254
1255 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1256 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1257
1258 static void
1259 ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1260 const std::vector<range> &src_range, int src_bit_offset,
1261 int bit_length)
1262 {
1263 for (const range &r : src_range)
1264 {
1265 ULONGEST h, l;
1266
1267 l = std::max (r.offset, (LONGEST) src_bit_offset);
1268 h = std::min (r.offset + r.length,
1269 (LONGEST) src_bit_offset + bit_length);
1270
1271 if (l < h)
1272 insert_into_bit_range_vector (dst_range,
1273 dst_bit_offset + (l - src_bit_offset),
1274 h - l);
1275 }
1276 }
1277
1278 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1279 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1280
1281 static void
1282 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1283 const struct value *src, int src_bit_offset,
1284 int bit_length)
1285 {
1286 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1287 src->unavailable, src_bit_offset,
1288 bit_length);
1289 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1290 src->optimized_out, src_bit_offset,
1291 bit_length);
1292 }
1293
1294 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1295 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1296 contents, starting at DST_OFFSET. If unavailable contents are
1297 being copied from SRC, the corresponding DST contents are marked
1298 unavailable accordingly. Neither DST nor SRC may be lazy
1299 values.
1300
1301 It is assumed the contents of DST in the [DST_OFFSET,
1302 DST_OFFSET+LENGTH) range are wholly available. */
1303
1304 void
1305 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1306 struct value *src, LONGEST src_offset, LONGEST length)
1307 {
1308 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1309 struct gdbarch *arch = get_value_arch (src);
1310 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1311
1312 /* A lazy DST would make that this copy operation useless, since as
1313 soon as DST's contents were un-lazied (by a later value_contents
1314 call, say), the contents would be overwritten. A lazy SRC would
1315 mean we'd be copying garbage. */
1316 gdb_assert (!dst->lazy && !src->lazy);
1317
1318 /* The overwritten DST range gets unavailability ORed in, not
1319 replaced. Make sure to remember to implement replacing if it
1320 turns out actually necessary. */
1321 gdb_assert (value_bytes_available (dst, dst_offset, length));
1322 gdb_assert (!value_bits_any_optimized_out (dst,
1323 TARGET_CHAR_BIT * dst_offset,
1324 TARGET_CHAR_BIT * length));
1325
1326 /* Copy the data. */
1327 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1328 value_contents_all_raw (src) + src_offset * unit_size,
1329 length * unit_size);
1330
1331 /* Copy the meta-data, adjusted. */
1332 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1333 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1334 bit_length = length * unit_size * HOST_CHAR_BIT;
1335
1336 value_ranges_copy_adjusted (dst, dst_bit_offset,
1337 src, src_bit_offset,
1338 bit_length);
1339 }
1340
1341 /* Copy LENGTH bytes of SRC value's (all) contents
1342 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1343 (all) contents, starting at DST_OFFSET. If unavailable contents
1344 are being copied from SRC, the corresponding DST contents are
1345 marked unavailable accordingly. DST must not be lazy. If SRC is
1346 lazy, it will be fetched now.
1347
1348 It is assumed the contents of DST in the [DST_OFFSET,
1349 DST_OFFSET+LENGTH) range are wholly available. */
1350
1351 void
1352 value_contents_copy (struct value *dst, LONGEST dst_offset,
1353 struct value *src, LONGEST src_offset, LONGEST length)
1354 {
1355 if (src->lazy)
1356 value_fetch_lazy (src);
1357
1358 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1359 }
1360
1361 int
1362 value_lazy (const struct value *value)
1363 {
1364 return value->lazy;
1365 }
1366
1367 void
1368 set_value_lazy (struct value *value, int val)
1369 {
1370 value->lazy = val;
1371 }
1372
1373 int
1374 value_stack (const struct value *value)
1375 {
1376 return value->stack;
1377 }
1378
1379 void
1380 set_value_stack (struct value *value, int val)
1381 {
1382 value->stack = val;
1383 }
1384
1385 const gdb_byte *
1386 value_contents (struct value *value)
1387 {
1388 const gdb_byte *result = value_contents_writeable (value);
1389 require_not_optimized_out (value);
1390 require_available (value);
1391 return result;
1392 }
1393
1394 gdb_byte *
1395 value_contents_writeable (struct value *value)
1396 {
1397 if (value->lazy)
1398 value_fetch_lazy (value);
1399 return value_contents_raw (value);
1400 }
1401
1402 int
1403 value_optimized_out (struct value *value)
1404 {
1405 /* We can only know if a value is optimized out once we have tried to
1406 fetch it. */
1407 if (value->optimized_out.empty () && value->lazy)
1408 {
1409 TRY
1410 {
1411 value_fetch_lazy (value);
1412 }
1413 CATCH (ex, RETURN_MASK_ERROR)
1414 {
1415 /* Fall back to checking value->optimized_out. */
1416 }
1417 END_CATCH
1418 }
1419
1420 return !value->optimized_out.empty ();
1421 }
1422
1423 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1424 the following LENGTH bytes. */
1425
1426 void
1427 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1428 {
1429 mark_value_bits_optimized_out (value,
1430 offset * TARGET_CHAR_BIT,
1431 length * TARGET_CHAR_BIT);
1432 }
1433
1434 /* See value.h. */
1435
1436 void
1437 mark_value_bits_optimized_out (struct value *value,
1438 LONGEST offset, LONGEST length)
1439 {
1440 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1441 }
1442
1443 int
1444 value_bits_synthetic_pointer (const struct value *value,
1445 LONGEST offset, LONGEST length)
1446 {
1447 if (value->lval != lval_computed
1448 || !value->location.computed.funcs->check_synthetic_pointer)
1449 return 0;
1450 return value->location.computed.funcs->check_synthetic_pointer (value,
1451 offset,
1452 length);
1453 }
1454
1455 LONGEST
1456 value_embedded_offset (const struct value *value)
1457 {
1458 return value->embedded_offset;
1459 }
1460
1461 void
1462 set_value_embedded_offset (struct value *value, LONGEST val)
1463 {
1464 value->embedded_offset = val;
1465 }
1466
1467 LONGEST
1468 value_pointed_to_offset (const struct value *value)
1469 {
1470 return value->pointed_to_offset;
1471 }
1472
1473 void
1474 set_value_pointed_to_offset (struct value *value, LONGEST val)
1475 {
1476 value->pointed_to_offset = val;
1477 }
1478
1479 const struct lval_funcs *
1480 value_computed_funcs (const struct value *v)
1481 {
1482 gdb_assert (value_lval_const (v) == lval_computed);
1483
1484 return v->location.computed.funcs;
1485 }
1486
1487 void *
1488 value_computed_closure (const struct value *v)
1489 {
1490 gdb_assert (v->lval == lval_computed);
1491
1492 return v->location.computed.closure;
1493 }
1494
1495 enum lval_type *
1496 deprecated_value_lval_hack (struct value *value)
1497 {
1498 return &value->lval;
1499 }
1500
1501 enum lval_type
1502 value_lval_const (const struct value *value)
1503 {
1504 return value->lval;
1505 }
1506
1507 CORE_ADDR
1508 value_address (const struct value *value)
1509 {
1510 if (value->lval != lval_memory)
1511 return 0;
1512 if (value->parent != NULL)
1513 return value_address (value->parent.get ()) + value->offset;
1514 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1515 {
1516 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1517 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1518 }
1519
1520 return value->location.address + value->offset;
1521 }
1522
1523 CORE_ADDR
1524 value_raw_address (const struct value *value)
1525 {
1526 if (value->lval != lval_memory)
1527 return 0;
1528 return value->location.address;
1529 }
1530
1531 void
1532 set_value_address (struct value *value, CORE_ADDR addr)
1533 {
1534 gdb_assert (value->lval == lval_memory);
1535 value->location.address = addr;
1536 }
1537
1538 struct internalvar **
1539 deprecated_value_internalvar_hack (struct value *value)
1540 {
1541 return &value->location.internalvar;
1542 }
1543
1544 struct frame_id *
1545 deprecated_value_next_frame_id_hack (struct value *value)
1546 {
1547 gdb_assert (value->lval == lval_register);
1548 return &value->location.reg.next_frame_id;
1549 }
1550
1551 int *
1552 deprecated_value_regnum_hack (struct value *value)
1553 {
1554 gdb_assert (value->lval == lval_register);
1555 return &value->location.reg.regnum;
1556 }
1557
1558 int
1559 deprecated_value_modifiable (const struct value *value)
1560 {
1561 return value->modifiable;
1562 }
1563 \f
1564 /* Return a mark in the value chain. All values allocated after the
1565 mark is obtained (except for those released) are subject to being freed
1566 if a subsequent value_free_to_mark is passed the mark. */
1567 struct value *
1568 value_mark (void)
1569 {
1570 if (all_values.empty ())
1571 return nullptr;
1572 return all_values.back ().get ();
1573 }
1574
1575 /* Take a reference to VAL. VAL will not be deallocated until all
1576 references are released. */
1577
1578 struct value *
1579 value_incref (struct value *val)
1580 {
1581 val->reference_count++;
1582 return val;
1583 }
1584
1585 /* Release a reference to VAL, which was acquired with value_incref.
1586 This function is also called to deallocate values from the value
1587 chain. */
1588
1589 void
1590 value_decref (struct value *val)
1591 {
1592 if (val != nullptr)
1593 {
1594 gdb_assert (val->reference_count > 0);
1595 val->reference_count--;
1596 if (val->reference_count == 0)
1597 delete val;
1598 }
1599 }
1600
1601 /* Free all values allocated since MARK was obtained by value_mark
1602 (except for those released). */
1603 void
1604 value_free_to_mark (const struct value *mark)
1605 {
1606 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1607 if (iter == all_values.end ())
1608 all_values.clear ();
1609 else
1610 all_values.erase (iter + 1, all_values.end ());
1611 }
1612
1613 /* Remove VAL from the chain all_values
1614 so it will not be freed automatically. */
1615
1616 value_ref_ptr
1617 release_value (struct value *val)
1618 {
1619 struct value *v;
1620
1621 if (val == nullptr)
1622 return value_ref_ptr ();
1623
1624 std::vector<value_ref_ptr>::reverse_iterator iter;
1625 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
1626 {
1627 if (*iter == val)
1628 {
1629 value_ref_ptr result = *iter;
1630 all_values.erase (iter.base () - 1);
1631 return result;
1632 }
1633 }
1634
1635 /* We must always return an owned reference. Normally this happens
1636 because we transfer the reference from the value chain, but in
1637 this case the value was not on the chain. */
1638 return value_ref_ptr (value_incref (val));
1639 }
1640
1641 /* See value.h. */
1642
1643 std::vector<value_ref_ptr>
1644 value_release_to_mark (const struct value *mark)
1645 {
1646 std::vector<value_ref_ptr> result;
1647
1648 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1649 if (iter == all_values.end ())
1650 std::swap (result, all_values);
1651 else
1652 {
1653 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1654 all_values.erase (iter + 1, all_values.end ());
1655 }
1656 std::reverse (result.begin (), result.end ());
1657 return result;
1658 }
1659
1660 /* Return a copy of the value ARG.
1661 It contains the same contents, for same memory address,
1662 but it's a different block of storage. */
1663
1664 struct value *
1665 value_copy (struct value *arg)
1666 {
1667 struct type *encl_type = value_enclosing_type (arg);
1668 struct value *val;
1669
1670 if (value_lazy (arg))
1671 val = allocate_value_lazy (encl_type);
1672 else
1673 val = allocate_value (encl_type);
1674 val->type = arg->type;
1675 VALUE_LVAL (val) = VALUE_LVAL (arg);
1676 val->location = arg->location;
1677 val->offset = arg->offset;
1678 val->bitpos = arg->bitpos;
1679 val->bitsize = arg->bitsize;
1680 val->lazy = arg->lazy;
1681 val->embedded_offset = value_embedded_offset (arg);
1682 val->pointed_to_offset = arg->pointed_to_offset;
1683 val->modifiable = arg->modifiable;
1684 if (!value_lazy (val))
1685 {
1686 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1687 TYPE_LENGTH (value_enclosing_type (arg)));
1688
1689 }
1690 val->unavailable = arg->unavailable;
1691 val->optimized_out = arg->optimized_out;
1692 val->parent = arg->parent;
1693 if (VALUE_LVAL (val) == lval_computed)
1694 {
1695 const struct lval_funcs *funcs = val->location.computed.funcs;
1696
1697 if (funcs->copy_closure)
1698 val->location.computed.closure = funcs->copy_closure (val);
1699 }
1700 return val;
1701 }
1702
1703 /* Return a "const" and/or "volatile" qualified version of the value V.
1704 If CNST is true, then the returned value will be qualified with
1705 "const".
1706 if VOLTL is true, then the returned value will be qualified with
1707 "volatile". */
1708
1709 struct value *
1710 make_cv_value (int cnst, int voltl, struct value *v)
1711 {
1712 struct type *val_type = value_type (v);
1713 struct type *enclosing_type = value_enclosing_type (v);
1714 struct value *cv_val = value_copy (v);
1715
1716 deprecated_set_value_type (cv_val,
1717 make_cv_type (cnst, voltl, val_type, NULL));
1718 set_value_enclosing_type (cv_val,
1719 make_cv_type (cnst, voltl, enclosing_type, NULL));
1720
1721 return cv_val;
1722 }
1723
1724 /* Return a version of ARG that is non-lvalue. */
1725
1726 struct value *
1727 value_non_lval (struct value *arg)
1728 {
1729 if (VALUE_LVAL (arg) != not_lval)
1730 {
1731 struct type *enc_type = value_enclosing_type (arg);
1732 struct value *val = allocate_value (enc_type);
1733
1734 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1735 TYPE_LENGTH (enc_type));
1736 val->type = arg->type;
1737 set_value_embedded_offset (val, value_embedded_offset (arg));
1738 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1739 return val;
1740 }
1741 return arg;
1742 }
1743
1744 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1745
1746 void
1747 value_force_lval (struct value *v, CORE_ADDR addr)
1748 {
1749 gdb_assert (VALUE_LVAL (v) == not_lval);
1750
1751 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1752 v->lval = lval_memory;
1753 v->location.address = addr;
1754 }
1755
1756 void
1757 set_value_component_location (struct value *component,
1758 const struct value *whole)
1759 {
1760 struct type *type;
1761
1762 gdb_assert (whole->lval != lval_xcallable);
1763
1764 if (whole->lval == lval_internalvar)
1765 VALUE_LVAL (component) = lval_internalvar_component;
1766 else
1767 VALUE_LVAL (component) = whole->lval;
1768
1769 component->location = whole->location;
1770 if (whole->lval == lval_computed)
1771 {
1772 const struct lval_funcs *funcs = whole->location.computed.funcs;
1773
1774 if (funcs->copy_closure)
1775 component->location.computed.closure = funcs->copy_closure (whole);
1776 }
1777
1778 /* If type has a dynamic resolved location property
1779 update it's value address. */
1780 type = value_type (whole);
1781 if (NULL != TYPE_DATA_LOCATION (type)
1782 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1783 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1784 }
1785
1786 /* Access to the value history. */
1787
1788 /* Record a new value in the value history.
1789 Returns the absolute history index of the entry. */
1790
1791 int
1792 record_latest_value (struct value *val)
1793 {
1794 int i;
1795
1796 /* We don't want this value to have anything to do with the inferior anymore.
1797 In particular, "set $1 = 50" should not affect the variable from which
1798 the value was taken, and fast watchpoints should be able to assume that
1799 a value on the value history never changes. */
1800 if (value_lazy (val))
1801 value_fetch_lazy (val);
1802 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1803 from. This is a bit dubious, because then *&$1 does not just return $1
1804 but the current contents of that location. c'est la vie... */
1805 val->modifiable = 0;
1806
1807 value_history.push_back (release_value (val));
1808
1809 return value_history.size ();
1810 }
1811
1812 /* Return a copy of the value in the history with sequence number NUM. */
1813
1814 struct value *
1815 access_value_history (int num)
1816 {
1817 int i;
1818 int absnum = num;
1819
1820 if (absnum <= 0)
1821 absnum += value_history.size ();
1822
1823 if (absnum <= 0)
1824 {
1825 if (num == 0)
1826 error (_("The history is empty."));
1827 else if (num == 1)
1828 error (_("There is only one value in the history."));
1829 else
1830 error (_("History does not go back to $$%d."), -num);
1831 }
1832 if (absnum > value_history.size ())
1833 error (_("History has not yet reached $%d."), absnum);
1834
1835 absnum--;
1836
1837 return value_copy (value_history[absnum].get ());
1838 }
1839
1840 static void
1841 show_values (const char *num_exp, int from_tty)
1842 {
1843 int i;
1844 struct value *val;
1845 static int num = 1;
1846
1847 if (num_exp)
1848 {
1849 /* "show values +" should print from the stored position.
1850 "show values <exp>" should print around value number <exp>. */
1851 if (num_exp[0] != '+' || num_exp[1] != '\0')
1852 num = parse_and_eval_long (num_exp) - 5;
1853 }
1854 else
1855 {
1856 /* "show values" means print the last 10 values. */
1857 num = value_history.size () - 9;
1858 }
1859
1860 if (num <= 0)
1861 num = 1;
1862
1863 for (i = num; i < num + 10 && i <= value_history.size (); i++)
1864 {
1865 struct value_print_options opts;
1866
1867 val = access_value_history (i);
1868 printf_filtered (("$%d = "), i);
1869 get_user_print_options (&opts);
1870 value_print (val, gdb_stdout, &opts);
1871 printf_filtered (("\n"));
1872 }
1873
1874 /* The next "show values +" should start after what we just printed. */
1875 num += 10;
1876
1877 /* Hitting just return after this command should do the same thing as
1878 "show values +". If num_exp is null, this is unnecessary, since
1879 "show values +" is not useful after "show values". */
1880 if (from_tty && num_exp)
1881 set_repeat_arguments ("+");
1882 }
1883 \f
1884 enum internalvar_kind
1885 {
1886 /* The internal variable is empty. */
1887 INTERNALVAR_VOID,
1888
1889 /* The value of the internal variable is provided directly as
1890 a GDB value object. */
1891 INTERNALVAR_VALUE,
1892
1893 /* A fresh value is computed via a call-back routine on every
1894 access to the internal variable. */
1895 INTERNALVAR_MAKE_VALUE,
1896
1897 /* The internal variable holds a GDB internal convenience function. */
1898 INTERNALVAR_FUNCTION,
1899
1900 /* The variable holds an integer value. */
1901 INTERNALVAR_INTEGER,
1902
1903 /* The variable holds a GDB-provided string. */
1904 INTERNALVAR_STRING,
1905 };
1906
1907 union internalvar_data
1908 {
1909 /* A value object used with INTERNALVAR_VALUE. */
1910 struct value *value;
1911
1912 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1913 struct
1914 {
1915 /* The functions to call. */
1916 const struct internalvar_funcs *functions;
1917
1918 /* The function's user-data. */
1919 void *data;
1920 } make_value;
1921
1922 /* The internal function used with INTERNALVAR_FUNCTION. */
1923 struct
1924 {
1925 struct internal_function *function;
1926 /* True if this is the canonical name for the function. */
1927 int canonical;
1928 } fn;
1929
1930 /* An integer value used with INTERNALVAR_INTEGER. */
1931 struct
1932 {
1933 /* If type is non-NULL, it will be used as the type to generate
1934 a value for this internal variable. If type is NULL, a default
1935 integer type for the architecture is used. */
1936 struct type *type;
1937 LONGEST val;
1938 } integer;
1939
1940 /* A string value used with INTERNALVAR_STRING. */
1941 char *string;
1942 };
1943
1944 /* Internal variables. These are variables within the debugger
1945 that hold values assigned by debugger commands.
1946 The user refers to them with a '$' prefix
1947 that does not appear in the variable names stored internally. */
1948
1949 struct internalvar
1950 {
1951 struct internalvar *next;
1952 char *name;
1953
1954 /* We support various different kinds of content of an internal variable.
1955 enum internalvar_kind specifies the kind, and union internalvar_data
1956 provides the data associated with this particular kind. */
1957
1958 enum internalvar_kind kind;
1959
1960 union internalvar_data u;
1961 };
1962
1963 static struct internalvar *internalvars;
1964
1965 /* If the variable does not already exist create it and give it the
1966 value given. If no value is given then the default is zero. */
1967 static void
1968 init_if_undefined_command (const char* args, int from_tty)
1969 {
1970 struct internalvar* intvar;
1971
1972 /* Parse the expression - this is taken from set_command(). */
1973 expression_up expr = parse_expression (args);
1974
1975 /* Validate the expression.
1976 Was the expression an assignment?
1977 Or even an expression at all? */
1978 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1979 error (_("Init-if-undefined requires an assignment expression."));
1980
1981 /* Extract the variable from the parsed expression.
1982 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1983 if (expr->elts[1].opcode != OP_INTERNALVAR)
1984 error (_("The first parameter to init-if-undefined "
1985 "should be a GDB variable."));
1986 intvar = expr->elts[2].internalvar;
1987
1988 /* Only evaluate the expression if the lvalue is void.
1989 This may still fail if the expresssion is invalid. */
1990 if (intvar->kind == INTERNALVAR_VOID)
1991 evaluate_expression (expr.get ());
1992 }
1993
1994
1995 /* Look up an internal variable with name NAME. NAME should not
1996 normally include a dollar sign.
1997
1998 If the specified internal variable does not exist,
1999 the return value is NULL. */
2000
2001 struct internalvar *
2002 lookup_only_internalvar (const char *name)
2003 {
2004 struct internalvar *var;
2005
2006 for (var = internalvars; var; var = var->next)
2007 if (strcmp (var->name, name) == 0)
2008 return var;
2009
2010 return NULL;
2011 }
2012
2013 /* Complete NAME by comparing it to the names of internal
2014 variables. */
2015
2016 void
2017 complete_internalvar (completion_tracker &tracker, const char *name)
2018 {
2019 struct internalvar *var;
2020 int len;
2021
2022 len = strlen (name);
2023
2024 for (var = internalvars; var; var = var->next)
2025 if (strncmp (var->name, name, len) == 0)
2026 {
2027 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
2028
2029 tracker.add_completion (std::move (copy));
2030 }
2031 }
2032
2033 /* Create an internal variable with name NAME and with a void value.
2034 NAME should not normally include a dollar sign. */
2035
2036 struct internalvar *
2037 create_internalvar (const char *name)
2038 {
2039 struct internalvar *var = XNEW (struct internalvar);
2040
2041 var->name = concat (name, (char *)NULL);
2042 var->kind = INTERNALVAR_VOID;
2043 var->next = internalvars;
2044 internalvars = var;
2045 return var;
2046 }
2047
2048 /* Create an internal variable with name NAME and register FUN as the
2049 function that value_of_internalvar uses to create a value whenever
2050 this variable is referenced. NAME should not normally include a
2051 dollar sign. DATA is passed uninterpreted to FUN when it is
2052 called. CLEANUP, if not NULL, is called when the internal variable
2053 is destroyed. It is passed DATA as its only argument. */
2054
2055 struct internalvar *
2056 create_internalvar_type_lazy (const char *name,
2057 const struct internalvar_funcs *funcs,
2058 void *data)
2059 {
2060 struct internalvar *var = create_internalvar (name);
2061
2062 var->kind = INTERNALVAR_MAKE_VALUE;
2063 var->u.make_value.functions = funcs;
2064 var->u.make_value.data = data;
2065 return var;
2066 }
2067
2068 /* See documentation in value.h. */
2069
2070 int
2071 compile_internalvar_to_ax (struct internalvar *var,
2072 struct agent_expr *expr,
2073 struct axs_value *value)
2074 {
2075 if (var->kind != INTERNALVAR_MAKE_VALUE
2076 || var->u.make_value.functions->compile_to_ax == NULL)
2077 return 0;
2078
2079 var->u.make_value.functions->compile_to_ax (var, expr, value,
2080 var->u.make_value.data);
2081 return 1;
2082 }
2083
2084 /* Look up an internal variable with name NAME. NAME should not
2085 normally include a dollar sign.
2086
2087 If the specified internal variable does not exist,
2088 one is created, with a void value. */
2089
2090 struct internalvar *
2091 lookup_internalvar (const char *name)
2092 {
2093 struct internalvar *var;
2094
2095 var = lookup_only_internalvar (name);
2096 if (var)
2097 return var;
2098
2099 return create_internalvar (name);
2100 }
2101
2102 /* Return current value of internal variable VAR. For variables that
2103 are not inherently typed, use a value type appropriate for GDBARCH. */
2104
2105 struct value *
2106 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2107 {
2108 struct value *val;
2109 struct trace_state_variable *tsv;
2110
2111 /* If there is a trace state variable of the same name, assume that
2112 is what we really want to see. */
2113 tsv = find_trace_state_variable (var->name);
2114 if (tsv)
2115 {
2116 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2117 &(tsv->value));
2118 if (tsv->value_known)
2119 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2120 tsv->value);
2121 else
2122 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2123 return val;
2124 }
2125
2126 switch (var->kind)
2127 {
2128 case INTERNALVAR_VOID:
2129 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2130 break;
2131
2132 case INTERNALVAR_FUNCTION:
2133 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2134 break;
2135
2136 case INTERNALVAR_INTEGER:
2137 if (!var->u.integer.type)
2138 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2139 var->u.integer.val);
2140 else
2141 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2142 break;
2143
2144 case INTERNALVAR_STRING:
2145 val = value_cstring (var->u.string, strlen (var->u.string),
2146 builtin_type (gdbarch)->builtin_char);
2147 break;
2148
2149 case INTERNALVAR_VALUE:
2150 val = value_copy (var->u.value);
2151 if (value_lazy (val))
2152 value_fetch_lazy (val);
2153 break;
2154
2155 case INTERNALVAR_MAKE_VALUE:
2156 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2157 var->u.make_value.data);
2158 break;
2159
2160 default:
2161 internal_error (__FILE__, __LINE__, _("bad kind"));
2162 }
2163
2164 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2165 on this value go back to affect the original internal variable.
2166
2167 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2168 no underlying modifyable state in the internal variable.
2169
2170 Likewise, if the variable's value is a computed lvalue, we want
2171 references to it to produce another computed lvalue, where
2172 references and assignments actually operate through the
2173 computed value's functions.
2174
2175 This means that internal variables with computed values
2176 behave a little differently from other internal variables:
2177 assignments to them don't just replace the previous value
2178 altogether. At the moment, this seems like the behavior we
2179 want. */
2180
2181 if (var->kind != INTERNALVAR_MAKE_VALUE
2182 && val->lval != lval_computed)
2183 {
2184 VALUE_LVAL (val) = lval_internalvar;
2185 VALUE_INTERNALVAR (val) = var;
2186 }
2187
2188 return val;
2189 }
2190
2191 int
2192 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2193 {
2194 if (var->kind == INTERNALVAR_INTEGER)
2195 {
2196 *result = var->u.integer.val;
2197 return 1;
2198 }
2199
2200 if (var->kind == INTERNALVAR_VALUE)
2201 {
2202 struct type *type = check_typedef (value_type (var->u.value));
2203
2204 if (TYPE_CODE (type) == TYPE_CODE_INT)
2205 {
2206 *result = value_as_long (var->u.value);
2207 return 1;
2208 }
2209 }
2210
2211 return 0;
2212 }
2213
2214 static int
2215 get_internalvar_function (struct internalvar *var,
2216 struct internal_function **result)
2217 {
2218 switch (var->kind)
2219 {
2220 case INTERNALVAR_FUNCTION:
2221 *result = var->u.fn.function;
2222 return 1;
2223
2224 default:
2225 return 0;
2226 }
2227 }
2228
2229 void
2230 set_internalvar_component (struct internalvar *var,
2231 LONGEST offset, LONGEST bitpos,
2232 LONGEST bitsize, struct value *newval)
2233 {
2234 gdb_byte *addr;
2235 struct gdbarch *arch;
2236 int unit_size;
2237
2238 switch (var->kind)
2239 {
2240 case INTERNALVAR_VALUE:
2241 addr = value_contents_writeable (var->u.value);
2242 arch = get_value_arch (var->u.value);
2243 unit_size = gdbarch_addressable_memory_unit_size (arch);
2244
2245 if (bitsize)
2246 modify_field (value_type (var->u.value), addr + offset,
2247 value_as_long (newval), bitpos, bitsize);
2248 else
2249 memcpy (addr + offset * unit_size, value_contents (newval),
2250 TYPE_LENGTH (value_type (newval)));
2251 break;
2252
2253 default:
2254 /* We can never get a component of any other kind. */
2255 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2256 }
2257 }
2258
2259 void
2260 set_internalvar (struct internalvar *var, struct value *val)
2261 {
2262 enum internalvar_kind new_kind;
2263 union internalvar_data new_data = { 0 };
2264
2265 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2266 error (_("Cannot overwrite convenience function %s"), var->name);
2267
2268 /* Prepare new contents. */
2269 switch (TYPE_CODE (check_typedef (value_type (val))))
2270 {
2271 case TYPE_CODE_VOID:
2272 new_kind = INTERNALVAR_VOID;
2273 break;
2274
2275 case TYPE_CODE_INTERNAL_FUNCTION:
2276 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2277 new_kind = INTERNALVAR_FUNCTION;
2278 get_internalvar_function (VALUE_INTERNALVAR (val),
2279 &new_data.fn.function);
2280 /* Copies created here are never canonical. */
2281 break;
2282
2283 default:
2284 new_kind = INTERNALVAR_VALUE;
2285 new_data.value = value_copy (val);
2286 new_data.value->modifiable = 1;
2287
2288 /* Force the value to be fetched from the target now, to avoid problems
2289 later when this internalvar is referenced and the target is gone or
2290 has changed. */
2291 if (value_lazy (new_data.value))
2292 value_fetch_lazy (new_data.value);
2293
2294 /* Release the value from the value chain to prevent it from being
2295 deleted by free_all_values. From here on this function should not
2296 call error () until new_data is installed into the var->u to avoid
2297 leaking memory. */
2298 release_value (new_data.value).release ();
2299
2300 /* Internal variables which are created from values with a dynamic
2301 location don't need the location property of the origin anymore.
2302 The resolved dynamic location is used prior then any other address
2303 when accessing the value.
2304 If we keep it, we would still refer to the origin value.
2305 Remove the location property in case it exist. */
2306 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2307
2308 break;
2309 }
2310
2311 /* Clean up old contents. */
2312 clear_internalvar (var);
2313
2314 /* Switch over. */
2315 var->kind = new_kind;
2316 var->u = new_data;
2317 /* End code which must not call error(). */
2318 }
2319
2320 void
2321 set_internalvar_integer (struct internalvar *var, LONGEST l)
2322 {
2323 /* Clean up old contents. */
2324 clear_internalvar (var);
2325
2326 var->kind = INTERNALVAR_INTEGER;
2327 var->u.integer.type = NULL;
2328 var->u.integer.val = l;
2329 }
2330
2331 void
2332 set_internalvar_string (struct internalvar *var, const char *string)
2333 {
2334 /* Clean up old contents. */
2335 clear_internalvar (var);
2336
2337 var->kind = INTERNALVAR_STRING;
2338 var->u.string = xstrdup (string);
2339 }
2340
2341 static void
2342 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2343 {
2344 /* Clean up old contents. */
2345 clear_internalvar (var);
2346
2347 var->kind = INTERNALVAR_FUNCTION;
2348 var->u.fn.function = f;
2349 var->u.fn.canonical = 1;
2350 /* Variables installed here are always the canonical version. */
2351 }
2352
2353 void
2354 clear_internalvar (struct internalvar *var)
2355 {
2356 /* Clean up old contents. */
2357 switch (var->kind)
2358 {
2359 case INTERNALVAR_VALUE:
2360 value_decref (var->u.value);
2361 break;
2362
2363 case INTERNALVAR_STRING:
2364 xfree (var->u.string);
2365 break;
2366
2367 case INTERNALVAR_MAKE_VALUE:
2368 if (var->u.make_value.functions->destroy != NULL)
2369 var->u.make_value.functions->destroy (var->u.make_value.data);
2370 break;
2371
2372 default:
2373 break;
2374 }
2375
2376 /* Reset to void kind. */
2377 var->kind = INTERNALVAR_VOID;
2378 }
2379
2380 char *
2381 internalvar_name (const struct internalvar *var)
2382 {
2383 return var->name;
2384 }
2385
2386 static struct internal_function *
2387 create_internal_function (const char *name,
2388 internal_function_fn handler, void *cookie)
2389 {
2390 struct internal_function *ifn = XNEW (struct internal_function);
2391
2392 ifn->name = xstrdup (name);
2393 ifn->handler = handler;
2394 ifn->cookie = cookie;
2395 return ifn;
2396 }
2397
2398 char *
2399 value_internal_function_name (struct value *val)
2400 {
2401 struct internal_function *ifn;
2402 int result;
2403
2404 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2405 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2406 gdb_assert (result);
2407
2408 return ifn->name;
2409 }
2410
2411 struct value *
2412 call_internal_function (struct gdbarch *gdbarch,
2413 const struct language_defn *language,
2414 struct value *func, int argc, struct value **argv)
2415 {
2416 struct internal_function *ifn;
2417 int result;
2418
2419 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2420 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2421 gdb_assert (result);
2422
2423 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2424 }
2425
2426 /* The 'function' command. This does nothing -- it is just a
2427 placeholder to let "help function NAME" work. This is also used as
2428 the implementation of the sub-command that is created when
2429 registering an internal function. */
2430 static void
2431 function_command (const char *command, int from_tty)
2432 {
2433 /* Do nothing. */
2434 }
2435
2436 /* Clean up if an internal function's command is destroyed. */
2437 static void
2438 function_destroyer (struct cmd_list_element *self, void *ignore)
2439 {
2440 xfree ((char *) self->name);
2441 xfree ((char *) self->doc);
2442 }
2443
2444 /* Add a new internal function. NAME is the name of the function; DOC
2445 is a documentation string describing the function. HANDLER is
2446 called when the function is invoked. COOKIE is an arbitrary
2447 pointer which is passed to HANDLER and is intended for "user
2448 data". */
2449 void
2450 add_internal_function (const char *name, const char *doc,
2451 internal_function_fn handler, void *cookie)
2452 {
2453 struct cmd_list_element *cmd;
2454 struct internal_function *ifn;
2455 struct internalvar *var = lookup_internalvar (name);
2456
2457 ifn = create_internal_function (name, handler, cookie);
2458 set_internalvar_function (var, ifn);
2459
2460 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2461 &functionlist);
2462 cmd->destroyer = function_destroyer;
2463 }
2464
2465 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2466 prevent cycles / duplicates. */
2467
2468 void
2469 preserve_one_value (struct value *value, struct objfile *objfile,
2470 htab_t copied_types)
2471 {
2472 if (TYPE_OBJFILE (value->type) == objfile)
2473 value->type = copy_type_recursive (objfile, value->type, copied_types);
2474
2475 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2476 value->enclosing_type = copy_type_recursive (objfile,
2477 value->enclosing_type,
2478 copied_types);
2479 }
2480
2481 /* Likewise for internal variable VAR. */
2482
2483 static void
2484 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2485 htab_t copied_types)
2486 {
2487 switch (var->kind)
2488 {
2489 case INTERNALVAR_INTEGER:
2490 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2491 var->u.integer.type
2492 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2493 break;
2494
2495 case INTERNALVAR_VALUE:
2496 preserve_one_value (var->u.value, objfile, copied_types);
2497 break;
2498 }
2499 }
2500
2501 /* Update the internal variables and value history when OBJFILE is
2502 discarded; we must copy the types out of the objfile. New global types
2503 will be created for every convenience variable which currently points to
2504 this objfile's types, and the convenience variables will be adjusted to
2505 use the new global types. */
2506
2507 void
2508 preserve_values (struct objfile *objfile)
2509 {
2510 htab_t copied_types;
2511 struct internalvar *var;
2512 int i;
2513
2514 /* Create the hash table. We allocate on the objfile's obstack, since
2515 it is soon to be deleted. */
2516 copied_types = create_copied_types_hash (objfile);
2517
2518 for (const value_ref_ptr &item : value_history)
2519 preserve_one_value (item.get (), objfile, copied_types);
2520
2521 for (var = internalvars; var; var = var->next)
2522 preserve_one_internalvar (var, objfile, copied_types);
2523
2524 preserve_ext_lang_values (objfile, copied_types);
2525
2526 htab_delete (copied_types);
2527 }
2528
2529 static void
2530 show_convenience (const char *ignore, int from_tty)
2531 {
2532 struct gdbarch *gdbarch = get_current_arch ();
2533 struct internalvar *var;
2534 int varseen = 0;
2535 struct value_print_options opts;
2536
2537 get_user_print_options (&opts);
2538 for (var = internalvars; var; var = var->next)
2539 {
2540
2541 if (!varseen)
2542 {
2543 varseen = 1;
2544 }
2545 printf_filtered (("$%s = "), var->name);
2546
2547 TRY
2548 {
2549 struct value *val;
2550
2551 val = value_of_internalvar (gdbarch, var);
2552 value_print (val, gdb_stdout, &opts);
2553 }
2554 CATCH (ex, RETURN_MASK_ERROR)
2555 {
2556 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2557 }
2558 END_CATCH
2559
2560 printf_filtered (("\n"));
2561 }
2562 if (!varseen)
2563 {
2564 /* This text does not mention convenience functions on purpose.
2565 The user can't create them except via Python, and if Python support
2566 is installed this message will never be printed ($_streq will
2567 exist). */
2568 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2569 "Convenience variables have "
2570 "names starting with \"$\";\n"
2571 "use \"set\" as in \"set "
2572 "$foo = 5\" to define them.\n"));
2573 }
2574 }
2575 \f
2576
2577 /* See value.h. */
2578
2579 struct value *
2580 value_from_xmethod (xmethod_worker_up &&worker)
2581 {
2582 struct value *v;
2583
2584 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2585 v->lval = lval_xcallable;
2586 v->location.xm_worker = worker.release ();
2587 v->modifiable = 0;
2588
2589 return v;
2590 }
2591
2592 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2593
2594 struct type *
2595 result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2596 {
2597 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2598 && method->lval == lval_xcallable && argc > 0);
2599
2600 return method->location.xm_worker->get_result_type
2601 (argv[0], argv + 1, argc - 1);
2602 }
2603
2604 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2605
2606 struct value *
2607 call_xmethod (struct value *method, int argc, struct value **argv)
2608 {
2609 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2610 && method->lval == lval_xcallable && argc > 0);
2611
2612 return method->location.xm_worker->invoke (argv[0], argv + 1, argc - 1);
2613 }
2614 \f
2615 /* Extract a value as a C number (either long or double).
2616 Knows how to convert fixed values to double, or
2617 floating values to long.
2618 Does not deallocate the value. */
2619
2620 LONGEST
2621 value_as_long (struct value *val)
2622 {
2623 /* This coerces arrays and functions, which is necessary (e.g.
2624 in disassemble_command). It also dereferences references, which
2625 I suspect is the most logical thing to do. */
2626 val = coerce_array (val);
2627 return unpack_long (value_type (val), value_contents (val));
2628 }
2629
2630 /* Extract a value as a C pointer. Does not deallocate the value.
2631 Note that val's type may not actually be a pointer; value_as_long
2632 handles all the cases. */
2633 CORE_ADDR
2634 value_as_address (struct value *val)
2635 {
2636 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2637
2638 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2639 whether we want this to be true eventually. */
2640 #if 0
2641 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2642 non-address (e.g. argument to "signal", "info break", etc.), or
2643 for pointers to char, in which the low bits *are* significant. */
2644 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2645 #else
2646
2647 /* There are several targets (IA-64, PowerPC, and others) which
2648 don't represent pointers to functions as simply the address of
2649 the function's entry point. For example, on the IA-64, a
2650 function pointer points to a two-word descriptor, generated by
2651 the linker, which contains the function's entry point, and the
2652 value the IA-64 "global pointer" register should have --- to
2653 support position-independent code. The linker generates
2654 descriptors only for those functions whose addresses are taken.
2655
2656 On such targets, it's difficult for GDB to convert an arbitrary
2657 function address into a function pointer; it has to either find
2658 an existing descriptor for that function, or call malloc and
2659 build its own. On some targets, it is impossible for GDB to
2660 build a descriptor at all: the descriptor must contain a jump
2661 instruction; data memory cannot be executed; and code memory
2662 cannot be modified.
2663
2664 Upon entry to this function, if VAL is a value of type `function'
2665 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2666 value_address (val) is the address of the function. This is what
2667 you'll get if you evaluate an expression like `main'. The call
2668 to COERCE_ARRAY below actually does all the usual unary
2669 conversions, which includes converting values of type `function'
2670 to `pointer to function'. This is the challenging conversion
2671 discussed above. Then, `unpack_long' will convert that pointer
2672 back into an address.
2673
2674 So, suppose the user types `disassemble foo' on an architecture
2675 with a strange function pointer representation, on which GDB
2676 cannot build its own descriptors, and suppose further that `foo'
2677 has no linker-built descriptor. The address->pointer conversion
2678 will signal an error and prevent the command from running, even
2679 though the next step would have been to convert the pointer
2680 directly back into the same address.
2681
2682 The following shortcut avoids this whole mess. If VAL is a
2683 function, just return its address directly. */
2684 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2685 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2686 return value_address (val);
2687
2688 val = coerce_array (val);
2689
2690 /* Some architectures (e.g. Harvard), map instruction and data
2691 addresses onto a single large unified address space. For
2692 instance: An architecture may consider a large integer in the
2693 range 0x10000000 .. 0x1000ffff to already represent a data
2694 addresses (hence not need a pointer to address conversion) while
2695 a small integer would still need to be converted integer to
2696 pointer to address. Just assume such architectures handle all
2697 integer conversions in a single function. */
2698
2699 /* JimB writes:
2700
2701 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2702 must admonish GDB hackers to make sure its behavior matches the
2703 compiler's, whenever possible.
2704
2705 In general, I think GDB should evaluate expressions the same way
2706 the compiler does. When the user copies an expression out of
2707 their source code and hands it to a `print' command, they should
2708 get the same value the compiler would have computed. Any
2709 deviation from this rule can cause major confusion and annoyance,
2710 and needs to be justified carefully. In other words, GDB doesn't
2711 really have the freedom to do these conversions in clever and
2712 useful ways.
2713
2714 AndrewC pointed out that users aren't complaining about how GDB
2715 casts integers to pointers; they are complaining that they can't
2716 take an address from a disassembly listing and give it to `x/i'.
2717 This is certainly important.
2718
2719 Adding an architecture method like integer_to_address() certainly
2720 makes it possible for GDB to "get it right" in all circumstances
2721 --- the target has complete control over how things get done, so
2722 people can Do The Right Thing for their target without breaking
2723 anyone else. The standard doesn't specify how integers get
2724 converted to pointers; usually, the ABI doesn't either, but
2725 ABI-specific code is a more reasonable place to handle it. */
2726
2727 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2728 && !TYPE_IS_REFERENCE (value_type (val))
2729 && gdbarch_integer_to_address_p (gdbarch))
2730 return gdbarch_integer_to_address (gdbarch, value_type (val),
2731 value_contents (val));
2732
2733 return unpack_long (value_type (val), value_contents (val));
2734 #endif
2735 }
2736 \f
2737 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2738 as a long, or as a double, assuming the raw data is described
2739 by type TYPE. Knows how to convert different sizes of values
2740 and can convert between fixed and floating point. We don't assume
2741 any alignment for the raw data. Return value is in host byte order.
2742
2743 If you want functions and arrays to be coerced to pointers, and
2744 references to be dereferenced, call value_as_long() instead.
2745
2746 C++: It is assumed that the front-end has taken care of
2747 all matters concerning pointers to members. A pointer
2748 to member which reaches here is considered to be equivalent
2749 to an INT (or some size). After all, it is only an offset. */
2750
2751 LONGEST
2752 unpack_long (struct type *type, const gdb_byte *valaddr)
2753 {
2754 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2755 enum type_code code = TYPE_CODE (type);
2756 int len = TYPE_LENGTH (type);
2757 int nosign = TYPE_UNSIGNED (type);
2758
2759 switch (code)
2760 {
2761 case TYPE_CODE_TYPEDEF:
2762 return unpack_long (check_typedef (type), valaddr);
2763 case TYPE_CODE_ENUM:
2764 case TYPE_CODE_FLAGS:
2765 case TYPE_CODE_BOOL:
2766 case TYPE_CODE_INT:
2767 case TYPE_CODE_CHAR:
2768 case TYPE_CODE_RANGE:
2769 case TYPE_CODE_MEMBERPTR:
2770 if (nosign)
2771 return extract_unsigned_integer (valaddr, len, byte_order);
2772 else
2773 return extract_signed_integer (valaddr, len, byte_order);
2774
2775 case TYPE_CODE_FLT:
2776 case TYPE_CODE_DECFLOAT:
2777 return target_float_to_longest (valaddr, type);
2778
2779 case TYPE_CODE_PTR:
2780 case TYPE_CODE_REF:
2781 case TYPE_CODE_RVALUE_REF:
2782 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2783 whether we want this to be true eventually. */
2784 return extract_typed_address (valaddr, type);
2785
2786 default:
2787 error (_("Value can't be converted to integer."));
2788 }
2789 return 0; /* Placate lint. */
2790 }
2791
2792 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2793 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2794 We don't assume any alignment for the raw data. Return value is in
2795 host byte order.
2796
2797 If you want functions and arrays to be coerced to pointers, and
2798 references to be dereferenced, call value_as_address() instead.
2799
2800 C++: It is assumed that the front-end has taken care of
2801 all matters concerning pointers to members. A pointer
2802 to member which reaches here is considered to be equivalent
2803 to an INT (or some size). After all, it is only an offset. */
2804
2805 CORE_ADDR
2806 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2807 {
2808 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2809 whether we want this to be true eventually. */
2810 return unpack_long (type, valaddr);
2811 }
2812
2813 bool
2814 is_floating_value (struct value *val)
2815 {
2816 struct type *type = check_typedef (value_type (val));
2817
2818 if (is_floating_type (type))
2819 {
2820 if (!target_float_is_valid (value_contents (val), type))
2821 error (_("Invalid floating value found in program."));
2822 return true;
2823 }
2824
2825 return false;
2826 }
2827
2828 \f
2829 /* Get the value of the FIELDNO'th field (which must be static) of
2830 TYPE. */
2831
2832 struct value *
2833 value_static_field (struct type *type, int fieldno)
2834 {
2835 struct value *retval;
2836
2837 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2838 {
2839 case FIELD_LOC_KIND_PHYSADDR:
2840 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2841 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2842 break;
2843 case FIELD_LOC_KIND_PHYSNAME:
2844 {
2845 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2846 /* TYPE_FIELD_NAME (type, fieldno); */
2847 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2848
2849 if (sym.symbol == NULL)
2850 {
2851 /* With some compilers, e.g. HP aCC, static data members are
2852 reported as non-debuggable symbols. */
2853 struct bound_minimal_symbol msym
2854 = lookup_minimal_symbol (phys_name, NULL, NULL);
2855 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2856
2857 if (!msym.minsym)
2858 retval = allocate_optimized_out_value (field_type);
2859 else
2860 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
2861 }
2862 else
2863 retval = value_of_variable (sym.symbol, sym.block);
2864 break;
2865 }
2866 default:
2867 gdb_assert_not_reached ("unexpected field location kind");
2868 }
2869
2870 return retval;
2871 }
2872
2873 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2874 You have to be careful here, since the size of the data area for the value
2875 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2876 than the old enclosing type, you have to allocate more space for the
2877 data. */
2878
2879 void
2880 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2881 {
2882 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2883 {
2884 check_type_length_before_alloc (new_encl_type);
2885 val->contents
2886 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2887 TYPE_LENGTH (new_encl_type)));
2888 }
2889
2890 val->enclosing_type = new_encl_type;
2891 }
2892
2893 /* Given a value ARG1 (offset by OFFSET bytes)
2894 of a struct or union type ARG_TYPE,
2895 extract and return the value of one of its (non-static) fields.
2896 FIELDNO says which field. */
2897
2898 struct value *
2899 value_primitive_field (struct value *arg1, LONGEST offset,
2900 int fieldno, struct type *arg_type)
2901 {
2902 struct value *v;
2903 struct type *type;
2904 struct gdbarch *arch = get_value_arch (arg1);
2905 int unit_size = gdbarch_addressable_memory_unit_size (arch);
2906
2907 arg_type = check_typedef (arg_type);
2908 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2909
2910 /* Call check_typedef on our type to make sure that, if TYPE
2911 is a TYPE_CODE_TYPEDEF, its length is set to the length
2912 of the target type instead of zero. However, we do not
2913 replace the typedef type by the target type, because we want
2914 to keep the typedef in order to be able to print the type
2915 description correctly. */
2916 check_typedef (type);
2917
2918 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2919 {
2920 /* Handle packed fields.
2921
2922 Create a new value for the bitfield, with bitpos and bitsize
2923 set. If possible, arrange offset and bitpos so that we can
2924 do a single aligned read of the size of the containing type.
2925 Otherwise, adjust offset to the byte containing the first
2926 bit. Assume that the address, offset, and embedded offset
2927 are sufficiently aligned. */
2928
2929 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2930 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
2931
2932 v = allocate_value_lazy (type);
2933 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2934 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2935 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2936 v->bitpos = bitpos % container_bitsize;
2937 else
2938 v->bitpos = bitpos % 8;
2939 v->offset = (value_embedded_offset (arg1)
2940 + offset
2941 + (bitpos - v->bitpos) / 8);
2942 set_value_parent (v, arg1);
2943 if (!value_lazy (arg1))
2944 value_fetch_lazy (v);
2945 }
2946 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2947 {
2948 /* This field is actually a base subobject, so preserve the
2949 entire object's contents for later references to virtual
2950 bases, etc. */
2951 LONGEST boffset;
2952
2953 /* Lazy register values with offsets are not supported. */
2954 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2955 value_fetch_lazy (arg1);
2956
2957 /* We special case virtual inheritance here because this
2958 requires access to the contents, which we would rather avoid
2959 for references to ordinary fields of unavailable values. */
2960 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2961 boffset = baseclass_offset (arg_type, fieldno,
2962 value_contents (arg1),
2963 value_embedded_offset (arg1),
2964 value_address (arg1),
2965 arg1);
2966 else
2967 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2968
2969 if (value_lazy (arg1))
2970 v = allocate_value_lazy (value_enclosing_type (arg1));
2971 else
2972 {
2973 v = allocate_value (value_enclosing_type (arg1));
2974 value_contents_copy_raw (v, 0, arg1, 0,
2975 TYPE_LENGTH (value_enclosing_type (arg1)));
2976 }
2977 v->type = type;
2978 v->offset = value_offset (arg1);
2979 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2980 }
2981 else if (NULL != TYPE_DATA_LOCATION (type))
2982 {
2983 /* Field is a dynamic data member. */
2984
2985 gdb_assert (0 == offset);
2986 /* We expect an already resolved data location. */
2987 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
2988 /* For dynamic data types defer memory allocation
2989 until we actual access the value. */
2990 v = allocate_value_lazy (type);
2991 }
2992 else
2993 {
2994 /* Plain old data member */
2995 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
2996 / (HOST_CHAR_BIT * unit_size));
2997
2998 /* Lazy register values with offsets are not supported. */
2999 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3000 value_fetch_lazy (arg1);
3001
3002 if (value_lazy (arg1))
3003 v = allocate_value_lazy (type);
3004 else
3005 {
3006 v = allocate_value (type);
3007 value_contents_copy_raw (v, value_embedded_offset (v),
3008 arg1, value_embedded_offset (arg1) + offset,
3009 type_length_units (type));
3010 }
3011 v->offset = (value_offset (arg1) + offset
3012 + value_embedded_offset (arg1));
3013 }
3014 set_value_component_location (v, arg1);
3015 return v;
3016 }
3017
3018 /* Given a value ARG1 of a struct or union type,
3019 extract and return the value of one of its (non-static) fields.
3020 FIELDNO says which field. */
3021
3022 struct value *
3023 value_field (struct value *arg1, int fieldno)
3024 {
3025 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3026 }
3027
3028 /* Return a non-virtual function as a value.
3029 F is the list of member functions which contains the desired method.
3030 J is an index into F which provides the desired method.
3031
3032 We only use the symbol for its address, so be happy with either a
3033 full symbol or a minimal symbol. */
3034
3035 struct value *
3036 value_fn_field (struct value **arg1p, struct fn_field *f,
3037 int j, struct type *type,
3038 LONGEST offset)
3039 {
3040 struct value *v;
3041 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3042 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3043 struct symbol *sym;
3044 struct bound_minimal_symbol msym;
3045
3046 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3047 if (sym != NULL)
3048 {
3049 memset (&msym, 0, sizeof (msym));
3050 }
3051 else
3052 {
3053 gdb_assert (sym == NULL);
3054 msym = lookup_bound_minimal_symbol (physname);
3055 if (msym.minsym == NULL)
3056 return NULL;
3057 }
3058
3059 v = allocate_value (ftype);
3060 VALUE_LVAL (v) = lval_memory;
3061 if (sym)
3062 {
3063 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3064 }
3065 else
3066 {
3067 /* The minimal symbol might point to a function descriptor;
3068 resolve it to the actual code address instead. */
3069 struct objfile *objfile = msym.objfile;
3070 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3071
3072 set_value_address (v,
3073 gdbarch_convert_from_func_ptr_addr
3074 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
3075 }
3076
3077 if (arg1p)
3078 {
3079 if (type != value_type (*arg1p))
3080 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3081 value_addr (*arg1p)));
3082
3083 /* Move the `this' pointer according to the offset.
3084 VALUE_OFFSET (*arg1p) += offset; */
3085 }
3086
3087 return v;
3088 }
3089
3090 \f
3091
3092 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3093 VALADDR, and store the result in *RESULT.
3094 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3095 BITSIZE is zero, then the length is taken from FIELD_TYPE.
3096
3097 Extracting bits depends on endianness of the machine. Compute the
3098 number of least significant bits to discard. For big endian machines,
3099 we compute the total number of bits in the anonymous object, subtract
3100 off the bit count from the MSB of the object to the MSB of the
3101 bitfield, then the size of the bitfield, which leaves the LSB discard
3102 count. For little endian machines, the discard count is simply the
3103 number of bits from the LSB of the anonymous object to the LSB of the
3104 bitfield.
3105
3106 If the field is signed, we also do sign extension. */
3107
3108 static LONGEST
3109 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3110 LONGEST bitpos, LONGEST bitsize)
3111 {
3112 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3113 ULONGEST val;
3114 ULONGEST valmask;
3115 int lsbcount;
3116 LONGEST bytes_read;
3117 LONGEST read_offset;
3118
3119 /* Read the minimum number of bytes required; there may not be
3120 enough bytes to read an entire ULONGEST. */
3121 field_type = check_typedef (field_type);
3122 if (bitsize)
3123 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3124 else
3125 {
3126 bytes_read = TYPE_LENGTH (field_type);
3127 bitsize = 8 * bytes_read;
3128 }
3129
3130 read_offset = bitpos / 8;
3131
3132 val = extract_unsigned_integer (valaddr + read_offset,
3133 bytes_read, byte_order);
3134
3135 /* Extract bits. See comment above. */
3136
3137 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3138 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3139 else
3140 lsbcount = (bitpos % 8);
3141 val >>= lsbcount;
3142
3143 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3144 If the field is signed, and is negative, then sign extend. */
3145
3146 if (bitsize < 8 * (int) sizeof (val))
3147 {
3148 valmask = (((ULONGEST) 1) << bitsize) - 1;
3149 val &= valmask;
3150 if (!TYPE_UNSIGNED (field_type))
3151 {
3152 if (val & (valmask ^ (valmask >> 1)))
3153 {
3154 val |= ~valmask;
3155 }
3156 }
3157 }
3158
3159 return val;
3160 }
3161
3162 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3163 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3164 ORIGINAL_VALUE, which must not be NULL. See
3165 unpack_value_bits_as_long for more details. */
3166
3167 int
3168 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3169 LONGEST embedded_offset, int fieldno,
3170 const struct value *val, LONGEST *result)
3171 {
3172 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3173 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3174 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3175 int bit_offset;
3176
3177 gdb_assert (val != NULL);
3178
3179 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3180 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3181 || !value_bits_available (val, bit_offset, bitsize))
3182 return 0;
3183
3184 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3185 bitpos, bitsize);
3186 return 1;
3187 }
3188
3189 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3190 object at VALADDR. See unpack_bits_as_long for more details. */
3191
3192 LONGEST
3193 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3194 {
3195 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3196 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3197 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3198
3199 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3200 }
3201
3202 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3203 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3204 the contents in DEST_VAL, zero or sign extending if the type of
3205 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3206 VAL. If the VAL's contents required to extract the bitfield from
3207 are unavailable/optimized out, DEST_VAL is correspondingly
3208 marked unavailable/optimized out. */
3209
3210 void
3211 unpack_value_bitfield (struct value *dest_val,
3212 LONGEST bitpos, LONGEST bitsize,
3213 const gdb_byte *valaddr, LONGEST embedded_offset,
3214 const struct value *val)
3215 {
3216 enum bfd_endian byte_order;
3217 int src_bit_offset;
3218 int dst_bit_offset;
3219 struct type *field_type = value_type (dest_val);
3220
3221 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3222
3223 /* First, unpack and sign extend the bitfield as if it was wholly
3224 valid. Optimized out/unavailable bits are read as zero, but
3225 that's OK, as they'll end up marked below. If the VAL is
3226 wholly-invalid we may have skipped allocating its contents,
3227 though. See allocate_optimized_out_value. */
3228 if (valaddr != NULL)
3229 {
3230 LONGEST num;
3231
3232 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3233 bitpos, bitsize);
3234 store_signed_integer (value_contents_raw (dest_val),
3235 TYPE_LENGTH (field_type), byte_order, num);
3236 }
3237
3238 /* Now copy the optimized out / unavailability ranges to the right
3239 bits. */
3240 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3241 if (byte_order == BFD_ENDIAN_BIG)
3242 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3243 else
3244 dst_bit_offset = 0;
3245 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3246 val, src_bit_offset, bitsize);
3247 }
3248
3249 /* Return a new value with type TYPE, which is FIELDNO field of the
3250 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3251 of VAL. If the VAL's contents required to extract the bitfield
3252 from are unavailable/optimized out, the new value is
3253 correspondingly marked unavailable/optimized out. */
3254
3255 struct value *
3256 value_field_bitfield (struct type *type, int fieldno,
3257 const gdb_byte *valaddr,
3258 LONGEST embedded_offset, const struct value *val)
3259 {
3260 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3261 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3262 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3263
3264 unpack_value_bitfield (res_val, bitpos, bitsize,
3265 valaddr, embedded_offset, val);
3266
3267 return res_val;
3268 }
3269
3270 /* Modify the value of a bitfield. ADDR points to a block of memory in
3271 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3272 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3273 indicate which bits (in target bit order) comprise the bitfield.
3274 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3275 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3276
3277 void
3278 modify_field (struct type *type, gdb_byte *addr,
3279 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3280 {
3281 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3282 ULONGEST oword;
3283 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3284 LONGEST bytesize;
3285
3286 /* Normalize BITPOS. */
3287 addr += bitpos / 8;
3288 bitpos %= 8;
3289
3290 /* If a negative fieldval fits in the field in question, chop
3291 off the sign extension bits. */
3292 if ((~fieldval & ~(mask >> 1)) == 0)
3293 fieldval &= mask;
3294
3295 /* Warn if value is too big to fit in the field in question. */
3296 if (0 != (fieldval & ~mask))
3297 {
3298 /* FIXME: would like to include fieldval in the message, but
3299 we don't have a sprintf_longest. */
3300 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3301
3302 /* Truncate it, otherwise adjoining fields may be corrupted. */
3303 fieldval &= mask;
3304 }
3305
3306 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3307 false valgrind reports. */
3308
3309 bytesize = (bitpos + bitsize + 7) / 8;
3310 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3311
3312 /* Shifting for bit field depends on endianness of the target machine. */
3313 if (gdbarch_bits_big_endian (get_type_arch (type)))
3314 bitpos = bytesize * 8 - bitpos - bitsize;
3315
3316 oword &= ~(mask << bitpos);
3317 oword |= fieldval << bitpos;
3318
3319 store_unsigned_integer (addr, bytesize, byte_order, oword);
3320 }
3321 \f
3322 /* Pack NUM into BUF using a target format of TYPE. */
3323
3324 void
3325 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3326 {
3327 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3328 LONGEST len;
3329
3330 type = check_typedef (type);
3331 len = TYPE_LENGTH (type);
3332
3333 switch (TYPE_CODE (type))
3334 {
3335 case TYPE_CODE_INT:
3336 case TYPE_CODE_CHAR:
3337 case TYPE_CODE_ENUM:
3338 case TYPE_CODE_FLAGS:
3339 case TYPE_CODE_BOOL:
3340 case TYPE_CODE_RANGE:
3341 case TYPE_CODE_MEMBERPTR:
3342 store_signed_integer (buf, len, byte_order, num);
3343 break;
3344
3345 case TYPE_CODE_REF:
3346 case TYPE_CODE_RVALUE_REF:
3347 case TYPE_CODE_PTR:
3348 store_typed_address (buf, type, (CORE_ADDR) num);
3349 break;
3350
3351 case TYPE_CODE_FLT:
3352 case TYPE_CODE_DECFLOAT:
3353 target_float_from_longest (buf, type, num);
3354 break;
3355
3356 default:
3357 error (_("Unexpected type (%d) encountered for integer constant."),
3358 TYPE_CODE (type));
3359 }
3360 }
3361
3362
3363 /* Pack NUM into BUF using a target format of TYPE. */
3364
3365 static void
3366 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3367 {
3368 LONGEST len;
3369 enum bfd_endian byte_order;
3370
3371 type = check_typedef (type);
3372 len = TYPE_LENGTH (type);
3373 byte_order = gdbarch_byte_order (get_type_arch (type));
3374
3375 switch (TYPE_CODE (type))
3376 {
3377 case TYPE_CODE_INT:
3378 case TYPE_CODE_CHAR:
3379 case TYPE_CODE_ENUM:
3380 case TYPE_CODE_FLAGS:
3381 case TYPE_CODE_BOOL:
3382 case TYPE_CODE_RANGE:
3383 case TYPE_CODE_MEMBERPTR:
3384 store_unsigned_integer (buf, len, byte_order, num);
3385 break;
3386
3387 case TYPE_CODE_REF:
3388 case TYPE_CODE_RVALUE_REF:
3389 case TYPE_CODE_PTR:
3390 store_typed_address (buf, type, (CORE_ADDR) num);
3391 break;
3392
3393 case TYPE_CODE_FLT:
3394 case TYPE_CODE_DECFLOAT:
3395 target_float_from_ulongest (buf, type, num);
3396 break;
3397
3398 default:
3399 error (_("Unexpected type (%d) encountered "
3400 "for unsigned integer constant."),
3401 TYPE_CODE (type));
3402 }
3403 }
3404
3405
3406 /* Convert C numbers into newly allocated values. */
3407
3408 struct value *
3409 value_from_longest (struct type *type, LONGEST num)
3410 {
3411 struct value *val = allocate_value (type);
3412
3413 pack_long (value_contents_raw (val), type, num);
3414 return val;
3415 }
3416
3417
3418 /* Convert C unsigned numbers into newly allocated values. */
3419
3420 struct value *
3421 value_from_ulongest (struct type *type, ULONGEST num)
3422 {
3423 struct value *val = allocate_value (type);
3424
3425 pack_unsigned_long (value_contents_raw (val), type, num);
3426
3427 return val;
3428 }
3429
3430
3431 /* Create a value representing a pointer of type TYPE to the address
3432 ADDR. */
3433
3434 struct value *
3435 value_from_pointer (struct type *type, CORE_ADDR addr)
3436 {
3437 struct value *val = allocate_value (type);
3438
3439 store_typed_address (value_contents_raw (val),
3440 check_typedef (type), addr);
3441 return val;
3442 }
3443
3444
3445 /* Create a value of type TYPE whose contents come from VALADDR, if it
3446 is non-null, and whose memory address (in the inferior) is
3447 ADDRESS. The type of the created value may differ from the passed
3448 type TYPE. Make sure to retrieve values new type after this call.
3449 Note that TYPE is not passed through resolve_dynamic_type; this is
3450 a special API intended for use only by Ada. */
3451
3452 struct value *
3453 value_from_contents_and_address_unresolved (struct type *type,
3454 const gdb_byte *valaddr,
3455 CORE_ADDR address)
3456 {
3457 struct value *v;
3458
3459 if (valaddr == NULL)
3460 v = allocate_value_lazy (type);
3461 else
3462 v = value_from_contents (type, valaddr);
3463 VALUE_LVAL (v) = lval_memory;
3464 set_value_address (v, address);
3465 return v;
3466 }
3467
3468 /* Create a value of type TYPE whose contents come from VALADDR, if it
3469 is non-null, and whose memory address (in the inferior) is
3470 ADDRESS. The type of the created value may differ from the passed
3471 type TYPE. Make sure to retrieve values new type after this call. */
3472
3473 struct value *
3474 value_from_contents_and_address (struct type *type,
3475 const gdb_byte *valaddr,
3476 CORE_ADDR address)
3477 {
3478 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3479 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3480 struct value *v;
3481
3482 if (valaddr == NULL)
3483 v = allocate_value_lazy (resolved_type);
3484 else
3485 v = value_from_contents (resolved_type, valaddr);
3486 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3487 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3488 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3489 VALUE_LVAL (v) = lval_memory;
3490 set_value_address (v, address);
3491 return v;
3492 }
3493
3494 /* Create a value of type TYPE holding the contents CONTENTS.
3495 The new value is `not_lval'. */
3496
3497 struct value *
3498 value_from_contents (struct type *type, const gdb_byte *contents)
3499 {
3500 struct value *result;
3501
3502 result = allocate_value (type);
3503 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3504 return result;
3505 }
3506
3507 /* Extract a value from the history file. Input will be of the form
3508 $digits or $$digits. See block comment above 'write_dollar_variable'
3509 for details. */
3510
3511 struct value *
3512 value_from_history_ref (const char *h, const char **endp)
3513 {
3514 int index, len;
3515
3516 if (h[0] == '$')
3517 len = 1;
3518 else
3519 return NULL;
3520
3521 if (h[1] == '$')
3522 len = 2;
3523
3524 /* Find length of numeral string. */
3525 for (; isdigit (h[len]); len++)
3526 ;
3527
3528 /* Make sure numeral string is not part of an identifier. */
3529 if (h[len] == '_' || isalpha (h[len]))
3530 return NULL;
3531
3532 /* Now collect the index value. */
3533 if (h[1] == '$')
3534 {
3535 if (len == 2)
3536 {
3537 /* For some bizarre reason, "$$" is equivalent to "$$1",
3538 rather than to "$$0" as it ought to be! */
3539 index = -1;
3540 *endp += len;
3541 }
3542 else
3543 {
3544 char *local_end;
3545
3546 index = -strtol (&h[2], &local_end, 10);
3547 *endp = local_end;
3548 }
3549 }
3550 else
3551 {
3552 if (len == 1)
3553 {
3554 /* "$" is equivalent to "$0". */
3555 index = 0;
3556 *endp += len;
3557 }
3558 else
3559 {
3560 char *local_end;
3561
3562 index = strtol (&h[1], &local_end, 10);
3563 *endp = local_end;
3564 }
3565 }
3566
3567 return access_value_history (index);
3568 }
3569
3570 /* Get the component value (offset by OFFSET bytes) of a struct or
3571 union WHOLE. Component's type is TYPE. */
3572
3573 struct value *
3574 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3575 {
3576 struct value *v;
3577
3578 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3579 v = allocate_value_lazy (type);
3580 else
3581 {
3582 v = allocate_value (type);
3583 value_contents_copy (v, value_embedded_offset (v),
3584 whole, value_embedded_offset (whole) + offset,
3585 type_length_units (type));
3586 }
3587 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3588 set_value_component_location (v, whole);
3589
3590 return v;
3591 }
3592
3593 struct value *
3594 coerce_ref_if_computed (const struct value *arg)
3595 {
3596 const struct lval_funcs *funcs;
3597
3598 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3599 return NULL;
3600
3601 if (value_lval_const (arg) != lval_computed)
3602 return NULL;
3603
3604 funcs = value_computed_funcs (arg);
3605 if (funcs->coerce_ref == NULL)
3606 return NULL;
3607
3608 return funcs->coerce_ref (arg);
3609 }
3610
3611 /* Look at value.h for description. */
3612
3613 struct value *
3614 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3615 const struct type *original_type,
3616 const struct value *original_value)
3617 {
3618 /* Re-adjust type. */
3619 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3620
3621 /* Add embedding info. */
3622 set_value_enclosing_type (value, enc_type);
3623 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3624
3625 /* We may be pointing to an object of some derived type. */
3626 return value_full_object (value, NULL, 0, 0, 0);
3627 }
3628
3629 struct value *
3630 coerce_ref (struct value *arg)
3631 {
3632 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3633 struct value *retval;
3634 struct type *enc_type;
3635
3636 retval = coerce_ref_if_computed (arg);
3637 if (retval)
3638 return retval;
3639
3640 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3641 return arg;
3642
3643 enc_type = check_typedef (value_enclosing_type (arg));
3644 enc_type = TYPE_TARGET_TYPE (enc_type);
3645
3646 retval = value_at_lazy (enc_type,
3647 unpack_pointer (value_type (arg),
3648 value_contents (arg)));
3649 enc_type = value_type (retval);
3650 return readjust_indirect_value_type (retval, enc_type,
3651 value_type_arg_tmp, arg);
3652 }
3653
3654 struct value *
3655 coerce_array (struct value *arg)
3656 {
3657 struct type *type;
3658
3659 arg = coerce_ref (arg);
3660 type = check_typedef (value_type (arg));
3661
3662 switch (TYPE_CODE (type))
3663 {
3664 case TYPE_CODE_ARRAY:
3665 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3666 arg = value_coerce_array (arg);
3667 break;
3668 case TYPE_CODE_FUNC:
3669 arg = value_coerce_function (arg);
3670 break;
3671 }
3672 return arg;
3673 }
3674 \f
3675
3676 /* Return the return value convention that will be used for the
3677 specified type. */
3678
3679 enum return_value_convention
3680 struct_return_convention (struct gdbarch *gdbarch,
3681 struct value *function, struct type *value_type)
3682 {
3683 enum type_code code = TYPE_CODE (value_type);
3684
3685 if (code == TYPE_CODE_ERROR)
3686 error (_("Function return type unknown."));
3687
3688 /* Probe the architecture for the return-value convention. */
3689 return gdbarch_return_value (gdbarch, function, value_type,
3690 NULL, NULL, NULL);
3691 }
3692
3693 /* Return true if the function returning the specified type is using
3694 the convention of returning structures in memory (passing in the
3695 address as a hidden first parameter). */
3696
3697 int
3698 using_struct_return (struct gdbarch *gdbarch,
3699 struct value *function, struct type *value_type)
3700 {
3701 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3702 /* A void return value is never in memory. See also corresponding
3703 code in "print_return_value". */
3704 return 0;
3705
3706 return (struct_return_convention (gdbarch, function, value_type)
3707 != RETURN_VALUE_REGISTER_CONVENTION);
3708 }
3709
3710 /* Set the initialized field in a value struct. */
3711
3712 void
3713 set_value_initialized (struct value *val, int status)
3714 {
3715 val->initialized = status;
3716 }
3717
3718 /* Return the initialized field in a value struct. */
3719
3720 int
3721 value_initialized (const struct value *val)
3722 {
3723 return val->initialized;
3724 }
3725
3726 /* Load the actual content of a lazy value. Fetch the data from the
3727 user's process and clear the lazy flag to indicate that the data in
3728 the buffer is valid.
3729
3730 If the value is zero-length, we avoid calling read_memory, which
3731 would abort. We mark the value as fetched anyway -- all 0 bytes of
3732 it. */
3733
3734 void
3735 value_fetch_lazy (struct value *val)
3736 {
3737 gdb_assert (value_lazy (val));
3738 allocate_value_contents (val);
3739 /* A value is either lazy, or fully fetched. The
3740 availability/validity is only established as we try to fetch a
3741 value. */
3742 gdb_assert (val->optimized_out.empty ());
3743 gdb_assert (val->unavailable.empty ());
3744 if (value_bitsize (val))
3745 {
3746 /* To read a lazy bitfield, read the entire enclosing value. This
3747 prevents reading the same block of (possibly volatile) memory once
3748 per bitfield. It would be even better to read only the containing
3749 word, but we have no way to record that just specific bits of a
3750 value have been fetched. */
3751 struct type *type = check_typedef (value_type (val));
3752 struct value *parent = value_parent (val);
3753
3754 if (value_lazy (parent))
3755 value_fetch_lazy (parent);
3756
3757 unpack_value_bitfield (val,
3758 value_bitpos (val), value_bitsize (val),
3759 value_contents_for_printing (parent),
3760 value_offset (val), parent);
3761 }
3762 else if (VALUE_LVAL (val) == lval_memory)
3763 {
3764 CORE_ADDR addr = value_address (val);
3765 struct type *type = check_typedef (value_enclosing_type (val));
3766
3767 if (TYPE_LENGTH (type))
3768 read_value_memory (val, 0, value_stack (val),
3769 addr, value_contents_all_raw (val),
3770 type_length_units (type));
3771 }
3772 else if (VALUE_LVAL (val) == lval_register)
3773 {
3774 struct frame_info *next_frame;
3775 int regnum;
3776 struct type *type = check_typedef (value_type (val));
3777 struct value *new_val = val, *mark = value_mark ();
3778
3779 /* Offsets are not supported here; lazy register values must
3780 refer to the entire register. */
3781 gdb_assert (value_offset (val) == 0);
3782
3783 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3784 {
3785 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3786
3787 next_frame = frame_find_by_id (next_frame_id);
3788 regnum = VALUE_REGNUM (new_val);
3789
3790 gdb_assert (next_frame != NULL);
3791
3792 /* Convertible register routines are used for multi-register
3793 values and for interpretation in different types
3794 (e.g. float or int from a double register). Lazy
3795 register values should have the register's natural type,
3796 so they do not apply. */
3797 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3798 regnum, type));
3799
3800 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3801 Since a "->next" operation was performed when setting
3802 this field, we do not need to perform a "next" operation
3803 again when unwinding the register. That's why
3804 frame_unwind_register_value() is called here instead of
3805 get_frame_register_value(). */
3806 new_val = frame_unwind_register_value (next_frame, regnum);
3807
3808 /* If we get another lazy lval_register value, it means the
3809 register is found by reading it from NEXT_FRAME's next frame.
3810 frame_unwind_register_value should never return a value with
3811 the frame id pointing to NEXT_FRAME. If it does, it means we
3812 either have two consecutive frames with the same frame id
3813 in the frame chain, or some code is trying to unwind
3814 behind get_prev_frame's back (e.g., a frame unwind
3815 sniffer trying to unwind), bypassing its validations. In
3816 any case, it should always be an internal error to end up
3817 in this situation. */
3818 if (VALUE_LVAL (new_val) == lval_register
3819 && value_lazy (new_val)
3820 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3821 internal_error (__FILE__, __LINE__,
3822 _("infinite loop while fetching a register"));
3823 }
3824
3825 /* If it's still lazy (for instance, a saved register on the
3826 stack), fetch it. */
3827 if (value_lazy (new_val))
3828 value_fetch_lazy (new_val);
3829
3830 /* Copy the contents and the unavailability/optimized-out
3831 meta-data from NEW_VAL to VAL. */
3832 set_value_lazy (val, 0);
3833 value_contents_copy (val, value_embedded_offset (val),
3834 new_val, value_embedded_offset (new_val),
3835 type_length_units (type));
3836
3837 if (frame_debug)
3838 {
3839 struct gdbarch *gdbarch;
3840 struct frame_info *frame;
3841 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3842 so that the frame level will be shown correctly. */
3843 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3844 regnum = VALUE_REGNUM (val);
3845 gdbarch = get_frame_arch (frame);
3846
3847 fprintf_unfiltered (gdb_stdlog,
3848 "{ value_fetch_lazy "
3849 "(frame=%d,regnum=%d(%s),...) ",
3850 frame_relative_level (frame), regnum,
3851 user_reg_map_regnum_to_name (gdbarch, regnum));
3852
3853 fprintf_unfiltered (gdb_stdlog, "->");
3854 if (value_optimized_out (new_val))
3855 {
3856 fprintf_unfiltered (gdb_stdlog, " ");
3857 val_print_optimized_out (new_val, gdb_stdlog);
3858 }
3859 else
3860 {
3861 int i;
3862 const gdb_byte *buf = value_contents (new_val);
3863
3864 if (VALUE_LVAL (new_val) == lval_register)
3865 fprintf_unfiltered (gdb_stdlog, " register=%d",
3866 VALUE_REGNUM (new_val));
3867 else if (VALUE_LVAL (new_val) == lval_memory)
3868 fprintf_unfiltered (gdb_stdlog, " address=%s",
3869 paddress (gdbarch,
3870 value_address (new_val)));
3871 else
3872 fprintf_unfiltered (gdb_stdlog, " computed");
3873
3874 fprintf_unfiltered (gdb_stdlog, " bytes=");
3875 fprintf_unfiltered (gdb_stdlog, "[");
3876 for (i = 0; i < register_size (gdbarch, regnum); i++)
3877 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3878 fprintf_unfiltered (gdb_stdlog, "]");
3879 }
3880
3881 fprintf_unfiltered (gdb_stdlog, " }\n");
3882 }
3883
3884 /* Dispose of the intermediate values. This prevents
3885 watchpoints from trying to watch the saved frame pointer. */
3886 value_free_to_mark (mark);
3887 }
3888 else if (VALUE_LVAL (val) == lval_computed
3889 && value_computed_funcs (val)->read != NULL)
3890 value_computed_funcs (val)->read (val);
3891 else
3892 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3893
3894 set_value_lazy (val, 0);
3895 }
3896
3897 /* Implementation of the convenience function $_isvoid. */
3898
3899 static struct value *
3900 isvoid_internal_fn (struct gdbarch *gdbarch,
3901 const struct language_defn *language,
3902 void *cookie, int argc, struct value **argv)
3903 {
3904 int ret;
3905
3906 if (argc != 1)
3907 error (_("You must provide one argument for $_isvoid."));
3908
3909 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3910
3911 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3912 }
3913
3914 #if GDB_SELF_TEST
3915 namespace selftests
3916 {
3917
3918 /* Test the ranges_contain function. */
3919
3920 static void
3921 test_ranges_contain ()
3922 {
3923 std::vector<range> ranges;
3924 range r;
3925
3926 /* [10, 14] */
3927 r.offset = 10;
3928 r.length = 5;
3929 ranges.push_back (r);
3930
3931 /* [20, 24] */
3932 r.offset = 20;
3933 r.length = 5;
3934 ranges.push_back (r);
3935
3936 /* [2, 6] */
3937 SELF_CHECK (!ranges_contain (ranges, 2, 5));
3938 /* [9, 13] */
3939 SELF_CHECK (ranges_contain (ranges, 9, 5));
3940 /* [10, 11] */
3941 SELF_CHECK (ranges_contain (ranges, 10, 2));
3942 /* [10, 14] */
3943 SELF_CHECK (ranges_contain (ranges, 10, 5));
3944 /* [13, 18] */
3945 SELF_CHECK (ranges_contain (ranges, 13, 6));
3946 /* [14, 18] */
3947 SELF_CHECK (ranges_contain (ranges, 14, 5));
3948 /* [15, 18] */
3949 SELF_CHECK (!ranges_contain (ranges, 15, 4));
3950 /* [16, 19] */
3951 SELF_CHECK (!ranges_contain (ranges, 16, 4));
3952 /* [16, 21] */
3953 SELF_CHECK (ranges_contain (ranges, 16, 6));
3954 /* [21, 21] */
3955 SELF_CHECK (ranges_contain (ranges, 21, 1));
3956 /* [21, 25] */
3957 SELF_CHECK (ranges_contain (ranges, 21, 5));
3958 /* [26, 28] */
3959 SELF_CHECK (!ranges_contain (ranges, 26, 3));
3960 }
3961
3962 /* Check that RANGES contains the same ranges as EXPECTED. */
3963
3964 static bool
3965 check_ranges_vector (gdb::array_view<const range> ranges,
3966 gdb::array_view<const range> expected)
3967 {
3968 return ranges == expected;
3969 }
3970
3971 /* Test the insert_into_bit_range_vector function. */
3972
3973 static void
3974 test_insert_into_bit_range_vector ()
3975 {
3976 std::vector<range> ranges;
3977
3978 /* [10, 14] */
3979 {
3980 insert_into_bit_range_vector (&ranges, 10, 5);
3981 static const range expected[] = {
3982 {10, 5}
3983 };
3984 SELF_CHECK (check_ranges_vector (ranges, expected));
3985 }
3986
3987 /* [10, 14] */
3988 {
3989 insert_into_bit_range_vector (&ranges, 11, 4);
3990 static const range expected = {10, 5};
3991 SELF_CHECK (check_ranges_vector (ranges, expected));
3992 }
3993
3994 /* [10, 14] [20, 24] */
3995 {
3996 insert_into_bit_range_vector (&ranges, 20, 5);
3997 static const range expected[] = {
3998 {10, 5},
3999 {20, 5},
4000 };
4001 SELF_CHECK (check_ranges_vector (ranges, expected));
4002 }
4003
4004 /* [10, 14] [17, 24] */
4005 {
4006 insert_into_bit_range_vector (&ranges, 17, 5);
4007 static const range expected[] = {
4008 {10, 5},
4009 {17, 8},
4010 };
4011 SELF_CHECK (check_ranges_vector (ranges, expected));
4012 }
4013
4014 /* [2, 8] [10, 14] [17, 24] */
4015 {
4016 insert_into_bit_range_vector (&ranges, 2, 7);
4017 static const range expected[] = {
4018 {2, 7},
4019 {10, 5},
4020 {17, 8},
4021 };
4022 SELF_CHECK (check_ranges_vector (ranges, expected));
4023 }
4024
4025 /* [2, 14] [17, 24] */
4026 {
4027 insert_into_bit_range_vector (&ranges, 9, 1);
4028 static const range expected[] = {
4029 {2, 13},
4030 {17, 8},
4031 };
4032 SELF_CHECK (check_ranges_vector (ranges, expected));
4033 }
4034
4035 /* [2, 14] [17, 24] */
4036 {
4037 insert_into_bit_range_vector (&ranges, 9, 1);
4038 static const range expected[] = {
4039 {2, 13},
4040 {17, 8},
4041 };
4042 SELF_CHECK (check_ranges_vector (ranges, expected));
4043 }
4044
4045 /* [2, 33] */
4046 {
4047 insert_into_bit_range_vector (&ranges, 4, 30);
4048 static const range expected = {2, 32};
4049 SELF_CHECK (check_ranges_vector (ranges, expected));
4050 }
4051 }
4052
4053 } /* namespace selftests */
4054 #endif /* GDB_SELF_TEST */
4055
4056 void
4057 _initialize_values (void)
4058 {
4059 add_cmd ("convenience", no_class, show_convenience, _("\
4060 Debugger convenience (\"$foo\") variables and functions.\n\
4061 Convenience variables are created when you assign them values;\n\
4062 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4063 \n\
4064 A few convenience variables are given values automatically:\n\
4065 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4066 \"$__\" holds the contents of the last address examined with \"x\"."
4067 #ifdef HAVE_PYTHON
4068 "\n\n\
4069 Convenience functions are defined via the Python API."
4070 #endif
4071 ), &showlist);
4072 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4073
4074 add_cmd ("values", no_set_class, show_values, _("\
4075 Elements of value history around item number IDX (or last ten)."),
4076 &showlist);
4077
4078 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4079 Initialize a convenience variable if necessary.\n\
4080 init-if-undefined VARIABLE = EXPRESSION\n\
4081 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4082 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4083 VARIABLE is already initialized."));
4084
4085 add_prefix_cmd ("function", no_class, function_command, _("\
4086 Placeholder command for showing help on convenience functions."),
4087 &functionlist, "function ", 0, &cmdlist);
4088
4089 add_internal_function ("_isvoid", _("\
4090 Check whether an expression is void.\n\
4091 Usage: $_isvoid (expression)\n\
4092 Return 1 if the expression is void, zero otherwise."),
4093 isvoid_internal_fn, NULL);
4094
4095 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4096 class_support, &max_value_size, _("\
4097 Set maximum sized value gdb will load from the inferior."), _("\
4098 Show maximum sized value gdb will load from the inferior."), _("\
4099 Use this to control the maximum size, in bytes, of a value that gdb\n\
4100 will load from the inferior. Setting this value to 'unlimited'\n\
4101 disables checking.\n\
4102 Setting this does not invalidate already allocated values, it only\n\
4103 prevents future values, larger than this size, from being allocated."),
4104 set_max_value_size,
4105 show_max_value_size,
4106 &setlist, &showlist);
4107 #if GDB_SELF_TEST
4108 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4109 selftests::register_test ("insert_into_bit_range_vector",
4110 selftests::test_insert_into_bit_range_vector);
4111 #endif
4112 }
This page took 0.139594 seconds and 4 git commands to generate.