2010-03-22 Stan Shebs <stan@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42
43 #include "python/python.h"
44
45 /* Prototypes for exported functions. */
46
47 void _initialize_values (void);
48
49 /* Definition of a user function. */
50 struct internal_function
51 {
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62 };
63
64 static struct cmd_list_element *functionlist;
65
66 struct value
67 {
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
109 int bitpos;
110
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 int stack;
202
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
205 gdb_byte *contents;
206
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
212 int reference_count;
213 };
214
215 /* Prototypes for local functions. */
216
217 static void show_values (char *, int);
218
219 static void show_convenience (char *, int);
220
221
222 /* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
227
228 #define VALUE_HISTORY_CHUNK 60
229
230 struct value_history_chunk
231 {
232 struct value_history_chunk *next;
233 struct value *values[VALUE_HISTORY_CHUNK];
234 };
235
236 /* Chain of chunks now in use. */
237
238 static struct value_history_chunk *value_history_chain;
239
240 static int value_history_count; /* Abs number of last entry stored */
241
242 \f
243 /* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
246
247 static struct value *all_values;
248
249 /* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
252
253 struct value *
254 allocate_value_lazy (struct type *type)
255 {
256 struct value *val;
257
258 /* Call check_typedef on our type to make sure that, if TYPE
259 is a TYPE_CODE_TYPEDEF, its length is set to the length
260 of the target type instead of zero. However, we do not
261 replace the typedef type by the target type, because we want
262 to keep the typedef in order to be able to set the VAL's type
263 description correctly. */
264 check_typedef (type);
265
266 val = (struct value *) xzalloc (sizeof (struct value));
267 val->contents = NULL;
268 val->next = all_values;
269 all_values = val;
270 val->type = type;
271 val->enclosing_type = type;
272 VALUE_LVAL (val) = not_lval;
273 val->location.address = 0;
274 VALUE_FRAME_ID (val) = null_frame_id;
275 val->offset = 0;
276 val->bitpos = 0;
277 val->bitsize = 0;
278 VALUE_REGNUM (val) = -1;
279 val->lazy = 1;
280 val->optimized_out = 0;
281 val->embedded_offset = 0;
282 val->pointed_to_offset = 0;
283 val->modifiable = 1;
284 val->initialized = 1; /* Default to initialized. */
285
286 /* Values start out on the all_values chain. */
287 val->reference_count = 1;
288
289 return val;
290 }
291
292 /* Allocate the contents of VAL if it has not been allocated yet. */
293
294 void
295 allocate_value_contents (struct value *val)
296 {
297 if (!val->contents)
298 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
299 }
300
301 /* Allocate a value and its contents for type TYPE. */
302
303 struct value *
304 allocate_value (struct type *type)
305 {
306 struct value *val = allocate_value_lazy (type);
307 allocate_value_contents (val);
308 val->lazy = 0;
309 return val;
310 }
311
312 /* Allocate a value that has the correct length
313 for COUNT repetitions of type TYPE. */
314
315 struct value *
316 allocate_repeat_value (struct type *type, int count)
317 {
318 int low_bound = current_language->string_lower_bound; /* ??? */
319 /* FIXME-type-allocation: need a way to free this type when we are
320 done with it. */
321 struct type *array_type
322 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
323 return allocate_value (array_type);
324 }
325
326 struct value *
327 allocate_computed_value (struct type *type,
328 struct lval_funcs *funcs,
329 void *closure)
330 {
331 struct value *v = allocate_value (type);
332 VALUE_LVAL (v) = lval_computed;
333 v->location.computed.funcs = funcs;
334 v->location.computed.closure = closure;
335 set_value_lazy (v, 1);
336
337 return v;
338 }
339
340 /* Accessor methods. */
341
342 struct value *
343 value_next (struct value *value)
344 {
345 return value->next;
346 }
347
348 struct type *
349 value_type (struct value *value)
350 {
351 return value->type;
352 }
353 void
354 deprecated_set_value_type (struct value *value, struct type *type)
355 {
356 value->type = type;
357 }
358
359 int
360 value_offset (struct value *value)
361 {
362 return value->offset;
363 }
364 void
365 set_value_offset (struct value *value, int offset)
366 {
367 value->offset = offset;
368 }
369
370 int
371 value_bitpos (struct value *value)
372 {
373 return value->bitpos;
374 }
375 void
376 set_value_bitpos (struct value *value, int bit)
377 {
378 value->bitpos = bit;
379 }
380
381 int
382 value_bitsize (struct value *value)
383 {
384 return value->bitsize;
385 }
386 void
387 set_value_bitsize (struct value *value, int bit)
388 {
389 value->bitsize = bit;
390 }
391
392 struct value *
393 value_parent (struct value *value)
394 {
395 return value->parent;
396 }
397
398 gdb_byte *
399 value_contents_raw (struct value *value)
400 {
401 allocate_value_contents (value);
402 return value->contents + value->embedded_offset;
403 }
404
405 gdb_byte *
406 value_contents_all_raw (struct value *value)
407 {
408 allocate_value_contents (value);
409 return value->contents;
410 }
411
412 struct type *
413 value_enclosing_type (struct value *value)
414 {
415 return value->enclosing_type;
416 }
417
418 const gdb_byte *
419 value_contents_all (struct value *value)
420 {
421 if (value->lazy)
422 value_fetch_lazy (value);
423 return value->contents;
424 }
425
426 int
427 value_lazy (struct value *value)
428 {
429 return value->lazy;
430 }
431
432 void
433 set_value_lazy (struct value *value, int val)
434 {
435 value->lazy = val;
436 }
437
438 int
439 value_stack (struct value *value)
440 {
441 return value->stack;
442 }
443
444 void
445 set_value_stack (struct value *value, int val)
446 {
447 value->stack = val;
448 }
449
450 const gdb_byte *
451 value_contents (struct value *value)
452 {
453 return value_contents_writeable (value);
454 }
455
456 gdb_byte *
457 value_contents_writeable (struct value *value)
458 {
459 if (value->lazy)
460 value_fetch_lazy (value);
461 return value_contents_raw (value);
462 }
463
464 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
465 this function is different from value_equal; in C the operator ==
466 can return 0 even if the two values being compared are equal. */
467
468 int
469 value_contents_equal (struct value *val1, struct value *val2)
470 {
471 struct type *type1;
472 struct type *type2;
473 int len;
474
475 type1 = check_typedef (value_type (val1));
476 type2 = check_typedef (value_type (val2));
477 len = TYPE_LENGTH (type1);
478 if (len != TYPE_LENGTH (type2))
479 return 0;
480
481 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
482 }
483
484 int
485 value_optimized_out (struct value *value)
486 {
487 return value->optimized_out;
488 }
489
490 void
491 set_value_optimized_out (struct value *value, int val)
492 {
493 value->optimized_out = val;
494 }
495
496 int
497 value_embedded_offset (struct value *value)
498 {
499 return value->embedded_offset;
500 }
501
502 void
503 set_value_embedded_offset (struct value *value, int val)
504 {
505 value->embedded_offset = val;
506 }
507
508 int
509 value_pointed_to_offset (struct value *value)
510 {
511 return value->pointed_to_offset;
512 }
513
514 void
515 set_value_pointed_to_offset (struct value *value, int val)
516 {
517 value->pointed_to_offset = val;
518 }
519
520 struct lval_funcs *
521 value_computed_funcs (struct value *v)
522 {
523 gdb_assert (VALUE_LVAL (v) == lval_computed);
524
525 return v->location.computed.funcs;
526 }
527
528 void *
529 value_computed_closure (struct value *v)
530 {
531 gdb_assert (VALUE_LVAL (v) == lval_computed);
532
533 return v->location.computed.closure;
534 }
535
536 enum lval_type *
537 deprecated_value_lval_hack (struct value *value)
538 {
539 return &value->lval;
540 }
541
542 CORE_ADDR
543 value_address (struct value *value)
544 {
545 if (value->lval == lval_internalvar
546 || value->lval == lval_internalvar_component)
547 return 0;
548 return value->location.address + value->offset;
549 }
550
551 CORE_ADDR
552 value_raw_address (struct value *value)
553 {
554 if (value->lval == lval_internalvar
555 || value->lval == lval_internalvar_component)
556 return 0;
557 return value->location.address;
558 }
559
560 void
561 set_value_address (struct value *value, CORE_ADDR addr)
562 {
563 gdb_assert (value->lval != lval_internalvar
564 && value->lval != lval_internalvar_component);
565 value->location.address = addr;
566 }
567
568 struct internalvar **
569 deprecated_value_internalvar_hack (struct value *value)
570 {
571 return &value->location.internalvar;
572 }
573
574 struct frame_id *
575 deprecated_value_frame_id_hack (struct value *value)
576 {
577 return &value->frame_id;
578 }
579
580 short *
581 deprecated_value_regnum_hack (struct value *value)
582 {
583 return &value->regnum;
584 }
585
586 int
587 deprecated_value_modifiable (struct value *value)
588 {
589 return value->modifiable;
590 }
591 void
592 deprecated_set_value_modifiable (struct value *value, int modifiable)
593 {
594 value->modifiable = modifiable;
595 }
596 \f
597 /* Return a mark in the value chain. All values allocated after the
598 mark is obtained (except for those released) are subject to being freed
599 if a subsequent value_free_to_mark is passed the mark. */
600 struct value *
601 value_mark (void)
602 {
603 return all_values;
604 }
605
606 /* Take a reference to VAL. VAL will not be deallocated until all
607 references are released. */
608
609 void
610 value_incref (struct value *val)
611 {
612 val->reference_count++;
613 }
614
615 /* Release a reference to VAL, which was acquired with value_incref.
616 This function is also called to deallocate values from the value
617 chain. */
618
619 void
620 value_free (struct value *val)
621 {
622 if (val)
623 {
624 gdb_assert (val->reference_count > 0);
625 val->reference_count--;
626 if (val->reference_count > 0)
627 return;
628
629 /* If there's an associated parent value, drop our reference to
630 it. */
631 if (val->parent != NULL)
632 value_free (val->parent);
633
634 if (VALUE_LVAL (val) == lval_computed)
635 {
636 struct lval_funcs *funcs = val->location.computed.funcs;
637
638 if (funcs->free_closure)
639 funcs->free_closure (val);
640 }
641
642 xfree (val->contents);
643 }
644 xfree (val);
645 }
646
647 /* Free all values allocated since MARK was obtained by value_mark
648 (except for those released). */
649 void
650 value_free_to_mark (struct value *mark)
651 {
652 struct value *val;
653 struct value *next;
654
655 for (val = all_values; val && val != mark; val = next)
656 {
657 next = val->next;
658 value_free (val);
659 }
660 all_values = val;
661 }
662
663 /* Free all the values that have been allocated (except for those released).
664 Call after each command, successful or not.
665 In practice this is called before each command, which is sufficient. */
666
667 void
668 free_all_values (void)
669 {
670 struct value *val;
671 struct value *next;
672
673 for (val = all_values; val; val = next)
674 {
675 next = val->next;
676 value_free (val);
677 }
678
679 all_values = 0;
680 }
681
682 /* Remove VAL from the chain all_values
683 so it will not be freed automatically. */
684
685 void
686 release_value (struct value *val)
687 {
688 struct value *v;
689
690 if (all_values == val)
691 {
692 all_values = val->next;
693 return;
694 }
695
696 for (v = all_values; v; v = v->next)
697 {
698 if (v->next == val)
699 {
700 v->next = val->next;
701 break;
702 }
703 }
704 }
705
706 /* Release all values up to mark */
707 struct value *
708 value_release_to_mark (struct value *mark)
709 {
710 struct value *val;
711 struct value *next;
712
713 for (val = next = all_values; next; next = next->next)
714 if (next->next == mark)
715 {
716 all_values = next->next;
717 next->next = NULL;
718 return val;
719 }
720 all_values = 0;
721 return val;
722 }
723
724 /* Return a copy of the value ARG.
725 It contains the same contents, for same memory address,
726 but it's a different block of storage. */
727
728 struct value *
729 value_copy (struct value *arg)
730 {
731 struct type *encl_type = value_enclosing_type (arg);
732 struct value *val;
733
734 if (value_lazy (arg))
735 val = allocate_value_lazy (encl_type);
736 else
737 val = allocate_value (encl_type);
738 val->type = arg->type;
739 VALUE_LVAL (val) = VALUE_LVAL (arg);
740 val->location = arg->location;
741 val->offset = arg->offset;
742 val->bitpos = arg->bitpos;
743 val->bitsize = arg->bitsize;
744 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
745 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
746 val->lazy = arg->lazy;
747 val->optimized_out = arg->optimized_out;
748 val->embedded_offset = value_embedded_offset (arg);
749 val->pointed_to_offset = arg->pointed_to_offset;
750 val->modifiable = arg->modifiable;
751 if (!value_lazy (val))
752 {
753 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
754 TYPE_LENGTH (value_enclosing_type (arg)));
755
756 }
757 val->parent = arg->parent;
758 if (val->parent)
759 value_incref (val->parent);
760 if (VALUE_LVAL (val) == lval_computed)
761 {
762 struct lval_funcs *funcs = val->location.computed.funcs;
763
764 if (funcs->copy_closure)
765 val->location.computed.closure = funcs->copy_closure (val);
766 }
767 return val;
768 }
769
770 void
771 set_value_component_location (struct value *component, struct value *whole)
772 {
773 if (VALUE_LVAL (whole) == lval_internalvar)
774 VALUE_LVAL (component) = lval_internalvar_component;
775 else
776 VALUE_LVAL (component) = VALUE_LVAL (whole);
777
778 component->location = whole->location;
779 if (VALUE_LVAL (whole) == lval_computed)
780 {
781 struct lval_funcs *funcs = whole->location.computed.funcs;
782
783 if (funcs->copy_closure)
784 component->location.computed.closure = funcs->copy_closure (whole);
785 }
786 }
787
788 \f
789 /* Access to the value history. */
790
791 /* Record a new value in the value history.
792 Returns the absolute history index of the entry.
793 Result of -1 indicates the value was not saved; otherwise it is the
794 value history index of this new item. */
795
796 int
797 record_latest_value (struct value *val)
798 {
799 int i;
800
801 /* We don't want this value to have anything to do with the inferior anymore.
802 In particular, "set $1 = 50" should not affect the variable from which
803 the value was taken, and fast watchpoints should be able to assume that
804 a value on the value history never changes. */
805 if (value_lazy (val))
806 value_fetch_lazy (val);
807 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
808 from. This is a bit dubious, because then *&$1 does not just return $1
809 but the current contents of that location. c'est la vie... */
810 val->modifiable = 0;
811 release_value (val);
812
813 /* Here we treat value_history_count as origin-zero
814 and applying to the value being stored now. */
815
816 i = value_history_count % VALUE_HISTORY_CHUNK;
817 if (i == 0)
818 {
819 struct value_history_chunk *new
820 = (struct value_history_chunk *)
821 xmalloc (sizeof (struct value_history_chunk));
822 memset (new->values, 0, sizeof new->values);
823 new->next = value_history_chain;
824 value_history_chain = new;
825 }
826
827 value_history_chain->values[i] = val;
828
829 /* Now we regard value_history_count as origin-one
830 and applying to the value just stored. */
831
832 return ++value_history_count;
833 }
834
835 /* Return a copy of the value in the history with sequence number NUM. */
836
837 struct value *
838 access_value_history (int num)
839 {
840 struct value_history_chunk *chunk;
841 int i;
842 int absnum = num;
843
844 if (absnum <= 0)
845 absnum += value_history_count;
846
847 if (absnum <= 0)
848 {
849 if (num == 0)
850 error (_("The history is empty."));
851 else if (num == 1)
852 error (_("There is only one value in the history."));
853 else
854 error (_("History does not go back to $$%d."), -num);
855 }
856 if (absnum > value_history_count)
857 error (_("History has not yet reached $%d."), absnum);
858
859 absnum--;
860
861 /* Now absnum is always absolute and origin zero. */
862
863 chunk = value_history_chain;
864 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
865 i > 0; i--)
866 chunk = chunk->next;
867
868 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
869 }
870
871 static void
872 show_values (char *num_exp, int from_tty)
873 {
874 int i;
875 struct value *val;
876 static int num = 1;
877
878 if (num_exp)
879 {
880 /* "show values +" should print from the stored position.
881 "show values <exp>" should print around value number <exp>. */
882 if (num_exp[0] != '+' || num_exp[1] != '\0')
883 num = parse_and_eval_long (num_exp) - 5;
884 }
885 else
886 {
887 /* "show values" means print the last 10 values. */
888 num = value_history_count - 9;
889 }
890
891 if (num <= 0)
892 num = 1;
893
894 for (i = num; i < num + 10 && i <= value_history_count; i++)
895 {
896 struct value_print_options opts;
897 val = access_value_history (i);
898 printf_filtered (("$%d = "), i);
899 get_user_print_options (&opts);
900 value_print (val, gdb_stdout, &opts);
901 printf_filtered (("\n"));
902 }
903
904 /* The next "show values +" should start after what we just printed. */
905 num += 10;
906
907 /* Hitting just return after this command should do the same thing as
908 "show values +". If num_exp is null, this is unnecessary, since
909 "show values +" is not useful after "show values". */
910 if (from_tty && num_exp)
911 {
912 num_exp[0] = '+';
913 num_exp[1] = '\0';
914 }
915 }
916 \f
917 /* Internal variables. These are variables within the debugger
918 that hold values assigned by debugger commands.
919 The user refers to them with a '$' prefix
920 that does not appear in the variable names stored internally. */
921
922 struct internalvar
923 {
924 struct internalvar *next;
925 char *name;
926
927 /* We support various different kinds of content of an internal variable.
928 enum internalvar_kind specifies the kind, and union internalvar_data
929 provides the data associated with this particular kind. */
930
931 enum internalvar_kind
932 {
933 /* The internal variable is empty. */
934 INTERNALVAR_VOID,
935
936 /* The value of the internal variable is provided directly as
937 a GDB value object. */
938 INTERNALVAR_VALUE,
939
940 /* A fresh value is computed via a call-back routine on every
941 access to the internal variable. */
942 INTERNALVAR_MAKE_VALUE,
943
944 /* The internal variable holds a GDB internal convenience function. */
945 INTERNALVAR_FUNCTION,
946
947 /* The variable holds an integer value. */
948 INTERNALVAR_INTEGER,
949
950 /* The variable holds a pointer value. */
951 INTERNALVAR_POINTER,
952
953 /* The variable holds a GDB-provided string. */
954 INTERNALVAR_STRING,
955
956 } kind;
957
958 union internalvar_data
959 {
960 /* A value object used with INTERNALVAR_VALUE. */
961 struct value *value;
962
963 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
964 internalvar_make_value make_value;
965
966 /* The internal function used with INTERNALVAR_FUNCTION. */
967 struct
968 {
969 struct internal_function *function;
970 /* True if this is the canonical name for the function. */
971 int canonical;
972 } fn;
973
974 /* An integer value used with INTERNALVAR_INTEGER. */
975 struct
976 {
977 /* If type is non-NULL, it will be used as the type to generate
978 a value for this internal variable. If type is NULL, a default
979 integer type for the architecture is used. */
980 struct type *type;
981 LONGEST val;
982 } integer;
983
984 /* A pointer value used with INTERNALVAR_POINTER. */
985 struct
986 {
987 struct type *type;
988 CORE_ADDR val;
989 } pointer;
990
991 /* A string value used with INTERNALVAR_STRING. */
992 char *string;
993 } u;
994 };
995
996 static struct internalvar *internalvars;
997
998 /* If the variable does not already exist create it and give it the value given.
999 If no value is given then the default is zero. */
1000 static void
1001 init_if_undefined_command (char* args, int from_tty)
1002 {
1003 struct internalvar* intvar;
1004
1005 /* Parse the expression - this is taken from set_command(). */
1006 struct expression *expr = parse_expression (args);
1007 register struct cleanup *old_chain =
1008 make_cleanup (free_current_contents, &expr);
1009
1010 /* Validate the expression.
1011 Was the expression an assignment?
1012 Or even an expression at all? */
1013 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1014 error (_("Init-if-undefined requires an assignment expression."));
1015
1016 /* Extract the variable from the parsed expression.
1017 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1018 if (expr->elts[1].opcode != OP_INTERNALVAR)
1019 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1020 intvar = expr->elts[2].internalvar;
1021
1022 /* Only evaluate the expression if the lvalue is void.
1023 This may still fail if the expresssion is invalid. */
1024 if (intvar->kind == INTERNALVAR_VOID)
1025 evaluate_expression (expr);
1026
1027 do_cleanups (old_chain);
1028 }
1029
1030
1031 /* Look up an internal variable with name NAME. NAME should not
1032 normally include a dollar sign.
1033
1034 If the specified internal variable does not exist,
1035 the return value is NULL. */
1036
1037 struct internalvar *
1038 lookup_only_internalvar (const char *name)
1039 {
1040 struct internalvar *var;
1041
1042 for (var = internalvars; var; var = var->next)
1043 if (strcmp (var->name, name) == 0)
1044 return var;
1045
1046 return NULL;
1047 }
1048
1049
1050 /* Create an internal variable with name NAME and with a void value.
1051 NAME should not normally include a dollar sign. */
1052
1053 struct internalvar *
1054 create_internalvar (const char *name)
1055 {
1056 struct internalvar *var;
1057 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1058 var->name = concat (name, (char *)NULL);
1059 var->kind = INTERNALVAR_VOID;
1060 var->next = internalvars;
1061 internalvars = var;
1062 return var;
1063 }
1064
1065 /* Create an internal variable with name NAME and register FUN as the
1066 function that value_of_internalvar uses to create a value whenever
1067 this variable is referenced. NAME should not normally include a
1068 dollar sign. */
1069
1070 struct internalvar *
1071 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1072 {
1073 struct internalvar *var = create_internalvar (name);
1074 var->kind = INTERNALVAR_MAKE_VALUE;
1075 var->u.make_value = fun;
1076 return var;
1077 }
1078
1079 /* Look up an internal variable with name NAME. NAME should not
1080 normally include a dollar sign.
1081
1082 If the specified internal variable does not exist,
1083 one is created, with a void value. */
1084
1085 struct internalvar *
1086 lookup_internalvar (const char *name)
1087 {
1088 struct internalvar *var;
1089
1090 var = lookup_only_internalvar (name);
1091 if (var)
1092 return var;
1093
1094 return create_internalvar (name);
1095 }
1096
1097 /* Return current value of internal variable VAR. For variables that
1098 are not inherently typed, use a value type appropriate for GDBARCH. */
1099
1100 struct value *
1101 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1102 {
1103 struct value *val;
1104
1105 switch (var->kind)
1106 {
1107 case INTERNALVAR_VOID:
1108 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1109 break;
1110
1111 case INTERNALVAR_FUNCTION:
1112 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1113 break;
1114
1115 case INTERNALVAR_INTEGER:
1116 if (!var->u.integer.type)
1117 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1118 var->u.integer.val);
1119 else
1120 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1121 break;
1122
1123 case INTERNALVAR_POINTER:
1124 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
1125 break;
1126
1127 case INTERNALVAR_STRING:
1128 val = value_cstring (var->u.string, strlen (var->u.string),
1129 builtin_type (gdbarch)->builtin_char);
1130 break;
1131
1132 case INTERNALVAR_VALUE:
1133 val = value_copy (var->u.value);
1134 if (value_lazy (val))
1135 value_fetch_lazy (val);
1136 break;
1137
1138 case INTERNALVAR_MAKE_VALUE:
1139 val = (*var->u.make_value) (gdbarch, var);
1140 break;
1141
1142 default:
1143 internal_error (__FILE__, __LINE__, "bad kind");
1144 }
1145
1146 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1147 on this value go back to affect the original internal variable.
1148
1149 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1150 no underlying modifyable state in the internal variable.
1151
1152 Likewise, if the variable's value is a computed lvalue, we want
1153 references to it to produce another computed lvalue, where
1154 references and assignments actually operate through the
1155 computed value's functions.
1156
1157 This means that internal variables with computed values
1158 behave a little differently from other internal variables:
1159 assignments to them don't just replace the previous value
1160 altogether. At the moment, this seems like the behavior we
1161 want. */
1162
1163 if (var->kind != INTERNALVAR_MAKE_VALUE
1164 && val->lval != lval_computed)
1165 {
1166 VALUE_LVAL (val) = lval_internalvar;
1167 VALUE_INTERNALVAR (val) = var;
1168 }
1169
1170 return val;
1171 }
1172
1173 int
1174 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1175 {
1176 switch (var->kind)
1177 {
1178 case INTERNALVAR_INTEGER:
1179 *result = var->u.integer.val;
1180 return 1;
1181
1182 default:
1183 return 0;
1184 }
1185 }
1186
1187 static int
1188 get_internalvar_function (struct internalvar *var,
1189 struct internal_function **result)
1190 {
1191 switch (var->kind)
1192 {
1193 case INTERNALVAR_FUNCTION:
1194 *result = var->u.fn.function;
1195 return 1;
1196
1197 default:
1198 return 0;
1199 }
1200 }
1201
1202 void
1203 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1204 int bitsize, struct value *newval)
1205 {
1206 gdb_byte *addr;
1207
1208 switch (var->kind)
1209 {
1210 case INTERNALVAR_VALUE:
1211 addr = value_contents_writeable (var->u.value);
1212
1213 if (bitsize)
1214 modify_field (value_type (var->u.value), addr + offset,
1215 value_as_long (newval), bitpos, bitsize);
1216 else
1217 memcpy (addr + offset, value_contents (newval),
1218 TYPE_LENGTH (value_type (newval)));
1219 break;
1220
1221 default:
1222 /* We can never get a component of any other kind. */
1223 internal_error (__FILE__, __LINE__, "set_internalvar_component");
1224 }
1225 }
1226
1227 void
1228 set_internalvar (struct internalvar *var, struct value *val)
1229 {
1230 enum internalvar_kind new_kind;
1231 union internalvar_data new_data = { 0 };
1232
1233 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1234 error (_("Cannot overwrite convenience function %s"), var->name);
1235
1236 /* Prepare new contents. */
1237 switch (TYPE_CODE (check_typedef (value_type (val))))
1238 {
1239 case TYPE_CODE_VOID:
1240 new_kind = INTERNALVAR_VOID;
1241 break;
1242
1243 case TYPE_CODE_INTERNAL_FUNCTION:
1244 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1245 new_kind = INTERNALVAR_FUNCTION;
1246 get_internalvar_function (VALUE_INTERNALVAR (val),
1247 &new_data.fn.function);
1248 /* Copies created here are never canonical. */
1249 break;
1250
1251 case TYPE_CODE_INT:
1252 new_kind = INTERNALVAR_INTEGER;
1253 new_data.integer.type = value_type (val);
1254 new_data.integer.val = value_as_long (val);
1255 break;
1256
1257 case TYPE_CODE_PTR:
1258 new_kind = INTERNALVAR_POINTER;
1259 new_data.pointer.type = value_type (val);
1260 new_data.pointer.val = value_as_address (val);
1261 break;
1262
1263 default:
1264 new_kind = INTERNALVAR_VALUE;
1265 new_data.value = value_copy (val);
1266 new_data.value->modifiable = 1;
1267
1268 /* Force the value to be fetched from the target now, to avoid problems
1269 later when this internalvar is referenced and the target is gone or
1270 has changed. */
1271 if (value_lazy (new_data.value))
1272 value_fetch_lazy (new_data.value);
1273
1274 /* Release the value from the value chain to prevent it from being
1275 deleted by free_all_values. From here on this function should not
1276 call error () until new_data is installed into the var->u to avoid
1277 leaking memory. */
1278 release_value (new_data.value);
1279 break;
1280 }
1281
1282 /* Clean up old contents. */
1283 clear_internalvar (var);
1284
1285 /* Switch over. */
1286 var->kind = new_kind;
1287 var->u = new_data;
1288 /* End code which must not call error(). */
1289 }
1290
1291 void
1292 set_internalvar_integer (struct internalvar *var, LONGEST l)
1293 {
1294 /* Clean up old contents. */
1295 clear_internalvar (var);
1296
1297 var->kind = INTERNALVAR_INTEGER;
1298 var->u.integer.type = NULL;
1299 var->u.integer.val = l;
1300 }
1301
1302 void
1303 set_internalvar_string (struct internalvar *var, const char *string)
1304 {
1305 /* Clean up old contents. */
1306 clear_internalvar (var);
1307
1308 var->kind = INTERNALVAR_STRING;
1309 var->u.string = xstrdup (string);
1310 }
1311
1312 static void
1313 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1314 {
1315 /* Clean up old contents. */
1316 clear_internalvar (var);
1317
1318 var->kind = INTERNALVAR_FUNCTION;
1319 var->u.fn.function = f;
1320 var->u.fn.canonical = 1;
1321 /* Variables installed here are always the canonical version. */
1322 }
1323
1324 void
1325 clear_internalvar (struct internalvar *var)
1326 {
1327 /* Clean up old contents. */
1328 switch (var->kind)
1329 {
1330 case INTERNALVAR_VALUE:
1331 value_free (var->u.value);
1332 break;
1333
1334 case INTERNALVAR_STRING:
1335 xfree (var->u.string);
1336 break;
1337
1338 default:
1339 break;
1340 }
1341
1342 /* Reset to void kind. */
1343 var->kind = INTERNALVAR_VOID;
1344 }
1345
1346 char *
1347 internalvar_name (struct internalvar *var)
1348 {
1349 return var->name;
1350 }
1351
1352 static struct internal_function *
1353 create_internal_function (const char *name,
1354 internal_function_fn handler, void *cookie)
1355 {
1356 struct internal_function *ifn = XNEW (struct internal_function);
1357 ifn->name = xstrdup (name);
1358 ifn->handler = handler;
1359 ifn->cookie = cookie;
1360 return ifn;
1361 }
1362
1363 char *
1364 value_internal_function_name (struct value *val)
1365 {
1366 struct internal_function *ifn;
1367 int result;
1368
1369 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1370 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1371 gdb_assert (result);
1372
1373 return ifn->name;
1374 }
1375
1376 struct value *
1377 call_internal_function (struct gdbarch *gdbarch,
1378 const struct language_defn *language,
1379 struct value *func, int argc, struct value **argv)
1380 {
1381 struct internal_function *ifn;
1382 int result;
1383
1384 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1385 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1386 gdb_assert (result);
1387
1388 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1389 }
1390
1391 /* The 'function' command. This does nothing -- it is just a
1392 placeholder to let "help function NAME" work. This is also used as
1393 the implementation of the sub-command that is created when
1394 registering an internal function. */
1395 static void
1396 function_command (char *command, int from_tty)
1397 {
1398 /* Do nothing. */
1399 }
1400
1401 /* Clean up if an internal function's command is destroyed. */
1402 static void
1403 function_destroyer (struct cmd_list_element *self, void *ignore)
1404 {
1405 xfree (self->name);
1406 xfree (self->doc);
1407 }
1408
1409 /* Add a new internal function. NAME is the name of the function; DOC
1410 is a documentation string describing the function. HANDLER is
1411 called when the function is invoked. COOKIE is an arbitrary
1412 pointer which is passed to HANDLER and is intended for "user
1413 data". */
1414 void
1415 add_internal_function (const char *name, const char *doc,
1416 internal_function_fn handler, void *cookie)
1417 {
1418 struct cmd_list_element *cmd;
1419 struct internal_function *ifn;
1420 struct internalvar *var = lookup_internalvar (name);
1421
1422 ifn = create_internal_function (name, handler, cookie);
1423 set_internalvar_function (var, ifn);
1424
1425 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1426 &functionlist);
1427 cmd->destroyer = function_destroyer;
1428 }
1429
1430 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1431 prevent cycles / duplicates. */
1432
1433 void
1434 preserve_one_value (struct value *value, struct objfile *objfile,
1435 htab_t copied_types)
1436 {
1437 if (TYPE_OBJFILE (value->type) == objfile)
1438 value->type = copy_type_recursive (objfile, value->type, copied_types);
1439
1440 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1441 value->enclosing_type = copy_type_recursive (objfile,
1442 value->enclosing_type,
1443 copied_types);
1444 }
1445
1446 /* Likewise for internal variable VAR. */
1447
1448 static void
1449 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1450 htab_t copied_types)
1451 {
1452 switch (var->kind)
1453 {
1454 case INTERNALVAR_INTEGER:
1455 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1456 var->u.integer.type
1457 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1458 break;
1459
1460 case INTERNALVAR_POINTER:
1461 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1462 var->u.pointer.type
1463 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
1464 break;
1465
1466 case INTERNALVAR_VALUE:
1467 preserve_one_value (var->u.value, objfile, copied_types);
1468 break;
1469 }
1470 }
1471
1472 /* Update the internal variables and value history when OBJFILE is
1473 discarded; we must copy the types out of the objfile. New global types
1474 will be created for every convenience variable which currently points to
1475 this objfile's types, and the convenience variables will be adjusted to
1476 use the new global types. */
1477
1478 void
1479 preserve_values (struct objfile *objfile)
1480 {
1481 htab_t copied_types;
1482 struct value_history_chunk *cur;
1483 struct internalvar *var;
1484 struct value *val;
1485 int i;
1486
1487 /* Create the hash table. We allocate on the objfile's obstack, since
1488 it is soon to be deleted. */
1489 copied_types = create_copied_types_hash (objfile);
1490
1491 for (cur = value_history_chain; cur; cur = cur->next)
1492 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1493 if (cur->values[i])
1494 preserve_one_value (cur->values[i], objfile, copied_types);
1495
1496 for (var = internalvars; var; var = var->next)
1497 preserve_one_internalvar (var, objfile, copied_types);
1498
1499 preserve_python_values (objfile, copied_types);
1500
1501 htab_delete (copied_types);
1502 }
1503
1504 static void
1505 show_convenience (char *ignore, int from_tty)
1506 {
1507 struct gdbarch *gdbarch = get_current_arch ();
1508 struct internalvar *var;
1509 int varseen = 0;
1510 struct value_print_options opts;
1511
1512 get_user_print_options (&opts);
1513 for (var = internalvars; var; var = var->next)
1514 {
1515 if (!varseen)
1516 {
1517 varseen = 1;
1518 }
1519 printf_filtered (("$%s = "), var->name);
1520 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1521 &opts);
1522 printf_filtered (("\n"));
1523 }
1524 if (!varseen)
1525 printf_unfiltered (_("\
1526 No debugger convenience variables now defined.\n\
1527 Convenience variables have names starting with \"$\";\n\
1528 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1529 }
1530 \f
1531 /* Extract a value as a C number (either long or double).
1532 Knows how to convert fixed values to double, or
1533 floating values to long.
1534 Does not deallocate the value. */
1535
1536 LONGEST
1537 value_as_long (struct value *val)
1538 {
1539 /* This coerces arrays and functions, which is necessary (e.g.
1540 in disassemble_command). It also dereferences references, which
1541 I suspect is the most logical thing to do. */
1542 val = coerce_array (val);
1543 return unpack_long (value_type (val), value_contents (val));
1544 }
1545
1546 DOUBLEST
1547 value_as_double (struct value *val)
1548 {
1549 DOUBLEST foo;
1550 int inv;
1551
1552 foo = unpack_double (value_type (val), value_contents (val), &inv);
1553 if (inv)
1554 error (_("Invalid floating value found in program."));
1555 return foo;
1556 }
1557
1558 /* Extract a value as a C pointer. Does not deallocate the value.
1559 Note that val's type may not actually be a pointer; value_as_long
1560 handles all the cases. */
1561 CORE_ADDR
1562 value_as_address (struct value *val)
1563 {
1564 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1565
1566 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1567 whether we want this to be true eventually. */
1568 #if 0
1569 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1570 non-address (e.g. argument to "signal", "info break", etc.), or
1571 for pointers to char, in which the low bits *are* significant. */
1572 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1573 #else
1574
1575 /* There are several targets (IA-64, PowerPC, and others) which
1576 don't represent pointers to functions as simply the address of
1577 the function's entry point. For example, on the IA-64, a
1578 function pointer points to a two-word descriptor, generated by
1579 the linker, which contains the function's entry point, and the
1580 value the IA-64 "global pointer" register should have --- to
1581 support position-independent code. The linker generates
1582 descriptors only for those functions whose addresses are taken.
1583
1584 On such targets, it's difficult for GDB to convert an arbitrary
1585 function address into a function pointer; it has to either find
1586 an existing descriptor for that function, or call malloc and
1587 build its own. On some targets, it is impossible for GDB to
1588 build a descriptor at all: the descriptor must contain a jump
1589 instruction; data memory cannot be executed; and code memory
1590 cannot be modified.
1591
1592 Upon entry to this function, if VAL is a value of type `function'
1593 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1594 value_address (val) is the address of the function. This is what
1595 you'll get if you evaluate an expression like `main'. The call
1596 to COERCE_ARRAY below actually does all the usual unary
1597 conversions, which includes converting values of type `function'
1598 to `pointer to function'. This is the challenging conversion
1599 discussed above. Then, `unpack_long' will convert that pointer
1600 back into an address.
1601
1602 So, suppose the user types `disassemble foo' on an architecture
1603 with a strange function pointer representation, on which GDB
1604 cannot build its own descriptors, and suppose further that `foo'
1605 has no linker-built descriptor. The address->pointer conversion
1606 will signal an error and prevent the command from running, even
1607 though the next step would have been to convert the pointer
1608 directly back into the same address.
1609
1610 The following shortcut avoids this whole mess. If VAL is a
1611 function, just return its address directly. */
1612 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1613 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1614 return value_address (val);
1615
1616 val = coerce_array (val);
1617
1618 /* Some architectures (e.g. Harvard), map instruction and data
1619 addresses onto a single large unified address space. For
1620 instance: An architecture may consider a large integer in the
1621 range 0x10000000 .. 0x1000ffff to already represent a data
1622 addresses (hence not need a pointer to address conversion) while
1623 a small integer would still need to be converted integer to
1624 pointer to address. Just assume such architectures handle all
1625 integer conversions in a single function. */
1626
1627 /* JimB writes:
1628
1629 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1630 must admonish GDB hackers to make sure its behavior matches the
1631 compiler's, whenever possible.
1632
1633 In general, I think GDB should evaluate expressions the same way
1634 the compiler does. When the user copies an expression out of
1635 their source code and hands it to a `print' command, they should
1636 get the same value the compiler would have computed. Any
1637 deviation from this rule can cause major confusion and annoyance,
1638 and needs to be justified carefully. In other words, GDB doesn't
1639 really have the freedom to do these conversions in clever and
1640 useful ways.
1641
1642 AndrewC pointed out that users aren't complaining about how GDB
1643 casts integers to pointers; they are complaining that they can't
1644 take an address from a disassembly listing and give it to `x/i'.
1645 This is certainly important.
1646
1647 Adding an architecture method like integer_to_address() certainly
1648 makes it possible for GDB to "get it right" in all circumstances
1649 --- the target has complete control over how things get done, so
1650 people can Do The Right Thing for their target without breaking
1651 anyone else. The standard doesn't specify how integers get
1652 converted to pointers; usually, the ABI doesn't either, but
1653 ABI-specific code is a more reasonable place to handle it. */
1654
1655 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1656 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1657 && gdbarch_integer_to_address_p (gdbarch))
1658 return gdbarch_integer_to_address (gdbarch, value_type (val),
1659 value_contents (val));
1660
1661 return unpack_long (value_type (val), value_contents (val));
1662 #endif
1663 }
1664 \f
1665 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1666 as a long, or as a double, assuming the raw data is described
1667 by type TYPE. Knows how to convert different sizes of values
1668 and can convert between fixed and floating point. We don't assume
1669 any alignment for the raw data. Return value is in host byte order.
1670
1671 If you want functions and arrays to be coerced to pointers, and
1672 references to be dereferenced, call value_as_long() instead.
1673
1674 C++: It is assumed that the front-end has taken care of
1675 all matters concerning pointers to members. A pointer
1676 to member which reaches here is considered to be equivalent
1677 to an INT (or some size). After all, it is only an offset. */
1678
1679 LONGEST
1680 unpack_long (struct type *type, const gdb_byte *valaddr)
1681 {
1682 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1683 enum type_code code = TYPE_CODE (type);
1684 int len = TYPE_LENGTH (type);
1685 int nosign = TYPE_UNSIGNED (type);
1686
1687 switch (code)
1688 {
1689 case TYPE_CODE_TYPEDEF:
1690 return unpack_long (check_typedef (type), valaddr);
1691 case TYPE_CODE_ENUM:
1692 case TYPE_CODE_FLAGS:
1693 case TYPE_CODE_BOOL:
1694 case TYPE_CODE_INT:
1695 case TYPE_CODE_CHAR:
1696 case TYPE_CODE_RANGE:
1697 case TYPE_CODE_MEMBERPTR:
1698 if (nosign)
1699 return extract_unsigned_integer (valaddr, len, byte_order);
1700 else
1701 return extract_signed_integer (valaddr, len, byte_order);
1702
1703 case TYPE_CODE_FLT:
1704 return extract_typed_floating (valaddr, type);
1705
1706 case TYPE_CODE_DECFLOAT:
1707 /* libdecnumber has a function to convert from decimal to integer, but
1708 it doesn't work when the decimal number has a fractional part. */
1709 return decimal_to_doublest (valaddr, len, byte_order);
1710
1711 case TYPE_CODE_PTR:
1712 case TYPE_CODE_REF:
1713 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1714 whether we want this to be true eventually. */
1715 return extract_typed_address (valaddr, type);
1716
1717 default:
1718 error (_("Value can't be converted to integer."));
1719 }
1720 return 0; /* Placate lint. */
1721 }
1722
1723 /* Return a double value from the specified type and address.
1724 INVP points to an int which is set to 0 for valid value,
1725 1 for invalid value (bad float format). In either case,
1726 the returned double is OK to use. Argument is in target
1727 format, result is in host format. */
1728
1729 DOUBLEST
1730 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1731 {
1732 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1733 enum type_code code;
1734 int len;
1735 int nosign;
1736
1737 *invp = 0; /* Assume valid. */
1738 CHECK_TYPEDEF (type);
1739 code = TYPE_CODE (type);
1740 len = TYPE_LENGTH (type);
1741 nosign = TYPE_UNSIGNED (type);
1742 if (code == TYPE_CODE_FLT)
1743 {
1744 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1745 floating-point value was valid (using the macro
1746 INVALID_FLOAT). That test/macro have been removed.
1747
1748 It turns out that only the VAX defined this macro and then
1749 only in a non-portable way. Fixing the portability problem
1750 wouldn't help since the VAX floating-point code is also badly
1751 bit-rotten. The target needs to add definitions for the
1752 methods gdbarch_float_format and gdbarch_double_format - these
1753 exactly describe the target floating-point format. The
1754 problem here is that the corresponding floatformat_vax_f and
1755 floatformat_vax_d values these methods should be set to are
1756 also not defined either. Oops!
1757
1758 Hopefully someone will add both the missing floatformat
1759 definitions and the new cases for floatformat_is_valid (). */
1760
1761 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1762 {
1763 *invp = 1;
1764 return 0.0;
1765 }
1766
1767 return extract_typed_floating (valaddr, type);
1768 }
1769 else if (code == TYPE_CODE_DECFLOAT)
1770 return decimal_to_doublest (valaddr, len, byte_order);
1771 else if (nosign)
1772 {
1773 /* Unsigned -- be sure we compensate for signed LONGEST. */
1774 return (ULONGEST) unpack_long (type, valaddr);
1775 }
1776 else
1777 {
1778 /* Signed -- we are OK with unpack_long. */
1779 return unpack_long (type, valaddr);
1780 }
1781 }
1782
1783 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1784 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1785 We don't assume any alignment for the raw data. Return value is in
1786 host byte order.
1787
1788 If you want functions and arrays to be coerced to pointers, and
1789 references to be dereferenced, call value_as_address() instead.
1790
1791 C++: It is assumed that the front-end has taken care of
1792 all matters concerning pointers to members. A pointer
1793 to member which reaches here is considered to be equivalent
1794 to an INT (or some size). After all, it is only an offset. */
1795
1796 CORE_ADDR
1797 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1798 {
1799 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1800 whether we want this to be true eventually. */
1801 return unpack_long (type, valaddr);
1802 }
1803
1804 \f
1805 /* Get the value of the FIELDN'th field (which must be static) of
1806 TYPE. Return NULL if the field doesn't exist or has been
1807 optimized out. */
1808
1809 struct value *
1810 value_static_field (struct type *type, int fieldno)
1811 {
1812 struct value *retval;
1813
1814 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1815 {
1816 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1817 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1818 }
1819 else
1820 {
1821 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1822 /*TYPE_FIELD_NAME (type, fieldno);*/
1823 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1824
1825 if (sym == NULL)
1826 {
1827 /* With some compilers, e.g. HP aCC, static data members are reported
1828 as non-debuggable symbols */
1829 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1830 if (!msym)
1831 return NULL;
1832 else
1833 {
1834 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1835 SYMBOL_VALUE_ADDRESS (msym));
1836 }
1837 }
1838 else
1839 {
1840 /* SYM should never have a SYMBOL_CLASS which will require
1841 read_var_value to use the FRAME parameter. */
1842 if (symbol_read_needs_frame (sym))
1843 warning (_("static field's value depends on the current "
1844 "frame - bad debug info?"));
1845 retval = read_var_value (sym, NULL);
1846 }
1847 if (retval && VALUE_LVAL (retval) == lval_memory)
1848 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1849 value_address (retval));
1850 }
1851 return retval;
1852 }
1853
1854 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1855 You have to be careful here, since the size of the data area for the value
1856 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1857 than the old enclosing type, you have to allocate more space for the data.
1858 The return value is a pointer to the new version of this value structure. */
1859
1860 struct value *
1861 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1862 {
1863 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1864 val->contents =
1865 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1866
1867 val->enclosing_type = new_encl_type;
1868 return val;
1869 }
1870
1871 /* Given a value ARG1 (offset by OFFSET bytes)
1872 of a struct or union type ARG_TYPE,
1873 extract and return the value of one of its (non-static) fields.
1874 FIELDNO says which field. */
1875
1876 struct value *
1877 value_primitive_field (struct value *arg1, int offset,
1878 int fieldno, struct type *arg_type)
1879 {
1880 struct value *v;
1881 struct type *type;
1882
1883 CHECK_TYPEDEF (arg_type);
1884 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1885
1886 /* Call check_typedef on our type to make sure that, if TYPE
1887 is a TYPE_CODE_TYPEDEF, its length is set to the length
1888 of the target type instead of zero. However, we do not
1889 replace the typedef type by the target type, because we want
1890 to keep the typedef in order to be able to print the type
1891 description correctly. */
1892 check_typedef (type);
1893
1894 /* Handle packed fields */
1895
1896 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1897 {
1898 /* Create a new value for the bitfield, with bitpos and bitsize
1899 set. If possible, arrange offset and bitpos so that we can
1900 do a single aligned read of the size of the containing type.
1901 Otherwise, adjust offset to the byte containing the first
1902 bit. Assume that the address, offset, and embedded offset
1903 are sufficiently aligned. */
1904 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1905 int container_bitsize = TYPE_LENGTH (type) * 8;
1906
1907 v = allocate_value_lazy (type);
1908 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1909 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1910 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1911 v->bitpos = bitpos % container_bitsize;
1912 else
1913 v->bitpos = bitpos % 8;
1914 v->offset = value_embedded_offset (arg1)
1915 + (bitpos - v->bitpos) / 8;
1916 v->parent = arg1;
1917 value_incref (v->parent);
1918 if (!value_lazy (arg1))
1919 value_fetch_lazy (v);
1920 }
1921 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1922 {
1923 /* This field is actually a base subobject, so preserve the
1924 entire object's contents for later references to virtual
1925 bases, etc. */
1926
1927 /* Lazy register values with offsets are not supported. */
1928 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1929 value_fetch_lazy (arg1);
1930
1931 if (value_lazy (arg1))
1932 v = allocate_value_lazy (value_enclosing_type (arg1));
1933 else
1934 {
1935 v = allocate_value (value_enclosing_type (arg1));
1936 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1937 TYPE_LENGTH (value_enclosing_type (arg1)));
1938 }
1939 v->type = type;
1940 v->offset = value_offset (arg1);
1941 v->embedded_offset = (offset + value_embedded_offset (arg1)
1942 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1943 }
1944 else
1945 {
1946 /* Plain old data member */
1947 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1948
1949 /* Lazy register values with offsets are not supported. */
1950 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1951 value_fetch_lazy (arg1);
1952
1953 if (value_lazy (arg1))
1954 v = allocate_value_lazy (type);
1955 else
1956 {
1957 v = allocate_value (type);
1958 memcpy (value_contents_raw (v),
1959 value_contents_raw (arg1) + offset,
1960 TYPE_LENGTH (type));
1961 }
1962 v->offset = (value_offset (arg1) + offset
1963 + value_embedded_offset (arg1));
1964 }
1965 set_value_component_location (v, arg1);
1966 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1967 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1968 return v;
1969 }
1970
1971 /* Given a value ARG1 of a struct or union type,
1972 extract and return the value of one of its (non-static) fields.
1973 FIELDNO says which field. */
1974
1975 struct value *
1976 value_field (struct value *arg1, int fieldno)
1977 {
1978 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1979 }
1980
1981 /* Return a non-virtual function as a value.
1982 F is the list of member functions which contains the desired method.
1983 J is an index into F which provides the desired method.
1984
1985 We only use the symbol for its address, so be happy with either a
1986 full symbol or a minimal symbol.
1987 */
1988
1989 struct value *
1990 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1991 int offset)
1992 {
1993 struct value *v;
1994 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1995 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1996 struct symbol *sym;
1997 struct minimal_symbol *msym;
1998
1999 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2000 if (sym != NULL)
2001 {
2002 msym = NULL;
2003 }
2004 else
2005 {
2006 gdb_assert (sym == NULL);
2007 msym = lookup_minimal_symbol (physname, NULL, NULL);
2008 if (msym == NULL)
2009 return NULL;
2010 }
2011
2012 v = allocate_value (ftype);
2013 if (sym)
2014 {
2015 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2016 }
2017 else
2018 {
2019 /* The minimal symbol might point to a function descriptor;
2020 resolve it to the actual code address instead. */
2021 struct objfile *objfile = msymbol_objfile (msym);
2022 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2023
2024 set_value_address (v,
2025 gdbarch_convert_from_func_ptr_addr
2026 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2027 }
2028
2029 if (arg1p)
2030 {
2031 if (type != value_type (*arg1p))
2032 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2033 value_addr (*arg1p)));
2034
2035 /* Move the `this' pointer according to the offset.
2036 VALUE_OFFSET (*arg1p) += offset;
2037 */
2038 }
2039
2040 return v;
2041 }
2042
2043 \f
2044 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2045 object at VALADDR. The bitfield starts at BITPOS bits and contains
2046 BITSIZE bits.
2047
2048 Extracting bits depends on endianness of the machine. Compute the
2049 number of least significant bits to discard. For big endian machines,
2050 we compute the total number of bits in the anonymous object, subtract
2051 off the bit count from the MSB of the object to the MSB of the
2052 bitfield, then the size of the bitfield, which leaves the LSB discard
2053 count. For little endian machines, the discard count is simply the
2054 number of bits from the LSB of the anonymous object to the LSB of the
2055 bitfield.
2056
2057 If the field is signed, we also do sign extension. */
2058
2059 LONGEST
2060 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2061 int bitpos, int bitsize)
2062 {
2063 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2064 ULONGEST val;
2065 ULONGEST valmask;
2066 int lsbcount;
2067 int bytes_read;
2068
2069 /* Read the minimum number of bytes required; there may not be
2070 enough bytes to read an entire ULONGEST. */
2071 CHECK_TYPEDEF (field_type);
2072 if (bitsize)
2073 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2074 else
2075 bytes_read = TYPE_LENGTH (field_type);
2076
2077 val = extract_unsigned_integer (valaddr + bitpos / 8,
2078 bytes_read, byte_order);
2079
2080 /* Extract bits. See comment above. */
2081
2082 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2083 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2084 else
2085 lsbcount = (bitpos % 8);
2086 val >>= lsbcount;
2087
2088 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2089 If the field is signed, and is negative, then sign extend. */
2090
2091 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2092 {
2093 valmask = (((ULONGEST) 1) << bitsize) - 1;
2094 val &= valmask;
2095 if (!TYPE_UNSIGNED (field_type))
2096 {
2097 if (val & (valmask ^ (valmask >> 1)))
2098 {
2099 val |= ~valmask;
2100 }
2101 }
2102 }
2103 return (val);
2104 }
2105
2106 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2107 VALADDR. See unpack_bits_as_long for more details. */
2108
2109 LONGEST
2110 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2111 {
2112 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2113 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2114 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2115
2116 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2117 }
2118
2119 /* Modify the value of a bitfield. ADDR points to a block of memory in
2120 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2121 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2122 indicate which bits (in target bit order) comprise the bitfield.
2123 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2124 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2125
2126 void
2127 modify_field (struct type *type, gdb_byte *addr,
2128 LONGEST fieldval, int bitpos, int bitsize)
2129 {
2130 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2131 ULONGEST oword;
2132 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2133
2134 /* If a negative fieldval fits in the field in question, chop
2135 off the sign extension bits. */
2136 if ((~fieldval & ~(mask >> 1)) == 0)
2137 fieldval &= mask;
2138
2139 /* Warn if value is too big to fit in the field in question. */
2140 if (0 != (fieldval & ~mask))
2141 {
2142 /* FIXME: would like to include fieldval in the message, but
2143 we don't have a sprintf_longest. */
2144 warning (_("Value does not fit in %d bits."), bitsize);
2145
2146 /* Truncate it, otherwise adjoining fields may be corrupted. */
2147 fieldval &= mask;
2148 }
2149
2150 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
2151
2152 /* Shifting for bit field depends on endianness of the target machine. */
2153 if (gdbarch_bits_big_endian (get_type_arch (type)))
2154 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2155
2156 oword &= ~(mask << bitpos);
2157 oword |= fieldval << bitpos;
2158
2159 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
2160 }
2161 \f
2162 /* Pack NUM into BUF using a target format of TYPE. */
2163
2164 void
2165 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2166 {
2167 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2168 int len;
2169
2170 type = check_typedef (type);
2171 len = TYPE_LENGTH (type);
2172
2173 switch (TYPE_CODE (type))
2174 {
2175 case TYPE_CODE_INT:
2176 case TYPE_CODE_CHAR:
2177 case TYPE_CODE_ENUM:
2178 case TYPE_CODE_FLAGS:
2179 case TYPE_CODE_BOOL:
2180 case TYPE_CODE_RANGE:
2181 case TYPE_CODE_MEMBERPTR:
2182 store_signed_integer (buf, len, byte_order, num);
2183 break;
2184
2185 case TYPE_CODE_REF:
2186 case TYPE_CODE_PTR:
2187 store_typed_address (buf, type, (CORE_ADDR) num);
2188 break;
2189
2190 default:
2191 error (_("Unexpected type (%d) encountered for integer constant."),
2192 TYPE_CODE (type));
2193 }
2194 }
2195
2196
2197 /* Convert C numbers into newly allocated values. */
2198
2199 struct value *
2200 value_from_longest (struct type *type, LONGEST num)
2201 {
2202 struct value *val = allocate_value (type);
2203
2204 pack_long (value_contents_raw (val), type, num);
2205
2206 return val;
2207 }
2208
2209
2210 /* Create a value representing a pointer of type TYPE to the address
2211 ADDR. */
2212 struct value *
2213 value_from_pointer (struct type *type, CORE_ADDR addr)
2214 {
2215 struct value *val = allocate_value (type);
2216 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2217 return val;
2218 }
2219
2220
2221 /* Create a value of type TYPE whose contents come from VALADDR, if it
2222 is non-null, and whose memory address (in the inferior) is
2223 ADDRESS. */
2224
2225 struct value *
2226 value_from_contents_and_address (struct type *type,
2227 const gdb_byte *valaddr,
2228 CORE_ADDR address)
2229 {
2230 struct value *v = allocate_value (type);
2231 if (valaddr == NULL)
2232 set_value_lazy (v, 1);
2233 else
2234 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2235 set_value_address (v, address);
2236 VALUE_LVAL (v) = lval_memory;
2237 return v;
2238 }
2239
2240 struct value *
2241 value_from_double (struct type *type, DOUBLEST num)
2242 {
2243 struct value *val = allocate_value (type);
2244 struct type *base_type = check_typedef (type);
2245 enum type_code code = TYPE_CODE (base_type);
2246 int len = TYPE_LENGTH (base_type);
2247
2248 if (code == TYPE_CODE_FLT)
2249 {
2250 store_typed_floating (value_contents_raw (val), base_type, num);
2251 }
2252 else
2253 error (_("Unexpected type encountered for floating constant."));
2254
2255 return val;
2256 }
2257
2258 struct value *
2259 value_from_decfloat (struct type *type, const gdb_byte *dec)
2260 {
2261 struct value *val = allocate_value (type);
2262
2263 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2264
2265 return val;
2266 }
2267
2268 struct value *
2269 coerce_ref (struct value *arg)
2270 {
2271 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2272 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2273 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2274 unpack_pointer (value_type (arg),
2275 value_contents (arg)));
2276 return arg;
2277 }
2278
2279 struct value *
2280 coerce_array (struct value *arg)
2281 {
2282 struct type *type;
2283
2284 arg = coerce_ref (arg);
2285 type = check_typedef (value_type (arg));
2286
2287 switch (TYPE_CODE (type))
2288 {
2289 case TYPE_CODE_ARRAY:
2290 if (current_language->c_style_arrays)
2291 arg = value_coerce_array (arg);
2292 break;
2293 case TYPE_CODE_FUNC:
2294 arg = value_coerce_function (arg);
2295 break;
2296 }
2297 return arg;
2298 }
2299 \f
2300
2301 /* Return true if the function returning the specified type is using
2302 the convention of returning structures in memory (passing in the
2303 address as a hidden first parameter). */
2304
2305 int
2306 using_struct_return (struct gdbarch *gdbarch,
2307 struct type *func_type, struct type *value_type)
2308 {
2309 enum type_code code = TYPE_CODE (value_type);
2310
2311 if (code == TYPE_CODE_ERROR)
2312 error (_("Function return type unknown."));
2313
2314 if (code == TYPE_CODE_VOID)
2315 /* A void return value is never in memory. See also corresponding
2316 code in "print_return_value". */
2317 return 0;
2318
2319 /* Probe the architecture for the return-value convention. */
2320 return (gdbarch_return_value (gdbarch, func_type, value_type,
2321 NULL, NULL, NULL)
2322 != RETURN_VALUE_REGISTER_CONVENTION);
2323 }
2324
2325 /* Set the initialized field in a value struct. */
2326
2327 void
2328 set_value_initialized (struct value *val, int status)
2329 {
2330 val->initialized = status;
2331 }
2332
2333 /* Return the initialized field in a value struct. */
2334
2335 int
2336 value_initialized (struct value *val)
2337 {
2338 return val->initialized;
2339 }
2340
2341 void
2342 _initialize_values (void)
2343 {
2344 add_cmd ("convenience", no_class, show_convenience, _("\
2345 Debugger convenience (\"$foo\") variables.\n\
2346 These variables are created when you assign them values;\n\
2347 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2348 \n\
2349 A few convenience variables are given values automatically:\n\
2350 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2351 \"$__\" holds the contents of the last address examined with \"x\"."),
2352 &showlist);
2353
2354 add_cmd ("values", no_class, show_values,
2355 _("Elements of value history around item number IDX (or last ten)."),
2356 &showlist);
2357
2358 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2359 Initialize a convenience variable if necessary.\n\
2360 init-if-undefined VARIABLE = EXPRESSION\n\
2361 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2362 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2363 VARIABLE is already initialized."));
2364
2365 add_prefix_cmd ("function", no_class, function_command, _("\
2366 Placeholder command for showing help on convenience functions."),
2367 &functionlist, "function ", 0, &cmdlist);
2368 }
This page took 0.099567 seconds and 4 git commands to generate.