Print nonexisting/optimized out static fields gracefully.
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44 #include "cp-abi.h"
45 #include "user-regs.h"
46
47 /* Prototypes for exported functions. */
48
49 void _initialize_values (void);
50
51 /* Definition of a user function. */
52 struct internal_function
53 {
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64 };
65
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68 struct range
69 {
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75 };
76
77 typedef struct range range_s;
78
79 DEF_VEC_O(range_s);
80
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84 static int
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87 {
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93 }
94
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100 static int
101 range_lessthan (const range_s *r1, const range_s *r2)
102 {
103 return r1->offset < r2->offset;
104 }
105
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109 static int
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
111 {
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168 }
169
170 static struct cmd_list_element *functionlist;
171
172 /* Note that the fields in this structure are arranged to save a bit
173 of memory. */
174
175 struct value
176 {
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
179 enum lval_type lval;
180
181 /* Is it modifiable? Only relevant if lval != not_lval. */
182 unsigned int modifiable : 1;
183
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
188
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
199
200 /* If nonzero, this is the value of a variable that does not
201 actually exist in the program. If nonzero, and LVAL is
202 lval_register, this is a register ($pc, $sp, etc., never a
203 program variable) that has not been saved in the frame. All
204 optimized-out values are treated pretty much the same, except
205 registers have a different string representation and related
206 error strings. */
207 unsigned int optimized_out : 1;
208
209 /* If value is a variable, is it initialized or not. */
210 unsigned int initialized : 1;
211
212 /* If value is from the stack. If this is set, read_stack will be
213 used instead of read_memory to enable extra caching. */
214 unsigned int stack : 1;
215
216 /* If the value has been released. */
217 unsigned int released : 1;
218
219 /* Location of value (if lval). */
220 union
221 {
222 /* If lval == lval_memory, this is the address in the inferior.
223 If lval == lval_register, this is the byte offset into the
224 registers structure. */
225 CORE_ADDR address;
226
227 /* Pointer to internal variable. */
228 struct internalvar *internalvar;
229
230 /* If lval == lval_computed, this is a set of function pointers
231 to use to access and describe the value, and a closure pointer
232 for them to use. */
233 struct
234 {
235 /* Functions to call. */
236 const struct lval_funcs *funcs;
237
238 /* Closure for those functions to use. */
239 void *closure;
240 } computed;
241 } location;
242
243 /* Describes offset of a value within lval of a structure in bytes.
244 If lval == lval_memory, this is an offset to the address. If
245 lval == lval_register, this is a further offset from
246 location.address within the registers structure. Note also the
247 member embedded_offset below. */
248 int offset;
249
250 /* Only used for bitfields; number of bits contained in them. */
251 int bitsize;
252
253 /* Only used for bitfields; position of start of field. For
254 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
255 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
256 int bitpos;
257
258 /* The number of references to this value. When a value is created,
259 the value chain holds a reference, so REFERENCE_COUNT is 1. If
260 release_value is called, this value is removed from the chain but
261 the caller of release_value now has a reference to this value.
262 The caller must arrange for a call to value_free later. */
263 int reference_count;
264
265 /* Only used for bitfields; the containing value. This allows a
266 single read from the target when displaying multiple
267 bitfields. */
268 struct value *parent;
269
270 /* Frame register value is relative to. This will be described in
271 the lval enum above as "lval_register". */
272 struct frame_id frame_id;
273
274 /* Type of the value. */
275 struct type *type;
276
277 /* If a value represents a C++ object, then the `type' field gives
278 the object's compile-time type. If the object actually belongs
279 to some class derived from `type', perhaps with other base
280 classes and additional members, then `type' is just a subobject
281 of the real thing, and the full object is probably larger than
282 `type' would suggest.
283
284 If `type' is a dynamic class (i.e. one with a vtable), then GDB
285 can actually determine the object's run-time type by looking at
286 the run-time type information in the vtable. When this
287 information is available, we may elect to read in the entire
288 object, for several reasons:
289
290 - When printing the value, the user would probably rather see the
291 full object, not just the limited portion apparent from the
292 compile-time type.
293
294 - If `type' has virtual base classes, then even printing `type'
295 alone may require reaching outside the `type' portion of the
296 object to wherever the virtual base class has been stored.
297
298 When we store the entire object, `enclosing_type' is the run-time
299 type -- the complete object -- and `embedded_offset' is the
300 offset of `type' within that larger type, in bytes. The
301 value_contents() macro takes `embedded_offset' into account, so
302 most GDB code continues to see the `type' portion of the value,
303 just as the inferior would.
304
305 If `type' is a pointer to an object, then `enclosing_type' is a
306 pointer to the object's run-time type, and `pointed_to_offset' is
307 the offset in bytes from the full object to the pointed-to object
308 -- that is, the value `embedded_offset' would have if we followed
309 the pointer and fetched the complete object. (I don't really see
310 the point. Why not just determine the run-time type when you
311 indirect, and avoid the special case? The contents don't matter
312 until you indirect anyway.)
313
314 If we're not doing anything fancy, `enclosing_type' is equal to
315 `type', and `embedded_offset' is zero, so everything works
316 normally. */
317 struct type *enclosing_type;
318 int embedded_offset;
319 int pointed_to_offset;
320
321 /* Values are stored in a chain, so that they can be deleted easily
322 over calls to the inferior. Values assigned to internal
323 variables, put into the value history or exposed to Python are
324 taken off this list. */
325 struct value *next;
326
327 /* Register number if the value is from a register. */
328 short regnum;
329
330 /* Actual contents of the value. Target byte-order. NULL or not
331 valid if lazy is nonzero. */
332 gdb_byte *contents;
333
334 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
335 rather than available, since the common and default case is for a
336 value to be available. This is filled in at value read time. */
337 VEC(range_s) *unavailable;
338 };
339
340 int
341 value_bytes_available (const struct value *value, int offset, int length)
342 {
343 gdb_assert (!value->lazy);
344
345 return !ranges_contain (value->unavailable, offset, length);
346 }
347
348 int
349 value_entirely_available (struct value *value)
350 {
351 /* We can only tell whether the whole value is available when we try
352 to read it. */
353 if (value->lazy)
354 value_fetch_lazy (value);
355
356 if (VEC_empty (range_s, value->unavailable))
357 return 1;
358 return 0;
359 }
360
361 int
362 value_entirely_unavailable (struct value *value)
363 {
364 /* We can only tell whether the whole value is available when we try
365 to read it. */
366 if (value->lazy)
367 value_fetch_lazy (value);
368
369 if (VEC_length (range_s, value->unavailable) == 1)
370 {
371 struct range *t = VEC_index (range_s, value->unavailable, 0);
372
373 if (t->offset == 0
374 && t->length == TYPE_LENGTH (value_enclosing_type (value)))
375 return 1;
376 }
377
378 return 0;
379 }
380
381 void
382 mark_value_bytes_unavailable (struct value *value, int offset, int length)
383 {
384 range_s newr;
385 int i;
386
387 /* Insert the range sorted. If there's overlap or the new range
388 would be contiguous with an existing range, merge. */
389
390 newr.offset = offset;
391 newr.length = length;
392
393 /* Do a binary search for the position the given range would be
394 inserted if we only considered the starting OFFSET of ranges.
395 Call that position I. Since we also have LENGTH to care for
396 (this is a range afterall), we need to check if the _previous_
397 range overlaps the I range. E.g., calling R the new range:
398
399 #1 - overlaps with previous
400
401 R
402 |-...-|
403 |---| |---| |------| ... |--|
404 0 1 2 N
405
406 I=1
407
408 In the case #1 above, the binary search would return `I=1',
409 meaning, this OFFSET should be inserted at position 1, and the
410 current position 1 should be pushed further (and become 2). But,
411 note that `0' overlaps with R, so we want to merge them.
412
413 A similar consideration needs to be taken if the new range would
414 be contiguous with the previous range:
415
416 #2 - contiguous with previous
417
418 R
419 |-...-|
420 |--| |---| |------| ... |--|
421 0 1 2 N
422
423 I=1
424
425 If there's no overlap with the previous range, as in:
426
427 #3 - not overlapping and not contiguous
428
429 R
430 |-...-|
431 |--| |---| |------| ... |--|
432 0 1 2 N
433
434 I=1
435
436 or if I is 0:
437
438 #4 - R is the range with lowest offset
439
440 R
441 |-...-|
442 |--| |---| |------| ... |--|
443 0 1 2 N
444
445 I=0
446
447 ... we just push the new range to I.
448
449 All the 4 cases above need to consider that the new range may
450 also overlap several of the ranges that follow, or that R may be
451 contiguous with the following range, and merge. E.g.,
452
453 #5 - overlapping following ranges
454
455 R
456 |------------------------|
457 |--| |---| |------| ... |--|
458 0 1 2 N
459
460 I=0
461
462 or:
463
464 R
465 |-------|
466 |--| |---| |------| ... |--|
467 0 1 2 N
468
469 I=1
470
471 */
472
473 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
474 if (i > 0)
475 {
476 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
477
478 if (ranges_overlap (bef->offset, bef->length, offset, length))
479 {
480 /* #1 */
481 ULONGEST l = min (bef->offset, offset);
482 ULONGEST h = max (bef->offset + bef->length, offset + length);
483
484 bef->offset = l;
485 bef->length = h - l;
486 i--;
487 }
488 else if (offset == bef->offset + bef->length)
489 {
490 /* #2 */
491 bef->length += length;
492 i--;
493 }
494 else
495 {
496 /* #3 */
497 VEC_safe_insert (range_s, value->unavailable, i, &newr);
498 }
499 }
500 else
501 {
502 /* #4 */
503 VEC_safe_insert (range_s, value->unavailable, i, &newr);
504 }
505
506 /* Check whether the ranges following the one we've just added or
507 touched can be folded in (#5 above). */
508 if (i + 1 < VEC_length (range_s, value->unavailable))
509 {
510 struct range *t;
511 struct range *r;
512 int removed = 0;
513 int next = i + 1;
514
515 /* Get the range we just touched. */
516 t = VEC_index (range_s, value->unavailable, i);
517 removed = 0;
518
519 i = next;
520 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
521 if (r->offset <= t->offset + t->length)
522 {
523 ULONGEST l, h;
524
525 l = min (t->offset, r->offset);
526 h = max (t->offset + t->length, r->offset + r->length);
527
528 t->offset = l;
529 t->length = h - l;
530
531 removed++;
532 }
533 else
534 {
535 /* If we couldn't merge this one, we won't be able to
536 merge following ones either, since the ranges are
537 always sorted by OFFSET. */
538 break;
539 }
540
541 if (removed != 0)
542 VEC_block_remove (range_s, value->unavailable, next, removed);
543 }
544 }
545
546 /* Find the first range in RANGES that overlaps the range defined by
547 OFFSET and LENGTH, starting at element POS in the RANGES vector,
548 Returns the index into RANGES where such overlapping range was
549 found, or -1 if none was found. */
550
551 static int
552 find_first_range_overlap (VEC(range_s) *ranges, int pos,
553 int offset, int length)
554 {
555 range_s *r;
556 int i;
557
558 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
559 if (ranges_overlap (r->offset, r->length, offset, length))
560 return i;
561
562 return -1;
563 }
564
565 int
566 value_available_contents_eq (const struct value *val1, int offset1,
567 const struct value *val2, int offset2,
568 int length)
569 {
570 int idx1 = 0, idx2 = 0;
571
572 /* See function description in value.h. */
573 gdb_assert (!val1->lazy && !val2->lazy);
574
575 while (length > 0)
576 {
577 range_s *r1, *r2;
578 ULONGEST l1, h1;
579 ULONGEST l2, h2;
580
581 idx1 = find_first_range_overlap (val1->unavailable, idx1,
582 offset1, length);
583 idx2 = find_first_range_overlap (val2->unavailable, idx2,
584 offset2, length);
585
586 /* The usual case is for both values to be completely available. */
587 if (idx1 == -1 && idx2 == -1)
588 return (memcmp (val1->contents + offset1,
589 val2->contents + offset2,
590 length) == 0);
591 /* The contents only match equal if the available set matches as
592 well. */
593 else if (idx1 == -1 || idx2 == -1)
594 return 0;
595
596 gdb_assert (idx1 != -1 && idx2 != -1);
597
598 r1 = VEC_index (range_s, val1->unavailable, idx1);
599 r2 = VEC_index (range_s, val2->unavailable, idx2);
600
601 /* Get the unavailable windows intersected by the incoming
602 ranges. The first and last ranges that overlap the argument
603 range may be wider than said incoming arguments ranges. */
604 l1 = max (offset1, r1->offset);
605 h1 = min (offset1 + length, r1->offset + r1->length);
606
607 l2 = max (offset2, r2->offset);
608 h2 = min (offset2 + length, r2->offset + r2->length);
609
610 /* Make them relative to the respective start offsets, so we can
611 compare them for equality. */
612 l1 -= offset1;
613 h1 -= offset1;
614
615 l2 -= offset2;
616 h2 -= offset2;
617
618 /* Different availability, no match. */
619 if (l1 != l2 || h1 != h2)
620 return 0;
621
622 /* Compare the _available_ contents. */
623 if (memcmp (val1->contents + offset1,
624 val2->contents + offset2,
625 l1) != 0)
626 return 0;
627
628 length -= h1;
629 offset1 += h1;
630 offset2 += h1;
631 }
632
633 return 1;
634 }
635
636 /* Prototypes for local functions. */
637
638 static void show_values (char *, int);
639
640 static void show_convenience (char *, int);
641
642
643 /* The value-history records all the values printed
644 by print commands during this session. Each chunk
645 records 60 consecutive values. The first chunk on
646 the chain records the most recent values.
647 The total number of values is in value_history_count. */
648
649 #define VALUE_HISTORY_CHUNK 60
650
651 struct value_history_chunk
652 {
653 struct value_history_chunk *next;
654 struct value *values[VALUE_HISTORY_CHUNK];
655 };
656
657 /* Chain of chunks now in use. */
658
659 static struct value_history_chunk *value_history_chain;
660
661 static int value_history_count; /* Abs number of last entry stored. */
662
663 \f
664 /* List of all value objects currently allocated
665 (except for those released by calls to release_value)
666 This is so they can be freed after each command. */
667
668 static struct value *all_values;
669
670 /* Allocate a lazy value for type TYPE. Its actual content is
671 "lazily" allocated too: the content field of the return value is
672 NULL; it will be allocated when it is fetched from the target. */
673
674 struct value *
675 allocate_value_lazy (struct type *type)
676 {
677 struct value *val;
678
679 /* Call check_typedef on our type to make sure that, if TYPE
680 is a TYPE_CODE_TYPEDEF, its length is set to the length
681 of the target type instead of zero. However, we do not
682 replace the typedef type by the target type, because we want
683 to keep the typedef in order to be able to set the VAL's type
684 description correctly. */
685 check_typedef (type);
686
687 val = (struct value *) xzalloc (sizeof (struct value));
688 val->contents = NULL;
689 val->next = all_values;
690 all_values = val;
691 val->type = type;
692 val->enclosing_type = type;
693 VALUE_LVAL (val) = not_lval;
694 val->location.address = 0;
695 VALUE_FRAME_ID (val) = null_frame_id;
696 val->offset = 0;
697 val->bitpos = 0;
698 val->bitsize = 0;
699 VALUE_REGNUM (val) = -1;
700 val->lazy = 1;
701 val->optimized_out = 0;
702 val->embedded_offset = 0;
703 val->pointed_to_offset = 0;
704 val->modifiable = 1;
705 val->initialized = 1; /* Default to initialized. */
706
707 /* Values start out on the all_values chain. */
708 val->reference_count = 1;
709
710 return val;
711 }
712
713 /* Allocate the contents of VAL if it has not been allocated yet. */
714
715 static void
716 allocate_value_contents (struct value *val)
717 {
718 if (!val->contents)
719 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
720 }
721
722 /* Allocate a value and its contents for type TYPE. */
723
724 struct value *
725 allocate_value (struct type *type)
726 {
727 struct value *val = allocate_value_lazy (type);
728
729 allocate_value_contents (val);
730 val->lazy = 0;
731 return val;
732 }
733
734 /* Allocate a value that has the correct length
735 for COUNT repetitions of type TYPE. */
736
737 struct value *
738 allocate_repeat_value (struct type *type, int count)
739 {
740 int low_bound = current_language->string_lower_bound; /* ??? */
741 /* FIXME-type-allocation: need a way to free this type when we are
742 done with it. */
743 struct type *array_type
744 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
745
746 return allocate_value (array_type);
747 }
748
749 struct value *
750 allocate_computed_value (struct type *type,
751 const struct lval_funcs *funcs,
752 void *closure)
753 {
754 struct value *v = allocate_value_lazy (type);
755
756 VALUE_LVAL (v) = lval_computed;
757 v->location.computed.funcs = funcs;
758 v->location.computed.closure = closure;
759
760 return v;
761 }
762
763 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
764
765 struct value *
766 allocate_optimized_out_value (struct type *type)
767 {
768 struct value *retval = allocate_value_lazy (type);
769
770 set_value_optimized_out (retval, 1);
771
772 return retval;
773 }
774
775 /* Accessor methods. */
776
777 struct value *
778 value_next (struct value *value)
779 {
780 return value->next;
781 }
782
783 struct type *
784 value_type (const struct value *value)
785 {
786 return value->type;
787 }
788 void
789 deprecated_set_value_type (struct value *value, struct type *type)
790 {
791 value->type = type;
792 }
793
794 int
795 value_offset (const struct value *value)
796 {
797 return value->offset;
798 }
799 void
800 set_value_offset (struct value *value, int offset)
801 {
802 value->offset = offset;
803 }
804
805 int
806 value_bitpos (const struct value *value)
807 {
808 return value->bitpos;
809 }
810 void
811 set_value_bitpos (struct value *value, int bit)
812 {
813 value->bitpos = bit;
814 }
815
816 int
817 value_bitsize (const struct value *value)
818 {
819 return value->bitsize;
820 }
821 void
822 set_value_bitsize (struct value *value, int bit)
823 {
824 value->bitsize = bit;
825 }
826
827 struct value *
828 value_parent (struct value *value)
829 {
830 return value->parent;
831 }
832
833 /* See value.h. */
834
835 void
836 set_value_parent (struct value *value, struct value *parent)
837 {
838 struct value *old = value->parent;
839
840 value->parent = parent;
841 if (parent != NULL)
842 value_incref (parent);
843 value_free (old);
844 }
845
846 gdb_byte *
847 value_contents_raw (struct value *value)
848 {
849 allocate_value_contents (value);
850 return value->contents + value->embedded_offset;
851 }
852
853 gdb_byte *
854 value_contents_all_raw (struct value *value)
855 {
856 allocate_value_contents (value);
857 return value->contents;
858 }
859
860 struct type *
861 value_enclosing_type (struct value *value)
862 {
863 return value->enclosing_type;
864 }
865
866 /* Look at value.h for description. */
867
868 struct type *
869 value_actual_type (struct value *value, int resolve_simple_types,
870 int *real_type_found)
871 {
872 struct value_print_options opts;
873 struct type *result;
874
875 get_user_print_options (&opts);
876
877 if (real_type_found)
878 *real_type_found = 0;
879 result = value_type (value);
880 if (opts.objectprint)
881 {
882 /* If result's target type is TYPE_CODE_STRUCT, proceed to
883 fetch its rtti type. */
884 if ((TYPE_CODE (result) == TYPE_CODE_PTR
885 || TYPE_CODE (result) == TYPE_CODE_REF)
886 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
887 == TYPE_CODE_STRUCT)
888 {
889 struct type *real_type;
890
891 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
892 if (real_type)
893 {
894 if (real_type_found)
895 *real_type_found = 1;
896 result = real_type;
897 }
898 }
899 else if (resolve_simple_types)
900 {
901 if (real_type_found)
902 *real_type_found = 1;
903 result = value_enclosing_type (value);
904 }
905 }
906
907 return result;
908 }
909
910 void
911 error_value_optimized_out (void)
912 {
913 error (_("value has been optimized out"));
914 }
915
916 static void
917 require_not_optimized_out (const struct value *value)
918 {
919 if (value->optimized_out)
920 {
921 if (value->lval == lval_register)
922 error (_("register has not been saved in frame"));
923 else
924 error_value_optimized_out ();
925 }
926 }
927
928 static void
929 require_available (const struct value *value)
930 {
931 if (!VEC_empty (range_s, value->unavailable))
932 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
933 }
934
935 const gdb_byte *
936 value_contents_for_printing (struct value *value)
937 {
938 if (value->lazy)
939 value_fetch_lazy (value);
940 return value->contents;
941 }
942
943 const gdb_byte *
944 value_contents_for_printing_const (const struct value *value)
945 {
946 gdb_assert (!value->lazy);
947 return value->contents;
948 }
949
950 const gdb_byte *
951 value_contents_all (struct value *value)
952 {
953 const gdb_byte *result = value_contents_for_printing (value);
954 require_not_optimized_out (value);
955 require_available (value);
956 return result;
957 }
958
959 /* Copy LENGTH bytes of SRC value's (all) contents
960 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
961 contents, starting at DST_OFFSET. If unavailable contents are
962 being copied from SRC, the corresponding DST contents are marked
963 unavailable accordingly. Neither DST nor SRC may be lazy
964 values.
965
966 It is assumed the contents of DST in the [DST_OFFSET,
967 DST_OFFSET+LENGTH) range are wholly available. */
968
969 void
970 value_contents_copy_raw (struct value *dst, int dst_offset,
971 struct value *src, int src_offset, int length)
972 {
973 range_s *r;
974 int i;
975
976 /* A lazy DST would make that this copy operation useless, since as
977 soon as DST's contents were un-lazied (by a later value_contents
978 call, say), the contents would be overwritten. A lazy SRC would
979 mean we'd be copying garbage. */
980 gdb_assert (!dst->lazy && !src->lazy);
981
982 /* The overwritten DST range gets unavailability ORed in, not
983 replaced. Make sure to remember to implement replacing if it
984 turns out actually necessary. */
985 gdb_assert (value_bytes_available (dst, dst_offset, length));
986
987 /* Copy the data. */
988 memcpy (value_contents_all_raw (dst) + dst_offset,
989 value_contents_all_raw (src) + src_offset,
990 length);
991
992 /* Copy the meta-data, adjusted. */
993 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
994 {
995 ULONGEST h, l;
996
997 l = max (r->offset, src_offset);
998 h = min (r->offset + r->length, src_offset + length);
999
1000 if (l < h)
1001 mark_value_bytes_unavailable (dst,
1002 dst_offset + (l - src_offset),
1003 h - l);
1004 }
1005 }
1006
1007 /* Copy LENGTH bytes of SRC value's (all) contents
1008 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1009 (all) contents, starting at DST_OFFSET. If unavailable contents
1010 are being copied from SRC, the corresponding DST contents are
1011 marked unavailable accordingly. DST must not be lazy. If SRC is
1012 lazy, it will be fetched now. If SRC is not valid (is optimized
1013 out), an error is thrown.
1014
1015 It is assumed the contents of DST in the [DST_OFFSET,
1016 DST_OFFSET+LENGTH) range are wholly available. */
1017
1018 void
1019 value_contents_copy (struct value *dst, int dst_offset,
1020 struct value *src, int src_offset, int length)
1021 {
1022 require_not_optimized_out (src);
1023
1024 if (src->lazy)
1025 value_fetch_lazy (src);
1026
1027 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1028 }
1029
1030 int
1031 value_lazy (struct value *value)
1032 {
1033 return value->lazy;
1034 }
1035
1036 void
1037 set_value_lazy (struct value *value, int val)
1038 {
1039 value->lazy = val;
1040 }
1041
1042 int
1043 value_stack (struct value *value)
1044 {
1045 return value->stack;
1046 }
1047
1048 void
1049 set_value_stack (struct value *value, int val)
1050 {
1051 value->stack = val;
1052 }
1053
1054 const gdb_byte *
1055 value_contents (struct value *value)
1056 {
1057 const gdb_byte *result = value_contents_writeable (value);
1058 require_not_optimized_out (value);
1059 require_available (value);
1060 return result;
1061 }
1062
1063 gdb_byte *
1064 value_contents_writeable (struct value *value)
1065 {
1066 if (value->lazy)
1067 value_fetch_lazy (value);
1068 return value_contents_raw (value);
1069 }
1070
1071 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1072 this function is different from value_equal; in C the operator ==
1073 can return 0 even if the two values being compared are equal. */
1074
1075 int
1076 value_contents_equal (struct value *val1, struct value *val2)
1077 {
1078 struct type *type1;
1079 struct type *type2;
1080
1081 type1 = check_typedef (value_type (val1));
1082 type2 = check_typedef (value_type (val2));
1083 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
1084 return 0;
1085
1086 return (memcmp (value_contents (val1), value_contents (val2),
1087 TYPE_LENGTH (type1)) == 0);
1088 }
1089
1090 int
1091 value_optimized_out (struct value *value)
1092 {
1093 /* We can only know if a value is optimized out once we have tried to
1094 fetch it. */
1095 if (!value->optimized_out && value->lazy)
1096 value_fetch_lazy (value);
1097
1098 return value->optimized_out;
1099 }
1100
1101 int
1102 value_optimized_out_const (const struct value *value)
1103 {
1104 return value->optimized_out;
1105 }
1106
1107 void
1108 set_value_optimized_out (struct value *value, int val)
1109 {
1110 value->optimized_out = val;
1111 }
1112
1113 int
1114 value_entirely_optimized_out (const struct value *value)
1115 {
1116 if (!value->optimized_out)
1117 return 0;
1118 if (value->lval != lval_computed
1119 || !value->location.computed.funcs->check_any_valid)
1120 return 1;
1121 return !value->location.computed.funcs->check_any_valid (value);
1122 }
1123
1124 int
1125 value_bits_valid (const struct value *value, int offset, int length)
1126 {
1127 if (!value->optimized_out)
1128 return 1;
1129 if (value->lval != lval_computed
1130 || !value->location.computed.funcs->check_validity)
1131 return 0;
1132 return value->location.computed.funcs->check_validity (value, offset,
1133 length);
1134 }
1135
1136 int
1137 value_bits_synthetic_pointer (const struct value *value,
1138 int offset, int length)
1139 {
1140 if (value->lval != lval_computed
1141 || !value->location.computed.funcs->check_synthetic_pointer)
1142 return 0;
1143 return value->location.computed.funcs->check_synthetic_pointer (value,
1144 offset,
1145 length);
1146 }
1147
1148 int
1149 value_embedded_offset (struct value *value)
1150 {
1151 return value->embedded_offset;
1152 }
1153
1154 void
1155 set_value_embedded_offset (struct value *value, int val)
1156 {
1157 value->embedded_offset = val;
1158 }
1159
1160 int
1161 value_pointed_to_offset (struct value *value)
1162 {
1163 return value->pointed_to_offset;
1164 }
1165
1166 void
1167 set_value_pointed_to_offset (struct value *value, int val)
1168 {
1169 value->pointed_to_offset = val;
1170 }
1171
1172 const struct lval_funcs *
1173 value_computed_funcs (const struct value *v)
1174 {
1175 gdb_assert (value_lval_const (v) == lval_computed);
1176
1177 return v->location.computed.funcs;
1178 }
1179
1180 void *
1181 value_computed_closure (const struct value *v)
1182 {
1183 gdb_assert (v->lval == lval_computed);
1184
1185 return v->location.computed.closure;
1186 }
1187
1188 enum lval_type *
1189 deprecated_value_lval_hack (struct value *value)
1190 {
1191 return &value->lval;
1192 }
1193
1194 enum lval_type
1195 value_lval_const (const struct value *value)
1196 {
1197 return value->lval;
1198 }
1199
1200 CORE_ADDR
1201 value_address (const struct value *value)
1202 {
1203 if (value->lval == lval_internalvar
1204 || value->lval == lval_internalvar_component)
1205 return 0;
1206 if (value->parent != NULL)
1207 return value_address (value->parent) + value->offset;
1208 else
1209 return value->location.address + value->offset;
1210 }
1211
1212 CORE_ADDR
1213 value_raw_address (struct value *value)
1214 {
1215 if (value->lval == lval_internalvar
1216 || value->lval == lval_internalvar_component)
1217 return 0;
1218 return value->location.address;
1219 }
1220
1221 void
1222 set_value_address (struct value *value, CORE_ADDR addr)
1223 {
1224 gdb_assert (value->lval != lval_internalvar
1225 && value->lval != lval_internalvar_component);
1226 value->location.address = addr;
1227 }
1228
1229 struct internalvar **
1230 deprecated_value_internalvar_hack (struct value *value)
1231 {
1232 return &value->location.internalvar;
1233 }
1234
1235 struct frame_id *
1236 deprecated_value_frame_id_hack (struct value *value)
1237 {
1238 return &value->frame_id;
1239 }
1240
1241 short *
1242 deprecated_value_regnum_hack (struct value *value)
1243 {
1244 return &value->regnum;
1245 }
1246
1247 int
1248 deprecated_value_modifiable (struct value *value)
1249 {
1250 return value->modifiable;
1251 }
1252 \f
1253 /* Return a mark in the value chain. All values allocated after the
1254 mark is obtained (except for those released) are subject to being freed
1255 if a subsequent value_free_to_mark is passed the mark. */
1256 struct value *
1257 value_mark (void)
1258 {
1259 return all_values;
1260 }
1261
1262 /* Take a reference to VAL. VAL will not be deallocated until all
1263 references are released. */
1264
1265 void
1266 value_incref (struct value *val)
1267 {
1268 val->reference_count++;
1269 }
1270
1271 /* Release a reference to VAL, which was acquired with value_incref.
1272 This function is also called to deallocate values from the value
1273 chain. */
1274
1275 void
1276 value_free (struct value *val)
1277 {
1278 if (val)
1279 {
1280 gdb_assert (val->reference_count > 0);
1281 val->reference_count--;
1282 if (val->reference_count > 0)
1283 return;
1284
1285 /* If there's an associated parent value, drop our reference to
1286 it. */
1287 if (val->parent != NULL)
1288 value_free (val->parent);
1289
1290 if (VALUE_LVAL (val) == lval_computed)
1291 {
1292 const struct lval_funcs *funcs = val->location.computed.funcs;
1293
1294 if (funcs->free_closure)
1295 funcs->free_closure (val);
1296 }
1297
1298 xfree (val->contents);
1299 VEC_free (range_s, val->unavailable);
1300 }
1301 xfree (val);
1302 }
1303
1304 /* Free all values allocated since MARK was obtained by value_mark
1305 (except for those released). */
1306 void
1307 value_free_to_mark (struct value *mark)
1308 {
1309 struct value *val;
1310 struct value *next;
1311
1312 for (val = all_values; val && val != mark; val = next)
1313 {
1314 next = val->next;
1315 val->released = 1;
1316 value_free (val);
1317 }
1318 all_values = val;
1319 }
1320
1321 /* Free all the values that have been allocated (except for those released).
1322 Call after each command, successful or not.
1323 In practice this is called before each command, which is sufficient. */
1324
1325 void
1326 free_all_values (void)
1327 {
1328 struct value *val;
1329 struct value *next;
1330
1331 for (val = all_values; val; val = next)
1332 {
1333 next = val->next;
1334 val->released = 1;
1335 value_free (val);
1336 }
1337
1338 all_values = 0;
1339 }
1340
1341 /* Frees all the elements in a chain of values. */
1342
1343 void
1344 free_value_chain (struct value *v)
1345 {
1346 struct value *next;
1347
1348 for (; v; v = next)
1349 {
1350 next = value_next (v);
1351 value_free (v);
1352 }
1353 }
1354
1355 /* Remove VAL from the chain all_values
1356 so it will not be freed automatically. */
1357
1358 void
1359 release_value (struct value *val)
1360 {
1361 struct value *v;
1362
1363 if (all_values == val)
1364 {
1365 all_values = val->next;
1366 val->next = NULL;
1367 val->released = 1;
1368 return;
1369 }
1370
1371 for (v = all_values; v; v = v->next)
1372 {
1373 if (v->next == val)
1374 {
1375 v->next = val->next;
1376 val->next = NULL;
1377 val->released = 1;
1378 break;
1379 }
1380 }
1381 }
1382
1383 /* If the value is not already released, release it.
1384 If the value is already released, increment its reference count.
1385 That is, this function ensures that the value is released from the
1386 value chain and that the caller owns a reference to it. */
1387
1388 void
1389 release_value_or_incref (struct value *val)
1390 {
1391 if (val->released)
1392 value_incref (val);
1393 else
1394 release_value (val);
1395 }
1396
1397 /* Release all values up to mark */
1398 struct value *
1399 value_release_to_mark (struct value *mark)
1400 {
1401 struct value *val;
1402 struct value *next;
1403
1404 for (val = next = all_values; next; next = next->next)
1405 {
1406 if (next->next == mark)
1407 {
1408 all_values = next->next;
1409 next->next = NULL;
1410 return val;
1411 }
1412 next->released = 1;
1413 }
1414 all_values = 0;
1415 return val;
1416 }
1417
1418 /* Return a copy of the value ARG.
1419 It contains the same contents, for same memory address,
1420 but it's a different block of storage. */
1421
1422 struct value *
1423 value_copy (struct value *arg)
1424 {
1425 struct type *encl_type = value_enclosing_type (arg);
1426 struct value *val;
1427
1428 if (value_lazy (arg))
1429 val = allocate_value_lazy (encl_type);
1430 else
1431 val = allocate_value (encl_type);
1432 val->type = arg->type;
1433 VALUE_LVAL (val) = VALUE_LVAL (arg);
1434 val->location = arg->location;
1435 val->offset = arg->offset;
1436 val->bitpos = arg->bitpos;
1437 val->bitsize = arg->bitsize;
1438 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1439 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1440 val->lazy = arg->lazy;
1441 val->optimized_out = arg->optimized_out;
1442 val->embedded_offset = value_embedded_offset (arg);
1443 val->pointed_to_offset = arg->pointed_to_offset;
1444 val->modifiable = arg->modifiable;
1445 if (!value_lazy (val))
1446 {
1447 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1448 TYPE_LENGTH (value_enclosing_type (arg)));
1449
1450 }
1451 val->unavailable = VEC_copy (range_s, arg->unavailable);
1452 set_value_parent (val, arg->parent);
1453 if (VALUE_LVAL (val) == lval_computed)
1454 {
1455 const struct lval_funcs *funcs = val->location.computed.funcs;
1456
1457 if (funcs->copy_closure)
1458 val->location.computed.closure = funcs->copy_closure (val);
1459 }
1460 return val;
1461 }
1462
1463 /* Return a version of ARG that is non-lvalue. */
1464
1465 struct value *
1466 value_non_lval (struct value *arg)
1467 {
1468 if (VALUE_LVAL (arg) != not_lval)
1469 {
1470 struct type *enc_type = value_enclosing_type (arg);
1471 struct value *val = allocate_value (enc_type);
1472
1473 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1474 TYPE_LENGTH (enc_type));
1475 val->type = arg->type;
1476 set_value_embedded_offset (val, value_embedded_offset (arg));
1477 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1478 return val;
1479 }
1480 return arg;
1481 }
1482
1483 void
1484 set_value_component_location (struct value *component,
1485 const struct value *whole)
1486 {
1487 if (whole->lval == lval_internalvar)
1488 VALUE_LVAL (component) = lval_internalvar_component;
1489 else
1490 VALUE_LVAL (component) = whole->lval;
1491
1492 component->location = whole->location;
1493 if (whole->lval == lval_computed)
1494 {
1495 const struct lval_funcs *funcs = whole->location.computed.funcs;
1496
1497 if (funcs->copy_closure)
1498 component->location.computed.closure = funcs->copy_closure (whole);
1499 }
1500 }
1501
1502 \f
1503 /* Access to the value history. */
1504
1505 /* Record a new value in the value history.
1506 Returns the absolute history index of the entry.
1507 Result of -1 indicates the value was not saved; otherwise it is the
1508 value history index of this new item. */
1509
1510 int
1511 record_latest_value (struct value *val)
1512 {
1513 int i;
1514
1515 /* We don't want this value to have anything to do with the inferior anymore.
1516 In particular, "set $1 = 50" should not affect the variable from which
1517 the value was taken, and fast watchpoints should be able to assume that
1518 a value on the value history never changes. */
1519 if (value_lazy (val))
1520 value_fetch_lazy (val);
1521 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1522 from. This is a bit dubious, because then *&$1 does not just return $1
1523 but the current contents of that location. c'est la vie... */
1524 val->modifiable = 0;
1525 release_value (val);
1526
1527 /* Here we treat value_history_count as origin-zero
1528 and applying to the value being stored now. */
1529
1530 i = value_history_count % VALUE_HISTORY_CHUNK;
1531 if (i == 0)
1532 {
1533 struct value_history_chunk *new
1534 = (struct value_history_chunk *)
1535
1536 xmalloc (sizeof (struct value_history_chunk));
1537 memset (new->values, 0, sizeof new->values);
1538 new->next = value_history_chain;
1539 value_history_chain = new;
1540 }
1541
1542 value_history_chain->values[i] = val;
1543
1544 /* Now we regard value_history_count as origin-one
1545 and applying to the value just stored. */
1546
1547 return ++value_history_count;
1548 }
1549
1550 /* Return a copy of the value in the history with sequence number NUM. */
1551
1552 struct value *
1553 access_value_history (int num)
1554 {
1555 struct value_history_chunk *chunk;
1556 int i;
1557 int absnum = num;
1558
1559 if (absnum <= 0)
1560 absnum += value_history_count;
1561
1562 if (absnum <= 0)
1563 {
1564 if (num == 0)
1565 error (_("The history is empty."));
1566 else if (num == 1)
1567 error (_("There is only one value in the history."));
1568 else
1569 error (_("History does not go back to $$%d."), -num);
1570 }
1571 if (absnum > value_history_count)
1572 error (_("History has not yet reached $%d."), absnum);
1573
1574 absnum--;
1575
1576 /* Now absnum is always absolute and origin zero. */
1577
1578 chunk = value_history_chain;
1579 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1580 - absnum / VALUE_HISTORY_CHUNK;
1581 i > 0; i--)
1582 chunk = chunk->next;
1583
1584 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1585 }
1586
1587 static void
1588 show_values (char *num_exp, int from_tty)
1589 {
1590 int i;
1591 struct value *val;
1592 static int num = 1;
1593
1594 if (num_exp)
1595 {
1596 /* "show values +" should print from the stored position.
1597 "show values <exp>" should print around value number <exp>. */
1598 if (num_exp[0] != '+' || num_exp[1] != '\0')
1599 num = parse_and_eval_long (num_exp) - 5;
1600 }
1601 else
1602 {
1603 /* "show values" means print the last 10 values. */
1604 num = value_history_count - 9;
1605 }
1606
1607 if (num <= 0)
1608 num = 1;
1609
1610 for (i = num; i < num + 10 && i <= value_history_count; i++)
1611 {
1612 struct value_print_options opts;
1613
1614 val = access_value_history (i);
1615 printf_filtered (("$%d = "), i);
1616 get_user_print_options (&opts);
1617 value_print (val, gdb_stdout, &opts);
1618 printf_filtered (("\n"));
1619 }
1620
1621 /* The next "show values +" should start after what we just printed. */
1622 num += 10;
1623
1624 /* Hitting just return after this command should do the same thing as
1625 "show values +". If num_exp is null, this is unnecessary, since
1626 "show values +" is not useful after "show values". */
1627 if (from_tty && num_exp)
1628 {
1629 num_exp[0] = '+';
1630 num_exp[1] = '\0';
1631 }
1632 }
1633 \f
1634 /* Internal variables. These are variables within the debugger
1635 that hold values assigned by debugger commands.
1636 The user refers to them with a '$' prefix
1637 that does not appear in the variable names stored internally. */
1638
1639 struct internalvar
1640 {
1641 struct internalvar *next;
1642 char *name;
1643
1644 /* We support various different kinds of content of an internal variable.
1645 enum internalvar_kind specifies the kind, and union internalvar_data
1646 provides the data associated with this particular kind. */
1647
1648 enum internalvar_kind
1649 {
1650 /* The internal variable is empty. */
1651 INTERNALVAR_VOID,
1652
1653 /* The value of the internal variable is provided directly as
1654 a GDB value object. */
1655 INTERNALVAR_VALUE,
1656
1657 /* A fresh value is computed via a call-back routine on every
1658 access to the internal variable. */
1659 INTERNALVAR_MAKE_VALUE,
1660
1661 /* The internal variable holds a GDB internal convenience function. */
1662 INTERNALVAR_FUNCTION,
1663
1664 /* The variable holds an integer value. */
1665 INTERNALVAR_INTEGER,
1666
1667 /* The variable holds a GDB-provided string. */
1668 INTERNALVAR_STRING,
1669
1670 } kind;
1671
1672 union internalvar_data
1673 {
1674 /* A value object used with INTERNALVAR_VALUE. */
1675 struct value *value;
1676
1677 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1678 struct
1679 {
1680 /* The functions to call. */
1681 const struct internalvar_funcs *functions;
1682
1683 /* The function's user-data. */
1684 void *data;
1685 } make_value;
1686
1687 /* The internal function used with INTERNALVAR_FUNCTION. */
1688 struct
1689 {
1690 struct internal_function *function;
1691 /* True if this is the canonical name for the function. */
1692 int canonical;
1693 } fn;
1694
1695 /* An integer value used with INTERNALVAR_INTEGER. */
1696 struct
1697 {
1698 /* If type is non-NULL, it will be used as the type to generate
1699 a value for this internal variable. If type is NULL, a default
1700 integer type for the architecture is used. */
1701 struct type *type;
1702 LONGEST val;
1703 } integer;
1704
1705 /* A string value used with INTERNALVAR_STRING. */
1706 char *string;
1707 } u;
1708 };
1709
1710 static struct internalvar *internalvars;
1711
1712 /* If the variable does not already exist create it and give it the
1713 value given. If no value is given then the default is zero. */
1714 static void
1715 init_if_undefined_command (char* args, int from_tty)
1716 {
1717 struct internalvar* intvar;
1718
1719 /* Parse the expression - this is taken from set_command(). */
1720 struct expression *expr = parse_expression (args);
1721 register struct cleanup *old_chain =
1722 make_cleanup (free_current_contents, &expr);
1723
1724 /* Validate the expression.
1725 Was the expression an assignment?
1726 Or even an expression at all? */
1727 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1728 error (_("Init-if-undefined requires an assignment expression."));
1729
1730 /* Extract the variable from the parsed expression.
1731 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1732 if (expr->elts[1].opcode != OP_INTERNALVAR)
1733 error (_("The first parameter to init-if-undefined "
1734 "should be a GDB variable."));
1735 intvar = expr->elts[2].internalvar;
1736
1737 /* Only evaluate the expression if the lvalue is void.
1738 This may still fail if the expresssion is invalid. */
1739 if (intvar->kind == INTERNALVAR_VOID)
1740 evaluate_expression (expr);
1741
1742 do_cleanups (old_chain);
1743 }
1744
1745
1746 /* Look up an internal variable with name NAME. NAME should not
1747 normally include a dollar sign.
1748
1749 If the specified internal variable does not exist,
1750 the return value is NULL. */
1751
1752 struct internalvar *
1753 lookup_only_internalvar (const char *name)
1754 {
1755 struct internalvar *var;
1756
1757 for (var = internalvars; var; var = var->next)
1758 if (strcmp (var->name, name) == 0)
1759 return var;
1760
1761 return NULL;
1762 }
1763
1764 /* Complete NAME by comparing it to the names of internal variables.
1765 Returns a vector of newly allocated strings, or NULL if no matches
1766 were found. */
1767
1768 VEC (char_ptr) *
1769 complete_internalvar (const char *name)
1770 {
1771 VEC (char_ptr) *result = NULL;
1772 struct internalvar *var;
1773 int len;
1774
1775 len = strlen (name);
1776
1777 for (var = internalvars; var; var = var->next)
1778 if (strncmp (var->name, name, len) == 0)
1779 {
1780 char *r = xstrdup (var->name);
1781
1782 VEC_safe_push (char_ptr, result, r);
1783 }
1784
1785 return result;
1786 }
1787
1788 /* Create an internal variable with name NAME and with a void value.
1789 NAME should not normally include a dollar sign. */
1790
1791 struct internalvar *
1792 create_internalvar (const char *name)
1793 {
1794 struct internalvar *var;
1795
1796 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1797 var->name = concat (name, (char *)NULL);
1798 var->kind = INTERNALVAR_VOID;
1799 var->next = internalvars;
1800 internalvars = var;
1801 return var;
1802 }
1803
1804 /* Create an internal variable with name NAME and register FUN as the
1805 function that value_of_internalvar uses to create a value whenever
1806 this variable is referenced. NAME should not normally include a
1807 dollar sign. DATA is passed uninterpreted to FUN when it is
1808 called. CLEANUP, if not NULL, is called when the internal variable
1809 is destroyed. It is passed DATA as its only argument. */
1810
1811 struct internalvar *
1812 create_internalvar_type_lazy (const char *name,
1813 const struct internalvar_funcs *funcs,
1814 void *data)
1815 {
1816 struct internalvar *var = create_internalvar (name);
1817
1818 var->kind = INTERNALVAR_MAKE_VALUE;
1819 var->u.make_value.functions = funcs;
1820 var->u.make_value.data = data;
1821 return var;
1822 }
1823
1824 /* See documentation in value.h. */
1825
1826 int
1827 compile_internalvar_to_ax (struct internalvar *var,
1828 struct agent_expr *expr,
1829 struct axs_value *value)
1830 {
1831 if (var->kind != INTERNALVAR_MAKE_VALUE
1832 || var->u.make_value.functions->compile_to_ax == NULL)
1833 return 0;
1834
1835 var->u.make_value.functions->compile_to_ax (var, expr, value,
1836 var->u.make_value.data);
1837 return 1;
1838 }
1839
1840 /* Look up an internal variable with name NAME. NAME should not
1841 normally include a dollar sign.
1842
1843 If the specified internal variable does not exist,
1844 one is created, with a void value. */
1845
1846 struct internalvar *
1847 lookup_internalvar (const char *name)
1848 {
1849 struct internalvar *var;
1850
1851 var = lookup_only_internalvar (name);
1852 if (var)
1853 return var;
1854
1855 return create_internalvar (name);
1856 }
1857
1858 /* Return current value of internal variable VAR. For variables that
1859 are not inherently typed, use a value type appropriate for GDBARCH. */
1860
1861 struct value *
1862 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1863 {
1864 struct value *val;
1865 struct trace_state_variable *tsv;
1866
1867 /* If there is a trace state variable of the same name, assume that
1868 is what we really want to see. */
1869 tsv = find_trace_state_variable (var->name);
1870 if (tsv)
1871 {
1872 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1873 &(tsv->value));
1874 if (tsv->value_known)
1875 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1876 tsv->value);
1877 else
1878 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1879 return val;
1880 }
1881
1882 switch (var->kind)
1883 {
1884 case INTERNALVAR_VOID:
1885 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1886 break;
1887
1888 case INTERNALVAR_FUNCTION:
1889 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1890 break;
1891
1892 case INTERNALVAR_INTEGER:
1893 if (!var->u.integer.type)
1894 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1895 var->u.integer.val);
1896 else
1897 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1898 break;
1899
1900 case INTERNALVAR_STRING:
1901 val = value_cstring (var->u.string, strlen (var->u.string),
1902 builtin_type (gdbarch)->builtin_char);
1903 break;
1904
1905 case INTERNALVAR_VALUE:
1906 val = value_copy (var->u.value);
1907 if (value_lazy (val))
1908 value_fetch_lazy (val);
1909 break;
1910
1911 case INTERNALVAR_MAKE_VALUE:
1912 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1913 var->u.make_value.data);
1914 break;
1915
1916 default:
1917 internal_error (__FILE__, __LINE__, _("bad kind"));
1918 }
1919
1920 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1921 on this value go back to affect the original internal variable.
1922
1923 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1924 no underlying modifyable state in the internal variable.
1925
1926 Likewise, if the variable's value is a computed lvalue, we want
1927 references to it to produce another computed lvalue, where
1928 references and assignments actually operate through the
1929 computed value's functions.
1930
1931 This means that internal variables with computed values
1932 behave a little differently from other internal variables:
1933 assignments to them don't just replace the previous value
1934 altogether. At the moment, this seems like the behavior we
1935 want. */
1936
1937 if (var->kind != INTERNALVAR_MAKE_VALUE
1938 && val->lval != lval_computed)
1939 {
1940 VALUE_LVAL (val) = lval_internalvar;
1941 VALUE_INTERNALVAR (val) = var;
1942 }
1943
1944 return val;
1945 }
1946
1947 int
1948 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1949 {
1950 if (var->kind == INTERNALVAR_INTEGER)
1951 {
1952 *result = var->u.integer.val;
1953 return 1;
1954 }
1955
1956 if (var->kind == INTERNALVAR_VALUE)
1957 {
1958 struct type *type = check_typedef (value_type (var->u.value));
1959
1960 if (TYPE_CODE (type) == TYPE_CODE_INT)
1961 {
1962 *result = value_as_long (var->u.value);
1963 return 1;
1964 }
1965 }
1966
1967 return 0;
1968 }
1969
1970 static int
1971 get_internalvar_function (struct internalvar *var,
1972 struct internal_function **result)
1973 {
1974 switch (var->kind)
1975 {
1976 case INTERNALVAR_FUNCTION:
1977 *result = var->u.fn.function;
1978 return 1;
1979
1980 default:
1981 return 0;
1982 }
1983 }
1984
1985 void
1986 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1987 int bitsize, struct value *newval)
1988 {
1989 gdb_byte *addr;
1990
1991 switch (var->kind)
1992 {
1993 case INTERNALVAR_VALUE:
1994 addr = value_contents_writeable (var->u.value);
1995
1996 if (bitsize)
1997 modify_field (value_type (var->u.value), addr + offset,
1998 value_as_long (newval), bitpos, bitsize);
1999 else
2000 memcpy (addr + offset, value_contents (newval),
2001 TYPE_LENGTH (value_type (newval)));
2002 break;
2003
2004 default:
2005 /* We can never get a component of any other kind. */
2006 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2007 }
2008 }
2009
2010 void
2011 set_internalvar (struct internalvar *var, struct value *val)
2012 {
2013 enum internalvar_kind new_kind;
2014 union internalvar_data new_data = { 0 };
2015
2016 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2017 error (_("Cannot overwrite convenience function %s"), var->name);
2018
2019 /* Prepare new contents. */
2020 switch (TYPE_CODE (check_typedef (value_type (val))))
2021 {
2022 case TYPE_CODE_VOID:
2023 new_kind = INTERNALVAR_VOID;
2024 break;
2025
2026 case TYPE_CODE_INTERNAL_FUNCTION:
2027 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2028 new_kind = INTERNALVAR_FUNCTION;
2029 get_internalvar_function (VALUE_INTERNALVAR (val),
2030 &new_data.fn.function);
2031 /* Copies created here are never canonical. */
2032 break;
2033
2034 default:
2035 new_kind = INTERNALVAR_VALUE;
2036 new_data.value = value_copy (val);
2037 new_data.value->modifiable = 1;
2038
2039 /* Force the value to be fetched from the target now, to avoid problems
2040 later when this internalvar is referenced and the target is gone or
2041 has changed. */
2042 if (value_lazy (new_data.value))
2043 value_fetch_lazy (new_data.value);
2044
2045 /* Release the value from the value chain to prevent it from being
2046 deleted by free_all_values. From here on this function should not
2047 call error () until new_data is installed into the var->u to avoid
2048 leaking memory. */
2049 release_value (new_data.value);
2050 break;
2051 }
2052
2053 /* Clean up old contents. */
2054 clear_internalvar (var);
2055
2056 /* Switch over. */
2057 var->kind = new_kind;
2058 var->u = new_data;
2059 /* End code which must not call error(). */
2060 }
2061
2062 void
2063 set_internalvar_integer (struct internalvar *var, LONGEST l)
2064 {
2065 /* Clean up old contents. */
2066 clear_internalvar (var);
2067
2068 var->kind = INTERNALVAR_INTEGER;
2069 var->u.integer.type = NULL;
2070 var->u.integer.val = l;
2071 }
2072
2073 void
2074 set_internalvar_string (struct internalvar *var, const char *string)
2075 {
2076 /* Clean up old contents. */
2077 clear_internalvar (var);
2078
2079 var->kind = INTERNALVAR_STRING;
2080 var->u.string = xstrdup (string);
2081 }
2082
2083 static void
2084 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2085 {
2086 /* Clean up old contents. */
2087 clear_internalvar (var);
2088
2089 var->kind = INTERNALVAR_FUNCTION;
2090 var->u.fn.function = f;
2091 var->u.fn.canonical = 1;
2092 /* Variables installed here are always the canonical version. */
2093 }
2094
2095 void
2096 clear_internalvar (struct internalvar *var)
2097 {
2098 /* Clean up old contents. */
2099 switch (var->kind)
2100 {
2101 case INTERNALVAR_VALUE:
2102 value_free (var->u.value);
2103 break;
2104
2105 case INTERNALVAR_STRING:
2106 xfree (var->u.string);
2107 break;
2108
2109 case INTERNALVAR_MAKE_VALUE:
2110 if (var->u.make_value.functions->destroy != NULL)
2111 var->u.make_value.functions->destroy (var->u.make_value.data);
2112 break;
2113
2114 default:
2115 break;
2116 }
2117
2118 /* Reset to void kind. */
2119 var->kind = INTERNALVAR_VOID;
2120 }
2121
2122 char *
2123 internalvar_name (struct internalvar *var)
2124 {
2125 return var->name;
2126 }
2127
2128 static struct internal_function *
2129 create_internal_function (const char *name,
2130 internal_function_fn handler, void *cookie)
2131 {
2132 struct internal_function *ifn = XNEW (struct internal_function);
2133
2134 ifn->name = xstrdup (name);
2135 ifn->handler = handler;
2136 ifn->cookie = cookie;
2137 return ifn;
2138 }
2139
2140 char *
2141 value_internal_function_name (struct value *val)
2142 {
2143 struct internal_function *ifn;
2144 int result;
2145
2146 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2147 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2148 gdb_assert (result);
2149
2150 return ifn->name;
2151 }
2152
2153 struct value *
2154 call_internal_function (struct gdbarch *gdbarch,
2155 const struct language_defn *language,
2156 struct value *func, int argc, struct value **argv)
2157 {
2158 struct internal_function *ifn;
2159 int result;
2160
2161 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2162 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2163 gdb_assert (result);
2164
2165 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2166 }
2167
2168 /* The 'function' command. This does nothing -- it is just a
2169 placeholder to let "help function NAME" work. This is also used as
2170 the implementation of the sub-command that is created when
2171 registering an internal function. */
2172 static void
2173 function_command (char *command, int from_tty)
2174 {
2175 /* Do nothing. */
2176 }
2177
2178 /* Clean up if an internal function's command is destroyed. */
2179 static void
2180 function_destroyer (struct cmd_list_element *self, void *ignore)
2181 {
2182 xfree ((char *) self->name);
2183 xfree (self->doc);
2184 }
2185
2186 /* Add a new internal function. NAME is the name of the function; DOC
2187 is a documentation string describing the function. HANDLER is
2188 called when the function is invoked. COOKIE is an arbitrary
2189 pointer which is passed to HANDLER and is intended for "user
2190 data". */
2191 void
2192 add_internal_function (const char *name, const char *doc,
2193 internal_function_fn handler, void *cookie)
2194 {
2195 struct cmd_list_element *cmd;
2196 struct internal_function *ifn;
2197 struct internalvar *var = lookup_internalvar (name);
2198
2199 ifn = create_internal_function (name, handler, cookie);
2200 set_internalvar_function (var, ifn);
2201
2202 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2203 &functionlist);
2204 cmd->destroyer = function_destroyer;
2205 }
2206
2207 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2208 prevent cycles / duplicates. */
2209
2210 void
2211 preserve_one_value (struct value *value, struct objfile *objfile,
2212 htab_t copied_types)
2213 {
2214 if (TYPE_OBJFILE (value->type) == objfile)
2215 value->type = copy_type_recursive (objfile, value->type, copied_types);
2216
2217 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2218 value->enclosing_type = copy_type_recursive (objfile,
2219 value->enclosing_type,
2220 copied_types);
2221 }
2222
2223 /* Likewise for internal variable VAR. */
2224
2225 static void
2226 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2227 htab_t copied_types)
2228 {
2229 switch (var->kind)
2230 {
2231 case INTERNALVAR_INTEGER:
2232 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2233 var->u.integer.type
2234 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2235 break;
2236
2237 case INTERNALVAR_VALUE:
2238 preserve_one_value (var->u.value, objfile, copied_types);
2239 break;
2240 }
2241 }
2242
2243 /* Update the internal variables and value history when OBJFILE is
2244 discarded; we must copy the types out of the objfile. New global types
2245 will be created for every convenience variable which currently points to
2246 this objfile's types, and the convenience variables will be adjusted to
2247 use the new global types. */
2248
2249 void
2250 preserve_values (struct objfile *objfile)
2251 {
2252 htab_t copied_types;
2253 struct value_history_chunk *cur;
2254 struct internalvar *var;
2255 int i;
2256
2257 /* Create the hash table. We allocate on the objfile's obstack, since
2258 it is soon to be deleted. */
2259 copied_types = create_copied_types_hash (objfile);
2260
2261 for (cur = value_history_chain; cur; cur = cur->next)
2262 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2263 if (cur->values[i])
2264 preserve_one_value (cur->values[i], objfile, copied_types);
2265
2266 for (var = internalvars; var; var = var->next)
2267 preserve_one_internalvar (var, objfile, copied_types);
2268
2269 preserve_python_values (objfile, copied_types);
2270
2271 htab_delete (copied_types);
2272 }
2273
2274 static void
2275 show_convenience (char *ignore, int from_tty)
2276 {
2277 struct gdbarch *gdbarch = get_current_arch ();
2278 struct internalvar *var;
2279 int varseen = 0;
2280 struct value_print_options opts;
2281
2282 get_user_print_options (&opts);
2283 for (var = internalvars; var; var = var->next)
2284 {
2285 volatile struct gdb_exception ex;
2286
2287 if (!varseen)
2288 {
2289 varseen = 1;
2290 }
2291 printf_filtered (("$%s = "), var->name);
2292
2293 TRY_CATCH (ex, RETURN_MASK_ERROR)
2294 {
2295 struct value *val;
2296
2297 val = value_of_internalvar (gdbarch, var);
2298 value_print (val, gdb_stdout, &opts);
2299 }
2300 if (ex.reason < 0)
2301 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2302 printf_filtered (("\n"));
2303 }
2304 if (!varseen)
2305 {
2306 /* This text does not mention convenience functions on purpose.
2307 The user can't create them except via Python, and if Python support
2308 is installed this message will never be printed ($_streq will
2309 exist). */
2310 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2311 "Convenience variables have "
2312 "names starting with \"$\";\n"
2313 "use \"set\" as in \"set "
2314 "$foo = 5\" to define them.\n"));
2315 }
2316 }
2317 \f
2318 /* Extract a value as a C number (either long or double).
2319 Knows how to convert fixed values to double, or
2320 floating values to long.
2321 Does not deallocate the value. */
2322
2323 LONGEST
2324 value_as_long (struct value *val)
2325 {
2326 /* This coerces arrays and functions, which is necessary (e.g.
2327 in disassemble_command). It also dereferences references, which
2328 I suspect is the most logical thing to do. */
2329 val = coerce_array (val);
2330 return unpack_long (value_type (val), value_contents (val));
2331 }
2332
2333 DOUBLEST
2334 value_as_double (struct value *val)
2335 {
2336 DOUBLEST foo;
2337 int inv;
2338
2339 foo = unpack_double (value_type (val), value_contents (val), &inv);
2340 if (inv)
2341 error (_("Invalid floating value found in program."));
2342 return foo;
2343 }
2344
2345 /* Extract a value as a C pointer. Does not deallocate the value.
2346 Note that val's type may not actually be a pointer; value_as_long
2347 handles all the cases. */
2348 CORE_ADDR
2349 value_as_address (struct value *val)
2350 {
2351 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2352
2353 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2354 whether we want this to be true eventually. */
2355 #if 0
2356 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2357 non-address (e.g. argument to "signal", "info break", etc.), or
2358 for pointers to char, in which the low bits *are* significant. */
2359 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2360 #else
2361
2362 /* There are several targets (IA-64, PowerPC, and others) which
2363 don't represent pointers to functions as simply the address of
2364 the function's entry point. For example, on the IA-64, a
2365 function pointer points to a two-word descriptor, generated by
2366 the linker, which contains the function's entry point, and the
2367 value the IA-64 "global pointer" register should have --- to
2368 support position-independent code. The linker generates
2369 descriptors only for those functions whose addresses are taken.
2370
2371 On such targets, it's difficult for GDB to convert an arbitrary
2372 function address into a function pointer; it has to either find
2373 an existing descriptor for that function, or call malloc and
2374 build its own. On some targets, it is impossible for GDB to
2375 build a descriptor at all: the descriptor must contain a jump
2376 instruction; data memory cannot be executed; and code memory
2377 cannot be modified.
2378
2379 Upon entry to this function, if VAL is a value of type `function'
2380 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2381 value_address (val) is the address of the function. This is what
2382 you'll get if you evaluate an expression like `main'. The call
2383 to COERCE_ARRAY below actually does all the usual unary
2384 conversions, which includes converting values of type `function'
2385 to `pointer to function'. This is the challenging conversion
2386 discussed above. Then, `unpack_long' will convert that pointer
2387 back into an address.
2388
2389 So, suppose the user types `disassemble foo' on an architecture
2390 with a strange function pointer representation, on which GDB
2391 cannot build its own descriptors, and suppose further that `foo'
2392 has no linker-built descriptor. The address->pointer conversion
2393 will signal an error and prevent the command from running, even
2394 though the next step would have been to convert the pointer
2395 directly back into the same address.
2396
2397 The following shortcut avoids this whole mess. If VAL is a
2398 function, just return its address directly. */
2399 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2400 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2401 return value_address (val);
2402
2403 val = coerce_array (val);
2404
2405 /* Some architectures (e.g. Harvard), map instruction and data
2406 addresses onto a single large unified address space. For
2407 instance: An architecture may consider a large integer in the
2408 range 0x10000000 .. 0x1000ffff to already represent a data
2409 addresses (hence not need a pointer to address conversion) while
2410 a small integer would still need to be converted integer to
2411 pointer to address. Just assume such architectures handle all
2412 integer conversions in a single function. */
2413
2414 /* JimB writes:
2415
2416 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2417 must admonish GDB hackers to make sure its behavior matches the
2418 compiler's, whenever possible.
2419
2420 In general, I think GDB should evaluate expressions the same way
2421 the compiler does. When the user copies an expression out of
2422 their source code and hands it to a `print' command, they should
2423 get the same value the compiler would have computed. Any
2424 deviation from this rule can cause major confusion and annoyance,
2425 and needs to be justified carefully. In other words, GDB doesn't
2426 really have the freedom to do these conversions in clever and
2427 useful ways.
2428
2429 AndrewC pointed out that users aren't complaining about how GDB
2430 casts integers to pointers; they are complaining that they can't
2431 take an address from a disassembly listing and give it to `x/i'.
2432 This is certainly important.
2433
2434 Adding an architecture method like integer_to_address() certainly
2435 makes it possible for GDB to "get it right" in all circumstances
2436 --- the target has complete control over how things get done, so
2437 people can Do The Right Thing for their target without breaking
2438 anyone else. The standard doesn't specify how integers get
2439 converted to pointers; usually, the ABI doesn't either, but
2440 ABI-specific code is a more reasonable place to handle it. */
2441
2442 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2443 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2444 && gdbarch_integer_to_address_p (gdbarch))
2445 return gdbarch_integer_to_address (gdbarch, value_type (val),
2446 value_contents (val));
2447
2448 return unpack_long (value_type (val), value_contents (val));
2449 #endif
2450 }
2451 \f
2452 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2453 as a long, or as a double, assuming the raw data is described
2454 by type TYPE. Knows how to convert different sizes of values
2455 and can convert between fixed and floating point. We don't assume
2456 any alignment for the raw data. Return value is in host byte order.
2457
2458 If you want functions and arrays to be coerced to pointers, and
2459 references to be dereferenced, call value_as_long() instead.
2460
2461 C++: It is assumed that the front-end has taken care of
2462 all matters concerning pointers to members. A pointer
2463 to member which reaches here is considered to be equivalent
2464 to an INT (or some size). After all, it is only an offset. */
2465
2466 LONGEST
2467 unpack_long (struct type *type, const gdb_byte *valaddr)
2468 {
2469 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2470 enum type_code code = TYPE_CODE (type);
2471 int len = TYPE_LENGTH (type);
2472 int nosign = TYPE_UNSIGNED (type);
2473
2474 switch (code)
2475 {
2476 case TYPE_CODE_TYPEDEF:
2477 return unpack_long (check_typedef (type), valaddr);
2478 case TYPE_CODE_ENUM:
2479 case TYPE_CODE_FLAGS:
2480 case TYPE_CODE_BOOL:
2481 case TYPE_CODE_INT:
2482 case TYPE_CODE_CHAR:
2483 case TYPE_CODE_RANGE:
2484 case TYPE_CODE_MEMBERPTR:
2485 if (nosign)
2486 return extract_unsigned_integer (valaddr, len, byte_order);
2487 else
2488 return extract_signed_integer (valaddr, len, byte_order);
2489
2490 case TYPE_CODE_FLT:
2491 return extract_typed_floating (valaddr, type);
2492
2493 case TYPE_CODE_DECFLOAT:
2494 /* libdecnumber has a function to convert from decimal to integer, but
2495 it doesn't work when the decimal number has a fractional part. */
2496 return decimal_to_doublest (valaddr, len, byte_order);
2497
2498 case TYPE_CODE_PTR:
2499 case TYPE_CODE_REF:
2500 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2501 whether we want this to be true eventually. */
2502 return extract_typed_address (valaddr, type);
2503
2504 default:
2505 error (_("Value can't be converted to integer."));
2506 }
2507 return 0; /* Placate lint. */
2508 }
2509
2510 /* Return a double value from the specified type and address.
2511 INVP points to an int which is set to 0 for valid value,
2512 1 for invalid value (bad float format). In either case,
2513 the returned double is OK to use. Argument is in target
2514 format, result is in host format. */
2515
2516 DOUBLEST
2517 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2518 {
2519 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2520 enum type_code code;
2521 int len;
2522 int nosign;
2523
2524 *invp = 0; /* Assume valid. */
2525 CHECK_TYPEDEF (type);
2526 code = TYPE_CODE (type);
2527 len = TYPE_LENGTH (type);
2528 nosign = TYPE_UNSIGNED (type);
2529 if (code == TYPE_CODE_FLT)
2530 {
2531 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2532 floating-point value was valid (using the macro
2533 INVALID_FLOAT). That test/macro have been removed.
2534
2535 It turns out that only the VAX defined this macro and then
2536 only in a non-portable way. Fixing the portability problem
2537 wouldn't help since the VAX floating-point code is also badly
2538 bit-rotten. The target needs to add definitions for the
2539 methods gdbarch_float_format and gdbarch_double_format - these
2540 exactly describe the target floating-point format. The
2541 problem here is that the corresponding floatformat_vax_f and
2542 floatformat_vax_d values these methods should be set to are
2543 also not defined either. Oops!
2544
2545 Hopefully someone will add both the missing floatformat
2546 definitions and the new cases for floatformat_is_valid (). */
2547
2548 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2549 {
2550 *invp = 1;
2551 return 0.0;
2552 }
2553
2554 return extract_typed_floating (valaddr, type);
2555 }
2556 else if (code == TYPE_CODE_DECFLOAT)
2557 return decimal_to_doublest (valaddr, len, byte_order);
2558 else if (nosign)
2559 {
2560 /* Unsigned -- be sure we compensate for signed LONGEST. */
2561 return (ULONGEST) unpack_long (type, valaddr);
2562 }
2563 else
2564 {
2565 /* Signed -- we are OK with unpack_long. */
2566 return unpack_long (type, valaddr);
2567 }
2568 }
2569
2570 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2571 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2572 We don't assume any alignment for the raw data. Return value is in
2573 host byte order.
2574
2575 If you want functions and arrays to be coerced to pointers, and
2576 references to be dereferenced, call value_as_address() instead.
2577
2578 C++: It is assumed that the front-end has taken care of
2579 all matters concerning pointers to members. A pointer
2580 to member which reaches here is considered to be equivalent
2581 to an INT (or some size). After all, it is only an offset. */
2582
2583 CORE_ADDR
2584 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2585 {
2586 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2587 whether we want this to be true eventually. */
2588 return unpack_long (type, valaddr);
2589 }
2590
2591 \f
2592 /* Get the value of the FIELDNO'th field (which must be static) of
2593 TYPE. */
2594
2595 struct value *
2596 value_static_field (struct type *type, int fieldno)
2597 {
2598 struct value *retval;
2599
2600 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2601 {
2602 case FIELD_LOC_KIND_PHYSADDR:
2603 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2604 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2605 break;
2606 case FIELD_LOC_KIND_PHYSNAME:
2607 {
2608 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2609 /* TYPE_FIELD_NAME (type, fieldno); */
2610 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2611
2612 if (sym == NULL)
2613 {
2614 /* With some compilers, e.g. HP aCC, static data members are
2615 reported as non-debuggable symbols. */
2616 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2617 NULL, NULL);
2618
2619 if (!msym)
2620 return allocate_optimized_out_value (type);
2621 else
2622 {
2623 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2624 SYMBOL_VALUE_ADDRESS (msym));
2625 }
2626 }
2627 else
2628 retval = value_of_variable (sym, NULL);
2629 break;
2630 }
2631 default:
2632 gdb_assert_not_reached ("unexpected field location kind");
2633 }
2634
2635 return retval;
2636 }
2637
2638 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2639 You have to be careful here, since the size of the data area for the value
2640 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2641 than the old enclosing type, you have to allocate more space for the
2642 data. */
2643
2644 void
2645 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2646 {
2647 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2648 val->contents =
2649 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2650
2651 val->enclosing_type = new_encl_type;
2652 }
2653
2654 /* Given a value ARG1 (offset by OFFSET bytes)
2655 of a struct or union type ARG_TYPE,
2656 extract and return the value of one of its (non-static) fields.
2657 FIELDNO says which field. */
2658
2659 struct value *
2660 value_primitive_field (struct value *arg1, int offset,
2661 int fieldno, struct type *arg_type)
2662 {
2663 struct value *v;
2664 struct type *type;
2665
2666 CHECK_TYPEDEF (arg_type);
2667 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2668
2669 /* Call check_typedef on our type to make sure that, if TYPE
2670 is a TYPE_CODE_TYPEDEF, its length is set to the length
2671 of the target type instead of zero. However, we do not
2672 replace the typedef type by the target type, because we want
2673 to keep the typedef in order to be able to print the type
2674 description correctly. */
2675 check_typedef (type);
2676
2677 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2678 {
2679 /* Handle packed fields.
2680
2681 Create a new value for the bitfield, with bitpos and bitsize
2682 set. If possible, arrange offset and bitpos so that we can
2683 do a single aligned read of the size of the containing type.
2684 Otherwise, adjust offset to the byte containing the first
2685 bit. Assume that the address, offset, and embedded offset
2686 are sufficiently aligned. */
2687
2688 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2689 int container_bitsize = TYPE_LENGTH (type) * 8;
2690
2691 if (arg1->optimized_out)
2692 v = allocate_optimized_out_value (type);
2693 else
2694 {
2695 v = allocate_value_lazy (type);
2696 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2697 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2698 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2699 v->bitpos = bitpos % container_bitsize;
2700 else
2701 v->bitpos = bitpos % 8;
2702 v->offset = (value_embedded_offset (arg1)
2703 + offset
2704 + (bitpos - v->bitpos) / 8);
2705 set_value_parent (v, arg1);
2706 if (!value_lazy (arg1))
2707 value_fetch_lazy (v);
2708 }
2709 }
2710 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2711 {
2712 /* This field is actually a base subobject, so preserve the
2713 entire object's contents for later references to virtual
2714 bases, etc. */
2715 int boffset;
2716
2717 /* Lazy register values with offsets are not supported. */
2718 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2719 value_fetch_lazy (arg1);
2720
2721 /* The optimized_out flag is only set correctly once a lazy value is
2722 loaded, having just loaded some lazy values we should check the
2723 optimized out case now. */
2724 if (arg1->optimized_out)
2725 v = allocate_optimized_out_value (type);
2726 else
2727 {
2728 /* We special case virtual inheritance here because this
2729 requires access to the contents, which we would rather avoid
2730 for references to ordinary fields of unavailable values. */
2731 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2732 boffset = baseclass_offset (arg_type, fieldno,
2733 value_contents (arg1),
2734 value_embedded_offset (arg1),
2735 value_address (arg1),
2736 arg1);
2737 else
2738 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2739
2740 if (value_lazy (arg1))
2741 v = allocate_value_lazy (value_enclosing_type (arg1));
2742 else
2743 {
2744 v = allocate_value (value_enclosing_type (arg1));
2745 value_contents_copy_raw (v, 0, arg1, 0,
2746 TYPE_LENGTH (value_enclosing_type (arg1)));
2747 }
2748 v->type = type;
2749 v->offset = value_offset (arg1);
2750 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2751 }
2752 }
2753 else
2754 {
2755 /* Plain old data member */
2756 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2757
2758 /* Lazy register values with offsets are not supported. */
2759 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2760 value_fetch_lazy (arg1);
2761
2762 /* The optimized_out flag is only set correctly once a lazy value is
2763 loaded, having just loaded some lazy values we should check for
2764 the optimized out case now. */
2765 if (arg1->optimized_out)
2766 v = allocate_optimized_out_value (type);
2767 else if (value_lazy (arg1))
2768 v = allocate_value_lazy (type);
2769 else
2770 {
2771 v = allocate_value (type);
2772 value_contents_copy_raw (v, value_embedded_offset (v),
2773 arg1, value_embedded_offset (arg1) + offset,
2774 TYPE_LENGTH (type));
2775 }
2776 v->offset = (value_offset (arg1) + offset
2777 + value_embedded_offset (arg1));
2778 }
2779 set_value_component_location (v, arg1);
2780 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2781 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2782 return v;
2783 }
2784
2785 /* Given a value ARG1 of a struct or union type,
2786 extract and return the value of one of its (non-static) fields.
2787 FIELDNO says which field. */
2788
2789 struct value *
2790 value_field (struct value *arg1, int fieldno)
2791 {
2792 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2793 }
2794
2795 /* Return a non-virtual function as a value.
2796 F is the list of member functions which contains the desired method.
2797 J is an index into F which provides the desired method.
2798
2799 We only use the symbol for its address, so be happy with either a
2800 full symbol or a minimal symbol. */
2801
2802 struct value *
2803 value_fn_field (struct value **arg1p, struct fn_field *f,
2804 int j, struct type *type,
2805 int offset)
2806 {
2807 struct value *v;
2808 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2809 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2810 struct symbol *sym;
2811 struct bound_minimal_symbol msym;
2812
2813 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2814 if (sym != NULL)
2815 {
2816 memset (&msym, 0, sizeof (msym));
2817 }
2818 else
2819 {
2820 gdb_assert (sym == NULL);
2821 msym = lookup_bound_minimal_symbol (physname);
2822 if (msym.minsym == NULL)
2823 return NULL;
2824 }
2825
2826 v = allocate_value (ftype);
2827 if (sym)
2828 {
2829 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2830 }
2831 else
2832 {
2833 /* The minimal symbol might point to a function descriptor;
2834 resolve it to the actual code address instead. */
2835 struct objfile *objfile = msym.objfile;
2836 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2837
2838 set_value_address (v,
2839 gdbarch_convert_from_func_ptr_addr
2840 (gdbarch, SYMBOL_VALUE_ADDRESS (msym.minsym), &current_target));
2841 }
2842
2843 if (arg1p)
2844 {
2845 if (type != value_type (*arg1p))
2846 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2847 value_addr (*arg1p)));
2848
2849 /* Move the `this' pointer according to the offset.
2850 VALUE_OFFSET (*arg1p) += offset; */
2851 }
2852
2853 return v;
2854 }
2855
2856 \f
2857
2858 /* Helper function for both unpack_value_bits_as_long and
2859 unpack_bits_as_long. See those functions for more details on the
2860 interface; the only difference is that this function accepts either
2861 a NULL or a non-NULL ORIGINAL_VALUE. */
2862
2863 static int
2864 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2865 int embedded_offset, int bitpos, int bitsize,
2866 const struct value *original_value,
2867 LONGEST *result)
2868 {
2869 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2870 ULONGEST val;
2871 ULONGEST valmask;
2872 int lsbcount;
2873 int bytes_read;
2874 int read_offset;
2875
2876 /* Read the minimum number of bytes required; there may not be
2877 enough bytes to read an entire ULONGEST. */
2878 CHECK_TYPEDEF (field_type);
2879 if (bitsize)
2880 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2881 else
2882 bytes_read = TYPE_LENGTH (field_type);
2883
2884 read_offset = bitpos / 8;
2885
2886 if (original_value != NULL
2887 && !value_bytes_available (original_value, embedded_offset + read_offset,
2888 bytes_read))
2889 return 0;
2890
2891 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2892 bytes_read, byte_order);
2893
2894 /* Extract bits. See comment above. */
2895
2896 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2897 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2898 else
2899 lsbcount = (bitpos % 8);
2900 val >>= lsbcount;
2901
2902 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2903 If the field is signed, and is negative, then sign extend. */
2904
2905 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2906 {
2907 valmask = (((ULONGEST) 1) << bitsize) - 1;
2908 val &= valmask;
2909 if (!TYPE_UNSIGNED (field_type))
2910 {
2911 if (val & (valmask ^ (valmask >> 1)))
2912 {
2913 val |= ~valmask;
2914 }
2915 }
2916 }
2917
2918 *result = val;
2919 return 1;
2920 }
2921
2922 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2923 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2924 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2925 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2926 bits.
2927
2928 Returns false if the value contents are unavailable, otherwise
2929 returns true, indicating a valid value has been stored in *RESULT.
2930
2931 Extracting bits depends on endianness of the machine. Compute the
2932 number of least significant bits to discard. For big endian machines,
2933 we compute the total number of bits in the anonymous object, subtract
2934 off the bit count from the MSB of the object to the MSB of the
2935 bitfield, then the size of the bitfield, which leaves the LSB discard
2936 count. For little endian machines, the discard count is simply the
2937 number of bits from the LSB of the anonymous object to the LSB of the
2938 bitfield.
2939
2940 If the field is signed, we also do sign extension. */
2941
2942 int
2943 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2944 int embedded_offset, int bitpos, int bitsize,
2945 const struct value *original_value,
2946 LONGEST *result)
2947 {
2948 gdb_assert (original_value != NULL);
2949
2950 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2951 bitpos, bitsize, original_value, result);
2952
2953 }
2954
2955 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2956 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2957 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2958 details. */
2959
2960 static int
2961 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2962 int embedded_offset, int fieldno,
2963 const struct value *val, LONGEST *result)
2964 {
2965 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2966 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2967 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2968
2969 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2970 bitpos, bitsize, val,
2971 result);
2972 }
2973
2974 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2975 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2976 ORIGINAL_VALUE, which must not be NULL. See
2977 unpack_value_bits_as_long for more details. */
2978
2979 int
2980 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2981 int embedded_offset, int fieldno,
2982 const struct value *val, LONGEST *result)
2983 {
2984 gdb_assert (val != NULL);
2985
2986 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2987 fieldno, val, result);
2988 }
2989
2990 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2991 object at VALADDR. See unpack_value_bits_as_long for more details.
2992 This function differs from unpack_value_field_as_long in that it
2993 operates without a struct value object. */
2994
2995 LONGEST
2996 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2997 {
2998 LONGEST result;
2999
3000 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
3001 return result;
3002 }
3003
3004 /* Return a new value with type TYPE, which is FIELDNO field of the
3005 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3006 of VAL. If the VAL's contents required to extract the bitfield
3007 from are unavailable, the new value is correspondingly marked as
3008 unavailable. */
3009
3010 struct value *
3011 value_field_bitfield (struct type *type, int fieldno,
3012 const gdb_byte *valaddr,
3013 int embedded_offset, const struct value *val)
3014 {
3015 LONGEST l;
3016
3017 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3018 val, &l))
3019 {
3020 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3021 struct value *retval = allocate_value (field_type);
3022 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3023 return retval;
3024 }
3025 else
3026 {
3027 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3028 }
3029 }
3030
3031 /* Modify the value of a bitfield. ADDR points to a block of memory in
3032 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3033 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3034 indicate which bits (in target bit order) comprise the bitfield.
3035 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3036 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3037
3038 void
3039 modify_field (struct type *type, gdb_byte *addr,
3040 LONGEST fieldval, int bitpos, int bitsize)
3041 {
3042 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3043 ULONGEST oword;
3044 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3045 int bytesize;
3046
3047 /* Normalize BITPOS. */
3048 addr += bitpos / 8;
3049 bitpos %= 8;
3050
3051 /* If a negative fieldval fits in the field in question, chop
3052 off the sign extension bits. */
3053 if ((~fieldval & ~(mask >> 1)) == 0)
3054 fieldval &= mask;
3055
3056 /* Warn if value is too big to fit in the field in question. */
3057 if (0 != (fieldval & ~mask))
3058 {
3059 /* FIXME: would like to include fieldval in the message, but
3060 we don't have a sprintf_longest. */
3061 warning (_("Value does not fit in %d bits."), bitsize);
3062
3063 /* Truncate it, otherwise adjoining fields may be corrupted. */
3064 fieldval &= mask;
3065 }
3066
3067 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3068 false valgrind reports. */
3069
3070 bytesize = (bitpos + bitsize + 7) / 8;
3071 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3072
3073 /* Shifting for bit field depends on endianness of the target machine. */
3074 if (gdbarch_bits_big_endian (get_type_arch (type)))
3075 bitpos = bytesize * 8 - bitpos - bitsize;
3076
3077 oword &= ~(mask << bitpos);
3078 oword |= fieldval << bitpos;
3079
3080 store_unsigned_integer (addr, bytesize, byte_order, oword);
3081 }
3082 \f
3083 /* Pack NUM into BUF using a target format of TYPE. */
3084
3085 void
3086 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3087 {
3088 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3089 int len;
3090
3091 type = check_typedef (type);
3092 len = TYPE_LENGTH (type);
3093
3094 switch (TYPE_CODE (type))
3095 {
3096 case TYPE_CODE_INT:
3097 case TYPE_CODE_CHAR:
3098 case TYPE_CODE_ENUM:
3099 case TYPE_CODE_FLAGS:
3100 case TYPE_CODE_BOOL:
3101 case TYPE_CODE_RANGE:
3102 case TYPE_CODE_MEMBERPTR:
3103 store_signed_integer (buf, len, byte_order, num);
3104 break;
3105
3106 case TYPE_CODE_REF:
3107 case TYPE_CODE_PTR:
3108 store_typed_address (buf, type, (CORE_ADDR) num);
3109 break;
3110
3111 default:
3112 error (_("Unexpected type (%d) encountered for integer constant."),
3113 TYPE_CODE (type));
3114 }
3115 }
3116
3117
3118 /* Pack NUM into BUF using a target format of TYPE. */
3119
3120 static void
3121 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3122 {
3123 int len;
3124 enum bfd_endian byte_order;
3125
3126 type = check_typedef (type);
3127 len = TYPE_LENGTH (type);
3128 byte_order = gdbarch_byte_order (get_type_arch (type));
3129
3130 switch (TYPE_CODE (type))
3131 {
3132 case TYPE_CODE_INT:
3133 case TYPE_CODE_CHAR:
3134 case TYPE_CODE_ENUM:
3135 case TYPE_CODE_FLAGS:
3136 case TYPE_CODE_BOOL:
3137 case TYPE_CODE_RANGE:
3138 case TYPE_CODE_MEMBERPTR:
3139 store_unsigned_integer (buf, len, byte_order, num);
3140 break;
3141
3142 case TYPE_CODE_REF:
3143 case TYPE_CODE_PTR:
3144 store_typed_address (buf, type, (CORE_ADDR) num);
3145 break;
3146
3147 default:
3148 error (_("Unexpected type (%d) encountered "
3149 "for unsigned integer constant."),
3150 TYPE_CODE (type));
3151 }
3152 }
3153
3154
3155 /* Convert C numbers into newly allocated values. */
3156
3157 struct value *
3158 value_from_longest (struct type *type, LONGEST num)
3159 {
3160 struct value *val = allocate_value (type);
3161
3162 pack_long (value_contents_raw (val), type, num);
3163 return val;
3164 }
3165
3166
3167 /* Convert C unsigned numbers into newly allocated values. */
3168
3169 struct value *
3170 value_from_ulongest (struct type *type, ULONGEST num)
3171 {
3172 struct value *val = allocate_value (type);
3173
3174 pack_unsigned_long (value_contents_raw (val), type, num);
3175
3176 return val;
3177 }
3178
3179
3180 /* Create a value representing a pointer of type TYPE to the address
3181 ADDR. */
3182 struct value *
3183 value_from_pointer (struct type *type, CORE_ADDR addr)
3184 {
3185 struct value *val = allocate_value (type);
3186
3187 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3188 return val;
3189 }
3190
3191
3192 /* Create a value of type TYPE whose contents come from VALADDR, if it
3193 is non-null, and whose memory address (in the inferior) is
3194 ADDRESS. */
3195
3196 struct value *
3197 value_from_contents_and_address (struct type *type,
3198 const gdb_byte *valaddr,
3199 CORE_ADDR address)
3200 {
3201 struct value *v;
3202
3203 if (valaddr == NULL)
3204 v = allocate_value_lazy (type);
3205 else
3206 v = value_from_contents (type, valaddr);
3207 set_value_address (v, address);
3208 VALUE_LVAL (v) = lval_memory;
3209 return v;
3210 }
3211
3212 /* Create a value of type TYPE holding the contents CONTENTS.
3213 The new value is `not_lval'. */
3214
3215 struct value *
3216 value_from_contents (struct type *type, const gdb_byte *contents)
3217 {
3218 struct value *result;
3219
3220 result = allocate_value (type);
3221 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3222 return result;
3223 }
3224
3225 struct value *
3226 value_from_double (struct type *type, DOUBLEST num)
3227 {
3228 struct value *val = allocate_value (type);
3229 struct type *base_type = check_typedef (type);
3230 enum type_code code = TYPE_CODE (base_type);
3231
3232 if (code == TYPE_CODE_FLT)
3233 {
3234 store_typed_floating (value_contents_raw (val), base_type, num);
3235 }
3236 else
3237 error (_("Unexpected type encountered for floating constant."));
3238
3239 return val;
3240 }
3241
3242 struct value *
3243 value_from_decfloat (struct type *type, const gdb_byte *dec)
3244 {
3245 struct value *val = allocate_value (type);
3246
3247 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3248 return val;
3249 }
3250
3251 /* Extract a value from the history file. Input will be of the form
3252 $digits or $$digits. See block comment above 'write_dollar_variable'
3253 for details. */
3254
3255 struct value *
3256 value_from_history_ref (char *h, char **endp)
3257 {
3258 int index, len;
3259
3260 if (h[0] == '$')
3261 len = 1;
3262 else
3263 return NULL;
3264
3265 if (h[1] == '$')
3266 len = 2;
3267
3268 /* Find length of numeral string. */
3269 for (; isdigit (h[len]); len++)
3270 ;
3271
3272 /* Make sure numeral string is not part of an identifier. */
3273 if (h[len] == '_' || isalpha (h[len]))
3274 return NULL;
3275
3276 /* Now collect the index value. */
3277 if (h[1] == '$')
3278 {
3279 if (len == 2)
3280 {
3281 /* For some bizarre reason, "$$" is equivalent to "$$1",
3282 rather than to "$$0" as it ought to be! */
3283 index = -1;
3284 *endp += len;
3285 }
3286 else
3287 index = -strtol (&h[2], endp, 10);
3288 }
3289 else
3290 {
3291 if (len == 1)
3292 {
3293 /* "$" is equivalent to "$0". */
3294 index = 0;
3295 *endp += len;
3296 }
3297 else
3298 index = strtol (&h[1], endp, 10);
3299 }
3300
3301 return access_value_history (index);
3302 }
3303
3304 struct value *
3305 coerce_ref_if_computed (const struct value *arg)
3306 {
3307 const struct lval_funcs *funcs;
3308
3309 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3310 return NULL;
3311
3312 if (value_lval_const (arg) != lval_computed)
3313 return NULL;
3314
3315 funcs = value_computed_funcs (arg);
3316 if (funcs->coerce_ref == NULL)
3317 return NULL;
3318
3319 return funcs->coerce_ref (arg);
3320 }
3321
3322 /* Look at value.h for description. */
3323
3324 struct value *
3325 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3326 struct type *original_type,
3327 struct value *original_value)
3328 {
3329 /* Re-adjust type. */
3330 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3331
3332 /* Add embedding info. */
3333 set_value_enclosing_type (value, enc_type);
3334 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3335
3336 /* We may be pointing to an object of some derived type. */
3337 return value_full_object (value, NULL, 0, 0, 0);
3338 }
3339
3340 struct value *
3341 coerce_ref (struct value *arg)
3342 {
3343 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3344 struct value *retval;
3345 struct type *enc_type;
3346
3347 retval = coerce_ref_if_computed (arg);
3348 if (retval)
3349 return retval;
3350
3351 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3352 return arg;
3353
3354 enc_type = check_typedef (value_enclosing_type (arg));
3355 enc_type = TYPE_TARGET_TYPE (enc_type);
3356
3357 retval = value_at_lazy (enc_type,
3358 unpack_pointer (value_type (arg),
3359 value_contents (arg)));
3360 return readjust_indirect_value_type (retval, enc_type,
3361 value_type_arg_tmp, arg);
3362 }
3363
3364 struct value *
3365 coerce_array (struct value *arg)
3366 {
3367 struct type *type;
3368
3369 arg = coerce_ref (arg);
3370 type = check_typedef (value_type (arg));
3371
3372 switch (TYPE_CODE (type))
3373 {
3374 case TYPE_CODE_ARRAY:
3375 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3376 arg = value_coerce_array (arg);
3377 break;
3378 case TYPE_CODE_FUNC:
3379 arg = value_coerce_function (arg);
3380 break;
3381 }
3382 return arg;
3383 }
3384 \f
3385
3386 /* Return the return value convention that will be used for the
3387 specified type. */
3388
3389 enum return_value_convention
3390 struct_return_convention (struct gdbarch *gdbarch,
3391 struct value *function, struct type *value_type)
3392 {
3393 enum type_code code = TYPE_CODE (value_type);
3394
3395 if (code == TYPE_CODE_ERROR)
3396 error (_("Function return type unknown."));
3397
3398 /* Probe the architecture for the return-value convention. */
3399 return gdbarch_return_value (gdbarch, function, value_type,
3400 NULL, NULL, NULL);
3401 }
3402
3403 /* Return true if the function returning the specified type is using
3404 the convention of returning structures in memory (passing in the
3405 address as a hidden first parameter). */
3406
3407 int
3408 using_struct_return (struct gdbarch *gdbarch,
3409 struct value *function, struct type *value_type)
3410 {
3411 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3412 /* A void return value is never in memory. See also corresponding
3413 code in "print_return_value". */
3414 return 0;
3415
3416 return (struct_return_convention (gdbarch, function, value_type)
3417 != RETURN_VALUE_REGISTER_CONVENTION);
3418 }
3419
3420 /* Set the initialized field in a value struct. */
3421
3422 void
3423 set_value_initialized (struct value *val, int status)
3424 {
3425 val->initialized = status;
3426 }
3427
3428 /* Return the initialized field in a value struct. */
3429
3430 int
3431 value_initialized (struct value *val)
3432 {
3433 return val->initialized;
3434 }
3435
3436 /* Called only from the value_contents and value_contents_all()
3437 macros, if the current data for a variable needs to be loaded into
3438 value_contents(VAL). Fetches the data from the user's process, and
3439 clears the lazy flag to indicate that the data in the buffer is
3440 valid.
3441
3442 If the value is zero-length, we avoid calling read_memory, which
3443 would abort. We mark the value as fetched anyway -- all 0 bytes of
3444 it.
3445
3446 This function returns a value because it is used in the
3447 value_contents macro as part of an expression, where a void would
3448 not work. The value is ignored. */
3449
3450 int
3451 value_fetch_lazy (struct value *val)
3452 {
3453 gdb_assert (value_lazy (val));
3454 allocate_value_contents (val);
3455 if (value_bitsize (val))
3456 {
3457 /* To read a lazy bitfield, read the entire enclosing value. This
3458 prevents reading the same block of (possibly volatile) memory once
3459 per bitfield. It would be even better to read only the containing
3460 word, but we have no way to record that just specific bits of a
3461 value have been fetched. */
3462 struct type *type = check_typedef (value_type (val));
3463 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3464 struct value *parent = value_parent (val);
3465 LONGEST offset = value_offset (val);
3466 LONGEST num;
3467
3468 if (value_lazy (parent))
3469 value_fetch_lazy (parent);
3470
3471 if (!value_bits_valid (parent,
3472 TARGET_CHAR_BIT * offset + value_bitpos (val),
3473 value_bitsize (val)))
3474 set_value_optimized_out (val, 1);
3475 else if (!unpack_value_bits_as_long (value_type (val),
3476 value_contents_for_printing (parent),
3477 offset,
3478 value_bitpos (val),
3479 value_bitsize (val), parent, &num))
3480 mark_value_bytes_unavailable (val,
3481 value_embedded_offset (val),
3482 TYPE_LENGTH (type));
3483 else
3484 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3485 byte_order, num);
3486 }
3487 else if (VALUE_LVAL (val) == lval_memory)
3488 {
3489 CORE_ADDR addr = value_address (val);
3490 struct type *type = check_typedef (value_enclosing_type (val));
3491
3492 if (TYPE_LENGTH (type))
3493 read_value_memory (val, 0, value_stack (val),
3494 addr, value_contents_all_raw (val),
3495 TYPE_LENGTH (type));
3496 }
3497 else if (VALUE_LVAL (val) == lval_register)
3498 {
3499 struct frame_info *frame;
3500 int regnum;
3501 struct type *type = check_typedef (value_type (val));
3502 struct value *new_val = val, *mark = value_mark ();
3503
3504 /* Offsets are not supported here; lazy register values must
3505 refer to the entire register. */
3506 gdb_assert (value_offset (val) == 0);
3507
3508 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3509 {
3510 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
3511 regnum = VALUE_REGNUM (new_val);
3512
3513 gdb_assert (frame != NULL);
3514
3515 /* Convertible register routines are used for multi-register
3516 values and for interpretation in different types
3517 (e.g. float or int from a double register). Lazy
3518 register values should have the register's natural type,
3519 so they do not apply. */
3520 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3521 regnum, type));
3522
3523 new_val = get_frame_register_value (frame, regnum);
3524 }
3525
3526 /* If it's still lazy (for instance, a saved register on the
3527 stack), fetch it. */
3528 if (value_lazy (new_val))
3529 value_fetch_lazy (new_val);
3530
3531 /* If the register was not saved, mark it optimized out. */
3532 if (value_optimized_out (new_val))
3533 set_value_optimized_out (val, 1);
3534 else
3535 {
3536 set_value_lazy (val, 0);
3537 value_contents_copy (val, value_embedded_offset (val),
3538 new_val, value_embedded_offset (new_val),
3539 TYPE_LENGTH (type));
3540 }
3541
3542 if (frame_debug)
3543 {
3544 struct gdbarch *gdbarch;
3545 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3546 regnum = VALUE_REGNUM (val);
3547 gdbarch = get_frame_arch (frame);
3548
3549 fprintf_unfiltered (gdb_stdlog,
3550 "{ value_fetch_lazy "
3551 "(frame=%d,regnum=%d(%s),...) ",
3552 frame_relative_level (frame), regnum,
3553 user_reg_map_regnum_to_name (gdbarch, regnum));
3554
3555 fprintf_unfiltered (gdb_stdlog, "->");
3556 if (value_optimized_out (new_val))
3557 fprintf_unfiltered (gdb_stdlog, " optimized out");
3558 else
3559 {
3560 int i;
3561 const gdb_byte *buf = value_contents (new_val);
3562
3563 if (VALUE_LVAL (new_val) == lval_register)
3564 fprintf_unfiltered (gdb_stdlog, " register=%d",
3565 VALUE_REGNUM (new_val));
3566 else if (VALUE_LVAL (new_val) == lval_memory)
3567 fprintf_unfiltered (gdb_stdlog, " address=%s",
3568 paddress (gdbarch,
3569 value_address (new_val)));
3570 else
3571 fprintf_unfiltered (gdb_stdlog, " computed");
3572
3573 fprintf_unfiltered (gdb_stdlog, " bytes=");
3574 fprintf_unfiltered (gdb_stdlog, "[");
3575 for (i = 0; i < register_size (gdbarch, regnum); i++)
3576 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3577 fprintf_unfiltered (gdb_stdlog, "]");
3578 }
3579
3580 fprintf_unfiltered (gdb_stdlog, " }\n");
3581 }
3582
3583 /* Dispose of the intermediate values. This prevents
3584 watchpoints from trying to watch the saved frame pointer. */
3585 value_free_to_mark (mark);
3586 }
3587 else if (VALUE_LVAL (val) == lval_computed
3588 && value_computed_funcs (val)->read != NULL)
3589 value_computed_funcs (val)->read (val);
3590 /* Don't call value_optimized_out on val, doing so would result in a
3591 recursive call back to value_fetch_lazy, instead check the
3592 optimized_out flag directly. */
3593 else if (val->optimized_out)
3594 /* Keep it optimized out. */;
3595 else
3596 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3597
3598 set_value_lazy (val, 0);
3599 return 0;
3600 }
3601
3602 /* Implementation of the convenience function $_isvoid. */
3603
3604 static struct value *
3605 isvoid_internal_fn (struct gdbarch *gdbarch,
3606 const struct language_defn *language,
3607 void *cookie, int argc, struct value **argv)
3608 {
3609 int ret;
3610
3611 if (argc != 1)
3612 error (_("You must provide one argument for $_isvoid."));
3613
3614 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3615
3616 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3617 }
3618
3619 void
3620 _initialize_values (void)
3621 {
3622 add_cmd ("convenience", no_class, show_convenience, _("\
3623 Debugger convenience (\"$foo\") variables and functions.\n\
3624 Convenience variables are created when you assign them values;\n\
3625 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3626 \n\
3627 A few convenience variables are given values automatically:\n\
3628 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3629 \"$__\" holds the contents of the last address examined with \"x\"."
3630 #ifdef HAVE_PYTHON
3631 "\n\n\
3632 Convenience functions are defined via the Python API."
3633 #endif
3634 ), &showlist);
3635 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3636
3637 add_cmd ("values", no_set_class, show_values, _("\
3638 Elements of value history around item number IDX (or last ten)."),
3639 &showlist);
3640
3641 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3642 Initialize a convenience variable if necessary.\n\
3643 init-if-undefined VARIABLE = EXPRESSION\n\
3644 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3645 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3646 VARIABLE is already initialized."));
3647
3648 add_prefix_cmd ("function", no_class, function_command, _("\
3649 Placeholder command for showing help on convenience functions."),
3650 &functionlist, "function ", 0, &cmdlist);
3651
3652 add_internal_function ("_isvoid", _("\
3653 Check whether an expression is void.\n\
3654 Usage: $_isvoid (expression)\n\
3655 Return 1 if the expression is void, zero otherwise."),
3656 isvoid_internal_fn, NULL);
3657 }
This page took 0.172866 seconds and 4 git commands to generate.