203e86b935c7432898e21ec8a882efb5c98e1125
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33 #include "doublest.h"
34 #include "gdb_assert.h"
35 #include "regcache.h"
36 #include "block.h"
37 #include "dfp.h"
38 #include "objfiles.h"
39 #include "valprint.h"
40
41 #include "python/python.h"
42
43 /* Prototypes for exported functions. */
44
45 void _initialize_values (void);
46
47 struct value
48 {
49 /* Type of value; either not an lval, or one of the various
50 different possible kinds of lval. */
51 enum lval_type lval;
52
53 /* Is it modifiable? Only relevant if lval != not_lval. */
54 int modifiable;
55
56 /* Location of value (if lval). */
57 union
58 {
59 /* If lval == lval_memory, this is the address in the inferior.
60 If lval == lval_register, this is the byte offset into the
61 registers structure. */
62 CORE_ADDR address;
63
64 /* Pointer to internal variable. */
65 struct internalvar *internalvar;
66 } location;
67
68 /* Describes offset of a value within lval of a structure in bytes.
69 If lval == lval_memory, this is an offset to the address. If
70 lval == lval_register, this is a further offset from
71 location.address within the registers structure. Note also the
72 member embedded_offset below. */
73 int offset;
74
75 /* Only used for bitfields; number of bits contained in them. */
76 int bitsize;
77
78 /* Only used for bitfields; position of start of field. For
79 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
80 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
81 int bitpos;
82
83 /* Frame register value is relative to. This will be described in
84 the lval enum above as "lval_register". */
85 struct frame_id frame_id;
86
87 /* Type of the value. */
88 struct type *type;
89
90 /* If a value represents a C++ object, then the `type' field gives
91 the object's compile-time type. If the object actually belongs
92 to some class derived from `type', perhaps with other base
93 classes and additional members, then `type' is just a subobject
94 of the real thing, and the full object is probably larger than
95 `type' would suggest.
96
97 If `type' is a dynamic class (i.e. one with a vtable), then GDB
98 can actually determine the object's run-time type by looking at
99 the run-time type information in the vtable. When this
100 information is available, we may elect to read in the entire
101 object, for several reasons:
102
103 - When printing the value, the user would probably rather see the
104 full object, not just the limited portion apparent from the
105 compile-time type.
106
107 - If `type' has virtual base classes, then even printing `type'
108 alone may require reaching outside the `type' portion of the
109 object to wherever the virtual base class has been stored.
110
111 When we store the entire object, `enclosing_type' is the run-time
112 type -- the complete object -- and `embedded_offset' is the
113 offset of `type' within that larger type, in bytes. The
114 value_contents() macro takes `embedded_offset' into account, so
115 most GDB code continues to see the `type' portion of the value,
116 just as the inferior would.
117
118 If `type' is a pointer to an object, then `enclosing_type' is a
119 pointer to the object's run-time type, and `pointed_to_offset' is
120 the offset in bytes from the full object to the pointed-to object
121 -- that is, the value `embedded_offset' would have if we followed
122 the pointer and fetched the complete object. (I don't really see
123 the point. Why not just determine the run-time type when you
124 indirect, and avoid the special case? The contents don't matter
125 until you indirect anyway.)
126
127 If we're not doing anything fancy, `enclosing_type' is equal to
128 `type', and `embedded_offset' is zero, so everything works
129 normally. */
130 struct type *enclosing_type;
131 int embedded_offset;
132 int pointed_to_offset;
133
134 /* Values are stored in a chain, so that they can be deleted easily
135 over calls to the inferior. Values assigned to internal
136 variables, put into the value history or exposed to Python are
137 taken off this list. */
138 struct value *next;
139
140 /* Register number if the value is from a register. */
141 short regnum;
142
143 /* If zero, contents of this value are in the contents field. If
144 nonzero, contents are in inferior. If the lval field is lval_memory,
145 the contents are in inferior memory at location.address plus offset.
146 The lval field may also be lval_register.
147
148 WARNING: This field is used by the code which handles watchpoints
149 (see breakpoint.c) to decide whether a particular value can be
150 watched by hardware watchpoints. If the lazy flag is set for
151 some member of a value chain, it is assumed that this member of
152 the chain doesn't need to be watched as part of watching the
153 value itself. This is how GDB avoids watching the entire struct
154 or array when the user wants to watch a single struct member or
155 array element. If you ever change the way lazy flag is set and
156 reset, be sure to consider this use as well! */
157 char lazy;
158
159 /* If nonzero, this is the value of a variable which does not
160 actually exist in the program. */
161 char optimized_out;
162
163 /* If value is a variable, is it initialized or not. */
164 int initialized;
165
166 /* Actual contents of the value. Target byte-order. NULL or not
167 valid if lazy is nonzero. */
168 gdb_byte *contents;
169 };
170
171 /* Prototypes for local functions. */
172
173 static void show_values (char *, int);
174
175 static void show_convenience (char *, int);
176
177
178 /* The value-history records all the values printed
179 by print commands during this session. Each chunk
180 records 60 consecutive values. The first chunk on
181 the chain records the most recent values.
182 The total number of values is in value_history_count. */
183
184 #define VALUE_HISTORY_CHUNK 60
185
186 struct value_history_chunk
187 {
188 struct value_history_chunk *next;
189 struct value *values[VALUE_HISTORY_CHUNK];
190 };
191
192 /* Chain of chunks now in use. */
193
194 static struct value_history_chunk *value_history_chain;
195
196 static int value_history_count; /* Abs number of last entry stored */
197 \f
198 /* List of all value objects currently allocated
199 (except for those released by calls to release_value)
200 This is so they can be freed after each command. */
201
202 static struct value *all_values;
203
204 /* Allocate a lazy value for type TYPE. Its actual content is
205 "lazily" allocated too: the content field of the return value is
206 NULL; it will be allocated when it is fetched from the target. */
207
208 struct value *
209 allocate_value_lazy (struct type *type)
210 {
211 struct value *val;
212 struct type *atype = check_typedef (type);
213
214 val = (struct value *) xzalloc (sizeof (struct value));
215 val->contents = NULL;
216 val->next = all_values;
217 all_values = val;
218 val->type = type;
219 val->enclosing_type = type;
220 VALUE_LVAL (val) = not_lval;
221 VALUE_ADDRESS (val) = 0;
222 VALUE_FRAME_ID (val) = null_frame_id;
223 val->offset = 0;
224 val->bitpos = 0;
225 val->bitsize = 0;
226 VALUE_REGNUM (val) = -1;
227 val->lazy = 1;
228 val->optimized_out = 0;
229 val->embedded_offset = 0;
230 val->pointed_to_offset = 0;
231 val->modifiable = 1;
232 val->initialized = 1; /* Default to initialized. */
233 return val;
234 }
235
236 /* Allocate the contents of VAL if it has not been allocated yet. */
237
238 void
239 allocate_value_contents (struct value *val)
240 {
241 if (!val->contents)
242 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
243 }
244
245 /* Allocate a value and its contents for type TYPE. */
246
247 struct value *
248 allocate_value (struct type *type)
249 {
250 struct value *val = allocate_value_lazy (type);
251 allocate_value_contents (val);
252 val->lazy = 0;
253 return val;
254 }
255
256 /* Allocate a value that has the correct length
257 for COUNT repetitions of type TYPE. */
258
259 struct value *
260 allocate_repeat_value (struct type *type, int count)
261 {
262 int low_bound = current_language->string_lower_bound; /* ??? */
263 /* FIXME-type-allocation: need a way to free this type when we are
264 done with it. */
265 struct type *range_type
266 = create_range_type ((struct type *) NULL, builtin_type_int32,
267 low_bound, count + low_bound - 1);
268 /* FIXME-type-allocation: need a way to free this type when we are
269 done with it. */
270 return allocate_value (create_array_type ((struct type *) NULL,
271 type, range_type));
272 }
273
274 /* Needed if another module needs to maintain its on list of values. */
275 void
276 value_prepend_to_list (struct value **head, struct value *val)
277 {
278 val->next = *head;
279 *head = val;
280 }
281
282 /* Needed if another module needs to maintain its on list of values. */
283 void
284 value_remove_from_list (struct value **head, struct value *val)
285 {
286 struct value *prev;
287
288 if (*head == val)
289 *head = (*head)->next;
290 else
291 for (prev = *head; prev->next; prev = prev->next)
292 if (prev->next == val)
293 {
294 prev->next = val->next;
295 break;
296 }
297 }
298
299 /* Accessor methods. */
300
301 struct value *
302 value_next (struct value *value)
303 {
304 return value->next;
305 }
306
307 struct type *
308 value_type (struct value *value)
309 {
310 return value->type;
311 }
312 void
313 deprecated_set_value_type (struct value *value, struct type *type)
314 {
315 value->type = type;
316 }
317
318 int
319 value_offset (struct value *value)
320 {
321 return value->offset;
322 }
323 void
324 set_value_offset (struct value *value, int offset)
325 {
326 value->offset = offset;
327 }
328
329 int
330 value_bitpos (struct value *value)
331 {
332 return value->bitpos;
333 }
334 void
335 set_value_bitpos (struct value *value, int bit)
336 {
337 value->bitpos = bit;
338 }
339
340 int
341 value_bitsize (struct value *value)
342 {
343 return value->bitsize;
344 }
345 void
346 set_value_bitsize (struct value *value, int bit)
347 {
348 value->bitsize = bit;
349 }
350
351 gdb_byte *
352 value_contents_raw (struct value *value)
353 {
354 allocate_value_contents (value);
355 return value->contents + value->embedded_offset;
356 }
357
358 gdb_byte *
359 value_contents_all_raw (struct value *value)
360 {
361 allocate_value_contents (value);
362 return value->contents;
363 }
364
365 struct type *
366 value_enclosing_type (struct value *value)
367 {
368 return value->enclosing_type;
369 }
370
371 const gdb_byte *
372 value_contents_all (struct value *value)
373 {
374 if (value->lazy)
375 value_fetch_lazy (value);
376 return value->contents;
377 }
378
379 int
380 value_lazy (struct value *value)
381 {
382 return value->lazy;
383 }
384
385 void
386 set_value_lazy (struct value *value, int val)
387 {
388 value->lazy = val;
389 }
390
391 const gdb_byte *
392 value_contents (struct value *value)
393 {
394 return value_contents_writeable (value);
395 }
396
397 gdb_byte *
398 value_contents_writeable (struct value *value)
399 {
400 if (value->lazy)
401 value_fetch_lazy (value);
402 return value_contents_raw (value);
403 }
404
405 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
406 this function is different from value_equal; in C the operator ==
407 can return 0 even if the two values being compared are equal. */
408
409 int
410 value_contents_equal (struct value *val1, struct value *val2)
411 {
412 struct type *type1;
413 struct type *type2;
414 int len;
415
416 type1 = check_typedef (value_type (val1));
417 type2 = check_typedef (value_type (val2));
418 len = TYPE_LENGTH (type1);
419 if (len != TYPE_LENGTH (type2))
420 return 0;
421
422 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
423 }
424
425 int
426 value_optimized_out (struct value *value)
427 {
428 return value->optimized_out;
429 }
430
431 void
432 set_value_optimized_out (struct value *value, int val)
433 {
434 value->optimized_out = val;
435 }
436
437 int
438 value_embedded_offset (struct value *value)
439 {
440 return value->embedded_offset;
441 }
442
443 void
444 set_value_embedded_offset (struct value *value, int val)
445 {
446 value->embedded_offset = val;
447 }
448
449 int
450 value_pointed_to_offset (struct value *value)
451 {
452 return value->pointed_to_offset;
453 }
454
455 void
456 set_value_pointed_to_offset (struct value *value, int val)
457 {
458 value->pointed_to_offset = val;
459 }
460
461 enum lval_type *
462 deprecated_value_lval_hack (struct value *value)
463 {
464 return &value->lval;
465 }
466
467 CORE_ADDR *
468 deprecated_value_address_hack (struct value *value)
469 {
470 return &value->location.address;
471 }
472
473 struct internalvar **
474 deprecated_value_internalvar_hack (struct value *value)
475 {
476 return &value->location.internalvar;
477 }
478
479 struct frame_id *
480 deprecated_value_frame_id_hack (struct value *value)
481 {
482 return &value->frame_id;
483 }
484
485 short *
486 deprecated_value_regnum_hack (struct value *value)
487 {
488 return &value->regnum;
489 }
490
491 int
492 deprecated_value_modifiable (struct value *value)
493 {
494 return value->modifiable;
495 }
496 void
497 deprecated_set_value_modifiable (struct value *value, int modifiable)
498 {
499 value->modifiable = modifiable;
500 }
501 \f
502 /* Return a mark in the value chain. All values allocated after the
503 mark is obtained (except for those released) are subject to being freed
504 if a subsequent value_free_to_mark is passed the mark. */
505 struct value *
506 value_mark (void)
507 {
508 return all_values;
509 }
510
511 void
512 value_free (struct value *val)
513 {
514 if (val)
515 xfree (val->contents);
516 xfree (val);
517 }
518
519 /* Free all values allocated since MARK was obtained by value_mark
520 (except for those released). */
521 void
522 value_free_to_mark (struct value *mark)
523 {
524 struct value *val;
525 struct value *next;
526
527 for (val = all_values; val && val != mark; val = next)
528 {
529 next = val->next;
530 value_free (val);
531 }
532 all_values = val;
533 }
534
535 /* Free all the values that have been allocated (except for those released).
536 Called after each command, successful or not. */
537
538 void
539 free_all_values (void)
540 {
541 struct value *val;
542 struct value *next;
543
544 for (val = all_values; val; val = next)
545 {
546 next = val->next;
547 value_free (val);
548 }
549
550 all_values = 0;
551 }
552
553 /* Remove VAL from the chain all_values
554 so it will not be freed automatically. */
555
556 void
557 release_value (struct value *val)
558 {
559 struct value *v;
560
561 if (all_values == val)
562 {
563 all_values = val->next;
564 return;
565 }
566
567 for (v = all_values; v; v = v->next)
568 {
569 if (v->next == val)
570 {
571 v->next = val->next;
572 break;
573 }
574 }
575 }
576
577 /* Release all values up to mark */
578 struct value *
579 value_release_to_mark (struct value *mark)
580 {
581 struct value *val;
582 struct value *next;
583
584 for (val = next = all_values; next; next = next->next)
585 if (next->next == mark)
586 {
587 all_values = next->next;
588 next->next = NULL;
589 return val;
590 }
591 all_values = 0;
592 return val;
593 }
594
595 /* Return a copy of the value ARG.
596 It contains the same contents, for same memory address,
597 but it's a different block of storage. */
598
599 struct value *
600 value_copy (struct value *arg)
601 {
602 struct type *encl_type = value_enclosing_type (arg);
603 struct value *val;
604
605 if (value_lazy (arg))
606 val = allocate_value_lazy (encl_type);
607 else
608 val = allocate_value (encl_type);
609 val->type = arg->type;
610 VALUE_LVAL (val) = VALUE_LVAL (arg);
611 val->location = arg->location;
612 val->offset = arg->offset;
613 val->bitpos = arg->bitpos;
614 val->bitsize = arg->bitsize;
615 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
616 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
617 val->lazy = arg->lazy;
618 val->optimized_out = arg->optimized_out;
619 val->embedded_offset = value_embedded_offset (arg);
620 val->pointed_to_offset = arg->pointed_to_offset;
621 val->modifiable = arg->modifiable;
622 if (!value_lazy (val))
623 {
624 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
625 TYPE_LENGTH (value_enclosing_type (arg)));
626
627 }
628 return val;
629 }
630 \f
631 /* Access to the value history. */
632
633 /* Record a new value in the value history.
634 Returns the absolute history index of the entry.
635 Result of -1 indicates the value was not saved; otherwise it is the
636 value history index of this new item. */
637
638 int
639 record_latest_value (struct value *val)
640 {
641 int i;
642
643 /* We don't want this value to have anything to do with the inferior anymore.
644 In particular, "set $1 = 50" should not affect the variable from which
645 the value was taken, and fast watchpoints should be able to assume that
646 a value on the value history never changes. */
647 if (value_lazy (val))
648 value_fetch_lazy (val);
649 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
650 from. This is a bit dubious, because then *&$1 does not just return $1
651 but the current contents of that location. c'est la vie... */
652 val->modifiable = 0;
653 release_value (val);
654
655 /* Here we treat value_history_count as origin-zero
656 and applying to the value being stored now. */
657
658 i = value_history_count % VALUE_HISTORY_CHUNK;
659 if (i == 0)
660 {
661 struct value_history_chunk *new
662 = (struct value_history_chunk *)
663 xmalloc (sizeof (struct value_history_chunk));
664 memset (new->values, 0, sizeof new->values);
665 new->next = value_history_chain;
666 value_history_chain = new;
667 }
668
669 value_history_chain->values[i] = val;
670
671 /* Now we regard value_history_count as origin-one
672 and applying to the value just stored. */
673
674 return ++value_history_count;
675 }
676
677 /* Return a copy of the value in the history with sequence number NUM. */
678
679 struct value *
680 access_value_history (int num)
681 {
682 struct value_history_chunk *chunk;
683 int i;
684 int absnum = num;
685
686 if (absnum <= 0)
687 absnum += value_history_count;
688
689 if (absnum <= 0)
690 {
691 if (num == 0)
692 error (_("The history is empty."));
693 else if (num == 1)
694 error (_("There is only one value in the history."));
695 else
696 error (_("History does not go back to $$%d."), -num);
697 }
698 if (absnum > value_history_count)
699 error (_("History has not yet reached $%d."), absnum);
700
701 absnum--;
702
703 /* Now absnum is always absolute and origin zero. */
704
705 chunk = value_history_chain;
706 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
707 i > 0; i--)
708 chunk = chunk->next;
709
710 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
711 }
712
713 static void
714 show_values (char *num_exp, int from_tty)
715 {
716 int i;
717 struct value *val;
718 static int num = 1;
719
720 if (num_exp)
721 {
722 /* "show values +" should print from the stored position.
723 "show values <exp>" should print around value number <exp>. */
724 if (num_exp[0] != '+' || num_exp[1] != '\0')
725 num = parse_and_eval_long (num_exp) - 5;
726 }
727 else
728 {
729 /* "show values" means print the last 10 values. */
730 num = value_history_count - 9;
731 }
732
733 if (num <= 0)
734 num = 1;
735
736 for (i = num; i < num + 10 && i <= value_history_count; i++)
737 {
738 struct value_print_options opts;
739 val = access_value_history (i);
740 printf_filtered (("$%d = "), i);
741 get_user_print_options (&opts);
742 value_print (val, gdb_stdout, &opts);
743 printf_filtered (("\n"));
744 }
745
746 /* The next "show values +" should start after what we just printed. */
747 num += 10;
748
749 /* Hitting just return after this command should do the same thing as
750 "show values +". If num_exp is null, this is unnecessary, since
751 "show values +" is not useful after "show values". */
752 if (from_tty && num_exp)
753 {
754 num_exp[0] = '+';
755 num_exp[1] = '\0';
756 }
757 }
758 \f
759 /* Internal variables. These are variables within the debugger
760 that hold values assigned by debugger commands.
761 The user refers to them with a '$' prefix
762 that does not appear in the variable names stored internally. */
763
764 static struct internalvar *internalvars;
765
766 /* If the variable does not already exist create it and give it the value given.
767 If no value is given then the default is zero. */
768 static void
769 init_if_undefined_command (char* args, int from_tty)
770 {
771 struct internalvar* intvar;
772
773 /* Parse the expression - this is taken from set_command(). */
774 struct expression *expr = parse_expression (args);
775 register struct cleanup *old_chain =
776 make_cleanup (free_current_contents, &expr);
777
778 /* Validate the expression.
779 Was the expression an assignment?
780 Or even an expression at all? */
781 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
782 error (_("Init-if-undefined requires an assignment expression."));
783
784 /* Extract the variable from the parsed expression.
785 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
786 if (expr->elts[1].opcode != OP_INTERNALVAR)
787 error (_("The first parameter to init-if-undefined should be a GDB variable."));
788 intvar = expr->elts[2].internalvar;
789
790 /* Only evaluate the expression if the lvalue is void.
791 This may still fail if the expresssion is invalid. */
792 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
793 evaluate_expression (expr);
794
795 do_cleanups (old_chain);
796 }
797
798
799 /* Look up an internal variable with name NAME. NAME should not
800 normally include a dollar sign.
801
802 If the specified internal variable does not exist,
803 the return value is NULL. */
804
805 struct internalvar *
806 lookup_only_internalvar (char *name)
807 {
808 struct internalvar *var;
809
810 for (var = internalvars; var; var = var->next)
811 if (strcmp (var->name, name) == 0)
812 return var;
813
814 return NULL;
815 }
816
817
818 /* Create an internal variable with name NAME and with a void value.
819 NAME should not normally include a dollar sign. */
820
821 struct internalvar *
822 create_internalvar (char *name)
823 {
824 struct internalvar *var;
825 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
826 var->name = concat (name, (char *)NULL);
827 var->value = allocate_value (builtin_type_void);
828 var->endian = gdbarch_byte_order (current_gdbarch);
829 release_value (var->value);
830 var->next = internalvars;
831 internalvars = var;
832 return var;
833 }
834
835
836 /* Look up an internal variable with name NAME. NAME should not
837 normally include a dollar sign.
838
839 If the specified internal variable does not exist,
840 one is created, with a void value. */
841
842 struct internalvar *
843 lookup_internalvar (char *name)
844 {
845 struct internalvar *var;
846
847 var = lookup_only_internalvar (name);
848 if (var)
849 return var;
850
851 return create_internalvar (name);
852 }
853
854 struct value *
855 value_of_internalvar (struct internalvar *var)
856 {
857 struct value *val;
858 int i, j;
859 gdb_byte temp;
860
861 val = value_copy (var->value);
862 if (value_lazy (val))
863 value_fetch_lazy (val);
864 VALUE_LVAL (val) = lval_internalvar;
865 VALUE_INTERNALVAR (val) = var;
866
867 /* Values are always stored in the target's byte order. When connected to a
868 target this will most likely always be correct, so there's normally no
869 need to worry about it.
870
871 However, internal variables can be set up before the target endian is
872 known and so may become out of date. Fix it up before anybody sees.
873
874 Internal variables usually hold simple scalar values, and we can
875 correct those. More complex values (e.g. structures and floating
876 point types) are left alone, because they would be too complicated
877 to correct. */
878
879 if (var->endian != gdbarch_byte_order (current_gdbarch))
880 {
881 gdb_byte *array = value_contents_raw (val);
882 struct type *type = check_typedef (value_enclosing_type (val));
883 switch (TYPE_CODE (type))
884 {
885 case TYPE_CODE_INT:
886 case TYPE_CODE_PTR:
887 /* Reverse the bytes. */
888 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
889 {
890 temp = array[j];
891 array[j] = array[i];
892 array[i] = temp;
893 }
894 break;
895 }
896 }
897
898 return val;
899 }
900
901 void
902 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
903 int bitsize, struct value *newval)
904 {
905 gdb_byte *addr = value_contents_writeable (var->value) + offset;
906
907 if (bitsize)
908 modify_field (addr, value_as_long (newval),
909 bitpos, bitsize);
910 else
911 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
912 }
913
914 void
915 set_internalvar (struct internalvar *var, struct value *val)
916 {
917 struct value *newval;
918
919 newval = value_copy (val);
920 newval->modifiable = 1;
921
922 /* Force the value to be fetched from the target now, to avoid problems
923 later when this internalvar is referenced and the target is gone or
924 has changed. */
925 if (value_lazy (newval))
926 value_fetch_lazy (newval);
927
928 /* Begin code which must not call error(). If var->value points to
929 something free'd, an error() obviously leaves a dangling pointer.
930 But we also get a danling pointer if var->value points to
931 something in the value chain (i.e., before release_value is
932 called), because after the error free_all_values will get called before
933 long. */
934 xfree (var->value);
935 var->value = newval;
936 var->endian = gdbarch_byte_order (current_gdbarch);
937 release_value (newval);
938 /* End code which must not call error(). */
939 }
940
941 char *
942 internalvar_name (struct internalvar *var)
943 {
944 return var->name;
945 }
946
947 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
948 prevent cycles / duplicates. */
949
950 static void
951 preserve_one_value (struct value *value, struct objfile *objfile,
952 htab_t copied_types)
953 {
954 if (TYPE_OBJFILE (value->type) == objfile)
955 value->type = copy_type_recursive (objfile, value->type, copied_types);
956
957 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
958 value->enclosing_type = copy_type_recursive (objfile,
959 value->enclosing_type,
960 copied_types);
961 }
962
963 /* Update the internal variables and value history when OBJFILE is
964 discarded; we must copy the types out of the objfile. New global types
965 will be created for every convenience variable which currently points to
966 this objfile's types, and the convenience variables will be adjusted to
967 use the new global types. */
968
969 void
970 preserve_values (struct objfile *objfile)
971 {
972 htab_t copied_types;
973 struct value_history_chunk *cur;
974 struct internalvar *var;
975 struct value *val;
976 int i;
977
978 /* Create the hash table. We allocate on the objfile's obstack, since
979 it is soon to be deleted. */
980 copied_types = create_copied_types_hash (objfile);
981
982 for (cur = value_history_chain; cur; cur = cur->next)
983 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
984 if (cur->values[i])
985 preserve_one_value (cur->values[i], objfile, copied_types);
986
987 for (var = internalvars; var; var = var->next)
988 preserve_one_value (var->value, objfile, copied_types);
989
990 for (val = values_in_python; val; val = val->next)
991 preserve_one_value (val, objfile, copied_types);
992
993 htab_delete (copied_types);
994 }
995
996 static void
997 show_convenience (char *ignore, int from_tty)
998 {
999 struct internalvar *var;
1000 int varseen = 0;
1001 struct value_print_options opts;
1002
1003 get_user_print_options (&opts);
1004 for (var = internalvars; var; var = var->next)
1005 {
1006 if (!varseen)
1007 {
1008 varseen = 1;
1009 }
1010 printf_filtered (("$%s = "), var->name);
1011 value_print (value_of_internalvar (var), gdb_stdout,
1012 &opts);
1013 printf_filtered (("\n"));
1014 }
1015 if (!varseen)
1016 printf_unfiltered (_("\
1017 No debugger convenience variables now defined.\n\
1018 Convenience variables have names starting with \"$\";\n\
1019 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1020 }
1021 \f
1022 /* Extract a value as a C number (either long or double).
1023 Knows how to convert fixed values to double, or
1024 floating values to long.
1025 Does not deallocate the value. */
1026
1027 LONGEST
1028 value_as_long (struct value *val)
1029 {
1030 /* This coerces arrays and functions, which is necessary (e.g.
1031 in disassemble_command). It also dereferences references, which
1032 I suspect is the most logical thing to do. */
1033 val = coerce_array (val);
1034 return unpack_long (value_type (val), value_contents (val));
1035 }
1036
1037 DOUBLEST
1038 value_as_double (struct value *val)
1039 {
1040 DOUBLEST foo;
1041 int inv;
1042
1043 foo = unpack_double (value_type (val), value_contents (val), &inv);
1044 if (inv)
1045 error (_("Invalid floating value found in program."));
1046 return foo;
1047 }
1048
1049 /* Extract a value as a C pointer. Does not deallocate the value.
1050 Note that val's type may not actually be a pointer; value_as_long
1051 handles all the cases. */
1052 CORE_ADDR
1053 value_as_address (struct value *val)
1054 {
1055 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1056 whether we want this to be true eventually. */
1057 #if 0
1058 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1059 non-address (e.g. argument to "signal", "info break", etc.), or
1060 for pointers to char, in which the low bits *are* significant. */
1061 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
1062 #else
1063
1064 /* There are several targets (IA-64, PowerPC, and others) which
1065 don't represent pointers to functions as simply the address of
1066 the function's entry point. For example, on the IA-64, a
1067 function pointer points to a two-word descriptor, generated by
1068 the linker, which contains the function's entry point, and the
1069 value the IA-64 "global pointer" register should have --- to
1070 support position-independent code. The linker generates
1071 descriptors only for those functions whose addresses are taken.
1072
1073 On such targets, it's difficult for GDB to convert an arbitrary
1074 function address into a function pointer; it has to either find
1075 an existing descriptor for that function, or call malloc and
1076 build its own. On some targets, it is impossible for GDB to
1077 build a descriptor at all: the descriptor must contain a jump
1078 instruction; data memory cannot be executed; and code memory
1079 cannot be modified.
1080
1081 Upon entry to this function, if VAL is a value of type `function'
1082 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1083 VALUE_ADDRESS (val) is the address of the function. This is what
1084 you'll get if you evaluate an expression like `main'. The call
1085 to COERCE_ARRAY below actually does all the usual unary
1086 conversions, which includes converting values of type `function'
1087 to `pointer to function'. This is the challenging conversion
1088 discussed above. Then, `unpack_long' will convert that pointer
1089 back into an address.
1090
1091 So, suppose the user types `disassemble foo' on an architecture
1092 with a strange function pointer representation, on which GDB
1093 cannot build its own descriptors, and suppose further that `foo'
1094 has no linker-built descriptor. The address->pointer conversion
1095 will signal an error and prevent the command from running, even
1096 though the next step would have been to convert the pointer
1097 directly back into the same address.
1098
1099 The following shortcut avoids this whole mess. If VAL is a
1100 function, just return its address directly. */
1101 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1102 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1103 return VALUE_ADDRESS (val);
1104
1105 val = coerce_array (val);
1106
1107 /* Some architectures (e.g. Harvard), map instruction and data
1108 addresses onto a single large unified address space. For
1109 instance: An architecture may consider a large integer in the
1110 range 0x10000000 .. 0x1000ffff to already represent a data
1111 addresses (hence not need a pointer to address conversion) while
1112 a small integer would still need to be converted integer to
1113 pointer to address. Just assume such architectures handle all
1114 integer conversions in a single function. */
1115
1116 /* JimB writes:
1117
1118 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1119 must admonish GDB hackers to make sure its behavior matches the
1120 compiler's, whenever possible.
1121
1122 In general, I think GDB should evaluate expressions the same way
1123 the compiler does. When the user copies an expression out of
1124 their source code and hands it to a `print' command, they should
1125 get the same value the compiler would have computed. Any
1126 deviation from this rule can cause major confusion and annoyance,
1127 and needs to be justified carefully. In other words, GDB doesn't
1128 really have the freedom to do these conversions in clever and
1129 useful ways.
1130
1131 AndrewC pointed out that users aren't complaining about how GDB
1132 casts integers to pointers; they are complaining that they can't
1133 take an address from a disassembly listing and give it to `x/i'.
1134 This is certainly important.
1135
1136 Adding an architecture method like integer_to_address() certainly
1137 makes it possible for GDB to "get it right" in all circumstances
1138 --- the target has complete control over how things get done, so
1139 people can Do The Right Thing for their target without breaking
1140 anyone else. The standard doesn't specify how integers get
1141 converted to pointers; usually, the ABI doesn't either, but
1142 ABI-specific code is a more reasonable place to handle it. */
1143
1144 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1145 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1146 && gdbarch_integer_to_address_p (current_gdbarch))
1147 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
1148 value_contents (val));
1149
1150 return unpack_long (value_type (val), value_contents (val));
1151 #endif
1152 }
1153 \f
1154 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1155 as a long, or as a double, assuming the raw data is described
1156 by type TYPE. Knows how to convert different sizes of values
1157 and can convert between fixed and floating point. We don't assume
1158 any alignment for the raw data. Return value is in host byte order.
1159
1160 If you want functions and arrays to be coerced to pointers, and
1161 references to be dereferenced, call value_as_long() instead.
1162
1163 C++: It is assumed that the front-end has taken care of
1164 all matters concerning pointers to members. A pointer
1165 to member which reaches here is considered to be equivalent
1166 to an INT (or some size). After all, it is only an offset. */
1167
1168 LONGEST
1169 unpack_long (struct type *type, const gdb_byte *valaddr)
1170 {
1171 enum type_code code = TYPE_CODE (type);
1172 int len = TYPE_LENGTH (type);
1173 int nosign = TYPE_UNSIGNED (type);
1174
1175 switch (code)
1176 {
1177 case TYPE_CODE_TYPEDEF:
1178 return unpack_long (check_typedef (type), valaddr);
1179 case TYPE_CODE_ENUM:
1180 case TYPE_CODE_FLAGS:
1181 case TYPE_CODE_BOOL:
1182 case TYPE_CODE_INT:
1183 case TYPE_CODE_CHAR:
1184 case TYPE_CODE_RANGE:
1185 case TYPE_CODE_MEMBERPTR:
1186 if (nosign)
1187 return extract_unsigned_integer (valaddr, len);
1188 else
1189 return extract_signed_integer (valaddr, len);
1190
1191 case TYPE_CODE_FLT:
1192 return extract_typed_floating (valaddr, type);
1193
1194 case TYPE_CODE_DECFLOAT:
1195 /* libdecnumber has a function to convert from decimal to integer, but
1196 it doesn't work when the decimal number has a fractional part. */
1197 return decimal_to_doublest (valaddr, len);
1198
1199 case TYPE_CODE_PTR:
1200 case TYPE_CODE_REF:
1201 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1202 whether we want this to be true eventually. */
1203 return extract_typed_address (valaddr, type);
1204
1205 default:
1206 error (_("Value can't be converted to integer."));
1207 }
1208 return 0; /* Placate lint. */
1209 }
1210
1211 /* Return a double value from the specified type and address.
1212 INVP points to an int which is set to 0 for valid value,
1213 1 for invalid value (bad float format). In either case,
1214 the returned double is OK to use. Argument is in target
1215 format, result is in host format. */
1216
1217 DOUBLEST
1218 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1219 {
1220 enum type_code code;
1221 int len;
1222 int nosign;
1223
1224 *invp = 0; /* Assume valid. */
1225 CHECK_TYPEDEF (type);
1226 code = TYPE_CODE (type);
1227 len = TYPE_LENGTH (type);
1228 nosign = TYPE_UNSIGNED (type);
1229 if (code == TYPE_CODE_FLT)
1230 {
1231 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1232 floating-point value was valid (using the macro
1233 INVALID_FLOAT). That test/macro have been removed.
1234
1235 It turns out that only the VAX defined this macro and then
1236 only in a non-portable way. Fixing the portability problem
1237 wouldn't help since the VAX floating-point code is also badly
1238 bit-rotten. The target needs to add definitions for the
1239 methods gdbarch_float_format and gdbarch_double_format - these
1240 exactly describe the target floating-point format. The
1241 problem here is that the corresponding floatformat_vax_f and
1242 floatformat_vax_d values these methods should be set to are
1243 also not defined either. Oops!
1244
1245 Hopefully someone will add both the missing floatformat
1246 definitions and the new cases for floatformat_is_valid (). */
1247
1248 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1249 {
1250 *invp = 1;
1251 return 0.0;
1252 }
1253
1254 return extract_typed_floating (valaddr, type);
1255 }
1256 else if (code == TYPE_CODE_DECFLOAT)
1257 return decimal_to_doublest (valaddr, len);
1258 else if (nosign)
1259 {
1260 /* Unsigned -- be sure we compensate for signed LONGEST. */
1261 return (ULONGEST) unpack_long (type, valaddr);
1262 }
1263 else
1264 {
1265 /* Signed -- we are OK with unpack_long. */
1266 return unpack_long (type, valaddr);
1267 }
1268 }
1269
1270 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1271 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1272 We don't assume any alignment for the raw data. Return value is in
1273 host byte order.
1274
1275 If you want functions and arrays to be coerced to pointers, and
1276 references to be dereferenced, call value_as_address() instead.
1277
1278 C++: It is assumed that the front-end has taken care of
1279 all matters concerning pointers to members. A pointer
1280 to member which reaches here is considered to be equivalent
1281 to an INT (or some size). After all, it is only an offset. */
1282
1283 CORE_ADDR
1284 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1285 {
1286 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1287 whether we want this to be true eventually. */
1288 return unpack_long (type, valaddr);
1289 }
1290
1291 \f
1292 /* Get the value of the FIELDN'th field (which must be static) of
1293 TYPE. Return NULL if the field doesn't exist or has been
1294 optimized out. */
1295
1296 struct value *
1297 value_static_field (struct type *type, int fieldno)
1298 {
1299 struct value *retval;
1300
1301 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1302 {
1303 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1304 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1305 }
1306 else
1307 {
1308 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1309 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1310 if (sym == NULL)
1311 {
1312 /* With some compilers, e.g. HP aCC, static data members are reported
1313 as non-debuggable symbols */
1314 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1315 if (!msym)
1316 return NULL;
1317 else
1318 {
1319 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1320 SYMBOL_VALUE_ADDRESS (msym));
1321 }
1322 }
1323 else
1324 {
1325 /* SYM should never have a SYMBOL_CLASS which will require
1326 read_var_value to use the FRAME parameter. */
1327 if (symbol_read_needs_frame (sym))
1328 warning (_("static field's value depends on the current "
1329 "frame - bad debug info?"));
1330 retval = read_var_value (sym, NULL);
1331 }
1332 if (retval && VALUE_LVAL (retval) == lval_memory)
1333 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1334 VALUE_ADDRESS (retval));
1335 }
1336 return retval;
1337 }
1338
1339 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1340 You have to be careful here, since the size of the data area for the value
1341 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1342 than the old enclosing type, you have to allocate more space for the data.
1343 The return value is a pointer to the new version of this value structure. */
1344
1345 struct value *
1346 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1347 {
1348 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1349 val->contents =
1350 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1351
1352 val->enclosing_type = new_encl_type;
1353 return val;
1354 }
1355
1356 /* Given a value ARG1 (offset by OFFSET bytes)
1357 of a struct or union type ARG_TYPE,
1358 extract and return the value of one of its (non-static) fields.
1359 FIELDNO says which field. */
1360
1361 struct value *
1362 value_primitive_field (struct value *arg1, int offset,
1363 int fieldno, struct type *arg_type)
1364 {
1365 struct value *v;
1366 struct type *type;
1367
1368 CHECK_TYPEDEF (arg_type);
1369 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1370
1371 /* Handle packed fields */
1372
1373 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1374 {
1375 v = value_from_longest (type,
1376 unpack_field_as_long (arg_type,
1377 value_contents (arg1)
1378 + offset,
1379 fieldno));
1380 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1381 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1382 v->offset = value_offset (arg1) + offset
1383 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1384 }
1385 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1386 {
1387 /* This field is actually a base subobject, so preserve the
1388 entire object's contents for later references to virtual
1389 bases, etc. */
1390
1391 /* Lazy register values with offsets are not supported. */
1392 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1393 value_fetch_lazy (arg1);
1394
1395 if (value_lazy (arg1))
1396 v = allocate_value_lazy (value_enclosing_type (arg1));
1397 else
1398 {
1399 v = allocate_value (value_enclosing_type (arg1));
1400 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1401 TYPE_LENGTH (value_enclosing_type (arg1)));
1402 }
1403 v->type = type;
1404 v->offset = value_offset (arg1);
1405 v->embedded_offset = (offset + value_embedded_offset (arg1)
1406 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1407 }
1408 else
1409 {
1410 /* Plain old data member */
1411 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1412
1413 /* Lazy register values with offsets are not supported. */
1414 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1415 value_fetch_lazy (arg1);
1416
1417 if (value_lazy (arg1))
1418 v = allocate_value_lazy (type);
1419 else
1420 {
1421 v = allocate_value (type);
1422 memcpy (value_contents_raw (v),
1423 value_contents_raw (arg1) + offset,
1424 TYPE_LENGTH (type));
1425 }
1426 v->offset = (value_offset (arg1) + offset
1427 + value_embedded_offset (arg1));
1428 }
1429 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1430 if (VALUE_LVAL (arg1) == lval_internalvar)
1431 VALUE_LVAL (v) = lval_internalvar_component;
1432 v->location = arg1->location;
1433 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1434 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1435 return v;
1436 }
1437
1438 /* Given a value ARG1 of a struct or union type,
1439 extract and return the value of one of its (non-static) fields.
1440 FIELDNO says which field. */
1441
1442 struct value *
1443 value_field (struct value *arg1, int fieldno)
1444 {
1445 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1446 }
1447
1448 /* Return a non-virtual function as a value.
1449 F is the list of member functions which contains the desired method.
1450 J is an index into F which provides the desired method.
1451
1452 We only use the symbol for its address, so be happy with either a
1453 full symbol or a minimal symbol.
1454 */
1455
1456 struct value *
1457 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1458 int offset)
1459 {
1460 struct value *v;
1461 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1462 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1463 struct symbol *sym;
1464 struct minimal_symbol *msym;
1465
1466 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
1467 if (sym != NULL)
1468 {
1469 msym = NULL;
1470 }
1471 else
1472 {
1473 gdb_assert (sym == NULL);
1474 msym = lookup_minimal_symbol (physname, NULL, NULL);
1475 if (msym == NULL)
1476 return NULL;
1477 }
1478
1479 v = allocate_value (ftype);
1480 if (sym)
1481 {
1482 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1483 }
1484 else
1485 {
1486 /* The minimal symbol might point to a function descriptor;
1487 resolve it to the actual code address instead. */
1488 struct objfile *objfile = msymbol_objfile (msym);
1489 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1490
1491 VALUE_ADDRESS (v)
1492 = gdbarch_convert_from_func_ptr_addr
1493 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target);
1494 }
1495
1496 if (arg1p)
1497 {
1498 if (type != value_type (*arg1p))
1499 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1500 value_addr (*arg1p)));
1501
1502 /* Move the `this' pointer according to the offset.
1503 VALUE_OFFSET (*arg1p) += offset;
1504 */
1505 }
1506
1507 return v;
1508 }
1509
1510 \f
1511 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1512 VALADDR.
1513
1514 Extracting bits depends on endianness of the machine. Compute the
1515 number of least significant bits to discard. For big endian machines,
1516 we compute the total number of bits in the anonymous object, subtract
1517 off the bit count from the MSB of the object to the MSB of the
1518 bitfield, then the size of the bitfield, which leaves the LSB discard
1519 count. For little endian machines, the discard count is simply the
1520 number of bits from the LSB of the anonymous object to the LSB of the
1521 bitfield.
1522
1523 If the field is signed, we also do sign extension. */
1524
1525 LONGEST
1526 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
1527 {
1528 ULONGEST val;
1529 ULONGEST valmask;
1530 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1531 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1532 int lsbcount;
1533 struct type *field_type;
1534
1535 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1536 field_type = TYPE_FIELD_TYPE (type, fieldno);
1537 CHECK_TYPEDEF (field_type);
1538
1539 /* Extract bits. See comment above. */
1540
1541 if (gdbarch_bits_big_endian (current_gdbarch))
1542 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1543 else
1544 lsbcount = (bitpos % 8);
1545 val >>= lsbcount;
1546
1547 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1548 If the field is signed, and is negative, then sign extend. */
1549
1550 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1551 {
1552 valmask = (((ULONGEST) 1) << bitsize) - 1;
1553 val &= valmask;
1554 if (!TYPE_UNSIGNED (field_type))
1555 {
1556 if (val & (valmask ^ (valmask >> 1)))
1557 {
1558 val |= ~valmask;
1559 }
1560 }
1561 }
1562 return (val);
1563 }
1564
1565 /* Modify the value of a bitfield. ADDR points to a block of memory in
1566 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1567 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1568 indicate which bits (in target bit order) comprise the bitfield.
1569 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1570 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1571
1572 void
1573 modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
1574 {
1575 ULONGEST oword;
1576 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1577
1578 /* If a negative fieldval fits in the field in question, chop
1579 off the sign extension bits. */
1580 if ((~fieldval & ~(mask >> 1)) == 0)
1581 fieldval &= mask;
1582
1583 /* Warn if value is too big to fit in the field in question. */
1584 if (0 != (fieldval & ~mask))
1585 {
1586 /* FIXME: would like to include fieldval in the message, but
1587 we don't have a sprintf_longest. */
1588 warning (_("Value does not fit in %d bits."), bitsize);
1589
1590 /* Truncate it, otherwise adjoining fields may be corrupted. */
1591 fieldval &= mask;
1592 }
1593
1594 oword = extract_unsigned_integer (addr, sizeof oword);
1595
1596 /* Shifting for bit field depends on endianness of the target machine. */
1597 if (gdbarch_bits_big_endian (current_gdbarch))
1598 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1599
1600 oword &= ~(mask << bitpos);
1601 oword |= fieldval << bitpos;
1602
1603 store_unsigned_integer (addr, sizeof oword, oword);
1604 }
1605 \f
1606 /* Pack NUM into BUF using a target format of TYPE. */
1607
1608 void
1609 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
1610 {
1611 int len;
1612
1613 type = check_typedef (type);
1614 len = TYPE_LENGTH (type);
1615
1616 switch (TYPE_CODE (type))
1617 {
1618 case TYPE_CODE_INT:
1619 case TYPE_CODE_CHAR:
1620 case TYPE_CODE_ENUM:
1621 case TYPE_CODE_FLAGS:
1622 case TYPE_CODE_BOOL:
1623 case TYPE_CODE_RANGE:
1624 case TYPE_CODE_MEMBERPTR:
1625 store_signed_integer (buf, len, num);
1626 break;
1627
1628 case TYPE_CODE_REF:
1629 case TYPE_CODE_PTR:
1630 store_typed_address (buf, type, (CORE_ADDR) num);
1631 break;
1632
1633 default:
1634 error (_("Unexpected type (%d) encountered for integer constant."),
1635 TYPE_CODE (type));
1636 }
1637 }
1638
1639
1640 /* Convert C numbers into newly allocated values. */
1641
1642 struct value *
1643 value_from_longest (struct type *type, LONGEST num)
1644 {
1645 struct value *val = allocate_value (type);
1646
1647 pack_long (value_contents_raw (val), type, num);
1648
1649 return val;
1650 }
1651
1652
1653 /* Create a value representing a pointer of type TYPE to the address
1654 ADDR. */
1655 struct value *
1656 value_from_pointer (struct type *type, CORE_ADDR addr)
1657 {
1658 struct value *val = allocate_value (type);
1659 store_typed_address (value_contents_raw (val), type, addr);
1660 return val;
1661 }
1662
1663
1664 /* Create a value for a string constant to be stored locally
1665 (not in the inferior's memory space, but in GDB memory).
1666 This is analogous to value_from_longest, which also does not
1667 use inferior memory. String shall NOT contain embedded nulls. */
1668
1669 struct value *
1670 value_from_string (char *ptr)
1671 {
1672 struct value *val;
1673 int len = strlen (ptr);
1674 int lowbound = current_language->string_lower_bound;
1675 struct type *string_char_type;
1676 struct type *rangetype;
1677 struct type *stringtype;
1678
1679 rangetype = create_range_type ((struct type *) NULL,
1680 builtin_type_int32,
1681 lowbound, len + lowbound - 1);
1682 string_char_type = language_string_char_type (current_language,
1683 current_gdbarch);
1684 stringtype = create_array_type ((struct type *) NULL,
1685 string_char_type,
1686 rangetype);
1687 val = allocate_value (stringtype);
1688 memcpy (value_contents_raw (val), ptr, len);
1689 return val;
1690 }
1691
1692 /* Create a value of type TYPE whose contents come from VALADDR, if it
1693 is non-null, and whose memory address (in the inferior) is
1694 ADDRESS. */
1695
1696 struct value *
1697 value_from_contents_and_address (struct type *type,
1698 const gdb_byte *valaddr,
1699 CORE_ADDR address)
1700 {
1701 struct value *v = allocate_value (type);
1702 if (valaddr == NULL)
1703 set_value_lazy (v, 1);
1704 else
1705 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
1706 VALUE_ADDRESS (v) = address;
1707 if (address != 0)
1708 VALUE_LVAL (v) = lval_memory;
1709 return v;
1710 }
1711
1712 struct value *
1713 value_from_double (struct type *type, DOUBLEST num)
1714 {
1715 struct value *val = allocate_value (type);
1716 struct type *base_type = check_typedef (type);
1717 enum type_code code = TYPE_CODE (base_type);
1718 int len = TYPE_LENGTH (base_type);
1719
1720 if (code == TYPE_CODE_FLT)
1721 {
1722 store_typed_floating (value_contents_raw (val), base_type, num);
1723 }
1724 else
1725 error (_("Unexpected type encountered for floating constant."));
1726
1727 return val;
1728 }
1729
1730 struct value *
1731 value_from_decfloat (struct type *type, const gdb_byte *dec)
1732 {
1733 struct value *val = allocate_value (type);
1734
1735 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
1736
1737 return val;
1738 }
1739
1740 struct value *
1741 coerce_ref (struct value *arg)
1742 {
1743 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1744 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1745 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1746 unpack_pointer (value_type (arg),
1747 value_contents (arg)));
1748 return arg;
1749 }
1750
1751 struct value *
1752 coerce_array (struct value *arg)
1753 {
1754 struct type *type;
1755
1756 arg = coerce_ref (arg);
1757 type = check_typedef (value_type (arg));
1758
1759 switch (TYPE_CODE (type))
1760 {
1761 case TYPE_CODE_ARRAY:
1762 if (current_language->c_style_arrays)
1763 arg = value_coerce_array (arg);
1764 break;
1765 case TYPE_CODE_FUNC:
1766 arg = value_coerce_function (arg);
1767 break;
1768 }
1769 return arg;
1770 }
1771 \f
1772
1773 /* Return true if the function returning the specified type is using
1774 the convention of returning structures in memory (passing in the
1775 address as a hidden first parameter). */
1776
1777 int
1778 using_struct_return (struct type *func_type, struct type *value_type)
1779 {
1780 enum type_code code = TYPE_CODE (value_type);
1781
1782 if (code == TYPE_CODE_ERROR)
1783 error (_("Function return type unknown."));
1784
1785 if (code == TYPE_CODE_VOID)
1786 /* A void return value is never in memory. See also corresponding
1787 code in "print_return_value". */
1788 return 0;
1789
1790 /* Probe the architecture for the return-value convention. */
1791 return (gdbarch_return_value (current_gdbarch, func_type, value_type,
1792 NULL, NULL, NULL)
1793 != RETURN_VALUE_REGISTER_CONVENTION);
1794 }
1795
1796 /* Set the initialized field in a value struct. */
1797
1798 void
1799 set_value_initialized (struct value *val, int status)
1800 {
1801 val->initialized = status;
1802 }
1803
1804 /* Return the initialized field in a value struct. */
1805
1806 int
1807 value_initialized (struct value *val)
1808 {
1809 return val->initialized;
1810 }
1811
1812 void
1813 _initialize_values (void)
1814 {
1815 add_cmd ("convenience", no_class, show_convenience, _("\
1816 Debugger convenience (\"$foo\") variables.\n\
1817 These variables are created when you assign them values;\n\
1818 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1819 \n\
1820 A few convenience variables are given values automatically:\n\
1821 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1822 \"$__\" holds the contents of the last address examined with \"x\"."),
1823 &showlist);
1824
1825 add_cmd ("values", no_class, show_values,
1826 _("Elements of value history around item number IDX (or last ten)."),
1827 &showlist);
1828
1829 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
1830 Initialize a convenience variable if necessary.\n\
1831 init-if-undefined VARIABLE = EXPRESSION\n\
1832 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1833 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1834 VARIABLE is already initialized."));
1835 }
This page took 0.111156 seconds and 4 git commands to generate.