* arch-utils.c (selected_byte_order): Return target_byte_order_user.
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42
43 #include "python/python.h"
44
45 /* Prototypes for exported functions. */
46
47 void _initialize_values (void);
48
49 /* Definition of a user function. */
50 struct internal_function
51 {
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62 };
63
64 static struct cmd_list_element *functionlist;
65
66 struct value
67 {
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
109 int bitpos;
110
111 /* Frame register value is relative to. This will be described in
112 the lval enum above as "lval_register". */
113 struct frame_id frame_id;
114
115 /* Type of the value. */
116 struct type *type;
117
118 /* If a value represents a C++ object, then the `type' field gives
119 the object's compile-time type. If the object actually belongs
120 to some class derived from `type', perhaps with other base
121 classes and additional members, then `type' is just a subobject
122 of the real thing, and the full object is probably larger than
123 `type' would suggest.
124
125 If `type' is a dynamic class (i.e. one with a vtable), then GDB
126 can actually determine the object's run-time type by looking at
127 the run-time type information in the vtable. When this
128 information is available, we may elect to read in the entire
129 object, for several reasons:
130
131 - When printing the value, the user would probably rather see the
132 full object, not just the limited portion apparent from the
133 compile-time type.
134
135 - If `type' has virtual base classes, then even printing `type'
136 alone may require reaching outside the `type' portion of the
137 object to wherever the virtual base class has been stored.
138
139 When we store the entire object, `enclosing_type' is the run-time
140 type -- the complete object -- and `embedded_offset' is the
141 offset of `type' within that larger type, in bytes. The
142 value_contents() macro takes `embedded_offset' into account, so
143 most GDB code continues to see the `type' portion of the value,
144 just as the inferior would.
145
146 If `type' is a pointer to an object, then `enclosing_type' is a
147 pointer to the object's run-time type, and `pointed_to_offset' is
148 the offset in bytes from the full object to the pointed-to object
149 -- that is, the value `embedded_offset' would have if we followed
150 the pointer and fetched the complete object. (I don't really see
151 the point. Why not just determine the run-time type when you
152 indirect, and avoid the special case? The contents don't matter
153 until you indirect anyway.)
154
155 If we're not doing anything fancy, `enclosing_type' is equal to
156 `type', and `embedded_offset' is zero, so everything works
157 normally. */
158 struct type *enclosing_type;
159 int embedded_offset;
160 int pointed_to_offset;
161
162 /* Values are stored in a chain, so that they can be deleted easily
163 over calls to the inferior. Values assigned to internal
164 variables, put into the value history or exposed to Python are
165 taken off this list. */
166 struct value *next;
167
168 /* Register number if the value is from a register. */
169 short regnum;
170
171 /* If zero, contents of this value are in the contents field. If
172 nonzero, contents are in inferior. If the lval field is lval_memory,
173 the contents are in inferior memory at location.address plus offset.
174 The lval field may also be lval_register.
175
176 WARNING: This field is used by the code which handles watchpoints
177 (see breakpoint.c) to decide whether a particular value can be
178 watched by hardware watchpoints. If the lazy flag is set for
179 some member of a value chain, it is assumed that this member of
180 the chain doesn't need to be watched as part of watching the
181 value itself. This is how GDB avoids watching the entire struct
182 or array when the user wants to watch a single struct member or
183 array element. If you ever change the way lazy flag is set and
184 reset, be sure to consider this use as well! */
185 char lazy;
186
187 /* If nonzero, this is the value of a variable which does not
188 actually exist in the program. */
189 char optimized_out;
190
191 /* If value is a variable, is it initialized or not. */
192 int initialized;
193
194 /* Actual contents of the value. Target byte-order. NULL or not
195 valid if lazy is nonzero. */
196 gdb_byte *contents;
197 };
198
199 /* Prototypes for local functions. */
200
201 static void show_values (char *, int);
202
203 static void show_convenience (char *, int);
204
205
206 /* The value-history records all the values printed
207 by print commands during this session. Each chunk
208 records 60 consecutive values. The first chunk on
209 the chain records the most recent values.
210 The total number of values is in value_history_count. */
211
212 #define VALUE_HISTORY_CHUNK 60
213
214 struct value_history_chunk
215 {
216 struct value_history_chunk *next;
217 struct value *values[VALUE_HISTORY_CHUNK];
218 };
219
220 /* Chain of chunks now in use. */
221
222 static struct value_history_chunk *value_history_chain;
223
224 static int value_history_count; /* Abs number of last entry stored */
225
226 \f
227 /* List of all value objects currently allocated
228 (except for those released by calls to release_value)
229 This is so they can be freed after each command. */
230
231 static struct value *all_values;
232
233 /* Allocate a lazy value for type TYPE. Its actual content is
234 "lazily" allocated too: the content field of the return value is
235 NULL; it will be allocated when it is fetched from the target. */
236
237 struct value *
238 allocate_value_lazy (struct type *type)
239 {
240 struct value *val;
241 struct type *atype = check_typedef (type);
242
243 val = (struct value *) xzalloc (sizeof (struct value));
244 val->contents = NULL;
245 val->next = all_values;
246 all_values = val;
247 val->type = type;
248 val->enclosing_type = type;
249 VALUE_LVAL (val) = not_lval;
250 val->location.address = 0;
251 VALUE_FRAME_ID (val) = null_frame_id;
252 val->offset = 0;
253 val->bitpos = 0;
254 val->bitsize = 0;
255 VALUE_REGNUM (val) = -1;
256 val->lazy = 1;
257 val->optimized_out = 0;
258 val->embedded_offset = 0;
259 val->pointed_to_offset = 0;
260 val->modifiable = 1;
261 val->initialized = 1; /* Default to initialized. */
262 return val;
263 }
264
265 /* Allocate the contents of VAL if it has not been allocated yet. */
266
267 void
268 allocate_value_contents (struct value *val)
269 {
270 if (!val->contents)
271 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
272 }
273
274 /* Allocate a value and its contents for type TYPE. */
275
276 struct value *
277 allocate_value (struct type *type)
278 {
279 struct value *val = allocate_value_lazy (type);
280 allocate_value_contents (val);
281 val->lazy = 0;
282 return val;
283 }
284
285 /* Allocate a value that has the correct length
286 for COUNT repetitions of type TYPE. */
287
288 struct value *
289 allocate_repeat_value (struct type *type, int count)
290 {
291 int low_bound = current_language->string_lower_bound; /* ??? */
292 /* FIXME-type-allocation: need a way to free this type when we are
293 done with it. */
294 struct type *array_type
295 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
296 return allocate_value (array_type);
297 }
298
299 /* Needed if another module needs to maintain its on list of values. */
300 void
301 value_prepend_to_list (struct value **head, struct value *val)
302 {
303 val->next = *head;
304 *head = val;
305 }
306
307 /* Needed if another module needs to maintain its on list of values. */
308 void
309 value_remove_from_list (struct value **head, struct value *val)
310 {
311 struct value *prev;
312
313 if (*head == val)
314 *head = (*head)->next;
315 else
316 for (prev = *head; prev->next; prev = prev->next)
317 if (prev->next == val)
318 {
319 prev->next = val->next;
320 break;
321 }
322 }
323
324 struct value *
325 allocate_computed_value (struct type *type,
326 struct lval_funcs *funcs,
327 void *closure)
328 {
329 struct value *v = allocate_value (type);
330 VALUE_LVAL (v) = lval_computed;
331 v->location.computed.funcs = funcs;
332 v->location.computed.closure = closure;
333 set_value_lazy (v, 1);
334
335 return v;
336 }
337
338 /* Accessor methods. */
339
340 struct value *
341 value_next (struct value *value)
342 {
343 return value->next;
344 }
345
346 struct type *
347 value_type (struct value *value)
348 {
349 return value->type;
350 }
351 void
352 deprecated_set_value_type (struct value *value, struct type *type)
353 {
354 value->type = type;
355 }
356
357 int
358 value_offset (struct value *value)
359 {
360 return value->offset;
361 }
362 void
363 set_value_offset (struct value *value, int offset)
364 {
365 value->offset = offset;
366 }
367
368 int
369 value_bitpos (struct value *value)
370 {
371 return value->bitpos;
372 }
373 void
374 set_value_bitpos (struct value *value, int bit)
375 {
376 value->bitpos = bit;
377 }
378
379 int
380 value_bitsize (struct value *value)
381 {
382 return value->bitsize;
383 }
384 void
385 set_value_bitsize (struct value *value, int bit)
386 {
387 value->bitsize = bit;
388 }
389
390 gdb_byte *
391 value_contents_raw (struct value *value)
392 {
393 allocate_value_contents (value);
394 return value->contents + value->embedded_offset;
395 }
396
397 gdb_byte *
398 value_contents_all_raw (struct value *value)
399 {
400 allocate_value_contents (value);
401 return value->contents;
402 }
403
404 struct type *
405 value_enclosing_type (struct value *value)
406 {
407 return value->enclosing_type;
408 }
409
410 const gdb_byte *
411 value_contents_all (struct value *value)
412 {
413 if (value->lazy)
414 value_fetch_lazy (value);
415 return value->contents;
416 }
417
418 int
419 value_lazy (struct value *value)
420 {
421 return value->lazy;
422 }
423
424 void
425 set_value_lazy (struct value *value, int val)
426 {
427 value->lazy = val;
428 }
429
430 const gdb_byte *
431 value_contents (struct value *value)
432 {
433 return value_contents_writeable (value);
434 }
435
436 gdb_byte *
437 value_contents_writeable (struct value *value)
438 {
439 if (value->lazy)
440 value_fetch_lazy (value);
441 return value_contents_raw (value);
442 }
443
444 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
445 this function is different from value_equal; in C the operator ==
446 can return 0 even if the two values being compared are equal. */
447
448 int
449 value_contents_equal (struct value *val1, struct value *val2)
450 {
451 struct type *type1;
452 struct type *type2;
453 int len;
454
455 type1 = check_typedef (value_type (val1));
456 type2 = check_typedef (value_type (val2));
457 len = TYPE_LENGTH (type1);
458 if (len != TYPE_LENGTH (type2))
459 return 0;
460
461 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
462 }
463
464 int
465 value_optimized_out (struct value *value)
466 {
467 return value->optimized_out;
468 }
469
470 void
471 set_value_optimized_out (struct value *value, int val)
472 {
473 value->optimized_out = val;
474 }
475
476 int
477 value_embedded_offset (struct value *value)
478 {
479 return value->embedded_offset;
480 }
481
482 void
483 set_value_embedded_offset (struct value *value, int val)
484 {
485 value->embedded_offset = val;
486 }
487
488 int
489 value_pointed_to_offset (struct value *value)
490 {
491 return value->pointed_to_offset;
492 }
493
494 void
495 set_value_pointed_to_offset (struct value *value, int val)
496 {
497 value->pointed_to_offset = val;
498 }
499
500 struct lval_funcs *
501 value_computed_funcs (struct value *v)
502 {
503 gdb_assert (VALUE_LVAL (v) == lval_computed);
504
505 return v->location.computed.funcs;
506 }
507
508 void *
509 value_computed_closure (struct value *v)
510 {
511 gdb_assert (VALUE_LVAL (v) == lval_computed);
512
513 return v->location.computed.closure;
514 }
515
516 enum lval_type *
517 deprecated_value_lval_hack (struct value *value)
518 {
519 return &value->lval;
520 }
521
522 CORE_ADDR
523 value_address (struct value *value)
524 {
525 if (value->lval == lval_internalvar
526 || value->lval == lval_internalvar_component)
527 return 0;
528 return value->location.address + value->offset;
529 }
530
531 CORE_ADDR
532 value_raw_address (struct value *value)
533 {
534 if (value->lval == lval_internalvar
535 || value->lval == lval_internalvar_component)
536 return 0;
537 return value->location.address;
538 }
539
540 void
541 set_value_address (struct value *value, CORE_ADDR addr)
542 {
543 gdb_assert (value->lval != lval_internalvar
544 && value->lval != lval_internalvar_component);
545 value->location.address = addr;
546 }
547
548 struct internalvar **
549 deprecated_value_internalvar_hack (struct value *value)
550 {
551 return &value->location.internalvar;
552 }
553
554 struct frame_id *
555 deprecated_value_frame_id_hack (struct value *value)
556 {
557 return &value->frame_id;
558 }
559
560 short *
561 deprecated_value_regnum_hack (struct value *value)
562 {
563 return &value->regnum;
564 }
565
566 int
567 deprecated_value_modifiable (struct value *value)
568 {
569 return value->modifiable;
570 }
571 void
572 deprecated_set_value_modifiable (struct value *value, int modifiable)
573 {
574 value->modifiable = modifiable;
575 }
576 \f
577 /* Return a mark in the value chain. All values allocated after the
578 mark is obtained (except for those released) are subject to being freed
579 if a subsequent value_free_to_mark is passed the mark. */
580 struct value *
581 value_mark (void)
582 {
583 return all_values;
584 }
585
586 void
587 value_free (struct value *val)
588 {
589 if (val)
590 {
591 if (VALUE_LVAL (val) == lval_computed)
592 {
593 struct lval_funcs *funcs = val->location.computed.funcs;
594
595 if (funcs->free_closure)
596 funcs->free_closure (val);
597 }
598
599 xfree (val->contents);
600 }
601 xfree (val);
602 }
603
604 /* Free all values allocated since MARK was obtained by value_mark
605 (except for those released). */
606 void
607 value_free_to_mark (struct value *mark)
608 {
609 struct value *val;
610 struct value *next;
611
612 for (val = all_values; val && val != mark; val = next)
613 {
614 next = val->next;
615 value_free (val);
616 }
617 all_values = val;
618 }
619
620 /* Free all the values that have been allocated (except for those released).
621 Called after each command, successful or not. */
622
623 void
624 free_all_values (void)
625 {
626 struct value *val;
627 struct value *next;
628
629 for (val = all_values; val; val = next)
630 {
631 next = val->next;
632 value_free (val);
633 }
634
635 all_values = 0;
636 }
637
638 /* Remove VAL from the chain all_values
639 so it will not be freed automatically. */
640
641 void
642 release_value (struct value *val)
643 {
644 struct value *v;
645
646 if (all_values == val)
647 {
648 all_values = val->next;
649 return;
650 }
651
652 for (v = all_values; v; v = v->next)
653 {
654 if (v->next == val)
655 {
656 v->next = val->next;
657 break;
658 }
659 }
660 }
661
662 /* Release all values up to mark */
663 struct value *
664 value_release_to_mark (struct value *mark)
665 {
666 struct value *val;
667 struct value *next;
668
669 for (val = next = all_values; next; next = next->next)
670 if (next->next == mark)
671 {
672 all_values = next->next;
673 next->next = NULL;
674 return val;
675 }
676 all_values = 0;
677 return val;
678 }
679
680 /* Return a copy of the value ARG.
681 It contains the same contents, for same memory address,
682 but it's a different block of storage. */
683
684 struct value *
685 value_copy (struct value *arg)
686 {
687 struct type *encl_type = value_enclosing_type (arg);
688 struct value *val;
689
690 if (value_lazy (arg))
691 val = allocate_value_lazy (encl_type);
692 else
693 val = allocate_value (encl_type);
694 val->type = arg->type;
695 VALUE_LVAL (val) = VALUE_LVAL (arg);
696 val->location = arg->location;
697 val->offset = arg->offset;
698 val->bitpos = arg->bitpos;
699 val->bitsize = arg->bitsize;
700 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
701 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
702 val->lazy = arg->lazy;
703 val->optimized_out = arg->optimized_out;
704 val->embedded_offset = value_embedded_offset (arg);
705 val->pointed_to_offset = arg->pointed_to_offset;
706 val->modifiable = arg->modifiable;
707 if (!value_lazy (val))
708 {
709 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
710 TYPE_LENGTH (value_enclosing_type (arg)));
711
712 }
713 if (VALUE_LVAL (val) == lval_computed)
714 {
715 struct lval_funcs *funcs = val->location.computed.funcs;
716
717 if (funcs->copy_closure)
718 val->location.computed.closure = funcs->copy_closure (val);
719 }
720 return val;
721 }
722
723 void
724 set_value_component_location (struct value *component, struct value *whole)
725 {
726 if (VALUE_LVAL (whole) == lval_internalvar)
727 VALUE_LVAL (component) = lval_internalvar_component;
728 else
729 VALUE_LVAL (component) = VALUE_LVAL (whole);
730
731 component->location = whole->location;
732 if (VALUE_LVAL (whole) == lval_computed)
733 {
734 struct lval_funcs *funcs = whole->location.computed.funcs;
735
736 if (funcs->copy_closure)
737 component->location.computed.closure = funcs->copy_closure (whole);
738 }
739 }
740
741 \f
742 /* Access to the value history. */
743
744 /* Record a new value in the value history.
745 Returns the absolute history index of the entry.
746 Result of -1 indicates the value was not saved; otherwise it is the
747 value history index of this new item. */
748
749 int
750 record_latest_value (struct value *val)
751 {
752 int i;
753
754 /* We don't want this value to have anything to do with the inferior anymore.
755 In particular, "set $1 = 50" should not affect the variable from which
756 the value was taken, and fast watchpoints should be able to assume that
757 a value on the value history never changes. */
758 if (value_lazy (val))
759 value_fetch_lazy (val);
760 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
761 from. This is a bit dubious, because then *&$1 does not just return $1
762 but the current contents of that location. c'est la vie... */
763 val->modifiable = 0;
764 release_value (val);
765
766 /* Here we treat value_history_count as origin-zero
767 and applying to the value being stored now. */
768
769 i = value_history_count % VALUE_HISTORY_CHUNK;
770 if (i == 0)
771 {
772 struct value_history_chunk *new
773 = (struct value_history_chunk *)
774 xmalloc (sizeof (struct value_history_chunk));
775 memset (new->values, 0, sizeof new->values);
776 new->next = value_history_chain;
777 value_history_chain = new;
778 }
779
780 value_history_chain->values[i] = val;
781
782 /* Now we regard value_history_count as origin-one
783 and applying to the value just stored. */
784
785 return ++value_history_count;
786 }
787
788 /* Return a copy of the value in the history with sequence number NUM. */
789
790 struct value *
791 access_value_history (int num)
792 {
793 struct value_history_chunk *chunk;
794 int i;
795 int absnum = num;
796
797 if (absnum <= 0)
798 absnum += value_history_count;
799
800 if (absnum <= 0)
801 {
802 if (num == 0)
803 error (_("The history is empty."));
804 else if (num == 1)
805 error (_("There is only one value in the history."));
806 else
807 error (_("History does not go back to $$%d."), -num);
808 }
809 if (absnum > value_history_count)
810 error (_("History has not yet reached $%d."), absnum);
811
812 absnum--;
813
814 /* Now absnum is always absolute and origin zero. */
815
816 chunk = value_history_chain;
817 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
818 i > 0; i--)
819 chunk = chunk->next;
820
821 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
822 }
823
824 static void
825 show_values (char *num_exp, int from_tty)
826 {
827 int i;
828 struct value *val;
829 static int num = 1;
830
831 if (num_exp)
832 {
833 /* "show values +" should print from the stored position.
834 "show values <exp>" should print around value number <exp>. */
835 if (num_exp[0] != '+' || num_exp[1] != '\0')
836 num = parse_and_eval_long (num_exp) - 5;
837 }
838 else
839 {
840 /* "show values" means print the last 10 values. */
841 num = value_history_count - 9;
842 }
843
844 if (num <= 0)
845 num = 1;
846
847 for (i = num; i < num + 10 && i <= value_history_count; i++)
848 {
849 struct value_print_options opts;
850 val = access_value_history (i);
851 printf_filtered (("$%d = "), i);
852 get_user_print_options (&opts);
853 value_print (val, gdb_stdout, &opts);
854 printf_filtered (("\n"));
855 }
856
857 /* The next "show values +" should start after what we just printed. */
858 num += 10;
859
860 /* Hitting just return after this command should do the same thing as
861 "show values +". If num_exp is null, this is unnecessary, since
862 "show values +" is not useful after "show values". */
863 if (from_tty && num_exp)
864 {
865 num_exp[0] = '+';
866 num_exp[1] = '\0';
867 }
868 }
869 \f
870 /* Internal variables. These are variables within the debugger
871 that hold values assigned by debugger commands.
872 The user refers to them with a '$' prefix
873 that does not appear in the variable names stored internally. */
874
875 struct internalvar
876 {
877 struct internalvar *next;
878 char *name;
879
880 /* We support various different kinds of content of an internal variable.
881 enum internalvar_kind specifies the kind, and union internalvar_data
882 provides the data associated with this particular kind. */
883
884 enum internalvar_kind
885 {
886 /* The internal variable is empty. */
887 INTERNALVAR_VOID,
888
889 /* The value of the internal variable is provided directly as
890 a GDB value object. */
891 INTERNALVAR_VALUE,
892
893 /* A fresh value is computed via a call-back routine on every
894 access to the internal variable. */
895 INTERNALVAR_MAKE_VALUE,
896
897 /* The internal variable holds a GDB internal convenience function. */
898 INTERNALVAR_FUNCTION,
899
900 /* The variable holds a simple scalar value. */
901 INTERNALVAR_SCALAR,
902
903 /* The variable holds a GDB-provided string. */
904 INTERNALVAR_STRING,
905
906 } kind;
907
908 union internalvar_data
909 {
910 /* A value object used with INTERNALVAR_VALUE. */
911 struct value *value;
912
913 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
914 internalvar_make_value make_value;
915
916 /* The internal function used with INTERNALVAR_FUNCTION. */
917 struct
918 {
919 struct internal_function *function;
920 /* True if this is the canonical name for the function. */
921 int canonical;
922 } fn;
923
924 /* A scalar value used with INTERNALVAR_SCALAR. */
925 struct
926 {
927 /* If type is non-NULL, it will be used as the type to generate
928 a value for this internal variable. If type is NULL, a default
929 integer type for the architecture is used. */
930 struct type *type;
931 union
932 {
933 LONGEST l; /* Used with TYPE_CODE_INT and NULL types. */
934 CORE_ADDR a; /* Used with TYPE_CODE_PTR types. */
935 } val;
936 } scalar;
937
938 /* A string value used with INTERNALVAR_STRING. */
939 char *string;
940 } u;
941 };
942
943 static struct internalvar *internalvars;
944
945 /* If the variable does not already exist create it and give it the value given.
946 If no value is given then the default is zero. */
947 static void
948 init_if_undefined_command (char* args, int from_tty)
949 {
950 struct internalvar* intvar;
951
952 /* Parse the expression - this is taken from set_command(). */
953 struct expression *expr = parse_expression (args);
954 register struct cleanup *old_chain =
955 make_cleanup (free_current_contents, &expr);
956
957 /* Validate the expression.
958 Was the expression an assignment?
959 Or even an expression at all? */
960 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
961 error (_("Init-if-undefined requires an assignment expression."));
962
963 /* Extract the variable from the parsed expression.
964 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
965 if (expr->elts[1].opcode != OP_INTERNALVAR)
966 error (_("The first parameter to init-if-undefined should be a GDB variable."));
967 intvar = expr->elts[2].internalvar;
968
969 /* Only evaluate the expression if the lvalue is void.
970 This may still fail if the expresssion is invalid. */
971 if (intvar->kind == INTERNALVAR_VOID)
972 evaluate_expression (expr);
973
974 do_cleanups (old_chain);
975 }
976
977
978 /* Look up an internal variable with name NAME. NAME should not
979 normally include a dollar sign.
980
981 If the specified internal variable does not exist,
982 the return value is NULL. */
983
984 struct internalvar *
985 lookup_only_internalvar (const char *name)
986 {
987 struct internalvar *var;
988
989 for (var = internalvars; var; var = var->next)
990 if (strcmp (var->name, name) == 0)
991 return var;
992
993 return NULL;
994 }
995
996
997 /* Create an internal variable with name NAME and with a void value.
998 NAME should not normally include a dollar sign. */
999
1000 struct internalvar *
1001 create_internalvar (const char *name)
1002 {
1003 struct internalvar *var;
1004 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1005 var->name = concat (name, (char *)NULL);
1006 var->kind = INTERNALVAR_VOID;
1007 var->next = internalvars;
1008 internalvars = var;
1009 return var;
1010 }
1011
1012 /* Create an internal variable with name NAME and register FUN as the
1013 function that value_of_internalvar uses to create a value whenever
1014 this variable is referenced. NAME should not normally include a
1015 dollar sign. */
1016
1017 struct internalvar *
1018 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1019 {
1020 struct internalvar *var = create_internalvar (name);
1021 var->kind = INTERNALVAR_MAKE_VALUE;
1022 var->u.make_value = fun;
1023 return var;
1024 }
1025
1026 /* Look up an internal variable with name NAME. NAME should not
1027 normally include a dollar sign.
1028
1029 If the specified internal variable does not exist,
1030 one is created, with a void value. */
1031
1032 struct internalvar *
1033 lookup_internalvar (const char *name)
1034 {
1035 struct internalvar *var;
1036
1037 var = lookup_only_internalvar (name);
1038 if (var)
1039 return var;
1040
1041 return create_internalvar (name);
1042 }
1043
1044 /* Return current value of internal variable VAR. For variables that
1045 are not inherently typed, use a value type appropriate for GDBARCH. */
1046
1047 struct value *
1048 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1049 {
1050 struct value *val;
1051
1052 switch (var->kind)
1053 {
1054 case INTERNALVAR_VOID:
1055 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1056 break;
1057
1058 case INTERNALVAR_FUNCTION:
1059 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1060 break;
1061
1062 case INTERNALVAR_SCALAR:
1063 if (!var->u.scalar.type)
1064 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1065 var->u.scalar.val.l);
1066 else if (TYPE_CODE (var->u.scalar.type) == TYPE_CODE_INT)
1067 val = value_from_longest (var->u.scalar.type, var->u.scalar.val.l);
1068 else if (TYPE_CODE (var->u.scalar.type) == TYPE_CODE_PTR)
1069 val = value_from_pointer (var->u.scalar.type, var->u.scalar.val.a);
1070 else
1071 internal_error (__FILE__, __LINE__, "bad type");
1072 break;
1073
1074 case INTERNALVAR_STRING:
1075 val = value_cstring (var->u.string, strlen (var->u.string),
1076 builtin_type (gdbarch)->builtin_char);
1077 break;
1078
1079 case INTERNALVAR_VALUE:
1080 val = value_copy (var->u.value);
1081 if (value_lazy (val))
1082 value_fetch_lazy (val);
1083 break;
1084
1085 case INTERNALVAR_MAKE_VALUE:
1086 val = (*var->u.make_value) (gdbarch, var);
1087 break;
1088
1089 default:
1090 internal_error (__FILE__, __LINE__, "bad kind");
1091 }
1092
1093 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1094 on this value go back to affect the original internal variable.
1095
1096 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1097 no underlying modifyable state in the internal variable.
1098
1099 Likewise, if the variable's value is a computed lvalue, we want
1100 references to it to produce another computed lvalue, where
1101 references and assignments actually operate through the
1102 computed value's functions.
1103
1104 This means that internal variables with computed values
1105 behave a little differently from other internal variables:
1106 assignments to them don't just replace the previous value
1107 altogether. At the moment, this seems like the behavior we
1108 want. */
1109
1110 if (var->kind != INTERNALVAR_MAKE_VALUE
1111 && val->lval != lval_computed)
1112 {
1113 VALUE_LVAL (val) = lval_internalvar;
1114 VALUE_INTERNALVAR (val) = var;
1115 }
1116
1117 return val;
1118 }
1119
1120 int
1121 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1122 {
1123 switch (var->kind)
1124 {
1125 case INTERNALVAR_SCALAR:
1126 if (var->u.scalar.type == NULL
1127 || TYPE_CODE (var->u.scalar.type) == TYPE_CODE_INT)
1128 {
1129 *result = var->u.scalar.val.l;
1130 return 1;
1131 }
1132 /* Fall through. */
1133
1134 default:
1135 return 0;
1136 }
1137 }
1138
1139 static int
1140 get_internalvar_function (struct internalvar *var,
1141 struct internal_function **result)
1142 {
1143 switch (var->kind)
1144 {
1145 case INTERNALVAR_FUNCTION:
1146 *result = var->u.fn.function;
1147 return 1;
1148
1149 default:
1150 return 0;
1151 }
1152 }
1153
1154 void
1155 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1156 int bitsize, struct value *newval)
1157 {
1158 gdb_byte *addr;
1159
1160 switch (var->kind)
1161 {
1162 case INTERNALVAR_VALUE:
1163 addr = value_contents_writeable (var->u.value);
1164
1165 if (bitsize)
1166 modify_field (value_type (var->u.value), addr + offset,
1167 value_as_long (newval), bitpos, bitsize);
1168 else
1169 memcpy (addr + offset, value_contents (newval),
1170 TYPE_LENGTH (value_type (newval)));
1171 break;
1172
1173 default:
1174 /* We can never get a component of any other kind. */
1175 internal_error (__FILE__, __LINE__, "set_internalvar_component");
1176 }
1177 }
1178
1179 void
1180 set_internalvar (struct internalvar *var, struct value *val)
1181 {
1182 enum internalvar_kind new_kind;
1183 union internalvar_data new_data = { 0 };
1184
1185 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1186 error (_("Cannot overwrite convenience function %s"), var->name);
1187
1188 /* Prepare new contents. */
1189 switch (TYPE_CODE (check_typedef (value_type (val))))
1190 {
1191 case TYPE_CODE_VOID:
1192 new_kind = INTERNALVAR_VOID;
1193 break;
1194
1195 case TYPE_CODE_INTERNAL_FUNCTION:
1196 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1197 new_kind = INTERNALVAR_FUNCTION;
1198 get_internalvar_function (VALUE_INTERNALVAR (val),
1199 &new_data.fn.function);
1200 /* Copies created here are never canonical. */
1201 break;
1202
1203 case TYPE_CODE_INT:
1204 new_kind = INTERNALVAR_SCALAR;
1205 new_data.scalar.type = value_type (val);
1206 new_data.scalar.val.l = value_as_long (val);
1207 break;
1208
1209 case TYPE_CODE_PTR:
1210 new_kind = INTERNALVAR_SCALAR;
1211 new_data.scalar.type = value_type (val);
1212 new_data.scalar.val.a = value_as_address (val);
1213 break;
1214
1215 default:
1216 new_kind = INTERNALVAR_VALUE;
1217 new_data.value = value_copy (val);
1218 new_data.value->modifiable = 1;
1219
1220 /* Force the value to be fetched from the target now, to avoid problems
1221 later when this internalvar is referenced and the target is gone or
1222 has changed. */
1223 if (value_lazy (new_data.value))
1224 value_fetch_lazy (new_data.value);
1225
1226 /* Release the value from the value chain to prevent it from being
1227 deleted by free_all_values. From here on this function should not
1228 call error () until new_data is installed into the var->u to avoid
1229 leaking memory. */
1230 release_value (new_data.value);
1231 break;
1232 }
1233
1234 /* Clean up old contents. */
1235 clear_internalvar (var);
1236
1237 /* Switch over. */
1238 var->kind = new_kind;
1239 var->u = new_data;
1240 /* End code which must not call error(). */
1241 }
1242
1243 void
1244 set_internalvar_integer (struct internalvar *var, LONGEST l)
1245 {
1246 /* Clean up old contents. */
1247 clear_internalvar (var);
1248
1249 var->kind = INTERNALVAR_SCALAR;
1250 var->u.scalar.type = NULL;
1251 var->u.scalar.val.l = l;
1252 }
1253
1254 void
1255 set_internalvar_string (struct internalvar *var, const char *string)
1256 {
1257 /* Clean up old contents. */
1258 clear_internalvar (var);
1259
1260 var->kind = INTERNALVAR_STRING;
1261 var->u.string = xstrdup (string);
1262 }
1263
1264 static void
1265 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1266 {
1267 /* Clean up old contents. */
1268 clear_internalvar (var);
1269
1270 var->kind = INTERNALVAR_FUNCTION;
1271 var->u.fn.function = f;
1272 var->u.fn.canonical = 1;
1273 /* Variables installed here are always the canonical version. */
1274 }
1275
1276 void
1277 clear_internalvar (struct internalvar *var)
1278 {
1279 /* Clean up old contents. */
1280 switch (var->kind)
1281 {
1282 case INTERNALVAR_VALUE:
1283 value_free (var->u.value);
1284 break;
1285
1286 case INTERNALVAR_STRING:
1287 xfree (var->u.string);
1288 break;
1289
1290 default:
1291 break;
1292 }
1293
1294 /* Reset to void kind. */
1295 var->kind = INTERNALVAR_VOID;
1296 }
1297
1298 char *
1299 internalvar_name (struct internalvar *var)
1300 {
1301 return var->name;
1302 }
1303
1304 static struct internal_function *
1305 create_internal_function (const char *name,
1306 internal_function_fn handler, void *cookie)
1307 {
1308 struct internal_function *ifn = XNEW (struct internal_function);
1309 ifn->name = xstrdup (name);
1310 ifn->handler = handler;
1311 ifn->cookie = cookie;
1312 return ifn;
1313 }
1314
1315 char *
1316 value_internal_function_name (struct value *val)
1317 {
1318 struct internal_function *ifn;
1319 int result;
1320
1321 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1322 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1323 gdb_assert (result);
1324
1325 return ifn->name;
1326 }
1327
1328 struct value *
1329 call_internal_function (struct value *func, int argc, struct value **argv)
1330 {
1331 struct internal_function *ifn;
1332 int result;
1333
1334 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1335 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1336 gdb_assert (result);
1337
1338 return (*ifn->handler) (ifn->cookie, argc, argv);
1339 }
1340
1341 /* The 'function' command. This does nothing -- it is just a
1342 placeholder to let "help function NAME" work. This is also used as
1343 the implementation of the sub-command that is created when
1344 registering an internal function. */
1345 static void
1346 function_command (char *command, int from_tty)
1347 {
1348 /* Do nothing. */
1349 }
1350
1351 /* Clean up if an internal function's command is destroyed. */
1352 static void
1353 function_destroyer (struct cmd_list_element *self, void *ignore)
1354 {
1355 xfree (self->name);
1356 xfree (self->doc);
1357 }
1358
1359 /* Add a new internal function. NAME is the name of the function; DOC
1360 is a documentation string describing the function. HANDLER is
1361 called when the function is invoked. COOKIE is an arbitrary
1362 pointer which is passed to HANDLER and is intended for "user
1363 data". */
1364 void
1365 add_internal_function (const char *name, const char *doc,
1366 internal_function_fn handler, void *cookie)
1367 {
1368 struct cmd_list_element *cmd;
1369 struct internal_function *ifn;
1370 struct internalvar *var = lookup_internalvar (name);
1371
1372 ifn = create_internal_function (name, handler, cookie);
1373 set_internalvar_function (var, ifn);
1374
1375 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1376 &functionlist);
1377 cmd->destroyer = function_destroyer;
1378 }
1379
1380 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1381 prevent cycles / duplicates. */
1382
1383 static void
1384 preserve_one_value (struct value *value, struct objfile *objfile,
1385 htab_t copied_types)
1386 {
1387 if (TYPE_OBJFILE (value->type) == objfile)
1388 value->type = copy_type_recursive (objfile, value->type, copied_types);
1389
1390 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1391 value->enclosing_type = copy_type_recursive (objfile,
1392 value->enclosing_type,
1393 copied_types);
1394 }
1395
1396 /* Likewise for internal variable VAR. */
1397
1398 static void
1399 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1400 htab_t copied_types)
1401 {
1402 switch (var->kind)
1403 {
1404 case INTERNALVAR_SCALAR:
1405 if (var->u.scalar.type && TYPE_OBJFILE (var->u.scalar.type) == objfile)
1406 var->u.scalar.type
1407 = copy_type_recursive (objfile, var->u.scalar.type, copied_types);
1408 break;
1409
1410 case INTERNALVAR_VALUE:
1411 preserve_one_value (var->u.value, objfile, copied_types);
1412 break;
1413 }
1414 }
1415
1416 /* Update the internal variables and value history when OBJFILE is
1417 discarded; we must copy the types out of the objfile. New global types
1418 will be created for every convenience variable which currently points to
1419 this objfile's types, and the convenience variables will be adjusted to
1420 use the new global types. */
1421
1422 void
1423 preserve_values (struct objfile *objfile)
1424 {
1425 htab_t copied_types;
1426 struct value_history_chunk *cur;
1427 struct internalvar *var;
1428 struct value *val;
1429 int i;
1430
1431 /* Create the hash table. We allocate on the objfile's obstack, since
1432 it is soon to be deleted. */
1433 copied_types = create_copied_types_hash (objfile);
1434
1435 for (cur = value_history_chain; cur; cur = cur->next)
1436 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1437 if (cur->values[i])
1438 preserve_one_value (cur->values[i], objfile, copied_types);
1439
1440 for (var = internalvars; var; var = var->next)
1441 preserve_one_internalvar (var, objfile, copied_types);
1442
1443 for (val = values_in_python; val; val = val->next)
1444 preserve_one_value (val, objfile, copied_types);
1445
1446 htab_delete (copied_types);
1447 }
1448
1449 static void
1450 show_convenience (char *ignore, int from_tty)
1451 {
1452 struct gdbarch *gdbarch = get_current_arch ();
1453 struct internalvar *var;
1454 int varseen = 0;
1455 struct value_print_options opts;
1456
1457 get_user_print_options (&opts);
1458 for (var = internalvars; var; var = var->next)
1459 {
1460 if (!varseen)
1461 {
1462 varseen = 1;
1463 }
1464 printf_filtered (("$%s = "), var->name);
1465 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1466 &opts);
1467 printf_filtered (("\n"));
1468 }
1469 if (!varseen)
1470 printf_unfiltered (_("\
1471 No debugger convenience variables now defined.\n\
1472 Convenience variables have names starting with \"$\";\n\
1473 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1474 }
1475 \f
1476 /* Extract a value as a C number (either long or double).
1477 Knows how to convert fixed values to double, or
1478 floating values to long.
1479 Does not deallocate the value. */
1480
1481 LONGEST
1482 value_as_long (struct value *val)
1483 {
1484 /* This coerces arrays and functions, which is necessary (e.g.
1485 in disassemble_command). It also dereferences references, which
1486 I suspect is the most logical thing to do. */
1487 val = coerce_array (val);
1488 return unpack_long (value_type (val), value_contents (val));
1489 }
1490
1491 DOUBLEST
1492 value_as_double (struct value *val)
1493 {
1494 DOUBLEST foo;
1495 int inv;
1496
1497 foo = unpack_double (value_type (val), value_contents (val), &inv);
1498 if (inv)
1499 error (_("Invalid floating value found in program."));
1500 return foo;
1501 }
1502
1503 /* Extract a value as a C pointer. Does not deallocate the value.
1504 Note that val's type may not actually be a pointer; value_as_long
1505 handles all the cases. */
1506 CORE_ADDR
1507 value_as_address (struct value *val)
1508 {
1509 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1510
1511 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1512 whether we want this to be true eventually. */
1513 #if 0
1514 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1515 non-address (e.g. argument to "signal", "info break", etc.), or
1516 for pointers to char, in which the low bits *are* significant. */
1517 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1518 #else
1519
1520 /* There are several targets (IA-64, PowerPC, and others) which
1521 don't represent pointers to functions as simply the address of
1522 the function's entry point. For example, on the IA-64, a
1523 function pointer points to a two-word descriptor, generated by
1524 the linker, which contains the function's entry point, and the
1525 value the IA-64 "global pointer" register should have --- to
1526 support position-independent code. The linker generates
1527 descriptors only for those functions whose addresses are taken.
1528
1529 On such targets, it's difficult for GDB to convert an arbitrary
1530 function address into a function pointer; it has to either find
1531 an existing descriptor for that function, or call malloc and
1532 build its own. On some targets, it is impossible for GDB to
1533 build a descriptor at all: the descriptor must contain a jump
1534 instruction; data memory cannot be executed; and code memory
1535 cannot be modified.
1536
1537 Upon entry to this function, if VAL is a value of type `function'
1538 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1539 value_address (val) is the address of the function. This is what
1540 you'll get if you evaluate an expression like `main'. The call
1541 to COERCE_ARRAY below actually does all the usual unary
1542 conversions, which includes converting values of type `function'
1543 to `pointer to function'. This is the challenging conversion
1544 discussed above. Then, `unpack_long' will convert that pointer
1545 back into an address.
1546
1547 So, suppose the user types `disassemble foo' on an architecture
1548 with a strange function pointer representation, on which GDB
1549 cannot build its own descriptors, and suppose further that `foo'
1550 has no linker-built descriptor. The address->pointer conversion
1551 will signal an error and prevent the command from running, even
1552 though the next step would have been to convert the pointer
1553 directly back into the same address.
1554
1555 The following shortcut avoids this whole mess. If VAL is a
1556 function, just return its address directly. */
1557 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1558 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1559 return value_address (val);
1560
1561 val = coerce_array (val);
1562
1563 /* Some architectures (e.g. Harvard), map instruction and data
1564 addresses onto a single large unified address space. For
1565 instance: An architecture may consider a large integer in the
1566 range 0x10000000 .. 0x1000ffff to already represent a data
1567 addresses (hence not need a pointer to address conversion) while
1568 a small integer would still need to be converted integer to
1569 pointer to address. Just assume such architectures handle all
1570 integer conversions in a single function. */
1571
1572 /* JimB writes:
1573
1574 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1575 must admonish GDB hackers to make sure its behavior matches the
1576 compiler's, whenever possible.
1577
1578 In general, I think GDB should evaluate expressions the same way
1579 the compiler does. When the user copies an expression out of
1580 their source code and hands it to a `print' command, they should
1581 get the same value the compiler would have computed. Any
1582 deviation from this rule can cause major confusion and annoyance,
1583 and needs to be justified carefully. In other words, GDB doesn't
1584 really have the freedom to do these conversions in clever and
1585 useful ways.
1586
1587 AndrewC pointed out that users aren't complaining about how GDB
1588 casts integers to pointers; they are complaining that they can't
1589 take an address from a disassembly listing and give it to `x/i'.
1590 This is certainly important.
1591
1592 Adding an architecture method like integer_to_address() certainly
1593 makes it possible for GDB to "get it right" in all circumstances
1594 --- the target has complete control over how things get done, so
1595 people can Do The Right Thing for their target without breaking
1596 anyone else. The standard doesn't specify how integers get
1597 converted to pointers; usually, the ABI doesn't either, but
1598 ABI-specific code is a more reasonable place to handle it. */
1599
1600 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1601 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1602 && gdbarch_integer_to_address_p (gdbarch))
1603 return gdbarch_integer_to_address (gdbarch, value_type (val),
1604 value_contents (val));
1605
1606 return unpack_long (value_type (val), value_contents (val));
1607 #endif
1608 }
1609 \f
1610 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1611 as a long, or as a double, assuming the raw data is described
1612 by type TYPE. Knows how to convert different sizes of values
1613 and can convert between fixed and floating point. We don't assume
1614 any alignment for the raw data. Return value is in host byte order.
1615
1616 If you want functions and arrays to be coerced to pointers, and
1617 references to be dereferenced, call value_as_long() instead.
1618
1619 C++: It is assumed that the front-end has taken care of
1620 all matters concerning pointers to members. A pointer
1621 to member which reaches here is considered to be equivalent
1622 to an INT (or some size). After all, it is only an offset. */
1623
1624 LONGEST
1625 unpack_long (struct type *type, const gdb_byte *valaddr)
1626 {
1627 enum type_code code = TYPE_CODE (type);
1628 int len = TYPE_LENGTH (type);
1629 int nosign = TYPE_UNSIGNED (type);
1630
1631 switch (code)
1632 {
1633 case TYPE_CODE_TYPEDEF:
1634 return unpack_long (check_typedef (type), valaddr);
1635 case TYPE_CODE_ENUM:
1636 case TYPE_CODE_FLAGS:
1637 case TYPE_CODE_BOOL:
1638 case TYPE_CODE_INT:
1639 case TYPE_CODE_CHAR:
1640 case TYPE_CODE_RANGE:
1641 case TYPE_CODE_MEMBERPTR:
1642 if (nosign)
1643 return extract_unsigned_integer (valaddr, len);
1644 else
1645 return extract_signed_integer (valaddr, len);
1646
1647 case TYPE_CODE_FLT:
1648 return extract_typed_floating (valaddr, type);
1649
1650 case TYPE_CODE_DECFLOAT:
1651 /* libdecnumber has a function to convert from decimal to integer, but
1652 it doesn't work when the decimal number has a fractional part. */
1653 return decimal_to_doublest (valaddr, len);
1654
1655 case TYPE_CODE_PTR:
1656 case TYPE_CODE_REF:
1657 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1658 whether we want this to be true eventually. */
1659 return extract_typed_address (valaddr, type);
1660
1661 default:
1662 error (_("Value can't be converted to integer."));
1663 }
1664 return 0; /* Placate lint. */
1665 }
1666
1667 /* Return a double value from the specified type and address.
1668 INVP points to an int which is set to 0 for valid value,
1669 1 for invalid value (bad float format). In either case,
1670 the returned double is OK to use. Argument is in target
1671 format, result is in host format. */
1672
1673 DOUBLEST
1674 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1675 {
1676 enum type_code code;
1677 int len;
1678 int nosign;
1679
1680 *invp = 0; /* Assume valid. */
1681 CHECK_TYPEDEF (type);
1682 code = TYPE_CODE (type);
1683 len = TYPE_LENGTH (type);
1684 nosign = TYPE_UNSIGNED (type);
1685 if (code == TYPE_CODE_FLT)
1686 {
1687 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1688 floating-point value was valid (using the macro
1689 INVALID_FLOAT). That test/macro have been removed.
1690
1691 It turns out that only the VAX defined this macro and then
1692 only in a non-portable way. Fixing the portability problem
1693 wouldn't help since the VAX floating-point code is also badly
1694 bit-rotten. The target needs to add definitions for the
1695 methods gdbarch_float_format and gdbarch_double_format - these
1696 exactly describe the target floating-point format. The
1697 problem here is that the corresponding floatformat_vax_f and
1698 floatformat_vax_d values these methods should be set to are
1699 also not defined either. Oops!
1700
1701 Hopefully someone will add both the missing floatformat
1702 definitions and the new cases for floatformat_is_valid (). */
1703
1704 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1705 {
1706 *invp = 1;
1707 return 0.0;
1708 }
1709
1710 return extract_typed_floating (valaddr, type);
1711 }
1712 else if (code == TYPE_CODE_DECFLOAT)
1713 return decimal_to_doublest (valaddr, len);
1714 else if (nosign)
1715 {
1716 /* Unsigned -- be sure we compensate for signed LONGEST. */
1717 return (ULONGEST) unpack_long (type, valaddr);
1718 }
1719 else
1720 {
1721 /* Signed -- we are OK with unpack_long. */
1722 return unpack_long (type, valaddr);
1723 }
1724 }
1725
1726 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1727 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1728 We don't assume any alignment for the raw data. Return value is in
1729 host byte order.
1730
1731 If you want functions and arrays to be coerced to pointers, and
1732 references to be dereferenced, call value_as_address() instead.
1733
1734 C++: It is assumed that the front-end has taken care of
1735 all matters concerning pointers to members. A pointer
1736 to member which reaches here is considered to be equivalent
1737 to an INT (or some size). After all, it is only an offset. */
1738
1739 CORE_ADDR
1740 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1741 {
1742 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1743 whether we want this to be true eventually. */
1744 return unpack_long (type, valaddr);
1745 }
1746
1747 \f
1748 /* Get the value of the FIELDN'th field (which must be static) of
1749 TYPE. Return NULL if the field doesn't exist or has been
1750 optimized out. */
1751
1752 struct value *
1753 value_static_field (struct type *type, int fieldno)
1754 {
1755 struct value *retval;
1756
1757 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1758 {
1759 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1760 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1761 }
1762 else
1763 {
1764 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1765 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1766 if (sym == NULL)
1767 {
1768 /* With some compilers, e.g. HP aCC, static data members are reported
1769 as non-debuggable symbols */
1770 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1771 if (!msym)
1772 return NULL;
1773 else
1774 {
1775 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1776 SYMBOL_VALUE_ADDRESS (msym));
1777 }
1778 }
1779 else
1780 {
1781 /* SYM should never have a SYMBOL_CLASS which will require
1782 read_var_value to use the FRAME parameter. */
1783 if (symbol_read_needs_frame (sym))
1784 warning (_("static field's value depends on the current "
1785 "frame - bad debug info?"));
1786 retval = read_var_value (sym, NULL);
1787 }
1788 if (retval && VALUE_LVAL (retval) == lval_memory)
1789 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1790 value_address (retval));
1791 }
1792 return retval;
1793 }
1794
1795 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1796 You have to be careful here, since the size of the data area for the value
1797 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1798 than the old enclosing type, you have to allocate more space for the data.
1799 The return value is a pointer to the new version of this value structure. */
1800
1801 struct value *
1802 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1803 {
1804 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1805 val->contents =
1806 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1807
1808 val->enclosing_type = new_encl_type;
1809 return val;
1810 }
1811
1812 /* Given a value ARG1 (offset by OFFSET bytes)
1813 of a struct or union type ARG_TYPE,
1814 extract and return the value of one of its (non-static) fields.
1815 FIELDNO says which field. */
1816
1817 struct value *
1818 value_primitive_field (struct value *arg1, int offset,
1819 int fieldno, struct type *arg_type)
1820 {
1821 struct value *v;
1822 struct type *type;
1823
1824 CHECK_TYPEDEF (arg_type);
1825 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1826
1827 /* Handle packed fields */
1828
1829 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1830 {
1831 v = value_from_longest (type,
1832 unpack_field_as_long (arg_type,
1833 value_contents (arg1)
1834 + offset,
1835 fieldno));
1836 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1837 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1838 v->offset = value_offset (arg1) + offset
1839 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1840 }
1841 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1842 {
1843 /* This field is actually a base subobject, so preserve the
1844 entire object's contents for later references to virtual
1845 bases, etc. */
1846
1847 /* Lazy register values with offsets are not supported. */
1848 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1849 value_fetch_lazy (arg1);
1850
1851 if (value_lazy (arg1))
1852 v = allocate_value_lazy (value_enclosing_type (arg1));
1853 else
1854 {
1855 v = allocate_value (value_enclosing_type (arg1));
1856 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1857 TYPE_LENGTH (value_enclosing_type (arg1)));
1858 }
1859 v->type = type;
1860 v->offset = value_offset (arg1);
1861 v->embedded_offset = (offset + value_embedded_offset (arg1)
1862 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1863 }
1864 else
1865 {
1866 /* Plain old data member */
1867 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1868
1869 /* Lazy register values with offsets are not supported. */
1870 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1871 value_fetch_lazy (arg1);
1872
1873 if (value_lazy (arg1))
1874 v = allocate_value_lazy (type);
1875 else
1876 {
1877 v = allocate_value (type);
1878 memcpy (value_contents_raw (v),
1879 value_contents_raw (arg1) + offset,
1880 TYPE_LENGTH (type));
1881 }
1882 v->offset = (value_offset (arg1) + offset
1883 + value_embedded_offset (arg1));
1884 }
1885 set_value_component_location (v, arg1);
1886 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1887 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1888 return v;
1889 }
1890
1891 /* Given a value ARG1 of a struct or union type,
1892 extract and return the value of one of its (non-static) fields.
1893 FIELDNO says which field. */
1894
1895 struct value *
1896 value_field (struct value *arg1, int fieldno)
1897 {
1898 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1899 }
1900
1901 /* Return a non-virtual function as a value.
1902 F is the list of member functions which contains the desired method.
1903 J is an index into F which provides the desired method.
1904
1905 We only use the symbol for its address, so be happy with either a
1906 full symbol or a minimal symbol.
1907 */
1908
1909 struct value *
1910 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1911 int offset)
1912 {
1913 struct value *v;
1914 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1915 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1916 struct symbol *sym;
1917 struct minimal_symbol *msym;
1918
1919 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
1920 if (sym != NULL)
1921 {
1922 msym = NULL;
1923 }
1924 else
1925 {
1926 gdb_assert (sym == NULL);
1927 msym = lookup_minimal_symbol (physname, NULL, NULL);
1928 if (msym == NULL)
1929 return NULL;
1930 }
1931
1932 v = allocate_value (ftype);
1933 if (sym)
1934 {
1935 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
1936 }
1937 else
1938 {
1939 /* The minimal symbol might point to a function descriptor;
1940 resolve it to the actual code address instead. */
1941 struct objfile *objfile = msymbol_objfile (msym);
1942 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1943
1944 set_value_address (v,
1945 gdbarch_convert_from_func_ptr_addr
1946 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
1947 }
1948
1949 if (arg1p)
1950 {
1951 if (type != value_type (*arg1p))
1952 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1953 value_addr (*arg1p)));
1954
1955 /* Move the `this' pointer according to the offset.
1956 VALUE_OFFSET (*arg1p) += offset;
1957 */
1958 }
1959
1960 return v;
1961 }
1962
1963 \f
1964 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1965 VALADDR.
1966
1967 Extracting bits depends on endianness of the machine. Compute the
1968 number of least significant bits to discard. For big endian machines,
1969 we compute the total number of bits in the anonymous object, subtract
1970 off the bit count from the MSB of the object to the MSB of the
1971 bitfield, then the size of the bitfield, which leaves the LSB discard
1972 count. For little endian machines, the discard count is simply the
1973 number of bits from the LSB of the anonymous object to the LSB of the
1974 bitfield.
1975
1976 If the field is signed, we also do sign extension. */
1977
1978 LONGEST
1979 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
1980 {
1981 ULONGEST val;
1982 ULONGEST valmask;
1983 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1984 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1985 int lsbcount;
1986 struct type *field_type;
1987
1988 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1989 field_type = TYPE_FIELD_TYPE (type, fieldno);
1990 CHECK_TYPEDEF (field_type);
1991
1992 /* Extract bits. See comment above. */
1993
1994 if (gdbarch_bits_big_endian (get_type_arch (type)))
1995 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1996 else
1997 lsbcount = (bitpos % 8);
1998 val >>= lsbcount;
1999
2000 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2001 If the field is signed, and is negative, then sign extend. */
2002
2003 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2004 {
2005 valmask = (((ULONGEST) 1) << bitsize) - 1;
2006 val &= valmask;
2007 if (!TYPE_UNSIGNED (field_type))
2008 {
2009 if (val & (valmask ^ (valmask >> 1)))
2010 {
2011 val |= ~valmask;
2012 }
2013 }
2014 }
2015 return (val);
2016 }
2017
2018 /* Modify the value of a bitfield. ADDR points to a block of memory in
2019 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2020 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2021 indicate which bits (in target bit order) comprise the bitfield.
2022 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2023 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2024
2025 void
2026 modify_field (struct type *type, gdb_byte *addr,
2027 LONGEST fieldval, int bitpos, int bitsize)
2028 {
2029 ULONGEST oword;
2030 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2031
2032 /* If a negative fieldval fits in the field in question, chop
2033 off the sign extension bits. */
2034 if ((~fieldval & ~(mask >> 1)) == 0)
2035 fieldval &= mask;
2036
2037 /* Warn if value is too big to fit in the field in question. */
2038 if (0 != (fieldval & ~mask))
2039 {
2040 /* FIXME: would like to include fieldval in the message, but
2041 we don't have a sprintf_longest. */
2042 warning (_("Value does not fit in %d bits."), bitsize);
2043
2044 /* Truncate it, otherwise adjoining fields may be corrupted. */
2045 fieldval &= mask;
2046 }
2047
2048 oword = extract_unsigned_integer (addr, sizeof oword);
2049
2050 /* Shifting for bit field depends on endianness of the target machine. */
2051 if (gdbarch_bits_big_endian (get_type_arch (type)))
2052 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2053
2054 oword &= ~(mask << bitpos);
2055 oword |= fieldval << bitpos;
2056
2057 store_unsigned_integer (addr, sizeof oword, oword);
2058 }
2059 \f
2060 /* Pack NUM into BUF using a target format of TYPE. */
2061
2062 void
2063 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2064 {
2065 int len;
2066
2067 type = check_typedef (type);
2068 len = TYPE_LENGTH (type);
2069
2070 switch (TYPE_CODE (type))
2071 {
2072 case TYPE_CODE_INT:
2073 case TYPE_CODE_CHAR:
2074 case TYPE_CODE_ENUM:
2075 case TYPE_CODE_FLAGS:
2076 case TYPE_CODE_BOOL:
2077 case TYPE_CODE_RANGE:
2078 case TYPE_CODE_MEMBERPTR:
2079 store_signed_integer (buf, len, num);
2080 break;
2081
2082 case TYPE_CODE_REF:
2083 case TYPE_CODE_PTR:
2084 store_typed_address (buf, type, (CORE_ADDR) num);
2085 break;
2086
2087 default:
2088 error (_("Unexpected type (%d) encountered for integer constant."),
2089 TYPE_CODE (type));
2090 }
2091 }
2092
2093
2094 /* Convert C numbers into newly allocated values. */
2095
2096 struct value *
2097 value_from_longest (struct type *type, LONGEST num)
2098 {
2099 struct value *val = allocate_value (type);
2100
2101 pack_long (value_contents_raw (val), type, num);
2102
2103 return val;
2104 }
2105
2106
2107 /* Create a value representing a pointer of type TYPE to the address
2108 ADDR. */
2109 struct value *
2110 value_from_pointer (struct type *type, CORE_ADDR addr)
2111 {
2112 struct value *val = allocate_value (type);
2113 store_typed_address (value_contents_raw (val), type, addr);
2114 return val;
2115 }
2116
2117
2118 /* Create a value of type TYPE whose contents come from VALADDR, if it
2119 is non-null, and whose memory address (in the inferior) is
2120 ADDRESS. */
2121
2122 struct value *
2123 value_from_contents_and_address (struct type *type,
2124 const gdb_byte *valaddr,
2125 CORE_ADDR address)
2126 {
2127 struct value *v = allocate_value (type);
2128 if (valaddr == NULL)
2129 set_value_lazy (v, 1);
2130 else
2131 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2132 set_value_address (v, address);
2133 VALUE_LVAL (v) = lval_memory;
2134 return v;
2135 }
2136
2137 struct value *
2138 value_from_double (struct type *type, DOUBLEST num)
2139 {
2140 struct value *val = allocate_value (type);
2141 struct type *base_type = check_typedef (type);
2142 enum type_code code = TYPE_CODE (base_type);
2143 int len = TYPE_LENGTH (base_type);
2144
2145 if (code == TYPE_CODE_FLT)
2146 {
2147 store_typed_floating (value_contents_raw (val), base_type, num);
2148 }
2149 else
2150 error (_("Unexpected type encountered for floating constant."));
2151
2152 return val;
2153 }
2154
2155 struct value *
2156 value_from_decfloat (struct type *type, const gdb_byte *dec)
2157 {
2158 struct value *val = allocate_value (type);
2159
2160 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2161
2162 return val;
2163 }
2164
2165 struct value *
2166 coerce_ref (struct value *arg)
2167 {
2168 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2169 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2170 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2171 unpack_pointer (value_type (arg),
2172 value_contents (arg)));
2173 return arg;
2174 }
2175
2176 struct value *
2177 coerce_array (struct value *arg)
2178 {
2179 struct type *type;
2180
2181 arg = coerce_ref (arg);
2182 type = check_typedef (value_type (arg));
2183
2184 switch (TYPE_CODE (type))
2185 {
2186 case TYPE_CODE_ARRAY:
2187 if (current_language->c_style_arrays)
2188 arg = value_coerce_array (arg);
2189 break;
2190 case TYPE_CODE_FUNC:
2191 arg = value_coerce_function (arg);
2192 break;
2193 }
2194 return arg;
2195 }
2196 \f
2197
2198 /* Return true if the function returning the specified type is using
2199 the convention of returning structures in memory (passing in the
2200 address as a hidden first parameter). */
2201
2202 int
2203 using_struct_return (struct gdbarch *gdbarch,
2204 struct type *func_type, struct type *value_type)
2205 {
2206 enum type_code code = TYPE_CODE (value_type);
2207
2208 if (code == TYPE_CODE_ERROR)
2209 error (_("Function return type unknown."));
2210
2211 if (code == TYPE_CODE_VOID)
2212 /* A void return value is never in memory. See also corresponding
2213 code in "print_return_value". */
2214 return 0;
2215
2216 /* Probe the architecture for the return-value convention. */
2217 return (gdbarch_return_value (gdbarch, func_type, value_type,
2218 NULL, NULL, NULL)
2219 != RETURN_VALUE_REGISTER_CONVENTION);
2220 }
2221
2222 /* Set the initialized field in a value struct. */
2223
2224 void
2225 set_value_initialized (struct value *val, int status)
2226 {
2227 val->initialized = status;
2228 }
2229
2230 /* Return the initialized field in a value struct. */
2231
2232 int
2233 value_initialized (struct value *val)
2234 {
2235 return val->initialized;
2236 }
2237
2238 void
2239 _initialize_values (void)
2240 {
2241 add_cmd ("convenience", no_class, show_convenience, _("\
2242 Debugger convenience (\"$foo\") variables.\n\
2243 These variables are created when you assign them values;\n\
2244 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2245 \n\
2246 A few convenience variables are given values automatically:\n\
2247 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2248 \"$__\" holds the contents of the last address examined with \"x\"."),
2249 &showlist);
2250
2251 add_cmd ("values", no_class, show_values,
2252 _("Elements of value history around item number IDX (or last ten)."),
2253 &showlist);
2254
2255 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2256 Initialize a convenience variable if necessary.\n\
2257 init-if-undefined VARIABLE = EXPRESSION\n\
2258 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2259 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2260 VARIABLE is already initialized."));
2261
2262 add_prefix_cmd ("function", no_class, function_command, _("\
2263 Placeholder command for showing help on convenience functions."),
2264 &functionlist, "function ", 0, &cmdlist);
2265 }
This page took 0.077304 seconds and 4 git commands to generate.