* exec.c: #include "arch-utils.h"
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33 #include "doublest.h"
34 #include "gdb_assert.h"
35 #include "regcache.h"
36 #include "block.h"
37 #include "dfp.h"
38
39 /* Prototypes for exported functions. */
40
41 void _initialize_values (void);
42
43 struct value
44 {
45 /* Type of value; either not an lval, or one of the various
46 different possible kinds of lval. */
47 enum lval_type lval;
48
49 /* Is it modifiable? Only relevant if lval != not_lval. */
50 int modifiable;
51
52 /* Location of value (if lval). */
53 union
54 {
55 /* If lval == lval_memory, this is the address in the inferior.
56 If lval == lval_register, this is the byte offset into the
57 registers structure. */
58 CORE_ADDR address;
59
60 /* Pointer to internal variable. */
61 struct internalvar *internalvar;
62 } location;
63
64 /* Describes offset of a value within lval of a structure in bytes.
65 If lval == lval_memory, this is an offset to the address. If
66 lval == lval_register, this is a further offset from
67 location.address within the registers structure. Note also the
68 member embedded_offset below. */
69 int offset;
70
71 /* Only used for bitfields; number of bits contained in them. */
72 int bitsize;
73
74 /* Only used for bitfields; position of start of field. For
75 BITS_BIG_ENDIAN=0 targets, it is the position of the LSB. For
76 BITS_BIG_ENDIAN=1 targets, it is the position of the MSB. */
77 int bitpos;
78
79 /* Frame register value is relative to. This will be described in
80 the lval enum above as "lval_register". */
81 struct frame_id frame_id;
82
83 /* Type of the value. */
84 struct type *type;
85
86 /* If a value represents a C++ object, then the `type' field gives
87 the object's compile-time type. If the object actually belongs
88 to some class derived from `type', perhaps with other base
89 classes and additional members, then `type' is just a subobject
90 of the real thing, and the full object is probably larger than
91 `type' would suggest.
92
93 If `type' is a dynamic class (i.e. one with a vtable), then GDB
94 can actually determine the object's run-time type by looking at
95 the run-time type information in the vtable. When this
96 information is available, we may elect to read in the entire
97 object, for several reasons:
98
99 - When printing the value, the user would probably rather see the
100 full object, not just the limited portion apparent from the
101 compile-time type.
102
103 - If `type' has virtual base classes, then even printing `type'
104 alone may require reaching outside the `type' portion of the
105 object to wherever the virtual base class has been stored.
106
107 When we store the entire object, `enclosing_type' is the run-time
108 type -- the complete object -- and `embedded_offset' is the
109 offset of `type' within that larger type, in bytes. The
110 value_contents() macro takes `embedded_offset' into account, so
111 most GDB code continues to see the `type' portion of the value,
112 just as the inferior would.
113
114 If `type' is a pointer to an object, then `enclosing_type' is a
115 pointer to the object's run-time type, and `pointed_to_offset' is
116 the offset in bytes from the full object to the pointed-to object
117 -- that is, the value `embedded_offset' would have if we followed
118 the pointer and fetched the complete object. (I don't really see
119 the point. Why not just determine the run-time type when you
120 indirect, and avoid the special case? The contents don't matter
121 until you indirect anyway.)
122
123 If we're not doing anything fancy, `enclosing_type' is equal to
124 `type', and `embedded_offset' is zero, so everything works
125 normally. */
126 struct type *enclosing_type;
127 int embedded_offset;
128 int pointed_to_offset;
129
130 /* Values are stored in a chain, so that they can be deleted easily
131 over calls to the inferior. Values assigned to internal
132 variables or put into the value history are taken off this
133 list. */
134 struct value *next;
135
136 /* Register number if the value is from a register. */
137 short regnum;
138
139 /* If zero, contents of this value are in the contents field. If
140 nonzero, contents are in inferior memory at address in the
141 location.address field plus the offset field (and the lval field
142 should be lval_memory).
143
144 WARNING: This field is used by the code which handles watchpoints
145 (see breakpoint.c) to decide whether a particular value can be
146 watched by hardware watchpoints. If the lazy flag is set for
147 some member of a value chain, it is assumed that this member of
148 the chain doesn't need to be watched as part of watching the
149 value itself. This is how GDB avoids watching the entire struct
150 or array when the user wants to watch a single struct member or
151 array element. If you ever change the way lazy flag is set and
152 reset, be sure to consider this use as well! */
153 char lazy;
154
155 /* If nonzero, this is the value of a variable which does not
156 actually exist in the program. */
157 char optimized_out;
158
159 /* If value is a variable, is it initialized or not. */
160 int initialized;
161
162 /* Actual contents of the value. For use of this value; setting it
163 uses the stuff above. Not valid if lazy is nonzero. Target
164 byte-order. We force it to be aligned properly for any possible
165 value. Note that a value therefore extends beyond what is
166 declared here. */
167 union
168 {
169 gdb_byte contents[1];
170 DOUBLEST force_doublest_align;
171 LONGEST force_longest_align;
172 CORE_ADDR force_core_addr_align;
173 void *force_pointer_align;
174 } aligner;
175 /* Do not add any new members here -- contents above will trash
176 them. */
177 };
178
179 /* Prototypes for local functions. */
180
181 static void show_values (char *, int);
182
183 static void show_convenience (char *, int);
184
185
186 /* The value-history records all the values printed
187 by print commands during this session. Each chunk
188 records 60 consecutive values. The first chunk on
189 the chain records the most recent values.
190 The total number of values is in value_history_count. */
191
192 #define VALUE_HISTORY_CHUNK 60
193
194 struct value_history_chunk
195 {
196 struct value_history_chunk *next;
197 struct value *values[VALUE_HISTORY_CHUNK];
198 };
199
200 /* Chain of chunks now in use. */
201
202 static struct value_history_chunk *value_history_chain;
203
204 static int value_history_count; /* Abs number of last entry stored */
205 \f
206 /* List of all value objects currently allocated
207 (except for those released by calls to release_value)
208 This is so they can be freed after each command. */
209
210 static struct value *all_values;
211
212 /* Allocate a value that has the correct length for type TYPE. */
213
214 struct value *
215 allocate_value (struct type *type)
216 {
217 struct value *val;
218 struct type *atype = check_typedef (type);
219
220 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
221 val->next = all_values;
222 all_values = val;
223 val->type = type;
224 val->enclosing_type = type;
225 VALUE_LVAL (val) = not_lval;
226 VALUE_ADDRESS (val) = 0;
227 VALUE_FRAME_ID (val) = null_frame_id;
228 val->offset = 0;
229 val->bitpos = 0;
230 val->bitsize = 0;
231 VALUE_REGNUM (val) = -1;
232 val->lazy = 0;
233 val->optimized_out = 0;
234 val->embedded_offset = 0;
235 val->pointed_to_offset = 0;
236 val->modifiable = 1;
237 val->initialized = 1; /* Default to initialized. */
238 return val;
239 }
240
241 /* Allocate a value that has the correct length
242 for COUNT repetitions type TYPE. */
243
244 struct value *
245 allocate_repeat_value (struct type *type, int count)
246 {
247 int low_bound = current_language->string_lower_bound; /* ??? */
248 /* FIXME-type-allocation: need a way to free this type when we are
249 done with it. */
250 struct type *range_type
251 = create_range_type ((struct type *) NULL, builtin_type_int,
252 low_bound, count + low_bound - 1);
253 /* FIXME-type-allocation: need a way to free this type when we are
254 done with it. */
255 return allocate_value (create_array_type ((struct type *) NULL,
256 type, range_type));
257 }
258
259 /* Accessor methods. */
260
261 struct value *
262 value_next (struct value *value)
263 {
264 return value->next;
265 }
266
267 struct type *
268 value_type (struct value *value)
269 {
270 return value->type;
271 }
272 void
273 deprecated_set_value_type (struct value *value, struct type *type)
274 {
275 value->type = type;
276 }
277
278 int
279 value_offset (struct value *value)
280 {
281 return value->offset;
282 }
283 void
284 set_value_offset (struct value *value, int offset)
285 {
286 value->offset = offset;
287 }
288
289 int
290 value_bitpos (struct value *value)
291 {
292 return value->bitpos;
293 }
294 void
295 set_value_bitpos (struct value *value, int bit)
296 {
297 value->bitpos = bit;
298 }
299
300 int
301 value_bitsize (struct value *value)
302 {
303 return value->bitsize;
304 }
305 void
306 set_value_bitsize (struct value *value, int bit)
307 {
308 value->bitsize = bit;
309 }
310
311 gdb_byte *
312 value_contents_raw (struct value *value)
313 {
314 return value->aligner.contents + value->embedded_offset;
315 }
316
317 gdb_byte *
318 value_contents_all_raw (struct value *value)
319 {
320 return value->aligner.contents;
321 }
322
323 struct type *
324 value_enclosing_type (struct value *value)
325 {
326 return value->enclosing_type;
327 }
328
329 const gdb_byte *
330 value_contents_all (struct value *value)
331 {
332 if (value->lazy)
333 value_fetch_lazy (value);
334 return value->aligner.contents;
335 }
336
337 int
338 value_lazy (struct value *value)
339 {
340 return value->lazy;
341 }
342
343 void
344 set_value_lazy (struct value *value, int val)
345 {
346 value->lazy = val;
347 }
348
349 const gdb_byte *
350 value_contents (struct value *value)
351 {
352 return value_contents_writeable (value);
353 }
354
355 gdb_byte *
356 value_contents_writeable (struct value *value)
357 {
358 if (value->lazy)
359 value_fetch_lazy (value);
360 return value_contents_raw (value);
361 }
362
363 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
364 this function is different from value_equal; in C the operator ==
365 can return 0 even if the two values being compared are equal. */
366
367 int
368 value_contents_equal (struct value *val1, struct value *val2)
369 {
370 struct type *type1;
371 struct type *type2;
372 int len;
373
374 type1 = check_typedef (value_type (val1));
375 type2 = check_typedef (value_type (val2));
376 len = TYPE_LENGTH (type1);
377 if (len != TYPE_LENGTH (type2))
378 return 0;
379
380 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
381 }
382
383 int
384 value_optimized_out (struct value *value)
385 {
386 return value->optimized_out;
387 }
388
389 void
390 set_value_optimized_out (struct value *value, int val)
391 {
392 value->optimized_out = val;
393 }
394
395 int
396 value_embedded_offset (struct value *value)
397 {
398 return value->embedded_offset;
399 }
400
401 void
402 set_value_embedded_offset (struct value *value, int val)
403 {
404 value->embedded_offset = val;
405 }
406
407 int
408 value_pointed_to_offset (struct value *value)
409 {
410 return value->pointed_to_offset;
411 }
412
413 void
414 set_value_pointed_to_offset (struct value *value, int val)
415 {
416 value->pointed_to_offset = val;
417 }
418
419 enum lval_type *
420 deprecated_value_lval_hack (struct value *value)
421 {
422 return &value->lval;
423 }
424
425 CORE_ADDR *
426 deprecated_value_address_hack (struct value *value)
427 {
428 return &value->location.address;
429 }
430
431 struct internalvar **
432 deprecated_value_internalvar_hack (struct value *value)
433 {
434 return &value->location.internalvar;
435 }
436
437 struct frame_id *
438 deprecated_value_frame_id_hack (struct value *value)
439 {
440 return &value->frame_id;
441 }
442
443 short *
444 deprecated_value_regnum_hack (struct value *value)
445 {
446 return &value->regnum;
447 }
448
449 int
450 deprecated_value_modifiable (struct value *value)
451 {
452 return value->modifiable;
453 }
454 void
455 deprecated_set_value_modifiable (struct value *value, int modifiable)
456 {
457 value->modifiable = modifiable;
458 }
459 \f
460 /* Return a mark in the value chain. All values allocated after the
461 mark is obtained (except for those released) are subject to being freed
462 if a subsequent value_free_to_mark is passed the mark. */
463 struct value *
464 value_mark (void)
465 {
466 return all_values;
467 }
468
469 /* Free all values allocated since MARK was obtained by value_mark
470 (except for those released). */
471 void
472 value_free_to_mark (struct value *mark)
473 {
474 struct value *val;
475 struct value *next;
476
477 for (val = all_values; val && val != mark; val = next)
478 {
479 next = val->next;
480 value_free (val);
481 }
482 all_values = val;
483 }
484
485 /* Free all the values that have been allocated (except for those released).
486 Called after each command, successful or not. */
487
488 void
489 free_all_values (void)
490 {
491 struct value *val;
492 struct value *next;
493
494 for (val = all_values; val; val = next)
495 {
496 next = val->next;
497 value_free (val);
498 }
499
500 all_values = 0;
501 }
502
503 /* Remove VAL from the chain all_values
504 so it will not be freed automatically. */
505
506 void
507 release_value (struct value *val)
508 {
509 struct value *v;
510
511 if (all_values == val)
512 {
513 all_values = val->next;
514 return;
515 }
516
517 for (v = all_values; v; v = v->next)
518 {
519 if (v->next == val)
520 {
521 v->next = val->next;
522 break;
523 }
524 }
525 }
526
527 /* Release all values up to mark */
528 struct value *
529 value_release_to_mark (struct value *mark)
530 {
531 struct value *val;
532 struct value *next;
533
534 for (val = next = all_values; next; next = next->next)
535 if (next->next == mark)
536 {
537 all_values = next->next;
538 next->next = NULL;
539 return val;
540 }
541 all_values = 0;
542 return val;
543 }
544
545 /* Return a copy of the value ARG.
546 It contains the same contents, for same memory address,
547 but it's a different block of storage. */
548
549 struct value *
550 value_copy (struct value *arg)
551 {
552 struct type *encl_type = value_enclosing_type (arg);
553 struct value *val = allocate_value (encl_type);
554 val->type = arg->type;
555 VALUE_LVAL (val) = VALUE_LVAL (arg);
556 val->location = arg->location;
557 val->offset = arg->offset;
558 val->bitpos = arg->bitpos;
559 val->bitsize = arg->bitsize;
560 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
561 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
562 val->lazy = arg->lazy;
563 val->optimized_out = arg->optimized_out;
564 val->embedded_offset = value_embedded_offset (arg);
565 val->pointed_to_offset = arg->pointed_to_offset;
566 val->modifiable = arg->modifiable;
567 if (!value_lazy (val))
568 {
569 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
570 TYPE_LENGTH (value_enclosing_type (arg)));
571
572 }
573 return val;
574 }
575 \f
576 /* Access to the value history. */
577
578 /* Record a new value in the value history.
579 Returns the absolute history index of the entry.
580 Result of -1 indicates the value was not saved; otherwise it is the
581 value history index of this new item. */
582
583 int
584 record_latest_value (struct value *val)
585 {
586 int i;
587
588 /* We don't want this value to have anything to do with the inferior anymore.
589 In particular, "set $1 = 50" should not affect the variable from which
590 the value was taken, and fast watchpoints should be able to assume that
591 a value on the value history never changes. */
592 if (value_lazy (val))
593 value_fetch_lazy (val);
594 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
595 from. This is a bit dubious, because then *&$1 does not just return $1
596 but the current contents of that location. c'est la vie... */
597 val->modifiable = 0;
598 release_value (val);
599
600 /* Here we treat value_history_count as origin-zero
601 and applying to the value being stored now. */
602
603 i = value_history_count % VALUE_HISTORY_CHUNK;
604 if (i == 0)
605 {
606 struct value_history_chunk *new
607 = (struct value_history_chunk *)
608 xmalloc (sizeof (struct value_history_chunk));
609 memset (new->values, 0, sizeof new->values);
610 new->next = value_history_chain;
611 value_history_chain = new;
612 }
613
614 value_history_chain->values[i] = val;
615
616 /* Now we regard value_history_count as origin-one
617 and applying to the value just stored. */
618
619 return ++value_history_count;
620 }
621
622 /* Return a copy of the value in the history with sequence number NUM. */
623
624 struct value *
625 access_value_history (int num)
626 {
627 struct value_history_chunk *chunk;
628 int i;
629 int absnum = num;
630
631 if (absnum <= 0)
632 absnum += value_history_count;
633
634 if (absnum <= 0)
635 {
636 if (num == 0)
637 error (_("The history is empty."));
638 else if (num == 1)
639 error (_("There is only one value in the history."));
640 else
641 error (_("History does not go back to $$%d."), -num);
642 }
643 if (absnum > value_history_count)
644 error (_("History has not yet reached $%d."), absnum);
645
646 absnum--;
647
648 /* Now absnum is always absolute and origin zero. */
649
650 chunk = value_history_chain;
651 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
652 i > 0; i--)
653 chunk = chunk->next;
654
655 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
656 }
657
658 static void
659 show_values (char *num_exp, int from_tty)
660 {
661 int i;
662 struct value *val;
663 static int num = 1;
664
665 if (num_exp)
666 {
667 /* "info history +" should print from the stored position.
668 "info history <exp>" should print around value number <exp>. */
669 if (num_exp[0] != '+' || num_exp[1] != '\0')
670 num = parse_and_eval_long (num_exp) - 5;
671 }
672 else
673 {
674 /* "info history" means print the last 10 values. */
675 num = value_history_count - 9;
676 }
677
678 if (num <= 0)
679 num = 1;
680
681 for (i = num; i < num + 10 && i <= value_history_count; i++)
682 {
683 val = access_value_history (i);
684 printf_filtered (("$%d = "), i);
685 value_print (val, gdb_stdout, 0, Val_pretty_default);
686 printf_filtered (("\n"));
687 }
688
689 /* The next "info history +" should start after what we just printed. */
690 num += 10;
691
692 /* Hitting just return after this command should do the same thing as
693 "info history +". If num_exp is null, this is unnecessary, since
694 "info history +" is not useful after "info history". */
695 if (from_tty && num_exp)
696 {
697 num_exp[0] = '+';
698 num_exp[1] = '\0';
699 }
700 }
701 \f
702 /* Internal variables. These are variables within the debugger
703 that hold values assigned by debugger commands.
704 The user refers to them with a '$' prefix
705 that does not appear in the variable names stored internally. */
706
707 static struct internalvar *internalvars;
708
709 /* If the variable does not already exist create it and give it the value given.
710 If no value is given then the default is zero. */
711 static void
712 init_if_undefined_command (char* args, int from_tty)
713 {
714 struct internalvar* intvar;
715
716 /* Parse the expression - this is taken from set_command(). */
717 struct expression *expr = parse_expression (args);
718 register struct cleanup *old_chain =
719 make_cleanup (free_current_contents, &expr);
720
721 /* Validate the expression.
722 Was the expression an assignment?
723 Or even an expression at all? */
724 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
725 error (_("Init-if-undefined requires an assignment expression."));
726
727 /* Extract the variable from the parsed expression.
728 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
729 if (expr->elts[1].opcode != OP_INTERNALVAR)
730 error (_("The first parameter to init-if-undefined should be a GDB variable."));
731 intvar = expr->elts[2].internalvar;
732
733 /* Only evaluate the expression if the lvalue is void.
734 This may still fail if the expresssion is invalid. */
735 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
736 evaluate_expression (expr);
737
738 do_cleanups (old_chain);
739 }
740
741
742 /* Look up an internal variable with name NAME. NAME should not
743 normally include a dollar sign.
744
745 If the specified internal variable does not exist,
746 the return value is NULL. */
747
748 struct internalvar *
749 lookup_only_internalvar (char *name)
750 {
751 struct internalvar *var;
752
753 for (var = internalvars; var; var = var->next)
754 if (strcmp (var->name, name) == 0)
755 return var;
756
757 return NULL;
758 }
759
760
761 /* Create an internal variable with name NAME and with a void value.
762 NAME should not normally include a dollar sign. */
763
764 struct internalvar *
765 create_internalvar (char *name)
766 {
767 struct internalvar *var;
768 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
769 var->name = concat (name, (char *)NULL);
770 var->value = allocate_value (builtin_type_void);
771 var->endian = gdbarch_byte_order (current_gdbarch);
772 release_value (var->value);
773 var->next = internalvars;
774 internalvars = var;
775 return var;
776 }
777
778
779 /* Look up an internal variable with name NAME. NAME should not
780 normally include a dollar sign.
781
782 If the specified internal variable does not exist,
783 one is created, with a void value. */
784
785 struct internalvar *
786 lookup_internalvar (char *name)
787 {
788 struct internalvar *var;
789
790 var = lookup_only_internalvar (name);
791 if (var)
792 return var;
793
794 return create_internalvar (name);
795 }
796
797 struct value *
798 value_of_internalvar (struct internalvar *var)
799 {
800 struct value *val;
801 int i, j;
802 gdb_byte temp;
803
804 val = value_copy (var->value);
805 if (value_lazy (val))
806 value_fetch_lazy (val);
807 VALUE_LVAL (val) = lval_internalvar;
808 VALUE_INTERNALVAR (val) = var;
809
810 /* Values are always stored in the target's byte order. When connected to a
811 target this will most likely always be correct, so there's normally no
812 need to worry about it.
813
814 However, internal variables can be set up before the target endian is
815 known and so may become out of date. Fix it up before anybody sees.
816
817 Internal variables usually hold simple scalar values, and we can
818 correct those. More complex values (e.g. structures and floating
819 point types) are left alone, because they would be too complicated
820 to correct. */
821
822 if (var->endian != gdbarch_byte_order (current_gdbarch))
823 {
824 gdb_byte *array = value_contents_raw (val);
825 struct type *type = check_typedef (value_enclosing_type (val));
826 switch (TYPE_CODE (type))
827 {
828 case TYPE_CODE_INT:
829 case TYPE_CODE_PTR:
830 /* Reverse the bytes. */
831 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
832 {
833 temp = array[j];
834 array[j] = array[i];
835 array[i] = temp;
836 }
837 break;
838 }
839 }
840
841 return val;
842 }
843
844 void
845 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
846 int bitsize, struct value *newval)
847 {
848 gdb_byte *addr = value_contents_writeable (var->value) + offset;
849
850 if (bitsize)
851 modify_field (addr, value_as_long (newval),
852 bitpos, bitsize);
853 else
854 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
855 }
856
857 void
858 set_internalvar (struct internalvar *var, struct value *val)
859 {
860 struct value *newval;
861
862 newval = value_copy (val);
863 newval->modifiable = 1;
864
865 /* Force the value to be fetched from the target now, to avoid problems
866 later when this internalvar is referenced and the target is gone or
867 has changed. */
868 if (value_lazy (newval))
869 value_fetch_lazy (newval);
870
871 /* Begin code which must not call error(). If var->value points to
872 something free'd, an error() obviously leaves a dangling pointer.
873 But we also get a danling pointer if var->value points to
874 something in the value chain (i.e., before release_value is
875 called), because after the error free_all_values will get called before
876 long. */
877 xfree (var->value);
878 var->value = newval;
879 var->endian = gdbarch_byte_order (current_gdbarch);
880 release_value (newval);
881 /* End code which must not call error(). */
882 }
883
884 char *
885 internalvar_name (struct internalvar *var)
886 {
887 return var->name;
888 }
889
890 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
891 prevent cycles / duplicates. */
892
893 static void
894 preserve_one_value (struct value *value, struct objfile *objfile,
895 htab_t copied_types)
896 {
897 if (TYPE_OBJFILE (value->type) == objfile)
898 value->type = copy_type_recursive (objfile, value->type, copied_types);
899
900 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
901 value->enclosing_type = copy_type_recursive (objfile,
902 value->enclosing_type,
903 copied_types);
904 }
905
906 /* Update the internal variables and value history when OBJFILE is
907 discarded; we must copy the types out of the objfile. New global types
908 will be created for every convenience variable which currently points to
909 this objfile's types, and the convenience variables will be adjusted to
910 use the new global types. */
911
912 void
913 preserve_values (struct objfile *objfile)
914 {
915 htab_t copied_types;
916 struct value_history_chunk *cur;
917 struct internalvar *var;
918 int i;
919
920 /* Create the hash table. We allocate on the objfile's obstack, since
921 it is soon to be deleted. */
922 copied_types = create_copied_types_hash (objfile);
923
924 for (cur = value_history_chain; cur; cur = cur->next)
925 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
926 if (cur->values[i])
927 preserve_one_value (cur->values[i], objfile, copied_types);
928
929 for (var = internalvars; var; var = var->next)
930 preserve_one_value (var->value, objfile, copied_types);
931
932 htab_delete (copied_types);
933 }
934
935 static void
936 show_convenience (char *ignore, int from_tty)
937 {
938 struct internalvar *var;
939 int varseen = 0;
940
941 for (var = internalvars; var; var = var->next)
942 {
943 if (!varseen)
944 {
945 varseen = 1;
946 }
947 printf_filtered (("$%s = "), var->name);
948 value_print (value_of_internalvar (var), gdb_stdout,
949 0, Val_pretty_default);
950 printf_filtered (("\n"));
951 }
952 if (!varseen)
953 printf_unfiltered (_("\
954 No debugger convenience variables now defined.\n\
955 Convenience variables have names starting with \"$\";\n\
956 use \"set\" as in \"set $foo = 5\" to define them.\n"));
957 }
958 \f
959 /* Extract a value as a C number (either long or double).
960 Knows how to convert fixed values to double, or
961 floating values to long.
962 Does not deallocate the value. */
963
964 LONGEST
965 value_as_long (struct value *val)
966 {
967 /* This coerces arrays and functions, which is necessary (e.g.
968 in disassemble_command). It also dereferences references, which
969 I suspect is the most logical thing to do. */
970 val = coerce_array (val);
971 return unpack_long (value_type (val), value_contents (val));
972 }
973
974 DOUBLEST
975 value_as_double (struct value *val)
976 {
977 DOUBLEST foo;
978 int inv;
979
980 foo = unpack_double (value_type (val), value_contents (val), &inv);
981 if (inv)
982 error (_("Invalid floating value found in program."));
983 return foo;
984 }
985
986 /* Extract a value as a C pointer. Does not deallocate the value.
987 Note that val's type may not actually be a pointer; value_as_long
988 handles all the cases. */
989 CORE_ADDR
990 value_as_address (struct value *val)
991 {
992 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
993 whether we want this to be true eventually. */
994 #if 0
995 /* gdbarch_addr_bits_remove is wrong if we are being called for a
996 non-address (e.g. argument to "signal", "info break", etc.), or
997 for pointers to char, in which the low bits *are* significant. */
998 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
999 #else
1000
1001 /* There are several targets (IA-64, PowerPC, and others) which
1002 don't represent pointers to functions as simply the address of
1003 the function's entry point. For example, on the IA-64, a
1004 function pointer points to a two-word descriptor, generated by
1005 the linker, which contains the function's entry point, and the
1006 value the IA-64 "global pointer" register should have --- to
1007 support position-independent code. The linker generates
1008 descriptors only for those functions whose addresses are taken.
1009
1010 On such targets, it's difficult for GDB to convert an arbitrary
1011 function address into a function pointer; it has to either find
1012 an existing descriptor for that function, or call malloc and
1013 build its own. On some targets, it is impossible for GDB to
1014 build a descriptor at all: the descriptor must contain a jump
1015 instruction; data memory cannot be executed; and code memory
1016 cannot be modified.
1017
1018 Upon entry to this function, if VAL is a value of type `function'
1019 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1020 VALUE_ADDRESS (val) is the address of the function. This is what
1021 you'll get if you evaluate an expression like `main'. The call
1022 to COERCE_ARRAY below actually does all the usual unary
1023 conversions, which includes converting values of type `function'
1024 to `pointer to function'. This is the challenging conversion
1025 discussed above. Then, `unpack_long' will convert that pointer
1026 back into an address.
1027
1028 So, suppose the user types `disassemble foo' on an architecture
1029 with a strange function pointer representation, on which GDB
1030 cannot build its own descriptors, and suppose further that `foo'
1031 has no linker-built descriptor. The address->pointer conversion
1032 will signal an error and prevent the command from running, even
1033 though the next step would have been to convert the pointer
1034 directly back into the same address.
1035
1036 The following shortcut avoids this whole mess. If VAL is a
1037 function, just return its address directly. */
1038 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1039 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1040 return VALUE_ADDRESS (val);
1041
1042 val = coerce_array (val);
1043
1044 /* Some architectures (e.g. Harvard), map instruction and data
1045 addresses onto a single large unified address space. For
1046 instance: An architecture may consider a large integer in the
1047 range 0x10000000 .. 0x1000ffff to already represent a data
1048 addresses (hence not need a pointer to address conversion) while
1049 a small integer would still need to be converted integer to
1050 pointer to address. Just assume such architectures handle all
1051 integer conversions in a single function. */
1052
1053 /* JimB writes:
1054
1055 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1056 must admonish GDB hackers to make sure its behavior matches the
1057 compiler's, whenever possible.
1058
1059 In general, I think GDB should evaluate expressions the same way
1060 the compiler does. When the user copies an expression out of
1061 their source code and hands it to a `print' command, they should
1062 get the same value the compiler would have computed. Any
1063 deviation from this rule can cause major confusion and annoyance,
1064 and needs to be justified carefully. In other words, GDB doesn't
1065 really have the freedom to do these conversions in clever and
1066 useful ways.
1067
1068 AndrewC pointed out that users aren't complaining about how GDB
1069 casts integers to pointers; they are complaining that they can't
1070 take an address from a disassembly listing and give it to `x/i'.
1071 This is certainly important.
1072
1073 Adding an architecture method like integer_to_address() certainly
1074 makes it possible for GDB to "get it right" in all circumstances
1075 --- the target has complete control over how things get done, so
1076 people can Do The Right Thing for their target without breaking
1077 anyone else. The standard doesn't specify how integers get
1078 converted to pointers; usually, the ABI doesn't either, but
1079 ABI-specific code is a more reasonable place to handle it. */
1080
1081 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1082 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1083 && gdbarch_integer_to_address_p (current_gdbarch))
1084 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
1085 value_contents (val));
1086
1087 return unpack_long (value_type (val), value_contents (val));
1088 #endif
1089 }
1090 \f
1091 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1092 as a long, or as a double, assuming the raw data is described
1093 by type TYPE. Knows how to convert different sizes of values
1094 and can convert between fixed and floating point. We don't assume
1095 any alignment for the raw data. Return value is in host byte order.
1096
1097 If you want functions and arrays to be coerced to pointers, and
1098 references to be dereferenced, call value_as_long() instead.
1099
1100 C++: It is assumed that the front-end has taken care of
1101 all matters concerning pointers to members. A pointer
1102 to member which reaches here is considered to be equivalent
1103 to an INT (or some size). After all, it is only an offset. */
1104
1105 LONGEST
1106 unpack_long (struct type *type, const gdb_byte *valaddr)
1107 {
1108 enum type_code code = TYPE_CODE (type);
1109 int len = TYPE_LENGTH (type);
1110 int nosign = TYPE_UNSIGNED (type);
1111
1112 switch (code)
1113 {
1114 case TYPE_CODE_TYPEDEF:
1115 return unpack_long (check_typedef (type), valaddr);
1116 case TYPE_CODE_ENUM:
1117 case TYPE_CODE_FLAGS:
1118 case TYPE_CODE_BOOL:
1119 case TYPE_CODE_INT:
1120 case TYPE_CODE_CHAR:
1121 case TYPE_CODE_RANGE:
1122 case TYPE_CODE_MEMBERPTR:
1123 if (nosign)
1124 return extract_unsigned_integer (valaddr, len);
1125 else
1126 return extract_signed_integer (valaddr, len);
1127
1128 case TYPE_CODE_FLT:
1129 return extract_typed_floating (valaddr, type);
1130
1131 case TYPE_CODE_DECFLOAT:
1132 /* libdecnumber has a function to convert from decimal to integer, but
1133 it doesn't work when the decimal number has a fractional part. */
1134 return decimal_to_double (valaddr, len);
1135
1136 case TYPE_CODE_PTR:
1137 case TYPE_CODE_REF:
1138 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1139 whether we want this to be true eventually. */
1140 return extract_typed_address (valaddr, type);
1141
1142 default:
1143 error (_("Value can't be converted to integer."));
1144 }
1145 return 0; /* Placate lint. */
1146 }
1147
1148 /* Return a double value from the specified type and address.
1149 INVP points to an int which is set to 0 for valid value,
1150 1 for invalid value (bad float format). In either case,
1151 the returned double is OK to use. Argument is in target
1152 format, result is in host format. */
1153
1154 DOUBLEST
1155 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1156 {
1157 enum type_code code;
1158 int len;
1159 int nosign;
1160
1161 *invp = 0; /* Assume valid. */
1162 CHECK_TYPEDEF (type);
1163 code = TYPE_CODE (type);
1164 len = TYPE_LENGTH (type);
1165 nosign = TYPE_UNSIGNED (type);
1166 if (code == TYPE_CODE_FLT)
1167 {
1168 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1169 floating-point value was valid (using the macro
1170 INVALID_FLOAT). That test/macro have been removed.
1171
1172 It turns out that only the VAX defined this macro and then
1173 only in a non-portable way. Fixing the portability problem
1174 wouldn't help since the VAX floating-point code is also badly
1175 bit-rotten. The target needs to add definitions for the
1176 methods gdbarch_float_format and gdbarch_double_format - these
1177 exactly describe the target floating-point format. The
1178 problem here is that the corresponding floatformat_vax_f and
1179 floatformat_vax_d values these methods should be set to are
1180 also not defined either. Oops!
1181
1182 Hopefully someone will add both the missing floatformat
1183 definitions and the new cases for floatformat_is_valid (). */
1184
1185 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1186 {
1187 *invp = 1;
1188 return 0.0;
1189 }
1190
1191 return extract_typed_floating (valaddr, type);
1192 }
1193 else if (code == TYPE_CODE_DECFLOAT)
1194 return decimal_to_double (valaddr, len);
1195 else if (nosign)
1196 {
1197 /* Unsigned -- be sure we compensate for signed LONGEST. */
1198 return (ULONGEST) unpack_long (type, valaddr);
1199 }
1200 else
1201 {
1202 /* Signed -- we are OK with unpack_long. */
1203 return unpack_long (type, valaddr);
1204 }
1205 }
1206
1207 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1208 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1209 We don't assume any alignment for the raw data. Return value is in
1210 host byte order.
1211
1212 If you want functions and arrays to be coerced to pointers, and
1213 references to be dereferenced, call value_as_address() instead.
1214
1215 C++: It is assumed that the front-end has taken care of
1216 all matters concerning pointers to members. A pointer
1217 to member which reaches here is considered to be equivalent
1218 to an INT (or some size). After all, it is only an offset. */
1219
1220 CORE_ADDR
1221 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1222 {
1223 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1224 whether we want this to be true eventually. */
1225 return unpack_long (type, valaddr);
1226 }
1227
1228 \f
1229 /* Get the value of the FIELDN'th field (which must be static) of
1230 TYPE. Return NULL if the field doesn't exist or has been
1231 optimized out. */
1232
1233 struct value *
1234 value_static_field (struct type *type, int fieldno)
1235 {
1236 struct value *retval;
1237
1238 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
1239 {
1240 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1241 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1242 }
1243 else
1244 {
1245 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1246 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
1247 if (sym == NULL)
1248 {
1249 /* With some compilers, e.g. HP aCC, static data members are reported
1250 as non-debuggable symbols */
1251 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1252 if (!msym)
1253 return NULL;
1254 else
1255 {
1256 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1257 SYMBOL_VALUE_ADDRESS (msym));
1258 }
1259 }
1260 else
1261 {
1262 /* SYM should never have a SYMBOL_CLASS which will require
1263 read_var_value to use the FRAME parameter. */
1264 if (symbol_read_needs_frame (sym))
1265 warning (_("static field's value depends on the current "
1266 "frame - bad debug info?"));
1267 retval = read_var_value (sym, NULL);
1268 }
1269 if (retval && VALUE_LVAL (retval) == lval_memory)
1270 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1271 VALUE_ADDRESS (retval));
1272 }
1273 return retval;
1274 }
1275
1276 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1277 You have to be careful here, since the size of the data area for the value
1278 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1279 than the old enclosing type, you have to allocate more space for the data.
1280 The return value is a pointer to the new version of this value structure. */
1281
1282 struct value *
1283 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1284 {
1285 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
1286 {
1287 val->enclosing_type = new_encl_type;
1288 return val;
1289 }
1290 else
1291 {
1292 struct value *new_val;
1293 struct value *prev;
1294
1295 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
1296
1297 new_val->enclosing_type = new_encl_type;
1298
1299 /* We have to make sure this ends up in the same place in the value
1300 chain as the original copy, so it's clean-up behavior is the same.
1301 If the value has been released, this is a waste of time, but there
1302 is no way to tell that in advance, so... */
1303
1304 if (val != all_values)
1305 {
1306 for (prev = all_values; prev != NULL; prev = prev->next)
1307 {
1308 if (prev->next == val)
1309 {
1310 prev->next = new_val;
1311 break;
1312 }
1313 }
1314 }
1315
1316 return new_val;
1317 }
1318 }
1319
1320 /* Given a value ARG1 (offset by OFFSET bytes)
1321 of a struct or union type ARG_TYPE,
1322 extract and return the value of one of its (non-static) fields.
1323 FIELDNO says which field. */
1324
1325 struct value *
1326 value_primitive_field (struct value *arg1, int offset,
1327 int fieldno, struct type *arg_type)
1328 {
1329 struct value *v;
1330 struct type *type;
1331
1332 CHECK_TYPEDEF (arg_type);
1333 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1334
1335 /* Handle packed fields */
1336
1337 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1338 {
1339 v = value_from_longest (type,
1340 unpack_field_as_long (arg_type,
1341 value_contents (arg1)
1342 + offset,
1343 fieldno));
1344 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1345 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1346 v->offset = value_offset (arg1) + offset
1347 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1348 }
1349 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1350 {
1351 /* This field is actually a base subobject, so preserve the
1352 entire object's contents for later references to virtual
1353 bases, etc. */
1354 v = allocate_value (value_enclosing_type (arg1));
1355 v->type = type;
1356 if (value_lazy (arg1))
1357 set_value_lazy (v, 1);
1358 else
1359 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1360 TYPE_LENGTH (value_enclosing_type (arg1)));
1361 v->offset = value_offset (arg1);
1362 v->embedded_offset = (offset + value_embedded_offset (arg1)
1363 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1364 }
1365 else
1366 {
1367 /* Plain old data member */
1368 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1369 v = allocate_value (type);
1370 if (value_lazy (arg1))
1371 set_value_lazy (v, 1);
1372 else
1373 memcpy (value_contents_raw (v),
1374 value_contents_raw (arg1) + offset,
1375 TYPE_LENGTH (type));
1376 v->offset = (value_offset (arg1) + offset
1377 + value_embedded_offset (arg1));
1378 }
1379 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1380 if (VALUE_LVAL (arg1) == lval_internalvar)
1381 VALUE_LVAL (v) = lval_internalvar_component;
1382 v->location = arg1->location;
1383 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1384 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1385 return v;
1386 }
1387
1388 /* Given a value ARG1 of a struct or union type,
1389 extract and return the value of one of its (non-static) fields.
1390 FIELDNO says which field. */
1391
1392 struct value *
1393 value_field (struct value *arg1, int fieldno)
1394 {
1395 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1396 }
1397
1398 /* Return a non-virtual function as a value.
1399 F is the list of member functions which contains the desired method.
1400 J is an index into F which provides the desired method.
1401
1402 We only use the symbol for its address, so be happy with either a
1403 full symbol or a minimal symbol.
1404 */
1405
1406 struct value *
1407 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1408 int offset)
1409 {
1410 struct value *v;
1411 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1412 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1413 struct symbol *sym;
1414 struct minimal_symbol *msym;
1415
1416 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1417 if (sym != NULL)
1418 {
1419 msym = NULL;
1420 }
1421 else
1422 {
1423 gdb_assert (sym == NULL);
1424 msym = lookup_minimal_symbol (physname, NULL, NULL);
1425 if (msym == NULL)
1426 return NULL;
1427 }
1428
1429 v = allocate_value (ftype);
1430 if (sym)
1431 {
1432 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1433 }
1434 else
1435 {
1436 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1437 }
1438
1439 if (arg1p)
1440 {
1441 if (type != value_type (*arg1p))
1442 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1443 value_addr (*arg1p)));
1444
1445 /* Move the `this' pointer according to the offset.
1446 VALUE_OFFSET (*arg1p) += offset;
1447 */
1448 }
1449
1450 return v;
1451 }
1452
1453 \f
1454 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1455 VALADDR.
1456
1457 Extracting bits depends on endianness of the machine. Compute the
1458 number of least significant bits to discard. For big endian machines,
1459 we compute the total number of bits in the anonymous object, subtract
1460 off the bit count from the MSB of the object to the MSB of the
1461 bitfield, then the size of the bitfield, which leaves the LSB discard
1462 count. For little endian machines, the discard count is simply the
1463 number of bits from the LSB of the anonymous object to the LSB of the
1464 bitfield.
1465
1466 If the field is signed, we also do sign extension. */
1467
1468 LONGEST
1469 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
1470 {
1471 ULONGEST val;
1472 ULONGEST valmask;
1473 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1474 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1475 int lsbcount;
1476 struct type *field_type;
1477
1478 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1479 field_type = TYPE_FIELD_TYPE (type, fieldno);
1480 CHECK_TYPEDEF (field_type);
1481
1482 /* Extract bits. See comment above. */
1483
1484 if (BITS_BIG_ENDIAN)
1485 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1486 else
1487 lsbcount = (bitpos % 8);
1488 val >>= lsbcount;
1489
1490 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1491 If the field is signed, and is negative, then sign extend. */
1492
1493 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1494 {
1495 valmask = (((ULONGEST) 1) << bitsize) - 1;
1496 val &= valmask;
1497 if (!TYPE_UNSIGNED (field_type))
1498 {
1499 if (val & (valmask ^ (valmask >> 1)))
1500 {
1501 val |= ~valmask;
1502 }
1503 }
1504 }
1505 return (val);
1506 }
1507
1508 /* Modify the value of a bitfield. ADDR points to a block of memory in
1509 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1510 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1511 indicate which bits (in target bit order) comprise the bitfield.
1512 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1513 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1514
1515 void
1516 modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
1517 {
1518 ULONGEST oword;
1519 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1520
1521 /* If a negative fieldval fits in the field in question, chop
1522 off the sign extension bits. */
1523 if ((~fieldval & ~(mask >> 1)) == 0)
1524 fieldval &= mask;
1525
1526 /* Warn if value is too big to fit in the field in question. */
1527 if (0 != (fieldval & ~mask))
1528 {
1529 /* FIXME: would like to include fieldval in the message, but
1530 we don't have a sprintf_longest. */
1531 warning (_("Value does not fit in %d bits."), bitsize);
1532
1533 /* Truncate it, otherwise adjoining fields may be corrupted. */
1534 fieldval &= mask;
1535 }
1536
1537 oword = extract_unsigned_integer (addr, sizeof oword);
1538
1539 /* Shifting for bit field depends on endianness of the target machine. */
1540 if (BITS_BIG_ENDIAN)
1541 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1542
1543 oword &= ~(mask << bitpos);
1544 oword |= fieldval << bitpos;
1545
1546 store_unsigned_integer (addr, sizeof oword, oword);
1547 }
1548 \f
1549 /* Pack NUM into BUF using a target format of TYPE. */
1550
1551 void
1552 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
1553 {
1554 int len;
1555
1556 type = check_typedef (type);
1557 len = TYPE_LENGTH (type);
1558
1559 switch (TYPE_CODE (type))
1560 {
1561 case TYPE_CODE_INT:
1562 case TYPE_CODE_CHAR:
1563 case TYPE_CODE_ENUM:
1564 case TYPE_CODE_FLAGS:
1565 case TYPE_CODE_BOOL:
1566 case TYPE_CODE_RANGE:
1567 case TYPE_CODE_MEMBERPTR:
1568 store_signed_integer (buf, len, num);
1569 break;
1570
1571 case TYPE_CODE_REF:
1572 case TYPE_CODE_PTR:
1573 store_typed_address (buf, type, (CORE_ADDR) num);
1574 break;
1575
1576 default:
1577 error (_("Unexpected type (%d) encountered for integer constant."),
1578 TYPE_CODE (type));
1579 }
1580 }
1581
1582
1583 /* Convert C numbers into newly allocated values. */
1584
1585 struct value *
1586 value_from_longest (struct type *type, LONGEST num)
1587 {
1588 struct value *val = allocate_value (type);
1589
1590 pack_long (value_contents_raw (val), type, num);
1591
1592 return val;
1593 }
1594
1595
1596 /* Create a value representing a pointer of type TYPE to the address
1597 ADDR. */
1598 struct value *
1599 value_from_pointer (struct type *type, CORE_ADDR addr)
1600 {
1601 struct value *val = allocate_value (type);
1602 store_typed_address (value_contents_raw (val), type, addr);
1603 return val;
1604 }
1605
1606
1607 /* Create a value for a string constant to be stored locally
1608 (not in the inferior's memory space, but in GDB memory).
1609 This is analogous to value_from_longest, which also does not
1610 use inferior memory. String shall NOT contain embedded nulls. */
1611
1612 struct value *
1613 value_from_string (char *ptr)
1614 {
1615 struct value *val;
1616 int len = strlen (ptr);
1617 int lowbound = current_language->string_lower_bound;
1618 struct type *string_char_type;
1619 struct type *rangetype;
1620 struct type *stringtype;
1621
1622 rangetype = create_range_type ((struct type *) NULL,
1623 builtin_type_int,
1624 lowbound, len + lowbound - 1);
1625 string_char_type = language_string_char_type (current_language,
1626 current_gdbarch);
1627 stringtype = create_array_type ((struct type *) NULL,
1628 string_char_type,
1629 rangetype);
1630 val = allocate_value (stringtype);
1631 memcpy (value_contents_raw (val), ptr, len);
1632 return val;
1633 }
1634
1635 struct value *
1636 value_from_double (struct type *type, DOUBLEST num)
1637 {
1638 struct value *val = allocate_value (type);
1639 struct type *base_type = check_typedef (type);
1640 enum type_code code = TYPE_CODE (base_type);
1641 int len = TYPE_LENGTH (base_type);
1642
1643 if (code == TYPE_CODE_FLT)
1644 {
1645 store_typed_floating (value_contents_raw (val), base_type, num);
1646 }
1647 else
1648 error (_("Unexpected type encountered for floating constant."));
1649
1650 return val;
1651 }
1652
1653 struct value *
1654 value_from_decfloat (struct type *type, const gdb_byte *dec)
1655 {
1656 struct value *val = allocate_value (type);
1657
1658 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
1659
1660 return val;
1661 }
1662
1663 struct value *
1664 coerce_ref (struct value *arg)
1665 {
1666 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1667 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1668 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1669 unpack_pointer (value_type (arg),
1670 value_contents (arg)));
1671 return arg;
1672 }
1673
1674 struct value *
1675 coerce_array (struct value *arg)
1676 {
1677 arg = coerce_ref (arg);
1678 if (current_language->c_style_arrays
1679 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1680 arg = value_coerce_array (arg);
1681 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1682 arg = value_coerce_function (arg);
1683 return arg;
1684 }
1685
1686 struct value *
1687 coerce_number (struct value *arg)
1688 {
1689 arg = coerce_array (arg);
1690 arg = coerce_enum (arg);
1691 return arg;
1692 }
1693
1694 struct value *
1695 coerce_enum (struct value *arg)
1696 {
1697 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1698 arg = value_cast (builtin_type_unsigned_int, arg);
1699 return arg;
1700 }
1701 \f
1702
1703 /* Return true if the function returning the specified type is using
1704 the convention of returning structures in memory (passing in the
1705 address as a hidden first parameter). */
1706
1707 int
1708 using_struct_return (struct type *value_type)
1709 {
1710 enum type_code code = TYPE_CODE (value_type);
1711
1712 if (code == TYPE_CODE_ERROR)
1713 error (_("Function return type unknown."));
1714
1715 if (code == TYPE_CODE_VOID)
1716 /* A void return value is never in memory. See also corresponding
1717 code in "print_return_value". */
1718 return 0;
1719
1720 /* Probe the architecture for the return-value convention. */
1721 return (gdbarch_return_value (current_gdbarch, value_type,
1722 NULL, NULL, NULL)
1723 != RETURN_VALUE_REGISTER_CONVENTION);
1724 }
1725
1726 /* Set the initialized field in a value struct. */
1727
1728 void
1729 set_value_initialized (struct value *val, int status)
1730 {
1731 val->initialized = status;
1732 }
1733
1734 /* Return the initialized field in a value struct. */
1735
1736 int
1737 value_initialized (struct value *val)
1738 {
1739 return val->initialized;
1740 }
1741
1742 void
1743 _initialize_values (void)
1744 {
1745 add_cmd ("convenience", no_class, show_convenience, _("\
1746 Debugger convenience (\"$foo\") variables.\n\
1747 These variables are created when you assign them values;\n\
1748 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1749 \n\
1750 A few convenience variables are given values automatically:\n\
1751 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1752 \"$__\" holds the contents of the last address examined with \"x\"."),
1753 &showlist);
1754
1755 add_cmd ("values", no_class, show_values,
1756 _("Elements of value history around item number IDX (or last ten)."),
1757 &showlist);
1758
1759 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
1760 Initialize a convenience variable if necessary.\n\
1761 init-if-undefined VARIABLE = EXPRESSION\n\
1762 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1763 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1764 VARIABLE is already initialized."));
1765 }
This page took 0.065313 seconds and 4 git commands to generate.