677ec42e636e5b71de1e5a966deeac42a127cfed
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "regcache.h"
32 #include "block.h"
33 #include "target-float.h"
34 #include "objfiles.h"
35 #include "valprint.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
38 #include <ctype.h>
39 #include "tracepoint.h"
40 #include "cp-abi.h"
41 #include "user-regs.h"
42 #include <algorithm>
43 #include "completer.h"
44
45 /* Definition of a user function. */
46 struct internal_function
47 {
48 /* The name of the function. It is a bit odd to have this in the
49 function itself -- the user might use a differently-named
50 convenience variable to hold the function. */
51 char *name;
52
53 /* The handler. */
54 internal_function_fn handler;
55
56 /* User data for the handler. */
57 void *cookie;
58 };
59
60 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
61
62 struct range
63 {
64 /* Lowest offset in the range. */
65 LONGEST offset;
66
67 /* Length of the range. */
68 LONGEST length;
69 };
70
71 typedef struct range range_s;
72
73 DEF_VEC_O(range_s);
74
75 /* Returns true if the ranges defined by [offset1, offset1+len1) and
76 [offset2, offset2+len2) overlap. */
77
78 static int
79 ranges_overlap (LONGEST offset1, LONGEST len1,
80 LONGEST offset2, LONGEST len2)
81 {
82 ULONGEST h, l;
83
84 l = std::max (offset1, offset2);
85 h = std::min (offset1 + len1, offset2 + len2);
86 return (l < h);
87 }
88
89 /* Returns true if the first argument is strictly less than the
90 second, useful for VEC_lower_bound. We keep ranges sorted by
91 offset and coalesce overlapping and contiguous ranges, so this just
92 compares the starting offset. */
93
94 static int
95 range_lessthan (const range_s *r1, const range_s *r2)
96 {
97 return r1->offset < r2->offset;
98 }
99
100 /* Returns true if RANGES contains any range that overlaps [OFFSET,
101 OFFSET+LENGTH). */
102
103 static int
104 ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
105 {
106 range_s what;
107 LONGEST i;
108
109 what.offset = offset;
110 what.length = length;
111
112 /* We keep ranges sorted by offset and coalesce overlapping and
113 contiguous ranges, so to check if a range list contains a given
114 range, we can do a binary search for the position the given range
115 would be inserted if we only considered the starting OFFSET of
116 ranges. We call that position I. Since we also have LENGTH to
117 care for (this is a range afterall), we need to check if the
118 _previous_ range overlaps the I range. E.g.,
119
120 R
121 |---|
122 |---| |---| |------| ... |--|
123 0 1 2 N
124
125 I=1
126
127 In the case above, the binary search would return `I=1', meaning,
128 this OFFSET should be inserted at position 1, and the current
129 position 1 should be pushed further (and before 2). But, `0'
130 overlaps with R.
131
132 Then we need to check if the I range overlaps the I range itself.
133 E.g.,
134
135 R
136 |---|
137 |---| |---| |-------| ... |--|
138 0 1 2 N
139
140 I=1
141 */
142
143 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
144
145 if (i > 0)
146 {
147 struct range *bef = VEC_index (range_s, ranges, i - 1);
148
149 if (ranges_overlap (bef->offset, bef->length, offset, length))
150 return 1;
151 }
152
153 if (i < VEC_length (range_s, ranges))
154 {
155 struct range *r = VEC_index (range_s, ranges, i);
156
157 if (ranges_overlap (r->offset, r->length, offset, length))
158 return 1;
159 }
160
161 return 0;
162 }
163
164 static struct cmd_list_element *functionlist;
165
166 /* Note that the fields in this structure are arranged to save a bit
167 of memory. */
168
169 struct value
170 {
171 /* Type of value; either not an lval, or one of the various
172 different possible kinds of lval. */
173 enum lval_type lval;
174
175 /* Is it modifiable? Only relevant if lval != not_lval. */
176 unsigned int modifiable : 1;
177
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
182
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 unsigned int lazy : 1;
193
194 /* If value is a variable, is it initialized or not. */
195 unsigned int initialized : 1;
196
197 /* If value is from the stack. If this is set, read_stack will be
198 used instead of read_memory to enable extra caching. */
199 unsigned int stack : 1;
200
201 /* If the value has been released. */
202 unsigned int released : 1;
203
204 /* Location of value (if lval). */
205 union
206 {
207 /* If lval == lval_memory, this is the address in the inferior */
208 CORE_ADDR address;
209
210 /*If lval == lval_register, the value is from a register. */
211 struct
212 {
213 /* Register number. */
214 int regnum;
215 /* Frame ID of "next" frame to which a register value is relative.
216 If the register value is found relative to frame F, then the
217 frame id of F->next will be stored in next_frame_id. */
218 struct frame_id next_frame_id;
219 } reg;
220
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
223
224 /* Pointer to xmethod worker. */
225 struct xmethod_worker *xm_worker;
226
227 /* If lval == lval_computed, this is a set of function pointers
228 to use to access and describe the value, and a closure pointer
229 for them to use. */
230 struct
231 {
232 /* Functions to call. */
233 const struct lval_funcs *funcs;
234
235 /* Closure for those functions to use. */
236 void *closure;
237 } computed;
238 } location;
239
240 /* Describes offset of a value within lval of a structure in target
241 addressable memory units. Note also the member embedded_offset
242 below. */
243 LONGEST offset;
244
245 /* Only used for bitfields; number of bits contained in them. */
246 LONGEST bitsize;
247
248 /* Only used for bitfields; position of start of field. For
249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
251 LONGEST bitpos;
252
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
265 /* Type of the value. */
266 struct type *type;
267
268 /* If a value represents a C++ object, then the `type' field gives
269 the object's compile-time type. If the object actually belongs
270 to some class derived from `type', perhaps with other base
271 classes and additional members, then `type' is just a subobject
272 of the real thing, and the full object is probably larger than
273 `type' would suggest.
274
275 If `type' is a dynamic class (i.e. one with a vtable), then GDB
276 can actually determine the object's run-time type by looking at
277 the run-time type information in the vtable. When this
278 information is available, we may elect to read in the entire
279 object, for several reasons:
280
281 - When printing the value, the user would probably rather see the
282 full object, not just the limited portion apparent from the
283 compile-time type.
284
285 - If `type' has virtual base classes, then even printing `type'
286 alone may require reaching outside the `type' portion of the
287 object to wherever the virtual base class has been stored.
288
289 When we store the entire object, `enclosing_type' is the run-time
290 type -- the complete object -- and `embedded_offset' is the
291 offset of `type' within that larger type, in target addressable memory
292 units. The value_contents() macro takes `embedded_offset' into account,
293 so most GDB code continues to see the `type' portion of the value, just
294 as the inferior would.
295
296 If `type' is a pointer to an object, then `enclosing_type' is a
297 pointer to the object's run-time type, and `pointed_to_offset' is
298 the offset in target addressable memory units from the full object
299 to the pointed-to object -- that is, the value `embedded_offset' would
300 have if we followed the pointer and fetched the complete object.
301 (I don't really see the point. Why not just determine the
302 run-time type when you indirect, and avoid the special case? The
303 contents don't matter until you indirect anyway.)
304
305 If we're not doing anything fancy, `enclosing_type' is equal to
306 `type', and `embedded_offset' is zero, so everything works
307 normally. */
308 struct type *enclosing_type;
309 LONGEST embedded_offset;
310 LONGEST pointed_to_offset;
311
312 /* Values are stored in a chain, so that they can be deleted easily
313 over calls to the inferior. Values assigned to internal
314 variables, put into the value history or exposed to Python are
315 taken off this list. */
316 struct value *next;
317
318 /* Actual contents of the value. Target byte-order. NULL or not
319 valid if lazy is nonzero. */
320 gdb_byte *contents;
321
322 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
323 rather than available, since the common and default case is for a
324 value to be available. This is filled in at value read time.
325 The unavailable ranges are tracked in bits. Note that a contents
326 bit that has been optimized out doesn't really exist in the
327 program, so it can't be marked unavailable either. */
328 VEC(range_s) *unavailable;
329
330 /* Likewise, but for optimized out contents (a chunk of the value of
331 a variable that does not actually exist in the program). If LVAL
332 is lval_register, this is a register ($pc, $sp, etc., never a
333 program variable) that has not been saved in the frame. Not
334 saved registers and optimized-out program variables values are
335 treated pretty much the same, except not-saved registers have a
336 different string representation and related error strings. */
337 VEC(range_s) *optimized_out;
338 };
339
340 /* See value.h. */
341
342 struct gdbarch *
343 get_value_arch (const struct value *value)
344 {
345 return get_type_arch (value_type (value));
346 }
347
348 int
349 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
350 {
351 gdb_assert (!value->lazy);
352
353 return !ranges_contain (value->unavailable, offset, length);
354 }
355
356 int
357 value_bytes_available (const struct value *value,
358 LONGEST offset, LONGEST length)
359 {
360 return value_bits_available (value,
361 offset * TARGET_CHAR_BIT,
362 length * TARGET_CHAR_BIT);
363 }
364
365 int
366 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
367 {
368 gdb_assert (!value->lazy);
369
370 return ranges_contain (value->optimized_out, bit_offset, bit_length);
371 }
372
373 int
374 value_entirely_available (struct value *value)
375 {
376 /* We can only tell whether the whole value is available when we try
377 to read it. */
378 if (value->lazy)
379 value_fetch_lazy (value);
380
381 if (VEC_empty (range_s, value->unavailable))
382 return 1;
383 return 0;
384 }
385
386 /* Returns true if VALUE is entirely covered by RANGES. If the value
387 is lazy, it'll be read now. Note that RANGE is a pointer to
388 pointer because reading the value might change *RANGE. */
389
390 static int
391 value_entirely_covered_by_range_vector (struct value *value,
392 VEC(range_s) **ranges)
393 {
394 /* We can only tell whether the whole value is optimized out /
395 unavailable when we try to read it. */
396 if (value->lazy)
397 value_fetch_lazy (value);
398
399 if (VEC_length (range_s, *ranges) == 1)
400 {
401 struct range *t = VEC_index (range_s, *ranges, 0);
402
403 if (t->offset == 0
404 && t->length == (TARGET_CHAR_BIT
405 * TYPE_LENGTH (value_enclosing_type (value))))
406 return 1;
407 }
408
409 return 0;
410 }
411
412 int
413 value_entirely_unavailable (struct value *value)
414 {
415 return value_entirely_covered_by_range_vector (value, &value->unavailable);
416 }
417
418 int
419 value_entirely_optimized_out (struct value *value)
420 {
421 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
422 }
423
424 /* Insert into the vector pointed to by VECTORP the bit range starting of
425 OFFSET bits, and extending for the next LENGTH bits. */
426
427 static void
428 insert_into_bit_range_vector (VEC(range_s) **vectorp,
429 LONGEST offset, LONGEST length)
430 {
431 range_s newr;
432 int i;
433
434 /* Insert the range sorted. If there's overlap or the new range
435 would be contiguous with an existing range, merge. */
436
437 newr.offset = offset;
438 newr.length = length;
439
440 /* Do a binary search for the position the given range would be
441 inserted if we only considered the starting OFFSET of ranges.
442 Call that position I. Since we also have LENGTH to care for
443 (this is a range afterall), we need to check if the _previous_
444 range overlaps the I range. E.g., calling R the new range:
445
446 #1 - overlaps with previous
447
448 R
449 |-...-|
450 |---| |---| |------| ... |--|
451 0 1 2 N
452
453 I=1
454
455 In the case #1 above, the binary search would return `I=1',
456 meaning, this OFFSET should be inserted at position 1, and the
457 current position 1 should be pushed further (and become 2). But,
458 note that `0' overlaps with R, so we want to merge them.
459
460 A similar consideration needs to be taken if the new range would
461 be contiguous with the previous range:
462
463 #2 - contiguous with previous
464
465 R
466 |-...-|
467 |--| |---| |------| ... |--|
468 0 1 2 N
469
470 I=1
471
472 If there's no overlap with the previous range, as in:
473
474 #3 - not overlapping and not contiguous
475
476 R
477 |-...-|
478 |--| |---| |------| ... |--|
479 0 1 2 N
480
481 I=1
482
483 or if I is 0:
484
485 #4 - R is the range with lowest offset
486
487 R
488 |-...-|
489 |--| |---| |------| ... |--|
490 0 1 2 N
491
492 I=0
493
494 ... we just push the new range to I.
495
496 All the 4 cases above need to consider that the new range may
497 also overlap several of the ranges that follow, or that R may be
498 contiguous with the following range, and merge. E.g.,
499
500 #5 - overlapping following ranges
501
502 R
503 |------------------------|
504 |--| |---| |------| ... |--|
505 0 1 2 N
506
507 I=0
508
509 or:
510
511 R
512 |-------|
513 |--| |---| |------| ... |--|
514 0 1 2 N
515
516 I=1
517
518 */
519
520 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
521 if (i > 0)
522 {
523 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
524
525 if (ranges_overlap (bef->offset, bef->length, offset, length))
526 {
527 /* #1 */
528 ULONGEST l = std::min (bef->offset, offset);
529 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
530
531 bef->offset = l;
532 bef->length = h - l;
533 i--;
534 }
535 else if (offset == bef->offset + bef->length)
536 {
537 /* #2 */
538 bef->length += length;
539 i--;
540 }
541 else
542 {
543 /* #3 */
544 VEC_safe_insert (range_s, *vectorp, i, &newr);
545 }
546 }
547 else
548 {
549 /* #4 */
550 VEC_safe_insert (range_s, *vectorp, i, &newr);
551 }
552
553 /* Check whether the ranges following the one we've just added or
554 touched can be folded in (#5 above). */
555 if (i + 1 < VEC_length (range_s, *vectorp))
556 {
557 struct range *t;
558 struct range *r;
559 int removed = 0;
560 int next = i + 1;
561
562 /* Get the range we just touched. */
563 t = VEC_index (range_s, *vectorp, i);
564 removed = 0;
565
566 i = next;
567 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
568 if (r->offset <= t->offset + t->length)
569 {
570 ULONGEST l, h;
571
572 l = std::min (t->offset, r->offset);
573 h = std::max (t->offset + t->length, r->offset + r->length);
574
575 t->offset = l;
576 t->length = h - l;
577
578 removed++;
579 }
580 else
581 {
582 /* If we couldn't merge this one, we won't be able to
583 merge following ones either, since the ranges are
584 always sorted by OFFSET. */
585 break;
586 }
587
588 if (removed != 0)
589 VEC_block_remove (range_s, *vectorp, next, removed);
590 }
591 }
592
593 void
594 mark_value_bits_unavailable (struct value *value,
595 LONGEST offset, LONGEST length)
596 {
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598 }
599
600 void
601 mark_value_bytes_unavailable (struct value *value,
602 LONGEST offset, LONGEST length)
603 {
604 mark_value_bits_unavailable (value,
605 offset * TARGET_CHAR_BIT,
606 length * TARGET_CHAR_BIT);
607 }
608
609 /* Find the first range in RANGES that overlaps the range defined by
610 OFFSET and LENGTH, starting at element POS in the RANGES vector,
611 Returns the index into RANGES where such overlapping range was
612 found, or -1 if none was found. */
613
614 static int
615 find_first_range_overlap (VEC(range_s) *ranges, int pos,
616 LONGEST offset, LONGEST length)
617 {
618 range_s *r;
619 int i;
620
621 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
622 if (ranges_overlap (r->offset, r->length, offset, length))
623 return i;
624
625 return -1;
626 }
627
628 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
629 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
630 return non-zero.
631
632 It must always be the case that:
633 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
634
635 It is assumed that memory can be accessed from:
636 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
637 to:
638 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
639 / TARGET_CHAR_BIT) */
640 static int
641 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
642 const gdb_byte *ptr2, size_t offset2_bits,
643 size_t length_bits)
644 {
645 gdb_assert (offset1_bits % TARGET_CHAR_BIT
646 == offset2_bits % TARGET_CHAR_BIT);
647
648 if (offset1_bits % TARGET_CHAR_BIT != 0)
649 {
650 size_t bits;
651 gdb_byte mask, b1, b2;
652
653 /* The offset from the base pointers PTR1 and PTR2 is not a complete
654 number of bytes. A number of bits up to either the next exact
655 byte boundary, or LENGTH_BITS (which ever is sooner) will be
656 compared. */
657 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
658 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
659 mask = (1 << bits) - 1;
660
661 if (length_bits < bits)
662 {
663 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
664 bits = length_bits;
665 }
666
667 /* Now load the two bytes and mask off the bits we care about. */
668 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
669 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
670
671 if (b1 != b2)
672 return 1;
673
674 /* Now update the length and offsets to take account of the bits
675 we've just compared. */
676 length_bits -= bits;
677 offset1_bits += bits;
678 offset2_bits += bits;
679 }
680
681 if (length_bits % TARGET_CHAR_BIT != 0)
682 {
683 size_t bits;
684 size_t o1, o2;
685 gdb_byte mask, b1, b2;
686
687 /* The length is not an exact number of bytes. After the previous
688 IF.. block then the offsets are byte aligned, or the
689 length is zero (in which case this code is not reached). Compare
690 a number of bits at the end of the region, starting from an exact
691 byte boundary. */
692 bits = length_bits % TARGET_CHAR_BIT;
693 o1 = offset1_bits + length_bits - bits;
694 o2 = offset2_bits + length_bits - bits;
695
696 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
697 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
698
699 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
700 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
701
702 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
703 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
704
705 if (b1 != b2)
706 return 1;
707
708 length_bits -= bits;
709 }
710
711 if (length_bits > 0)
712 {
713 /* We've now taken care of any stray "bits" at the start, or end of
714 the region to compare, the remainder can be covered with a simple
715 memcmp. */
716 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
719
720 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
721 ptr2 + offset2_bits / TARGET_CHAR_BIT,
722 length_bits / TARGET_CHAR_BIT);
723 }
724
725 /* Length is zero, regions match. */
726 return 0;
727 }
728
729 /* Helper struct for find_first_range_overlap_and_match and
730 value_contents_bits_eq. Keep track of which slot of a given ranges
731 vector have we last looked at. */
732
733 struct ranges_and_idx
734 {
735 /* The ranges. */
736 VEC(range_s) *ranges;
737
738 /* The range we've last found in RANGES. Given ranges are sorted,
739 we can start the next lookup here. */
740 int idx;
741 };
742
743 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
744 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
745 ranges starting at OFFSET2 bits. Return true if the ranges match
746 and fill in *L and *H with the overlapping window relative to
747 (both) OFFSET1 or OFFSET2. */
748
749 static int
750 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
751 struct ranges_and_idx *rp2,
752 LONGEST offset1, LONGEST offset2,
753 LONGEST length, ULONGEST *l, ULONGEST *h)
754 {
755 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
756 offset1, length);
757 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
758 offset2, length);
759
760 if (rp1->idx == -1 && rp2->idx == -1)
761 {
762 *l = length;
763 *h = length;
764 return 1;
765 }
766 else if (rp1->idx == -1 || rp2->idx == -1)
767 return 0;
768 else
769 {
770 range_s *r1, *r2;
771 ULONGEST l1, h1;
772 ULONGEST l2, h2;
773
774 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
775 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
776
777 /* Get the unavailable windows intersected by the incoming
778 ranges. The first and last ranges that overlap the argument
779 range may be wider than said incoming arguments ranges. */
780 l1 = std::max (offset1, r1->offset);
781 h1 = std::min (offset1 + length, r1->offset + r1->length);
782
783 l2 = std::max (offset2, r2->offset);
784 h2 = std::min (offset2 + length, offset2 + r2->length);
785
786 /* Make them relative to the respective start offsets, so we can
787 compare them for equality. */
788 l1 -= offset1;
789 h1 -= offset1;
790
791 l2 -= offset2;
792 h2 -= offset2;
793
794 /* Different ranges, no match. */
795 if (l1 != l2 || h1 != h2)
796 return 0;
797
798 *h = h1;
799 *l = l1;
800 return 1;
801 }
802 }
803
804 /* Helper function for value_contents_eq. The only difference is that
805 this function is bit rather than byte based.
806
807 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
808 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
809 Return true if the available bits match. */
810
811 static bool
812 value_contents_bits_eq (const struct value *val1, int offset1,
813 const struct value *val2, int offset2,
814 int length)
815 {
816 /* Each array element corresponds to a ranges source (unavailable,
817 optimized out). '1' is for VAL1, '2' for VAL2. */
818 struct ranges_and_idx rp1[2], rp2[2];
819
820 /* See function description in value.h. */
821 gdb_assert (!val1->lazy && !val2->lazy);
822
823 /* We shouldn't be trying to compare past the end of the values. */
824 gdb_assert (offset1 + length
825 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
826 gdb_assert (offset2 + length
827 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
828
829 memset (&rp1, 0, sizeof (rp1));
830 memset (&rp2, 0, sizeof (rp2));
831 rp1[0].ranges = val1->unavailable;
832 rp2[0].ranges = val2->unavailable;
833 rp1[1].ranges = val1->optimized_out;
834 rp2[1].ranges = val2->optimized_out;
835
836 while (length > 0)
837 {
838 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
839 int i;
840
841 for (i = 0; i < 2; i++)
842 {
843 ULONGEST l_tmp, h_tmp;
844
845 /* The contents only match equal if the invalid/unavailable
846 contents ranges match as well. */
847 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
848 offset1, offset2, length,
849 &l_tmp, &h_tmp))
850 return false;
851
852 /* We're interested in the lowest/first range found. */
853 if (i == 0 || l_tmp < l)
854 {
855 l = l_tmp;
856 h = h_tmp;
857 }
858 }
859
860 /* Compare the available/valid contents. */
861 if (memcmp_with_bit_offsets (val1->contents, offset1,
862 val2->contents, offset2, l) != 0)
863 return false;
864
865 length -= h;
866 offset1 += h;
867 offset2 += h;
868 }
869
870 return true;
871 }
872
873 bool
874 value_contents_eq (const struct value *val1, LONGEST offset1,
875 const struct value *val2, LONGEST offset2,
876 LONGEST length)
877 {
878 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
879 val2, offset2 * TARGET_CHAR_BIT,
880 length * TARGET_CHAR_BIT);
881 }
882
883
884 /* The value-history records all the values printed by print commands
885 during this session. */
886
887 static std::vector<value_ref_ptr> value_history;
888
889 \f
890 /* List of all value objects currently allocated
891 (except for those released by calls to release_value)
892 This is so they can be freed after each command. */
893
894 static struct value *all_values;
895
896 /* Allocate a lazy value for type TYPE. Its actual content is
897 "lazily" allocated too: the content field of the return value is
898 NULL; it will be allocated when it is fetched from the target. */
899
900 struct value *
901 allocate_value_lazy (struct type *type)
902 {
903 struct value *val;
904
905 /* Call check_typedef on our type to make sure that, if TYPE
906 is a TYPE_CODE_TYPEDEF, its length is set to the length
907 of the target type instead of zero. However, we do not
908 replace the typedef type by the target type, because we want
909 to keep the typedef in order to be able to set the VAL's type
910 description correctly. */
911 check_typedef (type);
912
913 val = XCNEW (struct value);
914 val->contents = NULL;
915 val->next = all_values;
916 all_values = val;
917 val->type = type;
918 val->enclosing_type = type;
919 VALUE_LVAL (val) = not_lval;
920 val->location.address = 0;
921 val->offset = 0;
922 val->bitpos = 0;
923 val->bitsize = 0;
924 val->lazy = 1;
925 val->embedded_offset = 0;
926 val->pointed_to_offset = 0;
927 val->modifiable = 1;
928 val->initialized = 1; /* Default to initialized. */
929
930 /* Values start out on the all_values chain. */
931 val->reference_count = 1;
932
933 return val;
934 }
935
936 /* The maximum size, in bytes, that GDB will try to allocate for a value.
937 The initial value of 64k was not selected for any specific reason, it is
938 just a reasonable starting point. */
939
940 static int max_value_size = 65536; /* 64k bytes */
941
942 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
943 LONGEST, otherwise GDB will not be able to parse integer values from the
944 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
945 be unable to parse "set max-value-size 2".
946
947 As we want a consistent GDB experience across hosts with different sizes
948 of LONGEST, this arbitrary minimum value was selected, so long as this
949 is bigger than LONGEST on all GDB supported hosts we're fine. */
950
951 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
952 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
953
954 /* Implement the "set max-value-size" command. */
955
956 static void
957 set_max_value_size (const char *args, int from_tty,
958 struct cmd_list_element *c)
959 {
960 gdb_assert (max_value_size == -1 || max_value_size >= 0);
961
962 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
963 {
964 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
965 error (_("max-value-size set too low, increasing to %d bytes"),
966 max_value_size);
967 }
968 }
969
970 /* Implement the "show max-value-size" command. */
971
972 static void
973 show_max_value_size (struct ui_file *file, int from_tty,
974 struct cmd_list_element *c, const char *value)
975 {
976 if (max_value_size == -1)
977 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
978 else
979 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
980 max_value_size);
981 }
982
983 /* Called before we attempt to allocate or reallocate a buffer for the
984 contents of a value. TYPE is the type of the value for which we are
985 allocating the buffer. If the buffer is too large (based on the user
986 controllable setting) then throw an error. If this function returns
987 then we should attempt to allocate the buffer. */
988
989 static void
990 check_type_length_before_alloc (const struct type *type)
991 {
992 unsigned int length = TYPE_LENGTH (type);
993
994 if (max_value_size > -1 && length > max_value_size)
995 {
996 if (TYPE_NAME (type) != NULL)
997 error (_("value of type `%s' requires %u bytes, which is more "
998 "than max-value-size"), TYPE_NAME (type), length);
999 else
1000 error (_("value requires %u bytes, which is more than "
1001 "max-value-size"), length);
1002 }
1003 }
1004
1005 /* Allocate the contents of VAL if it has not been allocated yet. */
1006
1007 static void
1008 allocate_value_contents (struct value *val)
1009 {
1010 if (!val->contents)
1011 {
1012 check_type_length_before_alloc (val->enclosing_type);
1013 val->contents
1014 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1015 }
1016 }
1017
1018 /* Allocate a value and its contents for type TYPE. */
1019
1020 struct value *
1021 allocate_value (struct type *type)
1022 {
1023 struct value *val = allocate_value_lazy (type);
1024
1025 allocate_value_contents (val);
1026 val->lazy = 0;
1027 return val;
1028 }
1029
1030 /* Allocate a value that has the correct length
1031 for COUNT repetitions of type TYPE. */
1032
1033 struct value *
1034 allocate_repeat_value (struct type *type, int count)
1035 {
1036 int low_bound = current_language->string_lower_bound; /* ??? */
1037 /* FIXME-type-allocation: need a way to free this type when we are
1038 done with it. */
1039 struct type *array_type
1040 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1041
1042 return allocate_value (array_type);
1043 }
1044
1045 struct value *
1046 allocate_computed_value (struct type *type,
1047 const struct lval_funcs *funcs,
1048 void *closure)
1049 {
1050 struct value *v = allocate_value_lazy (type);
1051
1052 VALUE_LVAL (v) = lval_computed;
1053 v->location.computed.funcs = funcs;
1054 v->location.computed.closure = closure;
1055
1056 return v;
1057 }
1058
1059 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1060
1061 struct value *
1062 allocate_optimized_out_value (struct type *type)
1063 {
1064 struct value *retval = allocate_value_lazy (type);
1065
1066 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1067 set_value_lazy (retval, 0);
1068 return retval;
1069 }
1070
1071 /* Accessor methods. */
1072
1073 struct value *
1074 value_next (const struct value *value)
1075 {
1076 return value->next;
1077 }
1078
1079 struct type *
1080 value_type (const struct value *value)
1081 {
1082 return value->type;
1083 }
1084 void
1085 deprecated_set_value_type (struct value *value, struct type *type)
1086 {
1087 value->type = type;
1088 }
1089
1090 LONGEST
1091 value_offset (const struct value *value)
1092 {
1093 return value->offset;
1094 }
1095 void
1096 set_value_offset (struct value *value, LONGEST offset)
1097 {
1098 value->offset = offset;
1099 }
1100
1101 LONGEST
1102 value_bitpos (const struct value *value)
1103 {
1104 return value->bitpos;
1105 }
1106 void
1107 set_value_bitpos (struct value *value, LONGEST bit)
1108 {
1109 value->bitpos = bit;
1110 }
1111
1112 LONGEST
1113 value_bitsize (const struct value *value)
1114 {
1115 return value->bitsize;
1116 }
1117 void
1118 set_value_bitsize (struct value *value, LONGEST bit)
1119 {
1120 value->bitsize = bit;
1121 }
1122
1123 struct value *
1124 value_parent (const struct value *value)
1125 {
1126 return value->parent;
1127 }
1128
1129 /* See value.h. */
1130
1131 void
1132 set_value_parent (struct value *value, struct value *parent)
1133 {
1134 struct value *old = value->parent;
1135
1136 value->parent = parent;
1137 if (parent != NULL)
1138 value_incref (parent);
1139 value_decref (old);
1140 }
1141
1142 gdb_byte *
1143 value_contents_raw (struct value *value)
1144 {
1145 struct gdbarch *arch = get_value_arch (value);
1146 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1147
1148 allocate_value_contents (value);
1149 return value->contents + value->embedded_offset * unit_size;
1150 }
1151
1152 gdb_byte *
1153 value_contents_all_raw (struct value *value)
1154 {
1155 allocate_value_contents (value);
1156 return value->contents;
1157 }
1158
1159 struct type *
1160 value_enclosing_type (const struct value *value)
1161 {
1162 return value->enclosing_type;
1163 }
1164
1165 /* Look at value.h for description. */
1166
1167 struct type *
1168 value_actual_type (struct value *value, int resolve_simple_types,
1169 int *real_type_found)
1170 {
1171 struct value_print_options opts;
1172 struct type *result;
1173
1174 get_user_print_options (&opts);
1175
1176 if (real_type_found)
1177 *real_type_found = 0;
1178 result = value_type (value);
1179 if (opts.objectprint)
1180 {
1181 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1182 fetch its rtti type. */
1183 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1184 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1185 == TYPE_CODE_STRUCT
1186 && !value_optimized_out (value))
1187 {
1188 struct type *real_type;
1189
1190 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1191 if (real_type)
1192 {
1193 if (real_type_found)
1194 *real_type_found = 1;
1195 result = real_type;
1196 }
1197 }
1198 else if (resolve_simple_types)
1199 {
1200 if (real_type_found)
1201 *real_type_found = 1;
1202 result = value_enclosing_type (value);
1203 }
1204 }
1205
1206 return result;
1207 }
1208
1209 void
1210 error_value_optimized_out (void)
1211 {
1212 error (_("value has been optimized out"));
1213 }
1214
1215 static void
1216 require_not_optimized_out (const struct value *value)
1217 {
1218 if (!VEC_empty (range_s, value->optimized_out))
1219 {
1220 if (value->lval == lval_register)
1221 error (_("register has not been saved in frame"));
1222 else
1223 error_value_optimized_out ();
1224 }
1225 }
1226
1227 static void
1228 require_available (const struct value *value)
1229 {
1230 if (!VEC_empty (range_s, value->unavailable))
1231 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1232 }
1233
1234 const gdb_byte *
1235 value_contents_for_printing (struct value *value)
1236 {
1237 if (value->lazy)
1238 value_fetch_lazy (value);
1239 return value->contents;
1240 }
1241
1242 const gdb_byte *
1243 value_contents_for_printing_const (const struct value *value)
1244 {
1245 gdb_assert (!value->lazy);
1246 return value->contents;
1247 }
1248
1249 const gdb_byte *
1250 value_contents_all (struct value *value)
1251 {
1252 const gdb_byte *result = value_contents_for_printing (value);
1253 require_not_optimized_out (value);
1254 require_available (value);
1255 return result;
1256 }
1257
1258 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1259 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1260
1261 static void
1262 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1263 VEC (range_s) *src_range, int src_bit_offset,
1264 int bit_length)
1265 {
1266 range_s *r;
1267 int i;
1268
1269 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1270 {
1271 ULONGEST h, l;
1272
1273 l = std::max (r->offset, (LONGEST) src_bit_offset);
1274 h = std::min (r->offset + r->length,
1275 (LONGEST) src_bit_offset + bit_length);
1276
1277 if (l < h)
1278 insert_into_bit_range_vector (dst_range,
1279 dst_bit_offset + (l - src_bit_offset),
1280 h - l);
1281 }
1282 }
1283
1284 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1285 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1286
1287 static void
1288 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1289 const struct value *src, int src_bit_offset,
1290 int bit_length)
1291 {
1292 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1293 src->unavailable, src_bit_offset,
1294 bit_length);
1295 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1296 src->optimized_out, src_bit_offset,
1297 bit_length);
1298 }
1299
1300 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1301 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1302 contents, starting at DST_OFFSET. If unavailable contents are
1303 being copied from SRC, the corresponding DST contents are marked
1304 unavailable accordingly. Neither DST nor SRC may be lazy
1305 values.
1306
1307 It is assumed the contents of DST in the [DST_OFFSET,
1308 DST_OFFSET+LENGTH) range are wholly available. */
1309
1310 void
1311 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1312 struct value *src, LONGEST src_offset, LONGEST length)
1313 {
1314 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1315 struct gdbarch *arch = get_value_arch (src);
1316 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1317
1318 /* A lazy DST would make that this copy operation useless, since as
1319 soon as DST's contents were un-lazied (by a later value_contents
1320 call, say), the contents would be overwritten. A lazy SRC would
1321 mean we'd be copying garbage. */
1322 gdb_assert (!dst->lazy && !src->lazy);
1323
1324 /* The overwritten DST range gets unavailability ORed in, not
1325 replaced. Make sure to remember to implement replacing if it
1326 turns out actually necessary. */
1327 gdb_assert (value_bytes_available (dst, dst_offset, length));
1328 gdb_assert (!value_bits_any_optimized_out (dst,
1329 TARGET_CHAR_BIT * dst_offset,
1330 TARGET_CHAR_BIT * length));
1331
1332 /* Copy the data. */
1333 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1334 value_contents_all_raw (src) + src_offset * unit_size,
1335 length * unit_size);
1336
1337 /* Copy the meta-data, adjusted. */
1338 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1339 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1340 bit_length = length * unit_size * HOST_CHAR_BIT;
1341
1342 value_ranges_copy_adjusted (dst, dst_bit_offset,
1343 src, src_bit_offset,
1344 bit_length);
1345 }
1346
1347 /* Copy LENGTH bytes of SRC value's (all) contents
1348 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1349 (all) contents, starting at DST_OFFSET. If unavailable contents
1350 are being copied from SRC, the corresponding DST contents are
1351 marked unavailable accordingly. DST must not be lazy. If SRC is
1352 lazy, it will be fetched now.
1353
1354 It is assumed the contents of DST in the [DST_OFFSET,
1355 DST_OFFSET+LENGTH) range are wholly available. */
1356
1357 void
1358 value_contents_copy (struct value *dst, LONGEST dst_offset,
1359 struct value *src, LONGEST src_offset, LONGEST length)
1360 {
1361 if (src->lazy)
1362 value_fetch_lazy (src);
1363
1364 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1365 }
1366
1367 int
1368 value_lazy (const struct value *value)
1369 {
1370 return value->lazy;
1371 }
1372
1373 void
1374 set_value_lazy (struct value *value, int val)
1375 {
1376 value->lazy = val;
1377 }
1378
1379 int
1380 value_stack (const struct value *value)
1381 {
1382 return value->stack;
1383 }
1384
1385 void
1386 set_value_stack (struct value *value, int val)
1387 {
1388 value->stack = val;
1389 }
1390
1391 const gdb_byte *
1392 value_contents (struct value *value)
1393 {
1394 const gdb_byte *result = value_contents_writeable (value);
1395 require_not_optimized_out (value);
1396 require_available (value);
1397 return result;
1398 }
1399
1400 gdb_byte *
1401 value_contents_writeable (struct value *value)
1402 {
1403 if (value->lazy)
1404 value_fetch_lazy (value);
1405 return value_contents_raw (value);
1406 }
1407
1408 int
1409 value_optimized_out (struct value *value)
1410 {
1411 /* We can only know if a value is optimized out once we have tried to
1412 fetch it. */
1413 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1414 {
1415 TRY
1416 {
1417 value_fetch_lazy (value);
1418 }
1419 CATCH (ex, RETURN_MASK_ERROR)
1420 {
1421 /* Fall back to checking value->optimized_out. */
1422 }
1423 END_CATCH
1424 }
1425
1426 return !VEC_empty (range_s, value->optimized_out);
1427 }
1428
1429 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1430 the following LENGTH bytes. */
1431
1432 void
1433 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1434 {
1435 mark_value_bits_optimized_out (value,
1436 offset * TARGET_CHAR_BIT,
1437 length * TARGET_CHAR_BIT);
1438 }
1439
1440 /* See value.h. */
1441
1442 void
1443 mark_value_bits_optimized_out (struct value *value,
1444 LONGEST offset, LONGEST length)
1445 {
1446 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1447 }
1448
1449 int
1450 value_bits_synthetic_pointer (const struct value *value,
1451 LONGEST offset, LONGEST length)
1452 {
1453 if (value->lval != lval_computed
1454 || !value->location.computed.funcs->check_synthetic_pointer)
1455 return 0;
1456 return value->location.computed.funcs->check_synthetic_pointer (value,
1457 offset,
1458 length);
1459 }
1460
1461 LONGEST
1462 value_embedded_offset (const struct value *value)
1463 {
1464 return value->embedded_offset;
1465 }
1466
1467 void
1468 set_value_embedded_offset (struct value *value, LONGEST val)
1469 {
1470 value->embedded_offset = val;
1471 }
1472
1473 LONGEST
1474 value_pointed_to_offset (const struct value *value)
1475 {
1476 return value->pointed_to_offset;
1477 }
1478
1479 void
1480 set_value_pointed_to_offset (struct value *value, LONGEST val)
1481 {
1482 value->pointed_to_offset = val;
1483 }
1484
1485 const struct lval_funcs *
1486 value_computed_funcs (const struct value *v)
1487 {
1488 gdb_assert (value_lval_const (v) == lval_computed);
1489
1490 return v->location.computed.funcs;
1491 }
1492
1493 void *
1494 value_computed_closure (const struct value *v)
1495 {
1496 gdb_assert (v->lval == lval_computed);
1497
1498 return v->location.computed.closure;
1499 }
1500
1501 enum lval_type *
1502 deprecated_value_lval_hack (struct value *value)
1503 {
1504 return &value->lval;
1505 }
1506
1507 enum lval_type
1508 value_lval_const (const struct value *value)
1509 {
1510 return value->lval;
1511 }
1512
1513 CORE_ADDR
1514 value_address (const struct value *value)
1515 {
1516 if (value->lval != lval_memory)
1517 return 0;
1518 if (value->parent != NULL)
1519 return value_address (value->parent) + value->offset;
1520 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1521 {
1522 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1523 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1524 }
1525
1526 return value->location.address + value->offset;
1527 }
1528
1529 CORE_ADDR
1530 value_raw_address (const struct value *value)
1531 {
1532 if (value->lval != lval_memory)
1533 return 0;
1534 return value->location.address;
1535 }
1536
1537 void
1538 set_value_address (struct value *value, CORE_ADDR addr)
1539 {
1540 gdb_assert (value->lval == lval_memory);
1541 value->location.address = addr;
1542 }
1543
1544 struct internalvar **
1545 deprecated_value_internalvar_hack (struct value *value)
1546 {
1547 return &value->location.internalvar;
1548 }
1549
1550 struct frame_id *
1551 deprecated_value_next_frame_id_hack (struct value *value)
1552 {
1553 gdb_assert (value->lval == lval_register);
1554 return &value->location.reg.next_frame_id;
1555 }
1556
1557 int *
1558 deprecated_value_regnum_hack (struct value *value)
1559 {
1560 gdb_assert (value->lval == lval_register);
1561 return &value->location.reg.regnum;
1562 }
1563
1564 int
1565 deprecated_value_modifiable (const struct value *value)
1566 {
1567 return value->modifiable;
1568 }
1569 \f
1570 /* Return a mark in the value chain. All values allocated after the
1571 mark is obtained (except for those released) are subject to being freed
1572 if a subsequent value_free_to_mark is passed the mark. */
1573 struct value *
1574 value_mark (void)
1575 {
1576 return all_values;
1577 }
1578
1579 /* Take a reference to VAL. VAL will not be deallocated until all
1580 references are released. */
1581
1582 struct value *
1583 value_incref (struct value *val)
1584 {
1585 val->reference_count++;
1586 return val;
1587 }
1588
1589 /* Release a reference to VAL, which was acquired with value_incref.
1590 This function is also called to deallocate values from the value
1591 chain. */
1592
1593 void
1594 value_decref (struct value *val)
1595 {
1596 if (val)
1597 {
1598 gdb_assert (val->reference_count > 0);
1599 val->reference_count--;
1600 if (val->reference_count > 0)
1601 return;
1602
1603 /* If there's an associated parent value, drop our reference to
1604 it. */
1605 if (val->parent != NULL)
1606 value_decref (val->parent);
1607
1608 if (VALUE_LVAL (val) == lval_computed)
1609 {
1610 const struct lval_funcs *funcs = val->location.computed.funcs;
1611
1612 if (funcs->free_closure)
1613 funcs->free_closure (val);
1614 }
1615 else if (VALUE_LVAL (val) == lval_xcallable)
1616 delete val->location.xm_worker;
1617
1618 xfree (val->contents);
1619 VEC_free (range_s, val->unavailable);
1620 }
1621 xfree (val);
1622 }
1623
1624 /* Free all values allocated since MARK was obtained by value_mark
1625 (except for those released). */
1626 void
1627 value_free_to_mark (const struct value *mark)
1628 {
1629 struct value *val;
1630 struct value *next;
1631
1632 for (val = all_values; val && val != mark; val = next)
1633 {
1634 next = val->next;
1635 val->released = 1;
1636 value_decref (val);
1637 }
1638 all_values = val;
1639 }
1640
1641 /* Free all the values that have been allocated (except for those released).
1642 Call after each command, successful or not.
1643 In practice this is called before each command, which is sufficient. */
1644
1645 void
1646 free_all_values (void)
1647 {
1648 struct value *val;
1649 struct value *next;
1650
1651 for (val = all_values; val; val = next)
1652 {
1653 next = val->next;
1654 val->released = 1;
1655 value_decref (val);
1656 }
1657
1658 all_values = 0;
1659 }
1660
1661 /* Frees all the elements in a chain of values. */
1662
1663 void
1664 free_value_chain (struct value *v)
1665 {
1666 struct value *next;
1667
1668 for (; v; v = next)
1669 {
1670 next = value_next (v);
1671 value_decref (v);
1672 }
1673 }
1674
1675 /* Remove VAL from the chain all_values
1676 so it will not be freed automatically. */
1677
1678 value_ref_ptr
1679 release_value (struct value *val)
1680 {
1681 struct value *v;
1682 bool released = false;
1683
1684 if (val == nullptr)
1685 return value_ref_ptr ();
1686
1687 if (all_values == val)
1688 {
1689 all_values = val->next;
1690 val->next = NULL;
1691 released = true;
1692 }
1693 else
1694 {
1695 for (v = all_values; v; v = v->next)
1696 {
1697 if (v->next == val)
1698 {
1699 v->next = val->next;
1700 val->next = NULL;
1701 released = true;
1702 break;
1703 }
1704 }
1705 }
1706
1707 if (!released)
1708 {
1709 /* We must always return an owned reference. Normally this
1710 happens because we transfer the reference from the value
1711 chain, but in this case the value was not on the chain. */
1712 value_incref (val);
1713 }
1714
1715 return value_ref_ptr (val);
1716 }
1717
1718 /* Release all values up to mark */
1719 struct value *
1720 value_release_to_mark (const struct value *mark)
1721 {
1722 struct value *val;
1723 struct value *next;
1724
1725 for (val = next = all_values; next; next = next->next)
1726 {
1727 if (next->next == mark)
1728 {
1729 all_values = next->next;
1730 next->next = NULL;
1731 return val;
1732 }
1733 next->released = 1;
1734 }
1735 all_values = 0;
1736 return val;
1737 }
1738
1739 /* Return a copy of the value ARG.
1740 It contains the same contents, for same memory address,
1741 but it's a different block of storage. */
1742
1743 struct value *
1744 value_copy (struct value *arg)
1745 {
1746 struct type *encl_type = value_enclosing_type (arg);
1747 struct value *val;
1748
1749 if (value_lazy (arg))
1750 val = allocate_value_lazy (encl_type);
1751 else
1752 val = allocate_value (encl_type);
1753 val->type = arg->type;
1754 VALUE_LVAL (val) = VALUE_LVAL (arg);
1755 val->location = arg->location;
1756 val->offset = arg->offset;
1757 val->bitpos = arg->bitpos;
1758 val->bitsize = arg->bitsize;
1759 val->lazy = arg->lazy;
1760 val->embedded_offset = value_embedded_offset (arg);
1761 val->pointed_to_offset = arg->pointed_to_offset;
1762 val->modifiable = arg->modifiable;
1763 if (!value_lazy (val))
1764 {
1765 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1766 TYPE_LENGTH (value_enclosing_type (arg)));
1767
1768 }
1769 val->unavailable = VEC_copy (range_s, arg->unavailable);
1770 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1771 set_value_parent (val, arg->parent);
1772 if (VALUE_LVAL (val) == lval_computed)
1773 {
1774 const struct lval_funcs *funcs = val->location.computed.funcs;
1775
1776 if (funcs->copy_closure)
1777 val->location.computed.closure = funcs->copy_closure (val);
1778 }
1779 return val;
1780 }
1781
1782 /* Return a "const" and/or "volatile" qualified version of the value V.
1783 If CNST is true, then the returned value will be qualified with
1784 "const".
1785 if VOLTL is true, then the returned value will be qualified with
1786 "volatile". */
1787
1788 struct value *
1789 make_cv_value (int cnst, int voltl, struct value *v)
1790 {
1791 struct type *val_type = value_type (v);
1792 struct type *enclosing_type = value_enclosing_type (v);
1793 struct value *cv_val = value_copy (v);
1794
1795 deprecated_set_value_type (cv_val,
1796 make_cv_type (cnst, voltl, val_type, NULL));
1797 set_value_enclosing_type (cv_val,
1798 make_cv_type (cnst, voltl, enclosing_type, NULL));
1799
1800 return cv_val;
1801 }
1802
1803 /* Return a version of ARG that is non-lvalue. */
1804
1805 struct value *
1806 value_non_lval (struct value *arg)
1807 {
1808 if (VALUE_LVAL (arg) != not_lval)
1809 {
1810 struct type *enc_type = value_enclosing_type (arg);
1811 struct value *val = allocate_value (enc_type);
1812
1813 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1814 TYPE_LENGTH (enc_type));
1815 val->type = arg->type;
1816 set_value_embedded_offset (val, value_embedded_offset (arg));
1817 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1818 return val;
1819 }
1820 return arg;
1821 }
1822
1823 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1824
1825 void
1826 value_force_lval (struct value *v, CORE_ADDR addr)
1827 {
1828 gdb_assert (VALUE_LVAL (v) == not_lval);
1829
1830 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1831 v->lval = lval_memory;
1832 v->location.address = addr;
1833 }
1834
1835 void
1836 set_value_component_location (struct value *component,
1837 const struct value *whole)
1838 {
1839 struct type *type;
1840
1841 gdb_assert (whole->lval != lval_xcallable);
1842
1843 if (whole->lval == lval_internalvar)
1844 VALUE_LVAL (component) = lval_internalvar_component;
1845 else
1846 VALUE_LVAL (component) = whole->lval;
1847
1848 component->location = whole->location;
1849 if (whole->lval == lval_computed)
1850 {
1851 const struct lval_funcs *funcs = whole->location.computed.funcs;
1852
1853 if (funcs->copy_closure)
1854 component->location.computed.closure = funcs->copy_closure (whole);
1855 }
1856
1857 /* If type has a dynamic resolved location property
1858 update it's value address. */
1859 type = value_type (whole);
1860 if (NULL != TYPE_DATA_LOCATION (type)
1861 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1862 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1863 }
1864
1865 /* Access to the value history. */
1866
1867 /* Record a new value in the value history.
1868 Returns the absolute history index of the entry. */
1869
1870 int
1871 record_latest_value (struct value *val)
1872 {
1873 int i;
1874
1875 /* We don't want this value to have anything to do with the inferior anymore.
1876 In particular, "set $1 = 50" should not affect the variable from which
1877 the value was taken, and fast watchpoints should be able to assume that
1878 a value on the value history never changes. */
1879 if (value_lazy (val))
1880 value_fetch_lazy (val);
1881 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1882 from. This is a bit dubious, because then *&$1 does not just return $1
1883 but the current contents of that location. c'est la vie... */
1884 val->modifiable = 0;
1885
1886 value_history.push_back (release_value (val));
1887
1888 return value_history.size ();
1889 }
1890
1891 /* Return a copy of the value in the history with sequence number NUM. */
1892
1893 struct value *
1894 access_value_history (int num)
1895 {
1896 int i;
1897 int absnum = num;
1898
1899 if (absnum <= 0)
1900 absnum += value_history.size ();
1901
1902 if (absnum <= 0)
1903 {
1904 if (num == 0)
1905 error (_("The history is empty."));
1906 else if (num == 1)
1907 error (_("There is only one value in the history."));
1908 else
1909 error (_("History does not go back to $$%d."), -num);
1910 }
1911 if (absnum > value_history.size ())
1912 error (_("History has not yet reached $%d."), absnum);
1913
1914 absnum--;
1915
1916 return value_copy (value_history[absnum].get ());
1917 }
1918
1919 static void
1920 show_values (const char *num_exp, int from_tty)
1921 {
1922 int i;
1923 struct value *val;
1924 static int num = 1;
1925
1926 if (num_exp)
1927 {
1928 /* "show values +" should print from the stored position.
1929 "show values <exp>" should print around value number <exp>. */
1930 if (num_exp[0] != '+' || num_exp[1] != '\0')
1931 num = parse_and_eval_long (num_exp) - 5;
1932 }
1933 else
1934 {
1935 /* "show values" means print the last 10 values. */
1936 num = value_history.size () - 9;
1937 }
1938
1939 if (num <= 0)
1940 num = 1;
1941
1942 for (i = num; i < num + 10 && i <= value_history.size (); i++)
1943 {
1944 struct value_print_options opts;
1945
1946 val = access_value_history (i);
1947 printf_filtered (("$%d = "), i);
1948 get_user_print_options (&opts);
1949 value_print (val, gdb_stdout, &opts);
1950 printf_filtered (("\n"));
1951 }
1952
1953 /* The next "show values +" should start after what we just printed. */
1954 num += 10;
1955
1956 /* Hitting just return after this command should do the same thing as
1957 "show values +". If num_exp is null, this is unnecessary, since
1958 "show values +" is not useful after "show values". */
1959 if (from_tty && num_exp)
1960 set_repeat_arguments ("+");
1961 }
1962 \f
1963 enum internalvar_kind
1964 {
1965 /* The internal variable is empty. */
1966 INTERNALVAR_VOID,
1967
1968 /* The value of the internal variable is provided directly as
1969 a GDB value object. */
1970 INTERNALVAR_VALUE,
1971
1972 /* A fresh value is computed via a call-back routine on every
1973 access to the internal variable. */
1974 INTERNALVAR_MAKE_VALUE,
1975
1976 /* The internal variable holds a GDB internal convenience function. */
1977 INTERNALVAR_FUNCTION,
1978
1979 /* The variable holds an integer value. */
1980 INTERNALVAR_INTEGER,
1981
1982 /* The variable holds a GDB-provided string. */
1983 INTERNALVAR_STRING,
1984 };
1985
1986 union internalvar_data
1987 {
1988 /* A value object used with INTERNALVAR_VALUE. */
1989 struct value *value;
1990
1991 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1992 struct
1993 {
1994 /* The functions to call. */
1995 const struct internalvar_funcs *functions;
1996
1997 /* The function's user-data. */
1998 void *data;
1999 } make_value;
2000
2001 /* The internal function used with INTERNALVAR_FUNCTION. */
2002 struct
2003 {
2004 struct internal_function *function;
2005 /* True if this is the canonical name for the function. */
2006 int canonical;
2007 } fn;
2008
2009 /* An integer value used with INTERNALVAR_INTEGER. */
2010 struct
2011 {
2012 /* If type is non-NULL, it will be used as the type to generate
2013 a value for this internal variable. If type is NULL, a default
2014 integer type for the architecture is used. */
2015 struct type *type;
2016 LONGEST val;
2017 } integer;
2018
2019 /* A string value used with INTERNALVAR_STRING. */
2020 char *string;
2021 };
2022
2023 /* Internal variables. These are variables within the debugger
2024 that hold values assigned by debugger commands.
2025 The user refers to them with a '$' prefix
2026 that does not appear in the variable names stored internally. */
2027
2028 struct internalvar
2029 {
2030 struct internalvar *next;
2031 char *name;
2032
2033 /* We support various different kinds of content of an internal variable.
2034 enum internalvar_kind specifies the kind, and union internalvar_data
2035 provides the data associated with this particular kind. */
2036
2037 enum internalvar_kind kind;
2038
2039 union internalvar_data u;
2040 };
2041
2042 static struct internalvar *internalvars;
2043
2044 /* If the variable does not already exist create it and give it the
2045 value given. If no value is given then the default is zero. */
2046 static void
2047 init_if_undefined_command (const char* args, int from_tty)
2048 {
2049 struct internalvar* intvar;
2050
2051 /* Parse the expression - this is taken from set_command(). */
2052 expression_up expr = parse_expression (args);
2053
2054 /* Validate the expression.
2055 Was the expression an assignment?
2056 Or even an expression at all? */
2057 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2058 error (_("Init-if-undefined requires an assignment expression."));
2059
2060 /* Extract the variable from the parsed expression.
2061 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2062 if (expr->elts[1].opcode != OP_INTERNALVAR)
2063 error (_("The first parameter to init-if-undefined "
2064 "should be a GDB variable."));
2065 intvar = expr->elts[2].internalvar;
2066
2067 /* Only evaluate the expression if the lvalue is void.
2068 This may still fail if the expresssion is invalid. */
2069 if (intvar->kind == INTERNALVAR_VOID)
2070 evaluate_expression (expr.get ());
2071 }
2072
2073
2074 /* Look up an internal variable with name NAME. NAME should not
2075 normally include a dollar sign.
2076
2077 If the specified internal variable does not exist,
2078 the return value is NULL. */
2079
2080 struct internalvar *
2081 lookup_only_internalvar (const char *name)
2082 {
2083 struct internalvar *var;
2084
2085 for (var = internalvars; var; var = var->next)
2086 if (strcmp (var->name, name) == 0)
2087 return var;
2088
2089 return NULL;
2090 }
2091
2092 /* Complete NAME by comparing it to the names of internal
2093 variables. */
2094
2095 void
2096 complete_internalvar (completion_tracker &tracker, const char *name)
2097 {
2098 struct internalvar *var;
2099 int len;
2100
2101 len = strlen (name);
2102
2103 for (var = internalvars; var; var = var->next)
2104 if (strncmp (var->name, name, len) == 0)
2105 {
2106 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
2107
2108 tracker.add_completion (std::move (copy));
2109 }
2110 }
2111
2112 /* Create an internal variable with name NAME and with a void value.
2113 NAME should not normally include a dollar sign. */
2114
2115 struct internalvar *
2116 create_internalvar (const char *name)
2117 {
2118 struct internalvar *var = XNEW (struct internalvar);
2119
2120 var->name = concat (name, (char *)NULL);
2121 var->kind = INTERNALVAR_VOID;
2122 var->next = internalvars;
2123 internalvars = var;
2124 return var;
2125 }
2126
2127 /* Create an internal variable with name NAME and register FUN as the
2128 function that value_of_internalvar uses to create a value whenever
2129 this variable is referenced. NAME should not normally include a
2130 dollar sign. DATA is passed uninterpreted to FUN when it is
2131 called. CLEANUP, if not NULL, is called when the internal variable
2132 is destroyed. It is passed DATA as its only argument. */
2133
2134 struct internalvar *
2135 create_internalvar_type_lazy (const char *name,
2136 const struct internalvar_funcs *funcs,
2137 void *data)
2138 {
2139 struct internalvar *var = create_internalvar (name);
2140
2141 var->kind = INTERNALVAR_MAKE_VALUE;
2142 var->u.make_value.functions = funcs;
2143 var->u.make_value.data = data;
2144 return var;
2145 }
2146
2147 /* See documentation in value.h. */
2148
2149 int
2150 compile_internalvar_to_ax (struct internalvar *var,
2151 struct agent_expr *expr,
2152 struct axs_value *value)
2153 {
2154 if (var->kind != INTERNALVAR_MAKE_VALUE
2155 || var->u.make_value.functions->compile_to_ax == NULL)
2156 return 0;
2157
2158 var->u.make_value.functions->compile_to_ax (var, expr, value,
2159 var->u.make_value.data);
2160 return 1;
2161 }
2162
2163 /* Look up an internal variable with name NAME. NAME should not
2164 normally include a dollar sign.
2165
2166 If the specified internal variable does not exist,
2167 one is created, with a void value. */
2168
2169 struct internalvar *
2170 lookup_internalvar (const char *name)
2171 {
2172 struct internalvar *var;
2173
2174 var = lookup_only_internalvar (name);
2175 if (var)
2176 return var;
2177
2178 return create_internalvar (name);
2179 }
2180
2181 /* Return current value of internal variable VAR. For variables that
2182 are not inherently typed, use a value type appropriate for GDBARCH. */
2183
2184 struct value *
2185 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2186 {
2187 struct value *val;
2188 struct trace_state_variable *tsv;
2189
2190 /* If there is a trace state variable of the same name, assume that
2191 is what we really want to see. */
2192 tsv = find_trace_state_variable (var->name);
2193 if (tsv)
2194 {
2195 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2196 &(tsv->value));
2197 if (tsv->value_known)
2198 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2199 tsv->value);
2200 else
2201 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2202 return val;
2203 }
2204
2205 switch (var->kind)
2206 {
2207 case INTERNALVAR_VOID:
2208 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2209 break;
2210
2211 case INTERNALVAR_FUNCTION:
2212 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2213 break;
2214
2215 case INTERNALVAR_INTEGER:
2216 if (!var->u.integer.type)
2217 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2218 var->u.integer.val);
2219 else
2220 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2221 break;
2222
2223 case INTERNALVAR_STRING:
2224 val = value_cstring (var->u.string, strlen (var->u.string),
2225 builtin_type (gdbarch)->builtin_char);
2226 break;
2227
2228 case INTERNALVAR_VALUE:
2229 val = value_copy (var->u.value);
2230 if (value_lazy (val))
2231 value_fetch_lazy (val);
2232 break;
2233
2234 case INTERNALVAR_MAKE_VALUE:
2235 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2236 var->u.make_value.data);
2237 break;
2238
2239 default:
2240 internal_error (__FILE__, __LINE__, _("bad kind"));
2241 }
2242
2243 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2244 on this value go back to affect the original internal variable.
2245
2246 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2247 no underlying modifyable state in the internal variable.
2248
2249 Likewise, if the variable's value is a computed lvalue, we want
2250 references to it to produce another computed lvalue, where
2251 references and assignments actually operate through the
2252 computed value's functions.
2253
2254 This means that internal variables with computed values
2255 behave a little differently from other internal variables:
2256 assignments to them don't just replace the previous value
2257 altogether. At the moment, this seems like the behavior we
2258 want. */
2259
2260 if (var->kind != INTERNALVAR_MAKE_VALUE
2261 && val->lval != lval_computed)
2262 {
2263 VALUE_LVAL (val) = lval_internalvar;
2264 VALUE_INTERNALVAR (val) = var;
2265 }
2266
2267 return val;
2268 }
2269
2270 int
2271 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2272 {
2273 if (var->kind == INTERNALVAR_INTEGER)
2274 {
2275 *result = var->u.integer.val;
2276 return 1;
2277 }
2278
2279 if (var->kind == INTERNALVAR_VALUE)
2280 {
2281 struct type *type = check_typedef (value_type (var->u.value));
2282
2283 if (TYPE_CODE (type) == TYPE_CODE_INT)
2284 {
2285 *result = value_as_long (var->u.value);
2286 return 1;
2287 }
2288 }
2289
2290 return 0;
2291 }
2292
2293 static int
2294 get_internalvar_function (struct internalvar *var,
2295 struct internal_function **result)
2296 {
2297 switch (var->kind)
2298 {
2299 case INTERNALVAR_FUNCTION:
2300 *result = var->u.fn.function;
2301 return 1;
2302
2303 default:
2304 return 0;
2305 }
2306 }
2307
2308 void
2309 set_internalvar_component (struct internalvar *var,
2310 LONGEST offset, LONGEST bitpos,
2311 LONGEST bitsize, struct value *newval)
2312 {
2313 gdb_byte *addr;
2314 struct gdbarch *arch;
2315 int unit_size;
2316
2317 switch (var->kind)
2318 {
2319 case INTERNALVAR_VALUE:
2320 addr = value_contents_writeable (var->u.value);
2321 arch = get_value_arch (var->u.value);
2322 unit_size = gdbarch_addressable_memory_unit_size (arch);
2323
2324 if (bitsize)
2325 modify_field (value_type (var->u.value), addr + offset,
2326 value_as_long (newval), bitpos, bitsize);
2327 else
2328 memcpy (addr + offset * unit_size, value_contents (newval),
2329 TYPE_LENGTH (value_type (newval)));
2330 break;
2331
2332 default:
2333 /* We can never get a component of any other kind. */
2334 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2335 }
2336 }
2337
2338 void
2339 set_internalvar (struct internalvar *var, struct value *val)
2340 {
2341 enum internalvar_kind new_kind;
2342 union internalvar_data new_data = { 0 };
2343
2344 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2345 error (_("Cannot overwrite convenience function %s"), var->name);
2346
2347 /* Prepare new contents. */
2348 switch (TYPE_CODE (check_typedef (value_type (val))))
2349 {
2350 case TYPE_CODE_VOID:
2351 new_kind = INTERNALVAR_VOID;
2352 break;
2353
2354 case TYPE_CODE_INTERNAL_FUNCTION:
2355 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2356 new_kind = INTERNALVAR_FUNCTION;
2357 get_internalvar_function (VALUE_INTERNALVAR (val),
2358 &new_data.fn.function);
2359 /* Copies created here are never canonical. */
2360 break;
2361
2362 default:
2363 new_kind = INTERNALVAR_VALUE;
2364 new_data.value = value_copy (val);
2365 new_data.value->modifiable = 1;
2366
2367 /* Force the value to be fetched from the target now, to avoid problems
2368 later when this internalvar is referenced and the target is gone or
2369 has changed. */
2370 if (value_lazy (new_data.value))
2371 value_fetch_lazy (new_data.value);
2372
2373 /* Release the value from the value chain to prevent it from being
2374 deleted by free_all_values. From here on this function should not
2375 call error () until new_data is installed into the var->u to avoid
2376 leaking memory. */
2377 release_value (new_data.value).release ();
2378
2379 /* Internal variables which are created from values with a dynamic
2380 location don't need the location property of the origin anymore.
2381 The resolved dynamic location is used prior then any other address
2382 when accessing the value.
2383 If we keep it, we would still refer to the origin value.
2384 Remove the location property in case it exist. */
2385 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2386
2387 break;
2388 }
2389
2390 /* Clean up old contents. */
2391 clear_internalvar (var);
2392
2393 /* Switch over. */
2394 var->kind = new_kind;
2395 var->u = new_data;
2396 /* End code which must not call error(). */
2397 }
2398
2399 void
2400 set_internalvar_integer (struct internalvar *var, LONGEST l)
2401 {
2402 /* Clean up old contents. */
2403 clear_internalvar (var);
2404
2405 var->kind = INTERNALVAR_INTEGER;
2406 var->u.integer.type = NULL;
2407 var->u.integer.val = l;
2408 }
2409
2410 void
2411 set_internalvar_string (struct internalvar *var, const char *string)
2412 {
2413 /* Clean up old contents. */
2414 clear_internalvar (var);
2415
2416 var->kind = INTERNALVAR_STRING;
2417 var->u.string = xstrdup (string);
2418 }
2419
2420 static void
2421 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2422 {
2423 /* Clean up old contents. */
2424 clear_internalvar (var);
2425
2426 var->kind = INTERNALVAR_FUNCTION;
2427 var->u.fn.function = f;
2428 var->u.fn.canonical = 1;
2429 /* Variables installed here are always the canonical version. */
2430 }
2431
2432 void
2433 clear_internalvar (struct internalvar *var)
2434 {
2435 /* Clean up old contents. */
2436 switch (var->kind)
2437 {
2438 case INTERNALVAR_VALUE:
2439 value_decref (var->u.value);
2440 break;
2441
2442 case INTERNALVAR_STRING:
2443 xfree (var->u.string);
2444 break;
2445
2446 case INTERNALVAR_MAKE_VALUE:
2447 if (var->u.make_value.functions->destroy != NULL)
2448 var->u.make_value.functions->destroy (var->u.make_value.data);
2449 break;
2450
2451 default:
2452 break;
2453 }
2454
2455 /* Reset to void kind. */
2456 var->kind = INTERNALVAR_VOID;
2457 }
2458
2459 char *
2460 internalvar_name (const struct internalvar *var)
2461 {
2462 return var->name;
2463 }
2464
2465 static struct internal_function *
2466 create_internal_function (const char *name,
2467 internal_function_fn handler, void *cookie)
2468 {
2469 struct internal_function *ifn = XNEW (struct internal_function);
2470
2471 ifn->name = xstrdup (name);
2472 ifn->handler = handler;
2473 ifn->cookie = cookie;
2474 return ifn;
2475 }
2476
2477 char *
2478 value_internal_function_name (struct value *val)
2479 {
2480 struct internal_function *ifn;
2481 int result;
2482
2483 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2484 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2485 gdb_assert (result);
2486
2487 return ifn->name;
2488 }
2489
2490 struct value *
2491 call_internal_function (struct gdbarch *gdbarch,
2492 const struct language_defn *language,
2493 struct value *func, int argc, struct value **argv)
2494 {
2495 struct internal_function *ifn;
2496 int result;
2497
2498 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2499 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2500 gdb_assert (result);
2501
2502 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2503 }
2504
2505 /* The 'function' command. This does nothing -- it is just a
2506 placeholder to let "help function NAME" work. This is also used as
2507 the implementation of the sub-command that is created when
2508 registering an internal function. */
2509 static void
2510 function_command (const char *command, int from_tty)
2511 {
2512 /* Do nothing. */
2513 }
2514
2515 /* Clean up if an internal function's command is destroyed. */
2516 static void
2517 function_destroyer (struct cmd_list_element *self, void *ignore)
2518 {
2519 xfree ((char *) self->name);
2520 xfree ((char *) self->doc);
2521 }
2522
2523 /* Add a new internal function. NAME is the name of the function; DOC
2524 is a documentation string describing the function. HANDLER is
2525 called when the function is invoked. COOKIE is an arbitrary
2526 pointer which is passed to HANDLER and is intended for "user
2527 data". */
2528 void
2529 add_internal_function (const char *name, const char *doc,
2530 internal_function_fn handler, void *cookie)
2531 {
2532 struct cmd_list_element *cmd;
2533 struct internal_function *ifn;
2534 struct internalvar *var = lookup_internalvar (name);
2535
2536 ifn = create_internal_function (name, handler, cookie);
2537 set_internalvar_function (var, ifn);
2538
2539 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2540 &functionlist);
2541 cmd->destroyer = function_destroyer;
2542 }
2543
2544 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2545 prevent cycles / duplicates. */
2546
2547 void
2548 preserve_one_value (struct value *value, struct objfile *objfile,
2549 htab_t copied_types)
2550 {
2551 if (TYPE_OBJFILE (value->type) == objfile)
2552 value->type = copy_type_recursive (objfile, value->type, copied_types);
2553
2554 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2555 value->enclosing_type = copy_type_recursive (objfile,
2556 value->enclosing_type,
2557 copied_types);
2558 }
2559
2560 /* Likewise for internal variable VAR. */
2561
2562 static void
2563 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2564 htab_t copied_types)
2565 {
2566 switch (var->kind)
2567 {
2568 case INTERNALVAR_INTEGER:
2569 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2570 var->u.integer.type
2571 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2572 break;
2573
2574 case INTERNALVAR_VALUE:
2575 preserve_one_value (var->u.value, objfile, copied_types);
2576 break;
2577 }
2578 }
2579
2580 /* Update the internal variables and value history when OBJFILE is
2581 discarded; we must copy the types out of the objfile. New global types
2582 will be created for every convenience variable which currently points to
2583 this objfile's types, and the convenience variables will be adjusted to
2584 use the new global types. */
2585
2586 void
2587 preserve_values (struct objfile *objfile)
2588 {
2589 htab_t copied_types;
2590 struct internalvar *var;
2591 int i;
2592
2593 /* Create the hash table. We allocate on the objfile's obstack, since
2594 it is soon to be deleted. */
2595 copied_types = create_copied_types_hash (objfile);
2596
2597 for (const value_ref_ptr &item : value_history)
2598 preserve_one_value (item.get (), objfile, copied_types);
2599
2600 for (var = internalvars; var; var = var->next)
2601 preserve_one_internalvar (var, objfile, copied_types);
2602
2603 preserve_ext_lang_values (objfile, copied_types);
2604
2605 htab_delete (copied_types);
2606 }
2607
2608 static void
2609 show_convenience (const char *ignore, int from_tty)
2610 {
2611 struct gdbarch *gdbarch = get_current_arch ();
2612 struct internalvar *var;
2613 int varseen = 0;
2614 struct value_print_options opts;
2615
2616 get_user_print_options (&opts);
2617 for (var = internalvars; var; var = var->next)
2618 {
2619
2620 if (!varseen)
2621 {
2622 varseen = 1;
2623 }
2624 printf_filtered (("$%s = "), var->name);
2625
2626 TRY
2627 {
2628 struct value *val;
2629
2630 val = value_of_internalvar (gdbarch, var);
2631 value_print (val, gdb_stdout, &opts);
2632 }
2633 CATCH (ex, RETURN_MASK_ERROR)
2634 {
2635 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2636 }
2637 END_CATCH
2638
2639 printf_filtered (("\n"));
2640 }
2641 if (!varseen)
2642 {
2643 /* This text does not mention convenience functions on purpose.
2644 The user can't create them except via Python, and if Python support
2645 is installed this message will never be printed ($_streq will
2646 exist). */
2647 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2648 "Convenience variables have "
2649 "names starting with \"$\";\n"
2650 "use \"set\" as in \"set "
2651 "$foo = 5\" to define them.\n"));
2652 }
2653 }
2654 \f
2655
2656 /* See value.h. */
2657
2658 struct value *
2659 value_from_xmethod (xmethod_worker_up &&worker)
2660 {
2661 struct value *v;
2662
2663 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2664 v->lval = lval_xcallable;
2665 v->location.xm_worker = worker.release ();
2666 v->modifiable = 0;
2667
2668 return v;
2669 }
2670
2671 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2672
2673 struct type *
2674 result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2675 {
2676 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2677 && method->lval == lval_xcallable && argc > 0);
2678
2679 return method->location.xm_worker->get_result_type
2680 (argv[0], argv + 1, argc - 1);
2681 }
2682
2683 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2684
2685 struct value *
2686 call_xmethod (struct value *method, int argc, struct value **argv)
2687 {
2688 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2689 && method->lval == lval_xcallable && argc > 0);
2690
2691 return method->location.xm_worker->invoke (argv[0], argv + 1, argc - 1);
2692 }
2693 \f
2694 /* Extract a value as a C number (either long or double).
2695 Knows how to convert fixed values to double, or
2696 floating values to long.
2697 Does not deallocate the value. */
2698
2699 LONGEST
2700 value_as_long (struct value *val)
2701 {
2702 /* This coerces arrays and functions, which is necessary (e.g.
2703 in disassemble_command). It also dereferences references, which
2704 I suspect is the most logical thing to do. */
2705 val = coerce_array (val);
2706 return unpack_long (value_type (val), value_contents (val));
2707 }
2708
2709 /* Extract a value as a C pointer. Does not deallocate the value.
2710 Note that val's type may not actually be a pointer; value_as_long
2711 handles all the cases. */
2712 CORE_ADDR
2713 value_as_address (struct value *val)
2714 {
2715 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2716
2717 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2718 whether we want this to be true eventually. */
2719 #if 0
2720 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2721 non-address (e.g. argument to "signal", "info break", etc.), or
2722 for pointers to char, in which the low bits *are* significant. */
2723 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2724 #else
2725
2726 /* There are several targets (IA-64, PowerPC, and others) which
2727 don't represent pointers to functions as simply the address of
2728 the function's entry point. For example, on the IA-64, a
2729 function pointer points to a two-word descriptor, generated by
2730 the linker, which contains the function's entry point, and the
2731 value the IA-64 "global pointer" register should have --- to
2732 support position-independent code. The linker generates
2733 descriptors only for those functions whose addresses are taken.
2734
2735 On such targets, it's difficult for GDB to convert an arbitrary
2736 function address into a function pointer; it has to either find
2737 an existing descriptor for that function, or call malloc and
2738 build its own. On some targets, it is impossible for GDB to
2739 build a descriptor at all: the descriptor must contain a jump
2740 instruction; data memory cannot be executed; and code memory
2741 cannot be modified.
2742
2743 Upon entry to this function, if VAL is a value of type `function'
2744 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2745 value_address (val) is the address of the function. This is what
2746 you'll get if you evaluate an expression like `main'. The call
2747 to COERCE_ARRAY below actually does all the usual unary
2748 conversions, which includes converting values of type `function'
2749 to `pointer to function'. This is the challenging conversion
2750 discussed above. Then, `unpack_long' will convert that pointer
2751 back into an address.
2752
2753 So, suppose the user types `disassemble foo' on an architecture
2754 with a strange function pointer representation, on which GDB
2755 cannot build its own descriptors, and suppose further that `foo'
2756 has no linker-built descriptor. The address->pointer conversion
2757 will signal an error and prevent the command from running, even
2758 though the next step would have been to convert the pointer
2759 directly back into the same address.
2760
2761 The following shortcut avoids this whole mess. If VAL is a
2762 function, just return its address directly. */
2763 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2764 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2765 return value_address (val);
2766
2767 val = coerce_array (val);
2768
2769 /* Some architectures (e.g. Harvard), map instruction and data
2770 addresses onto a single large unified address space. For
2771 instance: An architecture may consider a large integer in the
2772 range 0x10000000 .. 0x1000ffff to already represent a data
2773 addresses (hence not need a pointer to address conversion) while
2774 a small integer would still need to be converted integer to
2775 pointer to address. Just assume such architectures handle all
2776 integer conversions in a single function. */
2777
2778 /* JimB writes:
2779
2780 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2781 must admonish GDB hackers to make sure its behavior matches the
2782 compiler's, whenever possible.
2783
2784 In general, I think GDB should evaluate expressions the same way
2785 the compiler does. When the user copies an expression out of
2786 their source code and hands it to a `print' command, they should
2787 get the same value the compiler would have computed. Any
2788 deviation from this rule can cause major confusion and annoyance,
2789 and needs to be justified carefully. In other words, GDB doesn't
2790 really have the freedom to do these conversions in clever and
2791 useful ways.
2792
2793 AndrewC pointed out that users aren't complaining about how GDB
2794 casts integers to pointers; they are complaining that they can't
2795 take an address from a disassembly listing and give it to `x/i'.
2796 This is certainly important.
2797
2798 Adding an architecture method like integer_to_address() certainly
2799 makes it possible for GDB to "get it right" in all circumstances
2800 --- the target has complete control over how things get done, so
2801 people can Do The Right Thing for their target without breaking
2802 anyone else. The standard doesn't specify how integers get
2803 converted to pointers; usually, the ABI doesn't either, but
2804 ABI-specific code is a more reasonable place to handle it. */
2805
2806 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2807 && !TYPE_IS_REFERENCE (value_type (val))
2808 && gdbarch_integer_to_address_p (gdbarch))
2809 return gdbarch_integer_to_address (gdbarch, value_type (val),
2810 value_contents (val));
2811
2812 return unpack_long (value_type (val), value_contents (val));
2813 #endif
2814 }
2815 \f
2816 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2817 as a long, or as a double, assuming the raw data is described
2818 by type TYPE. Knows how to convert different sizes of values
2819 and can convert between fixed and floating point. We don't assume
2820 any alignment for the raw data. Return value is in host byte order.
2821
2822 If you want functions and arrays to be coerced to pointers, and
2823 references to be dereferenced, call value_as_long() instead.
2824
2825 C++: It is assumed that the front-end has taken care of
2826 all matters concerning pointers to members. A pointer
2827 to member which reaches here is considered to be equivalent
2828 to an INT (or some size). After all, it is only an offset. */
2829
2830 LONGEST
2831 unpack_long (struct type *type, const gdb_byte *valaddr)
2832 {
2833 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2834 enum type_code code = TYPE_CODE (type);
2835 int len = TYPE_LENGTH (type);
2836 int nosign = TYPE_UNSIGNED (type);
2837
2838 switch (code)
2839 {
2840 case TYPE_CODE_TYPEDEF:
2841 return unpack_long (check_typedef (type), valaddr);
2842 case TYPE_CODE_ENUM:
2843 case TYPE_CODE_FLAGS:
2844 case TYPE_CODE_BOOL:
2845 case TYPE_CODE_INT:
2846 case TYPE_CODE_CHAR:
2847 case TYPE_CODE_RANGE:
2848 case TYPE_CODE_MEMBERPTR:
2849 if (nosign)
2850 return extract_unsigned_integer (valaddr, len, byte_order);
2851 else
2852 return extract_signed_integer (valaddr, len, byte_order);
2853
2854 case TYPE_CODE_FLT:
2855 case TYPE_CODE_DECFLOAT:
2856 return target_float_to_longest (valaddr, type);
2857
2858 case TYPE_CODE_PTR:
2859 case TYPE_CODE_REF:
2860 case TYPE_CODE_RVALUE_REF:
2861 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2862 whether we want this to be true eventually. */
2863 return extract_typed_address (valaddr, type);
2864
2865 default:
2866 error (_("Value can't be converted to integer."));
2867 }
2868 return 0; /* Placate lint. */
2869 }
2870
2871 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2872 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2873 We don't assume any alignment for the raw data. Return value is in
2874 host byte order.
2875
2876 If you want functions and arrays to be coerced to pointers, and
2877 references to be dereferenced, call value_as_address() instead.
2878
2879 C++: It is assumed that the front-end has taken care of
2880 all matters concerning pointers to members. A pointer
2881 to member which reaches here is considered to be equivalent
2882 to an INT (or some size). After all, it is only an offset. */
2883
2884 CORE_ADDR
2885 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2886 {
2887 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2888 whether we want this to be true eventually. */
2889 return unpack_long (type, valaddr);
2890 }
2891
2892 bool
2893 is_floating_value (struct value *val)
2894 {
2895 struct type *type = check_typedef (value_type (val));
2896
2897 if (is_floating_type (type))
2898 {
2899 if (!target_float_is_valid (value_contents (val), type))
2900 error (_("Invalid floating value found in program."));
2901 return true;
2902 }
2903
2904 return false;
2905 }
2906
2907 \f
2908 /* Get the value of the FIELDNO'th field (which must be static) of
2909 TYPE. */
2910
2911 struct value *
2912 value_static_field (struct type *type, int fieldno)
2913 {
2914 struct value *retval;
2915
2916 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2917 {
2918 case FIELD_LOC_KIND_PHYSADDR:
2919 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2920 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2921 break;
2922 case FIELD_LOC_KIND_PHYSNAME:
2923 {
2924 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2925 /* TYPE_FIELD_NAME (type, fieldno); */
2926 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2927
2928 if (sym.symbol == NULL)
2929 {
2930 /* With some compilers, e.g. HP aCC, static data members are
2931 reported as non-debuggable symbols. */
2932 struct bound_minimal_symbol msym
2933 = lookup_minimal_symbol (phys_name, NULL, NULL);
2934 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2935
2936 if (!msym.minsym)
2937 retval = allocate_optimized_out_value (field_type);
2938 else
2939 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
2940 }
2941 else
2942 retval = value_of_variable (sym.symbol, sym.block);
2943 break;
2944 }
2945 default:
2946 gdb_assert_not_reached ("unexpected field location kind");
2947 }
2948
2949 return retval;
2950 }
2951
2952 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2953 You have to be careful here, since the size of the data area for the value
2954 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2955 than the old enclosing type, you have to allocate more space for the
2956 data. */
2957
2958 void
2959 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2960 {
2961 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2962 {
2963 check_type_length_before_alloc (new_encl_type);
2964 val->contents
2965 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2966 }
2967
2968 val->enclosing_type = new_encl_type;
2969 }
2970
2971 /* Given a value ARG1 (offset by OFFSET bytes)
2972 of a struct or union type ARG_TYPE,
2973 extract and return the value of one of its (non-static) fields.
2974 FIELDNO says which field. */
2975
2976 struct value *
2977 value_primitive_field (struct value *arg1, LONGEST offset,
2978 int fieldno, struct type *arg_type)
2979 {
2980 struct value *v;
2981 struct type *type;
2982 struct gdbarch *arch = get_value_arch (arg1);
2983 int unit_size = gdbarch_addressable_memory_unit_size (arch);
2984
2985 arg_type = check_typedef (arg_type);
2986 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2987
2988 /* Call check_typedef on our type to make sure that, if TYPE
2989 is a TYPE_CODE_TYPEDEF, its length is set to the length
2990 of the target type instead of zero. However, we do not
2991 replace the typedef type by the target type, because we want
2992 to keep the typedef in order to be able to print the type
2993 description correctly. */
2994 check_typedef (type);
2995
2996 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2997 {
2998 /* Handle packed fields.
2999
3000 Create a new value for the bitfield, with bitpos and bitsize
3001 set. If possible, arrange offset and bitpos so that we can
3002 do a single aligned read of the size of the containing type.
3003 Otherwise, adjust offset to the byte containing the first
3004 bit. Assume that the address, offset, and embedded offset
3005 are sufficiently aligned. */
3006
3007 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3008 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
3009
3010 v = allocate_value_lazy (type);
3011 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3012 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3013 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3014 v->bitpos = bitpos % container_bitsize;
3015 else
3016 v->bitpos = bitpos % 8;
3017 v->offset = (value_embedded_offset (arg1)
3018 + offset
3019 + (bitpos - v->bitpos) / 8);
3020 set_value_parent (v, arg1);
3021 if (!value_lazy (arg1))
3022 value_fetch_lazy (v);
3023 }
3024 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3025 {
3026 /* This field is actually a base subobject, so preserve the
3027 entire object's contents for later references to virtual
3028 bases, etc. */
3029 LONGEST boffset;
3030
3031 /* Lazy register values with offsets are not supported. */
3032 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3033 value_fetch_lazy (arg1);
3034
3035 /* We special case virtual inheritance here because this
3036 requires access to the contents, which we would rather avoid
3037 for references to ordinary fields of unavailable values. */
3038 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3039 boffset = baseclass_offset (arg_type, fieldno,
3040 value_contents (arg1),
3041 value_embedded_offset (arg1),
3042 value_address (arg1),
3043 arg1);
3044 else
3045 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3046
3047 if (value_lazy (arg1))
3048 v = allocate_value_lazy (value_enclosing_type (arg1));
3049 else
3050 {
3051 v = allocate_value (value_enclosing_type (arg1));
3052 value_contents_copy_raw (v, 0, arg1, 0,
3053 TYPE_LENGTH (value_enclosing_type (arg1)));
3054 }
3055 v->type = type;
3056 v->offset = value_offset (arg1);
3057 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3058 }
3059 else if (NULL != TYPE_DATA_LOCATION (type))
3060 {
3061 /* Field is a dynamic data member. */
3062
3063 gdb_assert (0 == offset);
3064 /* We expect an already resolved data location. */
3065 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3066 /* For dynamic data types defer memory allocation
3067 until we actual access the value. */
3068 v = allocate_value_lazy (type);
3069 }
3070 else
3071 {
3072 /* Plain old data member */
3073 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3074 / (HOST_CHAR_BIT * unit_size));
3075
3076 /* Lazy register values with offsets are not supported. */
3077 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3078 value_fetch_lazy (arg1);
3079
3080 if (value_lazy (arg1))
3081 v = allocate_value_lazy (type);
3082 else
3083 {
3084 v = allocate_value (type);
3085 value_contents_copy_raw (v, value_embedded_offset (v),
3086 arg1, value_embedded_offset (arg1) + offset,
3087 type_length_units (type));
3088 }
3089 v->offset = (value_offset (arg1) + offset
3090 + value_embedded_offset (arg1));
3091 }
3092 set_value_component_location (v, arg1);
3093 return v;
3094 }
3095
3096 /* Given a value ARG1 of a struct or union type,
3097 extract and return the value of one of its (non-static) fields.
3098 FIELDNO says which field. */
3099
3100 struct value *
3101 value_field (struct value *arg1, int fieldno)
3102 {
3103 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3104 }
3105
3106 /* Return a non-virtual function as a value.
3107 F is the list of member functions which contains the desired method.
3108 J is an index into F which provides the desired method.
3109
3110 We only use the symbol for its address, so be happy with either a
3111 full symbol or a minimal symbol. */
3112
3113 struct value *
3114 value_fn_field (struct value **arg1p, struct fn_field *f,
3115 int j, struct type *type,
3116 LONGEST offset)
3117 {
3118 struct value *v;
3119 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3120 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3121 struct symbol *sym;
3122 struct bound_minimal_symbol msym;
3123
3124 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3125 if (sym != NULL)
3126 {
3127 memset (&msym, 0, sizeof (msym));
3128 }
3129 else
3130 {
3131 gdb_assert (sym == NULL);
3132 msym = lookup_bound_minimal_symbol (physname);
3133 if (msym.minsym == NULL)
3134 return NULL;
3135 }
3136
3137 v = allocate_value (ftype);
3138 VALUE_LVAL (v) = lval_memory;
3139 if (sym)
3140 {
3141 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3142 }
3143 else
3144 {
3145 /* The minimal symbol might point to a function descriptor;
3146 resolve it to the actual code address instead. */
3147 struct objfile *objfile = msym.objfile;
3148 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3149
3150 set_value_address (v,
3151 gdbarch_convert_from_func_ptr_addr
3152 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
3153 }
3154
3155 if (arg1p)
3156 {
3157 if (type != value_type (*arg1p))
3158 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3159 value_addr (*arg1p)));
3160
3161 /* Move the `this' pointer according to the offset.
3162 VALUE_OFFSET (*arg1p) += offset; */
3163 }
3164
3165 return v;
3166 }
3167
3168 \f
3169
3170 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3171 VALADDR, and store the result in *RESULT.
3172 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3173 BITSIZE is zero, then the length is taken from FIELD_TYPE.
3174
3175 Extracting bits depends on endianness of the machine. Compute the
3176 number of least significant bits to discard. For big endian machines,
3177 we compute the total number of bits in the anonymous object, subtract
3178 off the bit count from the MSB of the object to the MSB of the
3179 bitfield, then the size of the bitfield, which leaves the LSB discard
3180 count. For little endian machines, the discard count is simply the
3181 number of bits from the LSB of the anonymous object to the LSB of the
3182 bitfield.
3183
3184 If the field is signed, we also do sign extension. */
3185
3186 static LONGEST
3187 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3188 LONGEST bitpos, LONGEST bitsize)
3189 {
3190 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3191 ULONGEST val;
3192 ULONGEST valmask;
3193 int lsbcount;
3194 LONGEST bytes_read;
3195 LONGEST read_offset;
3196
3197 /* Read the minimum number of bytes required; there may not be
3198 enough bytes to read an entire ULONGEST. */
3199 field_type = check_typedef (field_type);
3200 if (bitsize)
3201 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3202 else
3203 {
3204 bytes_read = TYPE_LENGTH (field_type);
3205 bitsize = 8 * bytes_read;
3206 }
3207
3208 read_offset = bitpos / 8;
3209
3210 val = extract_unsigned_integer (valaddr + read_offset,
3211 bytes_read, byte_order);
3212
3213 /* Extract bits. See comment above. */
3214
3215 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3216 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3217 else
3218 lsbcount = (bitpos % 8);
3219 val >>= lsbcount;
3220
3221 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3222 If the field is signed, and is negative, then sign extend. */
3223
3224 if (bitsize < 8 * (int) sizeof (val))
3225 {
3226 valmask = (((ULONGEST) 1) << bitsize) - 1;
3227 val &= valmask;
3228 if (!TYPE_UNSIGNED (field_type))
3229 {
3230 if (val & (valmask ^ (valmask >> 1)))
3231 {
3232 val |= ~valmask;
3233 }
3234 }
3235 }
3236
3237 return val;
3238 }
3239
3240 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3241 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3242 ORIGINAL_VALUE, which must not be NULL. See
3243 unpack_value_bits_as_long for more details. */
3244
3245 int
3246 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3247 LONGEST embedded_offset, int fieldno,
3248 const struct value *val, LONGEST *result)
3249 {
3250 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3251 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3252 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3253 int bit_offset;
3254
3255 gdb_assert (val != NULL);
3256
3257 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3258 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3259 || !value_bits_available (val, bit_offset, bitsize))
3260 return 0;
3261
3262 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3263 bitpos, bitsize);
3264 return 1;
3265 }
3266
3267 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3268 object at VALADDR. See unpack_bits_as_long for more details. */
3269
3270 LONGEST
3271 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3272 {
3273 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3274 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3275 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3276
3277 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3278 }
3279
3280 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3281 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3282 the contents in DEST_VAL, zero or sign extending if the type of
3283 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3284 VAL. If the VAL's contents required to extract the bitfield from
3285 are unavailable/optimized out, DEST_VAL is correspondingly
3286 marked unavailable/optimized out. */
3287
3288 void
3289 unpack_value_bitfield (struct value *dest_val,
3290 LONGEST bitpos, LONGEST bitsize,
3291 const gdb_byte *valaddr, LONGEST embedded_offset,
3292 const struct value *val)
3293 {
3294 enum bfd_endian byte_order;
3295 int src_bit_offset;
3296 int dst_bit_offset;
3297 struct type *field_type = value_type (dest_val);
3298
3299 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3300
3301 /* First, unpack and sign extend the bitfield as if it was wholly
3302 valid. Optimized out/unavailable bits are read as zero, but
3303 that's OK, as they'll end up marked below. If the VAL is
3304 wholly-invalid we may have skipped allocating its contents,
3305 though. See allocate_optimized_out_value. */
3306 if (valaddr != NULL)
3307 {
3308 LONGEST num;
3309
3310 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3311 bitpos, bitsize);
3312 store_signed_integer (value_contents_raw (dest_val),
3313 TYPE_LENGTH (field_type), byte_order, num);
3314 }
3315
3316 /* Now copy the optimized out / unavailability ranges to the right
3317 bits. */
3318 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3319 if (byte_order == BFD_ENDIAN_BIG)
3320 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3321 else
3322 dst_bit_offset = 0;
3323 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3324 val, src_bit_offset, bitsize);
3325 }
3326
3327 /* Return a new value with type TYPE, which is FIELDNO field of the
3328 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3329 of VAL. If the VAL's contents required to extract the bitfield
3330 from are unavailable/optimized out, the new value is
3331 correspondingly marked unavailable/optimized out. */
3332
3333 struct value *
3334 value_field_bitfield (struct type *type, int fieldno,
3335 const gdb_byte *valaddr,
3336 LONGEST embedded_offset, const struct value *val)
3337 {
3338 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3339 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3340 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3341
3342 unpack_value_bitfield (res_val, bitpos, bitsize,
3343 valaddr, embedded_offset, val);
3344
3345 return res_val;
3346 }
3347
3348 /* Modify the value of a bitfield. ADDR points to a block of memory in
3349 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3350 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3351 indicate which bits (in target bit order) comprise the bitfield.
3352 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3353 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3354
3355 void
3356 modify_field (struct type *type, gdb_byte *addr,
3357 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3358 {
3359 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3360 ULONGEST oword;
3361 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3362 LONGEST bytesize;
3363
3364 /* Normalize BITPOS. */
3365 addr += bitpos / 8;
3366 bitpos %= 8;
3367
3368 /* If a negative fieldval fits in the field in question, chop
3369 off the sign extension bits. */
3370 if ((~fieldval & ~(mask >> 1)) == 0)
3371 fieldval &= mask;
3372
3373 /* Warn if value is too big to fit in the field in question. */
3374 if (0 != (fieldval & ~mask))
3375 {
3376 /* FIXME: would like to include fieldval in the message, but
3377 we don't have a sprintf_longest. */
3378 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3379
3380 /* Truncate it, otherwise adjoining fields may be corrupted. */
3381 fieldval &= mask;
3382 }
3383
3384 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3385 false valgrind reports. */
3386
3387 bytesize = (bitpos + bitsize + 7) / 8;
3388 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3389
3390 /* Shifting for bit field depends on endianness of the target machine. */
3391 if (gdbarch_bits_big_endian (get_type_arch (type)))
3392 bitpos = bytesize * 8 - bitpos - bitsize;
3393
3394 oword &= ~(mask << bitpos);
3395 oword |= fieldval << bitpos;
3396
3397 store_unsigned_integer (addr, bytesize, byte_order, oword);
3398 }
3399 \f
3400 /* Pack NUM into BUF using a target format of TYPE. */
3401
3402 void
3403 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3404 {
3405 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3406 LONGEST len;
3407
3408 type = check_typedef (type);
3409 len = TYPE_LENGTH (type);
3410
3411 switch (TYPE_CODE (type))
3412 {
3413 case TYPE_CODE_INT:
3414 case TYPE_CODE_CHAR:
3415 case TYPE_CODE_ENUM:
3416 case TYPE_CODE_FLAGS:
3417 case TYPE_CODE_BOOL:
3418 case TYPE_CODE_RANGE:
3419 case TYPE_CODE_MEMBERPTR:
3420 store_signed_integer (buf, len, byte_order, num);
3421 break;
3422
3423 case TYPE_CODE_REF:
3424 case TYPE_CODE_RVALUE_REF:
3425 case TYPE_CODE_PTR:
3426 store_typed_address (buf, type, (CORE_ADDR) num);
3427 break;
3428
3429 case TYPE_CODE_FLT:
3430 case TYPE_CODE_DECFLOAT:
3431 target_float_from_longest (buf, type, num);
3432 break;
3433
3434 default:
3435 error (_("Unexpected type (%d) encountered for integer constant."),
3436 TYPE_CODE (type));
3437 }
3438 }
3439
3440
3441 /* Pack NUM into BUF using a target format of TYPE. */
3442
3443 static void
3444 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3445 {
3446 LONGEST len;
3447 enum bfd_endian byte_order;
3448
3449 type = check_typedef (type);
3450 len = TYPE_LENGTH (type);
3451 byte_order = gdbarch_byte_order (get_type_arch (type));
3452
3453 switch (TYPE_CODE (type))
3454 {
3455 case TYPE_CODE_INT:
3456 case TYPE_CODE_CHAR:
3457 case TYPE_CODE_ENUM:
3458 case TYPE_CODE_FLAGS:
3459 case TYPE_CODE_BOOL:
3460 case TYPE_CODE_RANGE:
3461 case TYPE_CODE_MEMBERPTR:
3462 store_unsigned_integer (buf, len, byte_order, num);
3463 break;
3464
3465 case TYPE_CODE_REF:
3466 case TYPE_CODE_RVALUE_REF:
3467 case TYPE_CODE_PTR:
3468 store_typed_address (buf, type, (CORE_ADDR) num);
3469 break;
3470
3471 case TYPE_CODE_FLT:
3472 case TYPE_CODE_DECFLOAT:
3473 target_float_from_ulongest (buf, type, num);
3474 break;
3475
3476 default:
3477 error (_("Unexpected type (%d) encountered "
3478 "for unsigned integer constant."),
3479 TYPE_CODE (type));
3480 }
3481 }
3482
3483
3484 /* Convert C numbers into newly allocated values. */
3485
3486 struct value *
3487 value_from_longest (struct type *type, LONGEST num)
3488 {
3489 struct value *val = allocate_value (type);
3490
3491 pack_long (value_contents_raw (val), type, num);
3492 return val;
3493 }
3494
3495
3496 /* Convert C unsigned numbers into newly allocated values. */
3497
3498 struct value *
3499 value_from_ulongest (struct type *type, ULONGEST num)
3500 {
3501 struct value *val = allocate_value (type);
3502
3503 pack_unsigned_long (value_contents_raw (val), type, num);
3504
3505 return val;
3506 }
3507
3508
3509 /* Create a value representing a pointer of type TYPE to the address
3510 ADDR. */
3511
3512 struct value *
3513 value_from_pointer (struct type *type, CORE_ADDR addr)
3514 {
3515 struct value *val = allocate_value (type);
3516
3517 store_typed_address (value_contents_raw (val),
3518 check_typedef (type), addr);
3519 return val;
3520 }
3521
3522
3523 /* Create a value of type TYPE whose contents come from VALADDR, if it
3524 is non-null, and whose memory address (in the inferior) is
3525 ADDRESS. The type of the created value may differ from the passed
3526 type TYPE. Make sure to retrieve values new type after this call.
3527 Note that TYPE is not passed through resolve_dynamic_type; this is
3528 a special API intended for use only by Ada. */
3529
3530 struct value *
3531 value_from_contents_and_address_unresolved (struct type *type,
3532 const gdb_byte *valaddr,
3533 CORE_ADDR address)
3534 {
3535 struct value *v;
3536
3537 if (valaddr == NULL)
3538 v = allocate_value_lazy (type);
3539 else
3540 v = value_from_contents (type, valaddr);
3541 VALUE_LVAL (v) = lval_memory;
3542 set_value_address (v, address);
3543 return v;
3544 }
3545
3546 /* Create a value of type TYPE whose contents come from VALADDR, if it
3547 is non-null, and whose memory address (in the inferior) is
3548 ADDRESS. The type of the created value may differ from the passed
3549 type TYPE. Make sure to retrieve values new type after this call. */
3550
3551 struct value *
3552 value_from_contents_and_address (struct type *type,
3553 const gdb_byte *valaddr,
3554 CORE_ADDR address)
3555 {
3556 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3557 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3558 struct value *v;
3559
3560 if (valaddr == NULL)
3561 v = allocate_value_lazy (resolved_type);
3562 else
3563 v = value_from_contents (resolved_type, valaddr);
3564 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3565 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3566 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3567 VALUE_LVAL (v) = lval_memory;
3568 set_value_address (v, address);
3569 return v;
3570 }
3571
3572 /* Create a value of type TYPE holding the contents CONTENTS.
3573 The new value is `not_lval'. */
3574
3575 struct value *
3576 value_from_contents (struct type *type, const gdb_byte *contents)
3577 {
3578 struct value *result;
3579
3580 result = allocate_value (type);
3581 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3582 return result;
3583 }
3584
3585 /* Extract a value from the history file. Input will be of the form
3586 $digits or $$digits. See block comment above 'write_dollar_variable'
3587 for details. */
3588
3589 struct value *
3590 value_from_history_ref (const char *h, const char **endp)
3591 {
3592 int index, len;
3593
3594 if (h[0] == '$')
3595 len = 1;
3596 else
3597 return NULL;
3598
3599 if (h[1] == '$')
3600 len = 2;
3601
3602 /* Find length of numeral string. */
3603 for (; isdigit (h[len]); len++)
3604 ;
3605
3606 /* Make sure numeral string is not part of an identifier. */
3607 if (h[len] == '_' || isalpha (h[len]))
3608 return NULL;
3609
3610 /* Now collect the index value. */
3611 if (h[1] == '$')
3612 {
3613 if (len == 2)
3614 {
3615 /* For some bizarre reason, "$$" is equivalent to "$$1",
3616 rather than to "$$0" as it ought to be! */
3617 index = -1;
3618 *endp += len;
3619 }
3620 else
3621 {
3622 char *local_end;
3623
3624 index = -strtol (&h[2], &local_end, 10);
3625 *endp = local_end;
3626 }
3627 }
3628 else
3629 {
3630 if (len == 1)
3631 {
3632 /* "$" is equivalent to "$0". */
3633 index = 0;
3634 *endp += len;
3635 }
3636 else
3637 {
3638 char *local_end;
3639
3640 index = strtol (&h[1], &local_end, 10);
3641 *endp = local_end;
3642 }
3643 }
3644
3645 return access_value_history (index);
3646 }
3647
3648 /* Get the component value (offset by OFFSET bytes) of a struct or
3649 union WHOLE. Component's type is TYPE. */
3650
3651 struct value *
3652 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3653 {
3654 struct value *v;
3655
3656 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3657 v = allocate_value_lazy (type);
3658 else
3659 {
3660 v = allocate_value (type);
3661 value_contents_copy (v, value_embedded_offset (v),
3662 whole, value_embedded_offset (whole) + offset,
3663 type_length_units (type));
3664 }
3665 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3666 set_value_component_location (v, whole);
3667
3668 return v;
3669 }
3670
3671 struct value *
3672 coerce_ref_if_computed (const struct value *arg)
3673 {
3674 const struct lval_funcs *funcs;
3675
3676 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3677 return NULL;
3678
3679 if (value_lval_const (arg) != lval_computed)
3680 return NULL;
3681
3682 funcs = value_computed_funcs (arg);
3683 if (funcs->coerce_ref == NULL)
3684 return NULL;
3685
3686 return funcs->coerce_ref (arg);
3687 }
3688
3689 /* Look at value.h for description. */
3690
3691 struct value *
3692 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3693 const struct type *original_type,
3694 const struct value *original_value)
3695 {
3696 /* Re-adjust type. */
3697 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3698
3699 /* Add embedding info. */
3700 set_value_enclosing_type (value, enc_type);
3701 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3702
3703 /* We may be pointing to an object of some derived type. */
3704 return value_full_object (value, NULL, 0, 0, 0);
3705 }
3706
3707 struct value *
3708 coerce_ref (struct value *arg)
3709 {
3710 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3711 struct value *retval;
3712 struct type *enc_type;
3713
3714 retval = coerce_ref_if_computed (arg);
3715 if (retval)
3716 return retval;
3717
3718 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3719 return arg;
3720
3721 enc_type = check_typedef (value_enclosing_type (arg));
3722 enc_type = TYPE_TARGET_TYPE (enc_type);
3723
3724 retval = value_at_lazy (enc_type,
3725 unpack_pointer (value_type (arg),
3726 value_contents (arg)));
3727 enc_type = value_type (retval);
3728 return readjust_indirect_value_type (retval, enc_type,
3729 value_type_arg_tmp, arg);
3730 }
3731
3732 struct value *
3733 coerce_array (struct value *arg)
3734 {
3735 struct type *type;
3736
3737 arg = coerce_ref (arg);
3738 type = check_typedef (value_type (arg));
3739
3740 switch (TYPE_CODE (type))
3741 {
3742 case TYPE_CODE_ARRAY:
3743 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3744 arg = value_coerce_array (arg);
3745 break;
3746 case TYPE_CODE_FUNC:
3747 arg = value_coerce_function (arg);
3748 break;
3749 }
3750 return arg;
3751 }
3752 \f
3753
3754 /* Return the return value convention that will be used for the
3755 specified type. */
3756
3757 enum return_value_convention
3758 struct_return_convention (struct gdbarch *gdbarch,
3759 struct value *function, struct type *value_type)
3760 {
3761 enum type_code code = TYPE_CODE (value_type);
3762
3763 if (code == TYPE_CODE_ERROR)
3764 error (_("Function return type unknown."));
3765
3766 /* Probe the architecture for the return-value convention. */
3767 return gdbarch_return_value (gdbarch, function, value_type,
3768 NULL, NULL, NULL);
3769 }
3770
3771 /* Return true if the function returning the specified type is using
3772 the convention of returning structures in memory (passing in the
3773 address as a hidden first parameter). */
3774
3775 int
3776 using_struct_return (struct gdbarch *gdbarch,
3777 struct value *function, struct type *value_type)
3778 {
3779 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3780 /* A void return value is never in memory. See also corresponding
3781 code in "print_return_value". */
3782 return 0;
3783
3784 return (struct_return_convention (gdbarch, function, value_type)
3785 != RETURN_VALUE_REGISTER_CONVENTION);
3786 }
3787
3788 /* Set the initialized field in a value struct. */
3789
3790 void
3791 set_value_initialized (struct value *val, int status)
3792 {
3793 val->initialized = status;
3794 }
3795
3796 /* Return the initialized field in a value struct. */
3797
3798 int
3799 value_initialized (const struct value *val)
3800 {
3801 return val->initialized;
3802 }
3803
3804 /* Load the actual content of a lazy value. Fetch the data from the
3805 user's process and clear the lazy flag to indicate that the data in
3806 the buffer is valid.
3807
3808 If the value is zero-length, we avoid calling read_memory, which
3809 would abort. We mark the value as fetched anyway -- all 0 bytes of
3810 it. */
3811
3812 void
3813 value_fetch_lazy (struct value *val)
3814 {
3815 gdb_assert (value_lazy (val));
3816 allocate_value_contents (val);
3817 /* A value is either lazy, or fully fetched. The
3818 availability/validity is only established as we try to fetch a
3819 value. */
3820 gdb_assert (VEC_empty (range_s, val->optimized_out));
3821 gdb_assert (VEC_empty (range_s, val->unavailable));
3822 if (value_bitsize (val))
3823 {
3824 /* To read a lazy bitfield, read the entire enclosing value. This
3825 prevents reading the same block of (possibly volatile) memory once
3826 per bitfield. It would be even better to read only the containing
3827 word, but we have no way to record that just specific bits of a
3828 value have been fetched. */
3829 struct type *type = check_typedef (value_type (val));
3830 struct value *parent = value_parent (val);
3831
3832 if (value_lazy (parent))
3833 value_fetch_lazy (parent);
3834
3835 unpack_value_bitfield (val,
3836 value_bitpos (val), value_bitsize (val),
3837 value_contents_for_printing (parent),
3838 value_offset (val), parent);
3839 }
3840 else if (VALUE_LVAL (val) == lval_memory)
3841 {
3842 CORE_ADDR addr = value_address (val);
3843 struct type *type = check_typedef (value_enclosing_type (val));
3844
3845 if (TYPE_LENGTH (type))
3846 read_value_memory (val, 0, value_stack (val),
3847 addr, value_contents_all_raw (val),
3848 type_length_units (type));
3849 }
3850 else if (VALUE_LVAL (val) == lval_register)
3851 {
3852 struct frame_info *next_frame;
3853 int regnum;
3854 struct type *type = check_typedef (value_type (val));
3855 struct value *new_val = val, *mark = value_mark ();
3856
3857 /* Offsets are not supported here; lazy register values must
3858 refer to the entire register. */
3859 gdb_assert (value_offset (val) == 0);
3860
3861 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3862 {
3863 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3864
3865 next_frame = frame_find_by_id (next_frame_id);
3866 regnum = VALUE_REGNUM (new_val);
3867
3868 gdb_assert (next_frame != NULL);
3869
3870 /* Convertible register routines are used for multi-register
3871 values and for interpretation in different types
3872 (e.g. float or int from a double register). Lazy
3873 register values should have the register's natural type,
3874 so they do not apply. */
3875 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3876 regnum, type));
3877
3878 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3879 Since a "->next" operation was performed when setting
3880 this field, we do not need to perform a "next" operation
3881 again when unwinding the register. That's why
3882 frame_unwind_register_value() is called here instead of
3883 get_frame_register_value(). */
3884 new_val = frame_unwind_register_value (next_frame, regnum);
3885
3886 /* If we get another lazy lval_register value, it means the
3887 register is found by reading it from NEXT_FRAME's next frame.
3888 frame_unwind_register_value should never return a value with
3889 the frame id pointing to NEXT_FRAME. If it does, it means we
3890 either have two consecutive frames with the same frame id
3891 in the frame chain, or some code is trying to unwind
3892 behind get_prev_frame's back (e.g., a frame unwind
3893 sniffer trying to unwind), bypassing its validations. In
3894 any case, it should always be an internal error to end up
3895 in this situation. */
3896 if (VALUE_LVAL (new_val) == lval_register
3897 && value_lazy (new_val)
3898 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3899 internal_error (__FILE__, __LINE__,
3900 _("infinite loop while fetching a register"));
3901 }
3902
3903 /* If it's still lazy (for instance, a saved register on the
3904 stack), fetch it. */
3905 if (value_lazy (new_val))
3906 value_fetch_lazy (new_val);
3907
3908 /* Copy the contents and the unavailability/optimized-out
3909 meta-data from NEW_VAL to VAL. */
3910 set_value_lazy (val, 0);
3911 value_contents_copy (val, value_embedded_offset (val),
3912 new_val, value_embedded_offset (new_val),
3913 type_length_units (type));
3914
3915 if (frame_debug)
3916 {
3917 struct gdbarch *gdbarch;
3918 struct frame_info *frame;
3919 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3920 so that the frame level will be shown correctly. */
3921 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3922 regnum = VALUE_REGNUM (val);
3923 gdbarch = get_frame_arch (frame);
3924
3925 fprintf_unfiltered (gdb_stdlog,
3926 "{ value_fetch_lazy "
3927 "(frame=%d,regnum=%d(%s),...) ",
3928 frame_relative_level (frame), regnum,
3929 user_reg_map_regnum_to_name (gdbarch, regnum));
3930
3931 fprintf_unfiltered (gdb_stdlog, "->");
3932 if (value_optimized_out (new_val))
3933 {
3934 fprintf_unfiltered (gdb_stdlog, " ");
3935 val_print_optimized_out (new_val, gdb_stdlog);
3936 }
3937 else
3938 {
3939 int i;
3940 const gdb_byte *buf = value_contents (new_val);
3941
3942 if (VALUE_LVAL (new_val) == lval_register)
3943 fprintf_unfiltered (gdb_stdlog, " register=%d",
3944 VALUE_REGNUM (new_val));
3945 else if (VALUE_LVAL (new_val) == lval_memory)
3946 fprintf_unfiltered (gdb_stdlog, " address=%s",
3947 paddress (gdbarch,
3948 value_address (new_val)));
3949 else
3950 fprintf_unfiltered (gdb_stdlog, " computed");
3951
3952 fprintf_unfiltered (gdb_stdlog, " bytes=");
3953 fprintf_unfiltered (gdb_stdlog, "[");
3954 for (i = 0; i < register_size (gdbarch, regnum); i++)
3955 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3956 fprintf_unfiltered (gdb_stdlog, "]");
3957 }
3958
3959 fprintf_unfiltered (gdb_stdlog, " }\n");
3960 }
3961
3962 /* Dispose of the intermediate values. This prevents
3963 watchpoints from trying to watch the saved frame pointer. */
3964 value_free_to_mark (mark);
3965 }
3966 else if (VALUE_LVAL (val) == lval_computed
3967 && value_computed_funcs (val)->read != NULL)
3968 value_computed_funcs (val)->read (val);
3969 else
3970 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3971
3972 set_value_lazy (val, 0);
3973 }
3974
3975 /* Implementation of the convenience function $_isvoid. */
3976
3977 static struct value *
3978 isvoid_internal_fn (struct gdbarch *gdbarch,
3979 const struct language_defn *language,
3980 void *cookie, int argc, struct value **argv)
3981 {
3982 int ret;
3983
3984 if (argc != 1)
3985 error (_("You must provide one argument for $_isvoid."));
3986
3987 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3988
3989 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3990 }
3991
3992 void
3993 _initialize_values (void)
3994 {
3995 add_cmd ("convenience", no_class, show_convenience, _("\
3996 Debugger convenience (\"$foo\") variables and functions.\n\
3997 Convenience variables are created when you assign them values;\n\
3998 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3999 \n\
4000 A few convenience variables are given values automatically:\n\
4001 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4002 \"$__\" holds the contents of the last address examined with \"x\"."
4003 #ifdef HAVE_PYTHON
4004 "\n\n\
4005 Convenience functions are defined via the Python API."
4006 #endif
4007 ), &showlist);
4008 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4009
4010 add_cmd ("values", no_set_class, show_values, _("\
4011 Elements of value history around item number IDX (or last ten)."),
4012 &showlist);
4013
4014 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4015 Initialize a convenience variable if necessary.\n\
4016 init-if-undefined VARIABLE = EXPRESSION\n\
4017 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4018 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4019 VARIABLE is already initialized."));
4020
4021 add_prefix_cmd ("function", no_class, function_command, _("\
4022 Placeholder command for showing help on convenience functions."),
4023 &functionlist, "function ", 0, &cmdlist);
4024
4025 add_internal_function ("_isvoid", _("\
4026 Check whether an expression is void.\n\
4027 Usage: $_isvoid (expression)\n\
4028 Return 1 if the expression is void, zero otherwise."),
4029 isvoid_internal_fn, NULL);
4030
4031 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4032 class_support, &max_value_size, _("\
4033 Set maximum sized value gdb will load from the inferior."), _("\
4034 Show maximum sized value gdb will load from the inferior."), _("\
4035 Use this to control the maximum size, in bytes, of a value that gdb\n\
4036 will load from the inferior. Setting this value to 'unlimited'\n\
4037 disables checking.\n\
4038 Setting this does not invalidate already allocated values, it only\n\
4039 prevents future values, larger than this size, from being allocated."),
4040 set_max_value_size,
4041 show_max_value_size,
4042 &setlist, &showlist);
4043 }
This page took 0.121476 seconds and 4 git commands to generate.