Constify strings in tracepoint.c, lookup_cmd and the completers.
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44 #include "cp-abi.h"
45
46 /* Prototypes for exported functions. */
47
48 void _initialize_values (void);
49
50 /* Definition of a user function. */
51 struct internal_function
52 {
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
56 char *name;
57
58 /* The handler. */
59 internal_function_fn handler;
60
61 /* User data for the handler. */
62 void *cookie;
63 };
64
65 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
66
67 struct range
68 {
69 /* Lowest offset in the range. */
70 int offset;
71
72 /* Length of the range. */
73 int length;
74 };
75
76 typedef struct range range_s;
77
78 DEF_VEC_O(range_s);
79
80 /* Returns true if the ranges defined by [offset1, offset1+len1) and
81 [offset2, offset2+len2) overlap. */
82
83 static int
84 ranges_overlap (int offset1, int len1,
85 int offset2, int len2)
86 {
87 ULONGEST h, l;
88
89 l = max (offset1, offset2);
90 h = min (offset1 + len1, offset2 + len2);
91 return (l < h);
92 }
93
94 /* Returns true if the first argument is strictly less than the
95 second, useful for VEC_lower_bound. We keep ranges sorted by
96 offset and coalesce overlapping and contiguous ranges, so this just
97 compares the starting offset. */
98
99 static int
100 range_lessthan (const range_s *r1, const range_s *r2)
101 {
102 return r1->offset < r2->offset;
103 }
104
105 /* Returns true if RANGES contains any range that overlaps [OFFSET,
106 OFFSET+LENGTH). */
107
108 static int
109 ranges_contain (VEC(range_s) *ranges, int offset, int length)
110 {
111 range_s what;
112 int i;
113
114 what.offset = offset;
115 what.length = length;
116
117 /* We keep ranges sorted by offset and coalesce overlapping and
118 contiguous ranges, so to check if a range list contains a given
119 range, we can do a binary search for the position the given range
120 would be inserted if we only considered the starting OFFSET of
121 ranges. We call that position I. Since we also have LENGTH to
122 care for (this is a range afterall), we need to check if the
123 _previous_ range overlaps the I range. E.g.,
124
125 R
126 |---|
127 |---| |---| |------| ... |--|
128 0 1 2 N
129
130 I=1
131
132 In the case above, the binary search would return `I=1', meaning,
133 this OFFSET should be inserted at position 1, and the current
134 position 1 should be pushed further (and before 2). But, `0'
135 overlaps with R.
136
137 Then we need to check if the I range overlaps the I range itself.
138 E.g.,
139
140 R
141 |---|
142 |---| |---| |-------| ... |--|
143 0 1 2 N
144
145 I=1
146 */
147
148 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
149
150 if (i > 0)
151 {
152 struct range *bef = VEC_index (range_s, ranges, i - 1);
153
154 if (ranges_overlap (bef->offset, bef->length, offset, length))
155 return 1;
156 }
157
158 if (i < VEC_length (range_s, ranges))
159 {
160 struct range *r = VEC_index (range_s, ranges, i);
161
162 if (ranges_overlap (r->offset, r->length, offset, length))
163 return 1;
164 }
165
166 return 0;
167 }
168
169 static struct cmd_list_element *functionlist;
170
171 /* Note that the fields in this structure are arranged to save a bit
172 of memory. */
173
174 struct value
175 {
176 /* Type of value; either not an lval, or one of the various
177 different possible kinds of lval. */
178 enum lval_type lval;
179
180 /* Is it modifiable? Only relevant if lval != not_lval. */
181 unsigned int modifiable : 1;
182
183 /* If zero, contents of this value are in the contents field. If
184 nonzero, contents are in inferior. If the lval field is lval_memory,
185 the contents are in inferior memory at location.address plus offset.
186 The lval field may also be lval_register.
187
188 WARNING: This field is used by the code which handles watchpoints
189 (see breakpoint.c) to decide whether a particular value can be
190 watched by hardware watchpoints. If the lazy flag is set for
191 some member of a value chain, it is assumed that this member of
192 the chain doesn't need to be watched as part of watching the
193 value itself. This is how GDB avoids watching the entire struct
194 or array when the user wants to watch a single struct member or
195 array element. If you ever change the way lazy flag is set and
196 reset, be sure to consider this use as well! */
197 unsigned int lazy : 1;
198
199 /* If nonzero, this is the value of a variable which does not
200 actually exist in the program. */
201 unsigned int optimized_out : 1;
202
203 /* If value is a variable, is it initialized or not. */
204 unsigned int initialized : 1;
205
206 /* If value is from the stack. If this is set, read_stack will be
207 used instead of read_memory to enable extra caching. */
208 unsigned int stack : 1;
209
210 /* If the value has been released. */
211 unsigned int released : 1;
212
213 /* Location of value (if lval). */
214 union
215 {
216 /* If lval == lval_memory, this is the address in the inferior.
217 If lval == lval_register, this is the byte offset into the
218 registers structure. */
219 CORE_ADDR address;
220
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
223
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
234 } computed;
235 } location;
236
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
250 int bitpos;
251
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
319 struct value *next;
320
321 /* Register number if the value is from a register. */
322 short regnum;
323
324 /* Actual contents of the value. Target byte-order. NULL or not
325 valid if lazy is nonzero. */
326 gdb_byte *contents;
327
328 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
329 rather than available, since the common and default case is for a
330 value to be available. This is filled in at value read time. */
331 VEC(range_s) *unavailable;
332 };
333
334 int
335 value_bytes_available (const struct value *value, int offset, int length)
336 {
337 gdb_assert (!value->lazy);
338
339 return !ranges_contain (value->unavailable, offset, length);
340 }
341
342 int
343 value_entirely_available (struct value *value)
344 {
345 /* We can only tell whether the whole value is available when we try
346 to read it. */
347 if (value->lazy)
348 value_fetch_lazy (value);
349
350 if (VEC_empty (range_s, value->unavailable))
351 return 1;
352 return 0;
353 }
354
355 void
356 mark_value_bytes_unavailable (struct value *value, int offset, int length)
357 {
358 range_s newr;
359 int i;
360
361 /* Insert the range sorted. If there's overlap or the new range
362 would be contiguous with an existing range, merge. */
363
364 newr.offset = offset;
365 newr.length = length;
366
367 /* Do a binary search for the position the given range would be
368 inserted if we only considered the starting OFFSET of ranges.
369 Call that position I. Since we also have LENGTH to care for
370 (this is a range afterall), we need to check if the _previous_
371 range overlaps the I range. E.g., calling R the new range:
372
373 #1 - overlaps with previous
374
375 R
376 |-...-|
377 |---| |---| |------| ... |--|
378 0 1 2 N
379
380 I=1
381
382 In the case #1 above, the binary search would return `I=1',
383 meaning, this OFFSET should be inserted at position 1, and the
384 current position 1 should be pushed further (and become 2). But,
385 note that `0' overlaps with R, so we want to merge them.
386
387 A similar consideration needs to be taken if the new range would
388 be contiguous with the previous range:
389
390 #2 - contiguous with previous
391
392 R
393 |-...-|
394 |--| |---| |------| ... |--|
395 0 1 2 N
396
397 I=1
398
399 If there's no overlap with the previous range, as in:
400
401 #3 - not overlapping and not contiguous
402
403 R
404 |-...-|
405 |--| |---| |------| ... |--|
406 0 1 2 N
407
408 I=1
409
410 or if I is 0:
411
412 #4 - R is the range with lowest offset
413
414 R
415 |-...-|
416 |--| |---| |------| ... |--|
417 0 1 2 N
418
419 I=0
420
421 ... we just push the new range to I.
422
423 All the 4 cases above need to consider that the new range may
424 also overlap several of the ranges that follow, or that R may be
425 contiguous with the following range, and merge. E.g.,
426
427 #5 - overlapping following ranges
428
429 R
430 |------------------------|
431 |--| |---| |------| ... |--|
432 0 1 2 N
433
434 I=0
435
436 or:
437
438 R
439 |-------|
440 |--| |---| |------| ... |--|
441 0 1 2 N
442
443 I=1
444
445 */
446
447 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
448 if (i > 0)
449 {
450 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
451
452 if (ranges_overlap (bef->offset, bef->length, offset, length))
453 {
454 /* #1 */
455 ULONGEST l = min (bef->offset, offset);
456 ULONGEST h = max (bef->offset + bef->length, offset + length);
457
458 bef->offset = l;
459 bef->length = h - l;
460 i--;
461 }
462 else if (offset == bef->offset + bef->length)
463 {
464 /* #2 */
465 bef->length += length;
466 i--;
467 }
468 else
469 {
470 /* #3 */
471 VEC_safe_insert (range_s, value->unavailable, i, &newr);
472 }
473 }
474 else
475 {
476 /* #4 */
477 VEC_safe_insert (range_s, value->unavailable, i, &newr);
478 }
479
480 /* Check whether the ranges following the one we've just added or
481 touched can be folded in (#5 above). */
482 if (i + 1 < VEC_length (range_s, value->unavailable))
483 {
484 struct range *t;
485 struct range *r;
486 int removed = 0;
487 int next = i + 1;
488
489 /* Get the range we just touched. */
490 t = VEC_index (range_s, value->unavailable, i);
491 removed = 0;
492
493 i = next;
494 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
495 if (r->offset <= t->offset + t->length)
496 {
497 ULONGEST l, h;
498
499 l = min (t->offset, r->offset);
500 h = max (t->offset + t->length, r->offset + r->length);
501
502 t->offset = l;
503 t->length = h - l;
504
505 removed++;
506 }
507 else
508 {
509 /* If we couldn't merge this one, we won't be able to
510 merge following ones either, since the ranges are
511 always sorted by OFFSET. */
512 break;
513 }
514
515 if (removed != 0)
516 VEC_block_remove (range_s, value->unavailable, next, removed);
517 }
518 }
519
520 /* Find the first range in RANGES that overlaps the range defined by
521 OFFSET and LENGTH, starting at element POS in the RANGES vector,
522 Returns the index into RANGES where such overlapping range was
523 found, or -1 if none was found. */
524
525 static int
526 find_first_range_overlap (VEC(range_s) *ranges, int pos,
527 int offset, int length)
528 {
529 range_s *r;
530 int i;
531
532 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
533 if (ranges_overlap (r->offset, r->length, offset, length))
534 return i;
535
536 return -1;
537 }
538
539 int
540 value_available_contents_eq (const struct value *val1, int offset1,
541 const struct value *val2, int offset2,
542 int length)
543 {
544 int idx1 = 0, idx2 = 0;
545
546 /* This routine is used by printing routines, where we should
547 already have read the value. Note that we only know whether a
548 value chunk is available if we've tried to read it. */
549 gdb_assert (!val1->lazy && !val2->lazy);
550
551 while (length > 0)
552 {
553 range_s *r1, *r2;
554 ULONGEST l1, h1;
555 ULONGEST l2, h2;
556
557 idx1 = find_first_range_overlap (val1->unavailable, idx1,
558 offset1, length);
559 idx2 = find_first_range_overlap (val2->unavailable, idx2,
560 offset2, length);
561
562 /* The usual case is for both values to be completely available. */
563 if (idx1 == -1 && idx2 == -1)
564 return (memcmp (val1->contents + offset1,
565 val2->contents + offset2,
566 length) == 0);
567 /* The contents only match equal if the available set matches as
568 well. */
569 else if (idx1 == -1 || idx2 == -1)
570 return 0;
571
572 gdb_assert (idx1 != -1 && idx2 != -1);
573
574 r1 = VEC_index (range_s, val1->unavailable, idx1);
575 r2 = VEC_index (range_s, val2->unavailable, idx2);
576
577 /* Get the unavailable windows intersected by the incoming
578 ranges. The first and last ranges that overlap the argument
579 range may be wider than said incoming arguments ranges. */
580 l1 = max (offset1, r1->offset);
581 h1 = min (offset1 + length, r1->offset + r1->length);
582
583 l2 = max (offset2, r2->offset);
584 h2 = min (offset2 + length, r2->offset + r2->length);
585
586 /* Make them relative to the respective start offsets, so we can
587 compare them for equality. */
588 l1 -= offset1;
589 h1 -= offset1;
590
591 l2 -= offset2;
592 h2 -= offset2;
593
594 /* Different availability, no match. */
595 if (l1 != l2 || h1 != h2)
596 return 0;
597
598 /* Compare the _available_ contents. */
599 if (memcmp (val1->contents + offset1,
600 val2->contents + offset2,
601 l1) != 0)
602 return 0;
603
604 length -= h1;
605 offset1 += h1;
606 offset2 += h1;
607 }
608
609 return 1;
610 }
611
612 /* Prototypes for local functions. */
613
614 static void show_values (char *, int);
615
616 static void show_convenience (char *, int);
617
618
619 /* The value-history records all the values printed
620 by print commands during this session. Each chunk
621 records 60 consecutive values. The first chunk on
622 the chain records the most recent values.
623 The total number of values is in value_history_count. */
624
625 #define VALUE_HISTORY_CHUNK 60
626
627 struct value_history_chunk
628 {
629 struct value_history_chunk *next;
630 struct value *values[VALUE_HISTORY_CHUNK];
631 };
632
633 /* Chain of chunks now in use. */
634
635 static struct value_history_chunk *value_history_chain;
636
637 static int value_history_count; /* Abs number of last entry stored. */
638
639 \f
640 /* List of all value objects currently allocated
641 (except for those released by calls to release_value)
642 This is so they can be freed after each command. */
643
644 static struct value *all_values;
645
646 /* Allocate a lazy value for type TYPE. Its actual content is
647 "lazily" allocated too: the content field of the return value is
648 NULL; it will be allocated when it is fetched from the target. */
649
650 struct value *
651 allocate_value_lazy (struct type *type)
652 {
653 struct value *val;
654
655 /* Call check_typedef on our type to make sure that, if TYPE
656 is a TYPE_CODE_TYPEDEF, its length is set to the length
657 of the target type instead of zero. However, we do not
658 replace the typedef type by the target type, because we want
659 to keep the typedef in order to be able to set the VAL's type
660 description correctly. */
661 check_typedef (type);
662
663 val = (struct value *) xzalloc (sizeof (struct value));
664 val->contents = NULL;
665 val->next = all_values;
666 all_values = val;
667 val->type = type;
668 val->enclosing_type = type;
669 VALUE_LVAL (val) = not_lval;
670 val->location.address = 0;
671 VALUE_FRAME_ID (val) = null_frame_id;
672 val->offset = 0;
673 val->bitpos = 0;
674 val->bitsize = 0;
675 VALUE_REGNUM (val) = -1;
676 val->lazy = 1;
677 val->optimized_out = 0;
678 val->embedded_offset = 0;
679 val->pointed_to_offset = 0;
680 val->modifiable = 1;
681 val->initialized = 1; /* Default to initialized. */
682
683 /* Values start out on the all_values chain. */
684 val->reference_count = 1;
685
686 return val;
687 }
688
689 /* Allocate the contents of VAL if it has not been allocated yet. */
690
691 void
692 allocate_value_contents (struct value *val)
693 {
694 if (!val->contents)
695 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
696 }
697
698 /* Allocate a value and its contents for type TYPE. */
699
700 struct value *
701 allocate_value (struct type *type)
702 {
703 struct value *val = allocate_value_lazy (type);
704
705 allocate_value_contents (val);
706 val->lazy = 0;
707 return val;
708 }
709
710 /* Allocate a value that has the correct length
711 for COUNT repetitions of type TYPE. */
712
713 struct value *
714 allocate_repeat_value (struct type *type, int count)
715 {
716 int low_bound = current_language->string_lower_bound; /* ??? */
717 /* FIXME-type-allocation: need a way to free this type when we are
718 done with it. */
719 struct type *array_type
720 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
721
722 return allocate_value (array_type);
723 }
724
725 struct value *
726 allocate_computed_value (struct type *type,
727 const struct lval_funcs *funcs,
728 void *closure)
729 {
730 struct value *v = allocate_value_lazy (type);
731
732 VALUE_LVAL (v) = lval_computed;
733 v->location.computed.funcs = funcs;
734 v->location.computed.closure = closure;
735
736 return v;
737 }
738
739 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
740
741 struct value *
742 allocate_optimized_out_value (struct type *type)
743 {
744 struct value *retval = allocate_value_lazy (type);
745
746 set_value_optimized_out (retval, 1);
747
748 return retval;
749 }
750
751 /* Accessor methods. */
752
753 struct value *
754 value_next (struct value *value)
755 {
756 return value->next;
757 }
758
759 struct type *
760 value_type (const struct value *value)
761 {
762 return value->type;
763 }
764 void
765 deprecated_set_value_type (struct value *value, struct type *type)
766 {
767 value->type = type;
768 }
769
770 int
771 value_offset (const struct value *value)
772 {
773 return value->offset;
774 }
775 void
776 set_value_offset (struct value *value, int offset)
777 {
778 value->offset = offset;
779 }
780
781 int
782 value_bitpos (const struct value *value)
783 {
784 return value->bitpos;
785 }
786 void
787 set_value_bitpos (struct value *value, int bit)
788 {
789 value->bitpos = bit;
790 }
791
792 int
793 value_bitsize (const struct value *value)
794 {
795 return value->bitsize;
796 }
797 void
798 set_value_bitsize (struct value *value, int bit)
799 {
800 value->bitsize = bit;
801 }
802
803 struct value *
804 value_parent (struct value *value)
805 {
806 return value->parent;
807 }
808
809 /* See value.h. */
810
811 void
812 set_value_parent (struct value *value, struct value *parent)
813 {
814 value->parent = parent;
815 }
816
817 gdb_byte *
818 value_contents_raw (struct value *value)
819 {
820 allocate_value_contents (value);
821 return value->contents + value->embedded_offset;
822 }
823
824 gdb_byte *
825 value_contents_all_raw (struct value *value)
826 {
827 allocate_value_contents (value);
828 return value->contents;
829 }
830
831 struct type *
832 value_enclosing_type (struct value *value)
833 {
834 return value->enclosing_type;
835 }
836
837 /* Look at value.h for description. */
838
839 struct type *
840 value_actual_type (struct value *value, int resolve_simple_types,
841 int *real_type_found)
842 {
843 struct value_print_options opts;
844 struct type *result;
845
846 get_user_print_options (&opts);
847
848 if (real_type_found)
849 *real_type_found = 0;
850 result = value_type (value);
851 if (opts.objectprint)
852 {
853 /* If result's target type is TYPE_CODE_STRUCT, proceed to
854 fetch its rtti type. */
855 if ((TYPE_CODE (result) == TYPE_CODE_PTR
856 || TYPE_CODE (result) == TYPE_CODE_REF)
857 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
858 == TYPE_CODE_STRUCT)
859 {
860 struct type *real_type;
861
862 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
863 if (real_type)
864 {
865 if (real_type_found)
866 *real_type_found = 1;
867 result = real_type;
868 }
869 }
870 else if (resolve_simple_types)
871 {
872 if (real_type_found)
873 *real_type_found = 1;
874 result = value_enclosing_type (value);
875 }
876 }
877
878 return result;
879 }
880
881 static void
882 require_not_optimized_out (const struct value *value)
883 {
884 if (value->optimized_out)
885 error (_("value has been optimized out"));
886 }
887
888 static void
889 require_available (const struct value *value)
890 {
891 if (!VEC_empty (range_s, value->unavailable))
892 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
893 }
894
895 const gdb_byte *
896 value_contents_for_printing (struct value *value)
897 {
898 if (value->lazy)
899 value_fetch_lazy (value);
900 return value->contents;
901 }
902
903 const gdb_byte *
904 value_contents_for_printing_const (const struct value *value)
905 {
906 gdb_assert (!value->lazy);
907 return value->contents;
908 }
909
910 const gdb_byte *
911 value_contents_all (struct value *value)
912 {
913 const gdb_byte *result = value_contents_for_printing (value);
914 require_not_optimized_out (value);
915 require_available (value);
916 return result;
917 }
918
919 /* Copy LENGTH bytes of SRC value's (all) contents
920 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
921 contents, starting at DST_OFFSET. If unavailable contents are
922 being copied from SRC, the corresponding DST contents are marked
923 unavailable accordingly. Neither DST nor SRC may be lazy
924 values.
925
926 It is assumed the contents of DST in the [DST_OFFSET,
927 DST_OFFSET+LENGTH) range are wholly available. */
928
929 void
930 value_contents_copy_raw (struct value *dst, int dst_offset,
931 struct value *src, int src_offset, int length)
932 {
933 range_s *r;
934 int i;
935
936 /* A lazy DST would make that this copy operation useless, since as
937 soon as DST's contents were un-lazied (by a later value_contents
938 call, say), the contents would be overwritten. A lazy SRC would
939 mean we'd be copying garbage. */
940 gdb_assert (!dst->lazy && !src->lazy);
941
942 /* The overwritten DST range gets unavailability ORed in, not
943 replaced. Make sure to remember to implement replacing if it
944 turns out actually necessary. */
945 gdb_assert (value_bytes_available (dst, dst_offset, length));
946
947 /* Copy the data. */
948 memcpy (value_contents_all_raw (dst) + dst_offset,
949 value_contents_all_raw (src) + src_offset,
950 length);
951
952 /* Copy the meta-data, adjusted. */
953 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
954 {
955 ULONGEST h, l;
956
957 l = max (r->offset, src_offset);
958 h = min (r->offset + r->length, src_offset + length);
959
960 if (l < h)
961 mark_value_bytes_unavailable (dst,
962 dst_offset + (l - src_offset),
963 h - l);
964 }
965 }
966
967 /* Copy LENGTH bytes of SRC value's (all) contents
968 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
969 (all) contents, starting at DST_OFFSET. If unavailable contents
970 are being copied from SRC, the corresponding DST contents are
971 marked unavailable accordingly. DST must not be lazy. If SRC is
972 lazy, it will be fetched now. If SRC is not valid (is optimized
973 out), an error is thrown.
974
975 It is assumed the contents of DST in the [DST_OFFSET,
976 DST_OFFSET+LENGTH) range are wholly available. */
977
978 void
979 value_contents_copy (struct value *dst, int dst_offset,
980 struct value *src, int src_offset, int length)
981 {
982 require_not_optimized_out (src);
983
984 if (src->lazy)
985 value_fetch_lazy (src);
986
987 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
988 }
989
990 int
991 value_lazy (struct value *value)
992 {
993 return value->lazy;
994 }
995
996 void
997 set_value_lazy (struct value *value, int val)
998 {
999 value->lazy = val;
1000 }
1001
1002 int
1003 value_stack (struct value *value)
1004 {
1005 return value->stack;
1006 }
1007
1008 void
1009 set_value_stack (struct value *value, int val)
1010 {
1011 value->stack = val;
1012 }
1013
1014 const gdb_byte *
1015 value_contents (struct value *value)
1016 {
1017 const gdb_byte *result = value_contents_writeable (value);
1018 require_not_optimized_out (value);
1019 require_available (value);
1020 return result;
1021 }
1022
1023 gdb_byte *
1024 value_contents_writeable (struct value *value)
1025 {
1026 if (value->lazy)
1027 value_fetch_lazy (value);
1028 return value_contents_raw (value);
1029 }
1030
1031 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1032 this function is different from value_equal; in C the operator ==
1033 can return 0 even if the two values being compared are equal. */
1034
1035 int
1036 value_contents_equal (struct value *val1, struct value *val2)
1037 {
1038 struct type *type1;
1039 struct type *type2;
1040
1041 type1 = check_typedef (value_type (val1));
1042 type2 = check_typedef (value_type (val2));
1043 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
1044 return 0;
1045
1046 return (memcmp (value_contents (val1), value_contents (val2),
1047 TYPE_LENGTH (type1)) == 0);
1048 }
1049
1050 int
1051 value_optimized_out (struct value *value)
1052 {
1053 return value->optimized_out;
1054 }
1055
1056 void
1057 set_value_optimized_out (struct value *value, int val)
1058 {
1059 value->optimized_out = val;
1060 }
1061
1062 int
1063 value_entirely_optimized_out (const struct value *value)
1064 {
1065 if (!value->optimized_out)
1066 return 0;
1067 if (value->lval != lval_computed
1068 || !value->location.computed.funcs->check_any_valid)
1069 return 1;
1070 return !value->location.computed.funcs->check_any_valid (value);
1071 }
1072
1073 int
1074 value_bits_valid (const struct value *value, int offset, int length)
1075 {
1076 if (!value->optimized_out)
1077 return 1;
1078 if (value->lval != lval_computed
1079 || !value->location.computed.funcs->check_validity)
1080 return 0;
1081 return value->location.computed.funcs->check_validity (value, offset,
1082 length);
1083 }
1084
1085 int
1086 value_bits_synthetic_pointer (const struct value *value,
1087 int offset, int length)
1088 {
1089 if (value->lval != lval_computed
1090 || !value->location.computed.funcs->check_synthetic_pointer)
1091 return 0;
1092 return value->location.computed.funcs->check_synthetic_pointer (value,
1093 offset,
1094 length);
1095 }
1096
1097 int
1098 value_embedded_offset (struct value *value)
1099 {
1100 return value->embedded_offset;
1101 }
1102
1103 void
1104 set_value_embedded_offset (struct value *value, int val)
1105 {
1106 value->embedded_offset = val;
1107 }
1108
1109 int
1110 value_pointed_to_offset (struct value *value)
1111 {
1112 return value->pointed_to_offset;
1113 }
1114
1115 void
1116 set_value_pointed_to_offset (struct value *value, int val)
1117 {
1118 value->pointed_to_offset = val;
1119 }
1120
1121 const struct lval_funcs *
1122 value_computed_funcs (const struct value *v)
1123 {
1124 gdb_assert (value_lval_const (v) == lval_computed);
1125
1126 return v->location.computed.funcs;
1127 }
1128
1129 void *
1130 value_computed_closure (const struct value *v)
1131 {
1132 gdb_assert (v->lval == lval_computed);
1133
1134 return v->location.computed.closure;
1135 }
1136
1137 enum lval_type *
1138 deprecated_value_lval_hack (struct value *value)
1139 {
1140 return &value->lval;
1141 }
1142
1143 enum lval_type
1144 value_lval_const (const struct value *value)
1145 {
1146 return value->lval;
1147 }
1148
1149 CORE_ADDR
1150 value_address (const struct value *value)
1151 {
1152 if (value->lval == lval_internalvar
1153 || value->lval == lval_internalvar_component)
1154 return 0;
1155 if (value->parent != NULL)
1156 return value_address (value->parent) + value->offset;
1157 else
1158 return value->location.address + value->offset;
1159 }
1160
1161 CORE_ADDR
1162 value_raw_address (struct value *value)
1163 {
1164 if (value->lval == lval_internalvar
1165 || value->lval == lval_internalvar_component)
1166 return 0;
1167 return value->location.address;
1168 }
1169
1170 void
1171 set_value_address (struct value *value, CORE_ADDR addr)
1172 {
1173 gdb_assert (value->lval != lval_internalvar
1174 && value->lval != lval_internalvar_component);
1175 value->location.address = addr;
1176 }
1177
1178 struct internalvar **
1179 deprecated_value_internalvar_hack (struct value *value)
1180 {
1181 return &value->location.internalvar;
1182 }
1183
1184 struct frame_id *
1185 deprecated_value_frame_id_hack (struct value *value)
1186 {
1187 return &value->frame_id;
1188 }
1189
1190 short *
1191 deprecated_value_regnum_hack (struct value *value)
1192 {
1193 return &value->regnum;
1194 }
1195
1196 int
1197 deprecated_value_modifiable (struct value *value)
1198 {
1199 return value->modifiable;
1200 }
1201 \f
1202 /* Return a mark in the value chain. All values allocated after the
1203 mark is obtained (except for those released) are subject to being freed
1204 if a subsequent value_free_to_mark is passed the mark. */
1205 struct value *
1206 value_mark (void)
1207 {
1208 return all_values;
1209 }
1210
1211 /* Take a reference to VAL. VAL will not be deallocated until all
1212 references are released. */
1213
1214 void
1215 value_incref (struct value *val)
1216 {
1217 val->reference_count++;
1218 }
1219
1220 /* Release a reference to VAL, which was acquired with value_incref.
1221 This function is also called to deallocate values from the value
1222 chain. */
1223
1224 void
1225 value_free (struct value *val)
1226 {
1227 if (val)
1228 {
1229 gdb_assert (val->reference_count > 0);
1230 val->reference_count--;
1231 if (val->reference_count > 0)
1232 return;
1233
1234 /* If there's an associated parent value, drop our reference to
1235 it. */
1236 if (val->parent != NULL)
1237 value_free (val->parent);
1238
1239 if (VALUE_LVAL (val) == lval_computed)
1240 {
1241 const struct lval_funcs *funcs = val->location.computed.funcs;
1242
1243 if (funcs->free_closure)
1244 funcs->free_closure (val);
1245 }
1246
1247 xfree (val->contents);
1248 VEC_free (range_s, val->unavailable);
1249 }
1250 xfree (val);
1251 }
1252
1253 /* Free all values allocated since MARK was obtained by value_mark
1254 (except for those released). */
1255 void
1256 value_free_to_mark (struct value *mark)
1257 {
1258 struct value *val;
1259 struct value *next;
1260
1261 for (val = all_values; val && val != mark; val = next)
1262 {
1263 next = val->next;
1264 val->released = 1;
1265 value_free (val);
1266 }
1267 all_values = val;
1268 }
1269
1270 /* Free all the values that have been allocated (except for those released).
1271 Call after each command, successful or not.
1272 In practice this is called before each command, which is sufficient. */
1273
1274 void
1275 free_all_values (void)
1276 {
1277 struct value *val;
1278 struct value *next;
1279
1280 for (val = all_values; val; val = next)
1281 {
1282 next = val->next;
1283 val->released = 1;
1284 value_free (val);
1285 }
1286
1287 all_values = 0;
1288 }
1289
1290 /* Frees all the elements in a chain of values. */
1291
1292 void
1293 free_value_chain (struct value *v)
1294 {
1295 struct value *next;
1296
1297 for (; v; v = next)
1298 {
1299 next = value_next (v);
1300 value_free (v);
1301 }
1302 }
1303
1304 /* Remove VAL from the chain all_values
1305 so it will not be freed automatically. */
1306
1307 void
1308 release_value (struct value *val)
1309 {
1310 struct value *v;
1311
1312 if (all_values == val)
1313 {
1314 all_values = val->next;
1315 val->next = NULL;
1316 val->released = 1;
1317 return;
1318 }
1319
1320 for (v = all_values; v; v = v->next)
1321 {
1322 if (v->next == val)
1323 {
1324 v->next = val->next;
1325 val->next = NULL;
1326 val->released = 1;
1327 break;
1328 }
1329 }
1330 }
1331
1332 /* If the value is not already released, release it.
1333 If the value is already released, increment its reference count.
1334 That is, this function ensures that the value is released from the
1335 value chain and that the caller owns a reference to it. */
1336
1337 void
1338 release_value_or_incref (struct value *val)
1339 {
1340 if (val->released)
1341 value_incref (val);
1342 else
1343 release_value (val);
1344 }
1345
1346 /* Release all values up to mark */
1347 struct value *
1348 value_release_to_mark (struct value *mark)
1349 {
1350 struct value *val;
1351 struct value *next;
1352
1353 for (val = next = all_values; next; next = next->next)
1354 {
1355 if (next->next == mark)
1356 {
1357 all_values = next->next;
1358 next->next = NULL;
1359 return val;
1360 }
1361 next->released = 1;
1362 }
1363 all_values = 0;
1364 return val;
1365 }
1366
1367 /* Return a copy of the value ARG.
1368 It contains the same contents, for same memory address,
1369 but it's a different block of storage. */
1370
1371 struct value *
1372 value_copy (struct value *arg)
1373 {
1374 struct type *encl_type = value_enclosing_type (arg);
1375 struct value *val;
1376
1377 if (value_lazy (arg))
1378 val = allocate_value_lazy (encl_type);
1379 else
1380 val = allocate_value (encl_type);
1381 val->type = arg->type;
1382 VALUE_LVAL (val) = VALUE_LVAL (arg);
1383 val->location = arg->location;
1384 val->offset = arg->offset;
1385 val->bitpos = arg->bitpos;
1386 val->bitsize = arg->bitsize;
1387 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1388 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1389 val->lazy = arg->lazy;
1390 val->optimized_out = arg->optimized_out;
1391 val->embedded_offset = value_embedded_offset (arg);
1392 val->pointed_to_offset = arg->pointed_to_offset;
1393 val->modifiable = arg->modifiable;
1394 if (!value_lazy (val))
1395 {
1396 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1397 TYPE_LENGTH (value_enclosing_type (arg)));
1398
1399 }
1400 val->unavailable = VEC_copy (range_s, arg->unavailable);
1401 val->parent = arg->parent;
1402 if (val->parent)
1403 value_incref (val->parent);
1404 if (VALUE_LVAL (val) == lval_computed)
1405 {
1406 const struct lval_funcs *funcs = val->location.computed.funcs;
1407
1408 if (funcs->copy_closure)
1409 val->location.computed.closure = funcs->copy_closure (val);
1410 }
1411 return val;
1412 }
1413
1414 /* Return a version of ARG that is non-lvalue. */
1415
1416 struct value *
1417 value_non_lval (struct value *arg)
1418 {
1419 if (VALUE_LVAL (arg) != not_lval)
1420 {
1421 struct type *enc_type = value_enclosing_type (arg);
1422 struct value *val = allocate_value (enc_type);
1423
1424 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1425 TYPE_LENGTH (enc_type));
1426 val->type = arg->type;
1427 set_value_embedded_offset (val, value_embedded_offset (arg));
1428 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1429 return val;
1430 }
1431 return arg;
1432 }
1433
1434 void
1435 set_value_component_location (struct value *component,
1436 const struct value *whole)
1437 {
1438 if (whole->lval == lval_internalvar)
1439 VALUE_LVAL (component) = lval_internalvar_component;
1440 else
1441 VALUE_LVAL (component) = whole->lval;
1442
1443 component->location = whole->location;
1444 if (whole->lval == lval_computed)
1445 {
1446 const struct lval_funcs *funcs = whole->location.computed.funcs;
1447
1448 if (funcs->copy_closure)
1449 component->location.computed.closure = funcs->copy_closure (whole);
1450 }
1451 }
1452
1453 \f
1454 /* Access to the value history. */
1455
1456 /* Record a new value in the value history.
1457 Returns the absolute history index of the entry.
1458 Result of -1 indicates the value was not saved; otherwise it is the
1459 value history index of this new item. */
1460
1461 int
1462 record_latest_value (struct value *val)
1463 {
1464 int i;
1465
1466 /* We don't want this value to have anything to do with the inferior anymore.
1467 In particular, "set $1 = 50" should not affect the variable from which
1468 the value was taken, and fast watchpoints should be able to assume that
1469 a value on the value history never changes. */
1470 if (value_lazy (val))
1471 value_fetch_lazy (val);
1472 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1473 from. This is a bit dubious, because then *&$1 does not just return $1
1474 but the current contents of that location. c'est la vie... */
1475 val->modifiable = 0;
1476 release_value (val);
1477
1478 /* Here we treat value_history_count as origin-zero
1479 and applying to the value being stored now. */
1480
1481 i = value_history_count % VALUE_HISTORY_CHUNK;
1482 if (i == 0)
1483 {
1484 struct value_history_chunk *new
1485 = (struct value_history_chunk *)
1486
1487 xmalloc (sizeof (struct value_history_chunk));
1488 memset (new->values, 0, sizeof new->values);
1489 new->next = value_history_chain;
1490 value_history_chain = new;
1491 }
1492
1493 value_history_chain->values[i] = val;
1494
1495 /* Now we regard value_history_count as origin-one
1496 and applying to the value just stored. */
1497
1498 return ++value_history_count;
1499 }
1500
1501 /* Return a copy of the value in the history with sequence number NUM. */
1502
1503 struct value *
1504 access_value_history (int num)
1505 {
1506 struct value_history_chunk *chunk;
1507 int i;
1508 int absnum = num;
1509
1510 if (absnum <= 0)
1511 absnum += value_history_count;
1512
1513 if (absnum <= 0)
1514 {
1515 if (num == 0)
1516 error (_("The history is empty."));
1517 else if (num == 1)
1518 error (_("There is only one value in the history."));
1519 else
1520 error (_("History does not go back to $$%d."), -num);
1521 }
1522 if (absnum > value_history_count)
1523 error (_("History has not yet reached $%d."), absnum);
1524
1525 absnum--;
1526
1527 /* Now absnum is always absolute and origin zero. */
1528
1529 chunk = value_history_chain;
1530 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1531 - absnum / VALUE_HISTORY_CHUNK;
1532 i > 0; i--)
1533 chunk = chunk->next;
1534
1535 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1536 }
1537
1538 static void
1539 show_values (char *num_exp, int from_tty)
1540 {
1541 int i;
1542 struct value *val;
1543 static int num = 1;
1544
1545 if (num_exp)
1546 {
1547 /* "show values +" should print from the stored position.
1548 "show values <exp>" should print around value number <exp>. */
1549 if (num_exp[0] != '+' || num_exp[1] != '\0')
1550 num = parse_and_eval_long (num_exp) - 5;
1551 }
1552 else
1553 {
1554 /* "show values" means print the last 10 values. */
1555 num = value_history_count - 9;
1556 }
1557
1558 if (num <= 0)
1559 num = 1;
1560
1561 for (i = num; i < num + 10 && i <= value_history_count; i++)
1562 {
1563 struct value_print_options opts;
1564
1565 val = access_value_history (i);
1566 printf_filtered (("$%d = "), i);
1567 get_user_print_options (&opts);
1568 value_print (val, gdb_stdout, &opts);
1569 printf_filtered (("\n"));
1570 }
1571
1572 /* The next "show values +" should start after what we just printed. */
1573 num += 10;
1574
1575 /* Hitting just return after this command should do the same thing as
1576 "show values +". If num_exp is null, this is unnecessary, since
1577 "show values +" is not useful after "show values". */
1578 if (from_tty && num_exp)
1579 {
1580 num_exp[0] = '+';
1581 num_exp[1] = '\0';
1582 }
1583 }
1584 \f
1585 /* Internal variables. These are variables within the debugger
1586 that hold values assigned by debugger commands.
1587 The user refers to them with a '$' prefix
1588 that does not appear in the variable names stored internally. */
1589
1590 struct internalvar
1591 {
1592 struct internalvar *next;
1593 char *name;
1594
1595 /* We support various different kinds of content of an internal variable.
1596 enum internalvar_kind specifies the kind, and union internalvar_data
1597 provides the data associated with this particular kind. */
1598
1599 enum internalvar_kind
1600 {
1601 /* The internal variable is empty. */
1602 INTERNALVAR_VOID,
1603
1604 /* The value of the internal variable is provided directly as
1605 a GDB value object. */
1606 INTERNALVAR_VALUE,
1607
1608 /* A fresh value is computed via a call-back routine on every
1609 access to the internal variable. */
1610 INTERNALVAR_MAKE_VALUE,
1611
1612 /* The internal variable holds a GDB internal convenience function. */
1613 INTERNALVAR_FUNCTION,
1614
1615 /* The variable holds an integer value. */
1616 INTERNALVAR_INTEGER,
1617
1618 /* The variable holds a GDB-provided string. */
1619 INTERNALVAR_STRING,
1620
1621 } kind;
1622
1623 union internalvar_data
1624 {
1625 /* A value object used with INTERNALVAR_VALUE. */
1626 struct value *value;
1627
1628 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1629 struct
1630 {
1631 /* The functions to call. */
1632 const struct internalvar_funcs *functions;
1633
1634 /* The function's user-data. */
1635 void *data;
1636 } make_value;
1637
1638 /* The internal function used with INTERNALVAR_FUNCTION. */
1639 struct
1640 {
1641 struct internal_function *function;
1642 /* True if this is the canonical name for the function. */
1643 int canonical;
1644 } fn;
1645
1646 /* An integer value used with INTERNALVAR_INTEGER. */
1647 struct
1648 {
1649 /* If type is non-NULL, it will be used as the type to generate
1650 a value for this internal variable. If type is NULL, a default
1651 integer type for the architecture is used. */
1652 struct type *type;
1653 LONGEST val;
1654 } integer;
1655
1656 /* A string value used with INTERNALVAR_STRING. */
1657 char *string;
1658 } u;
1659 };
1660
1661 static struct internalvar *internalvars;
1662
1663 /* If the variable does not already exist create it and give it the
1664 value given. If no value is given then the default is zero. */
1665 static void
1666 init_if_undefined_command (char* args, int from_tty)
1667 {
1668 struct internalvar* intvar;
1669
1670 /* Parse the expression - this is taken from set_command(). */
1671 struct expression *expr = parse_expression (args);
1672 register struct cleanup *old_chain =
1673 make_cleanup (free_current_contents, &expr);
1674
1675 /* Validate the expression.
1676 Was the expression an assignment?
1677 Or even an expression at all? */
1678 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1679 error (_("Init-if-undefined requires an assignment expression."));
1680
1681 /* Extract the variable from the parsed expression.
1682 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1683 if (expr->elts[1].opcode != OP_INTERNALVAR)
1684 error (_("The first parameter to init-if-undefined "
1685 "should be a GDB variable."));
1686 intvar = expr->elts[2].internalvar;
1687
1688 /* Only evaluate the expression if the lvalue is void.
1689 This may still fail if the expresssion is invalid. */
1690 if (intvar->kind == INTERNALVAR_VOID)
1691 evaluate_expression (expr);
1692
1693 do_cleanups (old_chain);
1694 }
1695
1696
1697 /* Look up an internal variable with name NAME. NAME should not
1698 normally include a dollar sign.
1699
1700 If the specified internal variable does not exist,
1701 the return value is NULL. */
1702
1703 struct internalvar *
1704 lookup_only_internalvar (const char *name)
1705 {
1706 struct internalvar *var;
1707
1708 for (var = internalvars; var; var = var->next)
1709 if (strcmp (var->name, name) == 0)
1710 return var;
1711
1712 return NULL;
1713 }
1714
1715 /* Complete NAME by comparing it to the names of internal variables.
1716 Returns a vector of newly allocated strings, or NULL if no matches
1717 were found. */
1718
1719 VEC (char_ptr) *
1720 complete_internalvar (const char *name)
1721 {
1722 VEC (char_ptr) *result = NULL;
1723 struct internalvar *var;
1724 int len;
1725
1726 len = strlen (name);
1727
1728 for (var = internalvars; var; var = var->next)
1729 if (strncmp (var->name, name, len) == 0)
1730 {
1731 char *r = xstrdup (var->name);
1732
1733 VEC_safe_push (char_ptr, result, r);
1734 }
1735
1736 return result;
1737 }
1738
1739 /* Create an internal variable with name NAME and with a void value.
1740 NAME should not normally include a dollar sign. */
1741
1742 struct internalvar *
1743 create_internalvar (const char *name)
1744 {
1745 struct internalvar *var;
1746
1747 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1748 var->name = concat (name, (char *)NULL);
1749 var->kind = INTERNALVAR_VOID;
1750 var->next = internalvars;
1751 internalvars = var;
1752 return var;
1753 }
1754
1755 /* Create an internal variable with name NAME and register FUN as the
1756 function that value_of_internalvar uses to create a value whenever
1757 this variable is referenced. NAME should not normally include a
1758 dollar sign. DATA is passed uninterpreted to FUN when it is
1759 called. CLEANUP, if not NULL, is called when the internal variable
1760 is destroyed. It is passed DATA as its only argument. */
1761
1762 struct internalvar *
1763 create_internalvar_type_lazy (const char *name,
1764 const struct internalvar_funcs *funcs,
1765 void *data)
1766 {
1767 struct internalvar *var = create_internalvar (name);
1768
1769 var->kind = INTERNALVAR_MAKE_VALUE;
1770 var->u.make_value.functions = funcs;
1771 var->u.make_value.data = data;
1772 return var;
1773 }
1774
1775 /* See documentation in value.h. */
1776
1777 int
1778 compile_internalvar_to_ax (struct internalvar *var,
1779 struct agent_expr *expr,
1780 struct axs_value *value)
1781 {
1782 if (var->kind != INTERNALVAR_MAKE_VALUE
1783 || var->u.make_value.functions->compile_to_ax == NULL)
1784 return 0;
1785
1786 var->u.make_value.functions->compile_to_ax (var, expr, value,
1787 var->u.make_value.data);
1788 return 1;
1789 }
1790
1791 /* Look up an internal variable with name NAME. NAME should not
1792 normally include a dollar sign.
1793
1794 If the specified internal variable does not exist,
1795 one is created, with a void value. */
1796
1797 struct internalvar *
1798 lookup_internalvar (const char *name)
1799 {
1800 struct internalvar *var;
1801
1802 var = lookup_only_internalvar (name);
1803 if (var)
1804 return var;
1805
1806 return create_internalvar (name);
1807 }
1808
1809 /* Return current value of internal variable VAR. For variables that
1810 are not inherently typed, use a value type appropriate for GDBARCH. */
1811
1812 struct value *
1813 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1814 {
1815 struct value *val;
1816 struct trace_state_variable *tsv;
1817
1818 /* If there is a trace state variable of the same name, assume that
1819 is what we really want to see. */
1820 tsv = find_trace_state_variable (var->name);
1821 if (tsv)
1822 {
1823 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1824 &(tsv->value));
1825 if (tsv->value_known)
1826 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1827 tsv->value);
1828 else
1829 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1830 return val;
1831 }
1832
1833 switch (var->kind)
1834 {
1835 case INTERNALVAR_VOID:
1836 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1837 break;
1838
1839 case INTERNALVAR_FUNCTION:
1840 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1841 break;
1842
1843 case INTERNALVAR_INTEGER:
1844 if (!var->u.integer.type)
1845 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1846 var->u.integer.val);
1847 else
1848 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1849 break;
1850
1851 case INTERNALVAR_STRING:
1852 val = value_cstring (var->u.string, strlen (var->u.string),
1853 builtin_type (gdbarch)->builtin_char);
1854 break;
1855
1856 case INTERNALVAR_VALUE:
1857 val = value_copy (var->u.value);
1858 if (value_lazy (val))
1859 value_fetch_lazy (val);
1860 break;
1861
1862 case INTERNALVAR_MAKE_VALUE:
1863 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1864 var->u.make_value.data);
1865 break;
1866
1867 default:
1868 internal_error (__FILE__, __LINE__, _("bad kind"));
1869 }
1870
1871 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1872 on this value go back to affect the original internal variable.
1873
1874 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1875 no underlying modifyable state in the internal variable.
1876
1877 Likewise, if the variable's value is a computed lvalue, we want
1878 references to it to produce another computed lvalue, where
1879 references and assignments actually operate through the
1880 computed value's functions.
1881
1882 This means that internal variables with computed values
1883 behave a little differently from other internal variables:
1884 assignments to them don't just replace the previous value
1885 altogether. At the moment, this seems like the behavior we
1886 want. */
1887
1888 if (var->kind != INTERNALVAR_MAKE_VALUE
1889 && val->lval != lval_computed)
1890 {
1891 VALUE_LVAL (val) = lval_internalvar;
1892 VALUE_INTERNALVAR (val) = var;
1893 }
1894
1895 return val;
1896 }
1897
1898 int
1899 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1900 {
1901 if (var->kind == INTERNALVAR_INTEGER)
1902 {
1903 *result = var->u.integer.val;
1904 return 1;
1905 }
1906
1907 if (var->kind == INTERNALVAR_VALUE)
1908 {
1909 struct type *type = check_typedef (value_type (var->u.value));
1910
1911 if (TYPE_CODE (type) == TYPE_CODE_INT)
1912 {
1913 *result = value_as_long (var->u.value);
1914 return 1;
1915 }
1916 }
1917
1918 return 0;
1919 }
1920
1921 static int
1922 get_internalvar_function (struct internalvar *var,
1923 struct internal_function **result)
1924 {
1925 switch (var->kind)
1926 {
1927 case INTERNALVAR_FUNCTION:
1928 *result = var->u.fn.function;
1929 return 1;
1930
1931 default:
1932 return 0;
1933 }
1934 }
1935
1936 void
1937 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1938 int bitsize, struct value *newval)
1939 {
1940 gdb_byte *addr;
1941
1942 switch (var->kind)
1943 {
1944 case INTERNALVAR_VALUE:
1945 addr = value_contents_writeable (var->u.value);
1946
1947 if (bitsize)
1948 modify_field (value_type (var->u.value), addr + offset,
1949 value_as_long (newval), bitpos, bitsize);
1950 else
1951 memcpy (addr + offset, value_contents (newval),
1952 TYPE_LENGTH (value_type (newval)));
1953 break;
1954
1955 default:
1956 /* We can never get a component of any other kind. */
1957 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1958 }
1959 }
1960
1961 void
1962 set_internalvar (struct internalvar *var, struct value *val)
1963 {
1964 enum internalvar_kind new_kind;
1965 union internalvar_data new_data = { 0 };
1966
1967 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1968 error (_("Cannot overwrite convenience function %s"), var->name);
1969
1970 /* Prepare new contents. */
1971 switch (TYPE_CODE (check_typedef (value_type (val))))
1972 {
1973 case TYPE_CODE_VOID:
1974 new_kind = INTERNALVAR_VOID;
1975 break;
1976
1977 case TYPE_CODE_INTERNAL_FUNCTION:
1978 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1979 new_kind = INTERNALVAR_FUNCTION;
1980 get_internalvar_function (VALUE_INTERNALVAR (val),
1981 &new_data.fn.function);
1982 /* Copies created here are never canonical. */
1983 break;
1984
1985 default:
1986 new_kind = INTERNALVAR_VALUE;
1987 new_data.value = value_copy (val);
1988 new_data.value->modifiable = 1;
1989
1990 /* Force the value to be fetched from the target now, to avoid problems
1991 later when this internalvar is referenced and the target is gone or
1992 has changed. */
1993 if (value_lazy (new_data.value))
1994 value_fetch_lazy (new_data.value);
1995
1996 /* Release the value from the value chain to prevent it from being
1997 deleted by free_all_values. From here on this function should not
1998 call error () until new_data is installed into the var->u to avoid
1999 leaking memory. */
2000 release_value (new_data.value);
2001 break;
2002 }
2003
2004 /* Clean up old contents. */
2005 clear_internalvar (var);
2006
2007 /* Switch over. */
2008 var->kind = new_kind;
2009 var->u = new_data;
2010 /* End code which must not call error(). */
2011 }
2012
2013 void
2014 set_internalvar_integer (struct internalvar *var, LONGEST l)
2015 {
2016 /* Clean up old contents. */
2017 clear_internalvar (var);
2018
2019 var->kind = INTERNALVAR_INTEGER;
2020 var->u.integer.type = NULL;
2021 var->u.integer.val = l;
2022 }
2023
2024 void
2025 set_internalvar_string (struct internalvar *var, const char *string)
2026 {
2027 /* Clean up old contents. */
2028 clear_internalvar (var);
2029
2030 var->kind = INTERNALVAR_STRING;
2031 var->u.string = xstrdup (string);
2032 }
2033
2034 static void
2035 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2036 {
2037 /* Clean up old contents. */
2038 clear_internalvar (var);
2039
2040 var->kind = INTERNALVAR_FUNCTION;
2041 var->u.fn.function = f;
2042 var->u.fn.canonical = 1;
2043 /* Variables installed here are always the canonical version. */
2044 }
2045
2046 void
2047 clear_internalvar (struct internalvar *var)
2048 {
2049 /* Clean up old contents. */
2050 switch (var->kind)
2051 {
2052 case INTERNALVAR_VALUE:
2053 value_free (var->u.value);
2054 break;
2055
2056 case INTERNALVAR_STRING:
2057 xfree (var->u.string);
2058 break;
2059
2060 case INTERNALVAR_MAKE_VALUE:
2061 if (var->u.make_value.functions->destroy != NULL)
2062 var->u.make_value.functions->destroy (var->u.make_value.data);
2063 break;
2064
2065 default:
2066 break;
2067 }
2068
2069 /* Reset to void kind. */
2070 var->kind = INTERNALVAR_VOID;
2071 }
2072
2073 char *
2074 internalvar_name (struct internalvar *var)
2075 {
2076 return var->name;
2077 }
2078
2079 static struct internal_function *
2080 create_internal_function (const char *name,
2081 internal_function_fn handler, void *cookie)
2082 {
2083 struct internal_function *ifn = XNEW (struct internal_function);
2084
2085 ifn->name = xstrdup (name);
2086 ifn->handler = handler;
2087 ifn->cookie = cookie;
2088 return ifn;
2089 }
2090
2091 char *
2092 value_internal_function_name (struct value *val)
2093 {
2094 struct internal_function *ifn;
2095 int result;
2096
2097 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2098 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2099 gdb_assert (result);
2100
2101 return ifn->name;
2102 }
2103
2104 struct value *
2105 call_internal_function (struct gdbarch *gdbarch,
2106 const struct language_defn *language,
2107 struct value *func, int argc, struct value **argv)
2108 {
2109 struct internal_function *ifn;
2110 int result;
2111
2112 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2113 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2114 gdb_assert (result);
2115
2116 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2117 }
2118
2119 /* The 'function' command. This does nothing -- it is just a
2120 placeholder to let "help function NAME" work. This is also used as
2121 the implementation of the sub-command that is created when
2122 registering an internal function. */
2123 static void
2124 function_command (char *command, int from_tty)
2125 {
2126 /* Do nothing. */
2127 }
2128
2129 /* Clean up if an internal function's command is destroyed. */
2130 static void
2131 function_destroyer (struct cmd_list_element *self, void *ignore)
2132 {
2133 xfree ((char *) self->name);
2134 xfree (self->doc);
2135 }
2136
2137 /* Add a new internal function. NAME is the name of the function; DOC
2138 is a documentation string describing the function. HANDLER is
2139 called when the function is invoked. COOKIE is an arbitrary
2140 pointer which is passed to HANDLER and is intended for "user
2141 data". */
2142 void
2143 add_internal_function (const char *name, const char *doc,
2144 internal_function_fn handler, void *cookie)
2145 {
2146 struct cmd_list_element *cmd;
2147 struct internal_function *ifn;
2148 struct internalvar *var = lookup_internalvar (name);
2149
2150 ifn = create_internal_function (name, handler, cookie);
2151 set_internalvar_function (var, ifn);
2152
2153 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2154 &functionlist);
2155 cmd->destroyer = function_destroyer;
2156 }
2157
2158 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2159 prevent cycles / duplicates. */
2160
2161 void
2162 preserve_one_value (struct value *value, struct objfile *objfile,
2163 htab_t copied_types)
2164 {
2165 if (TYPE_OBJFILE (value->type) == objfile)
2166 value->type = copy_type_recursive (objfile, value->type, copied_types);
2167
2168 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2169 value->enclosing_type = copy_type_recursive (objfile,
2170 value->enclosing_type,
2171 copied_types);
2172 }
2173
2174 /* Likewise for internal variable VAR. */
2175
2176 static void
2177 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2178 htab_t copied_types)
2179 {
2180 switch (var->kind)
2181 {
2182 case INTERNALVAR_INTEGER:
2183 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2184 var->u.integer.type
2185 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2186 break;
2187
2188 case INTERNALVAR_VALUE:
2189 preserve_one_value (var->u.value, objfile, copied_types);
2190 break;
2191 }
2192 }
2193
2194 /* Update the internal variables and value history when OBJFILE is
2195 discarded; we must copy the types out of the objfile. New global types
2196 will be created for every convenience variable which currently points to
2197 this objfile's types, and the convenience variables will be adjusted to
2198 use the new global types. */
2199
2200 void
2201 preserve_values (struct objfile *objfile)
2202 {
2203 htab_t copied_types;
2204 struct value_history_chunk *cur;
2205 struct internalvar *var;
2206 int i;
2207
2208 /* Create the hash table. We allocate on the objfile's obstack, since
2209 it is soon to be deleted. */
2210 copied_types = create_copied_types_hash (objfile);
2211
2212 for (cur = value_history_chain; cur; cur = cur->next)
2213 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2214 if (cur->values[i])
2215 preserve_one_value (cur->values[i], objfile, copied_types);
2216
2217 for (var = internalvars; var; var = var->next)
2218 preserve_one_internalvar (var, objfile, copied_types);
2219
2220 preserve_python_values (objfile, copied_types);
2221
2222 htab_delete (copied_types);
2223 }
2224
2225 static void
2226 show_convenience (char *ignore, int from_tty)
2227 {
2228 struct gdbarch *gdbarch = get_current_arch ();
2229 struct internalvar *var;
2230 int varseen = 0;
2231 struct value_print_options opts;
2232
2233 get_user_print_options (&opts);
2234 for (var = internalvars; var; var = var->next)
2235 {
2236 volatile struct gdb_exception ex;
2237
2238 if (!varseen)
2239 {
2240 varseen = 1;
2241 }
2242 printf_filtered (("$%s = "), var->name);
2243
2244 TRY_CATCH (ex, RETURN_MASK_ERROR)
2245 {
2246 struct value *val;
2247
2248 val = value_of_internalvar (gdbarch, var);
2249 value_print (val, gdb_stdout, &opts);
2250 }
2251 if (ex.reason < 0)
2252 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2253 printf_filtered (("\n"));
2254 }
2255 if (!varseen)
2256 {
2257 /* This text does not mention convenience functions on purpose.
2258 The user can't create them except via Python, and if Python support
2259 is installed this message will never be printed ($_streq will
2260 exist). */
2261 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2262 "Convenience variables have "
2263 "names starting with \"$\";\n"
2264 "use \"set\" as in \"set "
2265 "$foo = 5\" to define them.\n"));
2266 }
2267 }
2268 \f
2269 /* Extract a value as a C number (either long or double).
2270 Knows how to convert fixed values to double, or
2271 floating values to long.
2272 Does not deallocate the value. */
2273
2274 LONGEST
2275 value_as_long (struct value *val)
2276 {
2277 /* This coerces arrays and functions, which is necessary (e.g.
2278 in disassemble_command). It also dereferences references, which
2279 I suspect is the most logical thing to do. */
2280 val = coerce_array (val);
2281 return unpack_long (value_type (val), value_contents (val));
2282 }
2283
2284 DOUBLEST
2285 value_as_double (struct value *val)
2286 {
2287 DOUBLEST foo;
2288 int inv;
2289
2290 foo = unpack_double (value_type (val), value_contents (val), &inv);
2291 if (inv)
2292 error (_("Invalid floating value found in program."));
2293 return foo;
2294 }
2295
2296 /* Extract a value as a C pointer. Does not deallocate the value.
2297 Note that val's type may not actually be a pointer; value_as_long
2298 handles all the cases. */
2299 CORE_ADDR
2300 value_as_address (struct value *val)
2301 {
2302 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2303
2304 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2305 whether we want this to be true eventually. */
2306 #if 0
2307 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2308 non-address (e.g. argument to "signal", "info break", etc.), or
2309 for pointers to char, in which the low bits *are* significant. */
2310 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2311 #else
2312
2313 /* There are several targets (IA-64, PowerPC, and others) which
2314 don't represent pointers to functions as simply the address of
2315 the function's entry point. For example, on the IA-64, a
2316 function pointer points to a two-word descriptor, generated by
2317 the linker, which contains the function's entry point, and the
2318 value the IA-64 "global pointer" register should have --- to
2319 support position-independent code. The linker generates
2320 descriptors only for those functions whose addresses are taken.
2321
2322 On such targets, it's difficult for GDB to convert an arbitrary
2323 function address into a function pointer; it has to either find
2324 an existing descriptor for that function, or call malloc and
2325 build its own. On some targets, it is impossible for GDB to
2326 build a descriptor at all: the descriptor must contain a jump
2327 instruction; data memory cannot be executed; and code memory
2328 cannot be modified.
2329
2330 Upon entry to this function, if VAL is a value of type `function'
2331 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2332 value_address (val) is the address of the function. This is what
2333 you'll get if you evaluate an expression like `main'. The call
2334 to COERCE_ARRAY below actually does all the usual unary
2335 conversions, which includes converting values of type `function'
2336 to `pointer to function'. This is the challenging conversion
2337 discussed above. Then, `unpack_long' will convert that pointer
2338 back into an address.
2339
2340 So, suppose the user types `disassemble foo' on an architecture
2341 with a strange function pointer representation, on which GDB
2342 cannot build its own descriptors, and suppose further that `foo'
2343 has no linker-built descriptor. The address->pointer conversion
2344 will signal an error and prevent the command from running, even
2345 though the next step would have been to convert the pointer
2346 directly back into the same address.
2347
2348 The following shortcut avoids this whole mess. If VAL is a
2349 function, just return its address directly. */
2350 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2351 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2352 return value_address (val);
2353
2354 val = coerce_array (val);
2355
2356 /* Some architectures (e.g. Harvard), map instruction and data
2357 addresses onto a single large unified address space. For
2358 instance: An architecture may consider a large integer in the
2359 range 0x10000000 .. 0x1000ffff to already represent a data
2360 addresses (hence not need a pointer to address conversion) while
2361 a small integer would still need to be converted integer to
2362 pointer to address. Just assume such architectures handle all
2363 integer conversions in a single function. */
2364
2365 /* JimB writes:
2366
2367 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2368 must admonish GDB hackers to make sure its behavior matches the
2369 compiler's, whenever possible.
2370
2371 In general, I think GDB should evaluate expressions the same way
2372 the compiler does. When the user copies an expression out of
2373 their source code and hands it to a `print' command, they should
2374 get the same value the compiler would have computed. Any
2375 deviation from this rule can cause major confusion and annoyance,
2376 and needs to be justified carefully. In other words, GDB doesn't
2377 really have the freedom to do these conversions in clever and
2378 useful ways.
2379
2380 AndrewC pointed out that users aren't complaining about how GDB
2381 casts integers to pointers; they are complaining that they can't
2382 take an address from a disassembly listing and give it to `x/i'.
2383 This is certainly important.
2384
2385 Adding an architecture method like integer_to_address() certainly
2386 makes it possible for GDB to "get it right" in all circumstances
2387 --- the target has complete control over how things get done, so
2388 people can Do The Right Thing for their target without breaking
2389 anyone else. The standard doesn't specify how integers get
2390 converted to pointers; usually, the ABI doesn't either, but
2391 ABI-specific code is a more reasonable place to handle it. */
2392
2393 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2394 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2395 && gdbarch_integer_to_address_p (gdbarch))
2396 return gdbarch_integer_to_address (gdbarch, value_type (val),
2397 value_contents (val));
2398
2399 return unpack_long (value_type (val), value_contents (val));
2400 #endif
2401 }
2402 \f
2403 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2404 as a long, or as a double, assuming the raw data is described
2405 by type TYPE. Knows how to convert different sizes of values
2406 and can convert between fixed and floating point. We don't assume
2407 any alignment for the raw data. Return value is in host byte order.
2408
2409 If you want functions and arrays to be coerced to pointers, and
2410 references to be dereferenced, call value_as_long() instead.
2411
2412 C++: It is assumed that the front-end has taken care of
2413 all matters concerning pointers to members. A pointer
2414 to member which reaches here is considered to be equivalent
2415 to an INT (or some size). After all, it is only an offset. */
2416
2417 LONGEST
2418 unpack_long (struct type *type, const gdb_byte *valaddr)
2419 {
2420 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2421 enum type_code code = TYPE_CODE (type);
2422 int len = TYPE_LENGTH (type);
2423 int nosign = TYPE_UNSIGNED (type);
2424
2425 switch (code)
2426 {
2427 case TYPE_CODE_TYPEDEF:
2428 return unpack_long (check_typedef (type), valaddr);
2429 case TYPE_CODE_ENUM:
2430 case TYPE_CODE_FLAGS:
2431 case TYPE_CODE_BOOL:
2432 case TYPE_CODE_INT:
2433 case TYPE_CODE_CHAR:
2434 case TYPE_CODE_RANGE:
2435 case TYPE_CODE_MEMBERPTR:
2436 if (nosign)
2437 return extract_unsigned_integer (valaddr, len, byte_order);
2438 else
2439 return extract_signed_integer (valaddr, len, byte_order);
2440
2441 case TYPE_CODE_FLT:
2442 return extract_typed_floating (valaddr, type);
2443
2444 case TYPE_CODE_DECFLOAT:
2445 /* libdecnumber has a function to convert from decimal to integer, but
2446 it doesn't work when the decimal number has a fractional part. */
2447 return decimal_to_doublest (valaddr, len, byte_order);
2448
2449 case TYPE_CODE_PTR:
2450 case TYPE_CODE_REF:
2451 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2452 whether we want this to be true eventually. */
2453 return extract_typed_address (valaddr, type);
2454
2455 default:
2456 error (_("Value can't be converted to integer."));
2457 }
2458 return 0; /* Placate lint. */
2459 }
2460
2461 /* Return a double value from the specified type and address.
2462 INVP points to an int which is set to 0 for valid value,
2463 1 for invalid value (bad float format). In either case,
2464 the returned double is OK to use. Argument is in target
2465 format, result is in host format. */
2466
2467 DOUBLEST
2468 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2469 {
2470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2471 enum type_code code;
2472 int len;
2473 int nosign;
2474
2475 *invp = 0; /* Assume valid. */
2476 CHECK_TYPEDEF (type);
2477 code = TYPE_CODE (type);
2478 len = TYPE_LENGTH (type);
2479 nosign = TYPE_UNSIGNED (type);
2480 if (code == TYPE_CODE_FLT)
2481 {
2482 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2483 floating-point value was valid (using the macro
2484 INVALID_FLOAT). That test/macro have been removed.
2485
2486 It turns out that only the VAX defined this macro and then
2487 only in a non-portable way. Fixing the portability problem
2488 wouldn't help since the VAX floating-point code is also badly
2489 bit-rotten. The target needs to add definitions for the
2490 methods gdbarch_float_format and gdbarch_double_format - these
2491 exactly describe the target floating-point format. The
2492 problem here is that the corresponding floatformat_vax_f and
2493 floatformat_vax_d values these methods should be set to are
2494 also not defined either. Oops!
2495
2496 Hopefully someone will add both the missing floatformat
2497 definitions and the new cases for floatformat_is_valid (). */
2498
2499 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2500 {
2501 *invp = 1;
2502 return 0.0;
2503 }
2504
2505 return extract_typed_floating (valaddr, type);
2506 }
2507 else if (code == TYPE_CODE_DECFLOAT)
2508 return decimal_to_doublest (valaddr, len, byte_order);
2509 else if (nosign)
2510 {
2511 /* Unsigned -- be sure we compensate for signed LONGEST. */
2512 return (ULONGEST) unpack_long (type, valaddr);
2513 }
2514 else
2515 {
2516 /* Signed -- we are OK with unpack_long. */
2517 return unpack_long (type, valaddr);
2518 }
2519 }
2520
2521 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2522 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2523 We don't assume any alignment for the raw data. Return value is in
2524 host byte order.
2525
2526 If you want functions and arrays to be coerced to pointers, and
2527 references to be dereferenced, call value_as_address() instead.
2528
2529 C++: It is assumed that the front-end has taken care of
2530 all matters concerning pointers to members. A pointer
2531 to member which reaches here is considered to be equivalent
2532 to an INT (or some size). After all, it is only an offset. */
2533
2534 CORE_ADDR
2535 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2536 {
2537 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2538 whether we want this to be true eventually. */
2539 return unpack_long (type, valaddr);
2540 }
2541
2542 \f
2543 /* Get the value of the FIELDNO'th field (which must be static) of
2544 TYPE. Return NULL if the field doesn't exist or has been
2545 optimized out. */
2546
2547 struct value *
2548 value_static_field (struct type *type, int fieldno)
2549 {
2550 struct value *retval;
2551
2552 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2553 {
2554 case FIELD_LOC_KIND_PHYSADDR:
2555 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2556 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2557 break;
2558 case FIELD_LOC_KIND_PHYSNAME:
2559 {
2560 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2561 /* TYPE_FIELD_NAME (type, fieldno); */
2562 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2563
2564 if (sym == NULL)
2565 {
2566 /* With some compilers, e.g. HP aCC, static data members are
2567 reported as non-debuggable symbols. */
2568 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2569 NULL, NULL);
2570
2571 if (!msym)
2572 return NULL;
2573 else
2574 {
2575 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2576 SYMBOL_VALUE_ADDRESS (msym));
2577 }
2578 }
2579 else
2580 retval = value_of_variable (sym, NULL);
2581 break;
2582 }
2583 default:
2584 gdb_assert_not_reached ("unexpected field location kind");
2585 }
2586
2587 return retval;
2588 }
2589
2590 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2591 You have to be careful here, since the size of the data area for the value
2592 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2593 than the old enclosing type, you have to allocate more space for the
2594 data. */
2595
2596 void
2597 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2598 {
2599 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2600 val->contents =
2601 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2602
2603 val->enclosing_type = new_encl_type;
2604 }
2605
2606 /* Given a value ARG1 (offset by OFFSET bytes)
2607 of a struct or union type ARG_TYPE,
2608 extract and return the value of one of its (non-static) fields.
2609 FIELDNO says which field. */
2610
2611 struct value *
2612 value_primitive_field (struct value *arg1, int offset,
2613 int fieldno, struct type *arg_type)
2614 {
2615 struct value *v;
2616 struct type *type;
2617
2618 CHECK_TYPEDEF (arg_type);
2619 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2620
2621 /* Call check_typedef on our type to make sure that, if TYPE
2622 is a TYPE_CODE_TYPEDEF, its length is set to the length
2623 of the target type instead of zero. However, we do not
2624 replace the typedef type by the target type, because we want
2625 to keep the typedef in order to be able to print the type
2626 description correctly. */
2627 check_typedef (type);
2628
2629 if (value_optimized_out (arg1))
2630 v = allocate_optimized_out_value (type);
2631 else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2632 {
2633 /* Handle packed fields.
2634
2635 Create a new value for the bitfield, with bitpos and bitsize
2636 set. If possible, arrange offset and bitpos so that we can
2637 do a single aligned read of the size of the containing type.
2638 Otherwise, adjust offset to the byte containing the first
2639 bit. Assume that the address, offset, and embedded offset
2640 are sufficiently aligned. */
2641
2642 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2643 int container_bitsize = TYPE_LENGTH (type) * 8;
2644
2645 v = allocate_value_lazy (type);
2646 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2647 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2648 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2649 v->bitpos = bitpos % container_bitsize;
2650 else
2651 v->bitpos = bitpos % 8;
2652 v->offset = (value_embedded_offset (arg1)
2653 + offset
2654 + (bitpos - v->bitpos) / 8);
2655 v->parent = arg1;
2656 value_incref (v->parent);
2657 if (!value_lazy (arg1))
2658 value_fetch_lazy (v);
2659 }
2660 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2661 {
2662 /* This field is actually a base subobject, so preserve the
2663 entire object's contents for later references to virtual
2664 bases, etc. */
2665 int boffset;
2666
2667 /* Lazy register values with offsets are not supported. */
2668 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2669 value_fetch_lazy (arg1);
2670
2671 /* We special case virtual inheritance here because this
2672 requires access to the contents, which we would rather avoid
2673 for references to ordinary fields of unavailable values. */
2674 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2675 boffset = baseclass_offset (arg_type, fieldno,
2676 value_contents (arg1),
2677 value_embedded_offset (arg1),
2678 value_address (arg1),
2679 arg1);
2680 else
2681 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2682
2683 if (value_lazy (arg1))
2684 v = allocate_value_lazy (value_enclosing_type (arg1));
2685 else
2686 {
2687 v = allocate_value (value_enclosing_type (arg1));
2688 value_contents_copy_raw (v, 0, arg1, 0,
2689 TYPE_LENGTH (value_enclosing_type (arg1)));
2690 }
2691 v->type = type;
2692 v->offset = value_offset (arg1);
2693 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2694 }
2695 else
2696 {
2697 /* Plain old data member */
2698 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2699
2700 /* Lazy register values with offsets are not supported. */
2701 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2702 value_fetch_lazy (arg1);
2703
2704 if (value_lazy (arg1))
2705 v = allocate_value_lazy (type);
2706 else
2707 {
2708 v = allocate_value (type);
2709 value_contents_copy_raw (v, value_embedded_offset (v),
2710 arg1, value_embedded_offset (arg1) + offset,
2711 TYPE_LENGTH (type));
2712 }
2713 v->offset = (value_offset (arg1) + offset
2714 + value_embedded_offset (arg1));
2715 }
2716 set_value_component_location (v, arg1);
2717 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2718 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2719 return v;
2720 }
2721
2722 /* Given a value ARG1 of a struct or union type,
2723 extract and return the value of one of its (non-static) fields.
2724 FIELDNO says which field. */
2725
2726 struct value *
2727 value_field (struct value *arg1, int fieldno)
2728 {
2729 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2730 }
2731
2732 /* Return a non-virtual function as a value.
2733 F is the list of member functions which contains the desired method.
2734 J is an index into F which provides the desired method.
2735
2736 We only use the symbol for its address, so be happy with either a
2737 full symbol or a minimal symbol. */
2738
2739 struct value *
2740 value_fn_field (struct value **arg1p, struct fn_field *f,
2741 int j, struct type *type,
2742 int offset)
2743 {
2744 struct value *v;
2745 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2746 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2747 struct symbol *sym;
2748 struct minimal_symbol *msym;
2749
2750 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2751 if (sym != NULL)
2752 {
2753 msym = NULL;
2754 }
2755 else
2756 {
2757 gdb_assert (sym == NULL);
2758 msym = lookup_minimal_symbol (physname, NULL, NULL);
2759 if (msym == NULL)
2760 return NULL;
2761 }
2762
2763 v = allocate_value (ftype);
2764 if (sym)
2765 {
2766 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2767 }
2768 else
2769 {
2770 /* The minimal symbol might point to a function descriptor;
2771 resolve it to the actual code address instead. */
2772 struct objfile *objfile = msymbol_objfile (msym);
2773 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2774
2775 set_value_address (v,
2776 gdbarch_convert_from_func_ptr_addr
2777 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2778 }
2779
2780 if (arg1p)
2781 {
2782 if (type != value_type (*arg1p))
2783 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2784 value_addr (*arg1p)));
2785
2786 /* Move the `this' pointer according to the offset.
2787 VALUE_OFFSET (*arg1p) += offset; */
2788 }
2789
2790 return v;
2791 }
2792
2793 \f
2794
2795 /* Helper function for both unpack_value_bits_as_long and
2796 unpack_bits_as_long. See those functions for more details on the
2797 interface; the only difference is that this function accepts either
2798 a NULL or a non-NULL ORIGINAL_VALUE. */
2799
2800 static int
2801 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2802 int embedded_offset, int bitpos, int bitsize,
2803 const struct value *original_value,
2804 LONGEST *result)
2805 {
2806 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2807 ULONGEST val;
2808 ULONGEST valmask;
2809 int lsbcount;
2810 int bytes_read;
2811 int read_offset;
2812
2813 /* Read the minimum number of bytes required; there may not be
2814 enough bytes to read an entire ULONGEST. */
2815 CHECK_TYPEDEF (field_type);
2816 if (bitsize)
2817 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2818 else
2819 bytes_read = TYPE_LENGTH (field_type);
2820
2821 read_offset = bitpos / 8;
2822
2823 if (original_value != NULL
2824 && !value_bytes_available (original_value, embedded_offset + read_offset,
2825 bytes_read))
2826 return 0;
2827
2828 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2829 bytes_read, byte_order);
2830
2831 /* Extract bits. See comment above. */
2832
2833 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2834 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2835 else
2836 lsbcount = (bitpos % 8);
2837 val >>= lsbcount;
2838
2839 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2840 If the field is signed, and is negative, then sign extend. */
2841
2842 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2843 {
2844 valmask = (((ULONGEST) 1) << bitsize) - 1;
2845 val &= valmask;
2846 if (!TYPE_UNSIGNED (field_type))
2847 {
2848 if (val & (valmask ^ (valmask >> 1)))
2849 {
2850 val |= ~valmask;
2851 }
2852 }
2853 }
2854
2855 *result = val;
2856 return 1;
2857 }
2858
2859 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2860 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2861 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2862 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2863 bits.
2864
2865 Returns false if the value contents are unavailable, otherwise
2866 returns true, indicating a valid value has been stored in *RESULT.
2867
2868 Extracting bits depends on endianness of the machine. Compute the
2869 number of least significant bits to discard. For big endian machines,
2870 we compute the total number of bits in the anonymous object, subtract
2871 off the bit count from the MSB of the object to the MSB of the
2872 bitfield, then the size of the bitfield, which leaves the LSB discard
2873 count. For little endian machines, the discard count is simply the
2874 number of bits from the LSB of the anonymous object to the LSB of the
2875 bitfield.
2876
2877 If the field is signed, we also do sign extension. */
2878
2879 int
2880 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2881 int embedded_offset, int bitpos, int bitsize,
2882 const struct value *original_value,
2883 LONGEST *result)
2884 {
2885 gdb_assert (original_value != NULL);
2886
2887 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2888 bitpos, bitsize, original_value, result);
2889
2890 }
2891
2892 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2893 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2894 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2895 details. */
2896
2897 static int
2898 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2899 int embedded_offset, int fieldno,
2900 const struct value *val, LONGEST *result)
2901 {
2902 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2903 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2904 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2905
2906 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2907 bitpos, bitsize, val,
2908 result);
2909 }
2910
2911 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2912 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2913 ORIGINAL_VALUE, which must not be NULL. See
2914 unpack_value_bits_as_long for more details. */
2915
2916 int
2917 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2918 int embedded_offset, int fieldno,
2919 const struct value *val, LONGEST *result)
2920 {
2921 gdb_assert (val != NULL);
2922
2923 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2924 fieldno, val, result);
2925 }
2926
2927 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2928 object at VALADDR. See unpack_value_bits_as_long for more details.
2929 This function differs from unpack_value_field_as_long in that it
2930 operates without a struct value object. */
2931
2932 LONGEST
2933 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2934 {
2935 LONGEST result;
2936
2937 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2938 return result;
2939 }
2940
2941 /* Return a new value with type TYPE, which is FIELDNO field of the
2942 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2943 of VAL. If the VAL's contents required to extract the bitfield
2944 from are unavailable, the new value is correspondingly marked as
2945 unavailable. */
2946
2947 struct value *
2948 value_field_bitfield (struct type *type, int fieldno,
2949 const gdb_byte *valaddr,
2950 int embedded_offset, const struct value *val)
2951 {
2952 LONGEST l;
2953
2954 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2955 val, &l))
2956 {
2957 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2958 struct value *retval = allocate_value (field_type);
2959 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2960 return retval;
2961 }
2962 else
2963 {
2964 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2965 }
2966 }
2967
2968 /* Modify the value of a bitfield. ADDR points to a block of memory in
2969 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2970 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2971 indicate which bits (in target bit order) comprise the bitfield.
2972 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2973 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2974
2975 void
2976 modify_field (struct type *type, gdb_byte *addr,
2977 LONGEST fieldval, int bitpos, int bitsize)
2978 {
2979 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2980 ULONGEST oword;
2981 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2982 int bytesize;
2983
2984 /* Normalize BITPOS. */
2985 addr += bitpos / 8;
2986 bitpos %= 8;
2987
2988 /* If a negative fieldval fits in the field in question, chop
2989 off the sign extension bits. */
2990 if ((~fieldval & ~(mask >> 1)) == 0)
2991 fieldval &= mask;
2992
2993 /* Warn if value is too big to fit in the field in question. */
2994 if (0 != (fieldval & ~mask))
2995 {
2996 /* FIXME: would like to include fieldval in the message, but
2997 we don't have a sprintf_longest. */
2998 warning (_("Value does not fit in %d bits."), bitsize);
2999
3000 /* Truncate it, otherwise adjoining fields may be corrupted. */
3001 fieldval &= mask;
3002 }
3003
3004 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3005 false valgrind reports. */
3006
3007 bytesize = (bitpos + bitsize + 7) / 8;
3008 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3009
3010 /* Shifting for bit field depends on endianness of the target machine. */
3011 if (gdbarch_bits_big_endian (get_type_arch (type)))
3012 bitpos = bytesize * 8 - bitpos - bitsize;
3013
3014 oword &= ~(mask << bitpos);
3015 oword |= fieldval << bitpos;
3016
3017 store_unsigned_integer (addr, bytesize, byte_order, oword);
3018 }
3019 \f
3020 /* Pack NUM into BUF using a target format of TYPE. */
3021
3022 void
3023 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3024 {
3025 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3026 int len;
3027
3028 type = check_typedef (type);
3029 len = TYPE_LENGTH (type);
3030
3031 switch (TYPE_CODE (type))
3032 {
3033 case TYPE_CODE_INT:
3034 case TYPE_CODE_CHAR:
3035 case TYPE_CODE_ENUM:
3036 case TYPE_CODE_FLAGS:
3037 case TYPE_CODE_BOOL:
3038 case TYPE_CODE_RANGE:
3039 case TYPE_CODE_MEMBERPTR:
3040 store_signed_integer (buf, len, byte_order, num);
3041 break;
3042
3043 case TYPE_CODE_REF:
3044 case TYPE_CODE_PTR:
3045 store_typed_address (buf, type, (CORE_ADDR) num);
3046 break;
3047
3048 default:
3049 error (_("Unexpected type (%d) encountered for integer constant."),
3050 TYPE_CODE (type));
3051 }
3052 }
3053
3054
3055 /* Pack NUM into BUF using a target format of TYPE. */
3056
3057 static void
3058 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3059 {
3060 int len;
3061 enum bfd_endian byte_order;
3062
3063 type = check_typedef (type);
3064 len = TYPE_LENGTH (type);
3065 byte_order = gdbarch_byte_order (get_type_arch (type));
3066
3067 switch (TYPE_CODE (type))
3068 {
3069 case TYPE_CODE_INT:
3070 case TYPE_CODE_CHAR:
3071 case TYPE_CODE_ENUM:
3072 case TYPE_CODE_FLAGS:
3073 case TYPE_CODE_BOOL:
3074 case TYPE_CODE_RANGE:
3075 case TYPE_CODE_MEMBERPTR:
3076 store_unsigned_integer (buf, len, byte_order, num);
3077 break;
3078
3079 case TYPE_CODE_REF:
3080 case TYPE_CODE_PTR:
3081 store_typed_address (buf, type, (CORE_ADDR) num);
3082 break;
3083
3084 default:
3085 error (_("Unexpected type (%d) encountered "
3086 "for unsigned integer constant."),
3087 TYPE_CODE (type));
3088 }
3089 }
3090
3091
3092 /* Convert C numbers into newly allocated values. */
3093
3094 struct value *
3095 value_from_longest (struct type *type, LONGEST num)
3096 {
3097 struct value *val = allocate_value (type);
3098
3099 pack_long (value_contents_raw (val), type, num);
3100 return val;
3101 }
3102
3103
3104 /* Convert C unsigned numbers into newly allocated values. */
3105
3106 struct value *
3107 value_from_ulongest (struct type *type, ULONGEST num)
3108 {
3109 struct value *val = allocate_value (type);
3110
3111 pack_unsigned_long (value_contents_raw (val), type, num);
3112
3113 return val;
3114 }
3115
3116
3117 /* Create a value representing a pointer of type TYPE to the address
3118 ADDR. */
3119 struct value *
3120 value_from_pointer (struct type *type, CORE_ADDR addr)
3121 {
3122 struct value *val = allocate_value (type);
3123
3124 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3125 return val;
3126 }
3127
3128
3129 /* Create a value of type TYPE whose contents come from VALADDR, if it
3130 is non-null, and whose memory address (in the inferior) is
3131 ADDRESS. */
3132
3133 struct value *
3134 value_from_contents_and_address (struct type *type,
3135 const gdb_byte *valaddr,
3136 CORE_ADDR address)
3137 {
3138 struct value *v;
3139
3140 if (valaddr == NULL)
3141 v = allocate_value_lazy (type);
3142 else
3143 {
3144 v = allocate_value (type);
3145 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3146 }
3147 set_value_address (v, address);
3148 VALUE_LVAL (v) = lval_memory;
3149 return v;
3150 }
3151
3152 /* Create a value of type TYPE holding the contents CONTENTS.
3153 The new value is `not_lval'. */
3154
3155 struct value *
3156 value_from_contents (struct type *type, const gdb_byte *contents)
3157 {
3158 struct value *result;
3159
3160 result = allocate_value (type);
3161 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3162 return result;
3163 }
3164
3165 struct value *
3166 value_from_double (struct type *type, DOUBLEST num)
3167 {
3168 struct value *val = allocate_value (type);
3169 struct type *base_type = check_typedef (type);
3170 enum type_code code = TYPE_CODE (base_type);
3171
3172 if (code == TYPE_CODE_FLT)
3173 {
3174 store_typed_floating (value_contents_raw (val), base_type, num);
3175 }
3176 else
3177 error (_("Unexpected type encountered for floating constant."));
3178
3179 return val;
3180 }
3181
3182 struct value *
3183 value_from_decfloat (struct type *type, const gdb_byte *dec)
3184 {
3185 struct value *val = allocate_value (type);
3186
3187 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3188 return val;
3189 }
3190
3191 /* Extract a value from the history file. Input will be of the form
3192 $digits or $$digits. See block comment above 'write_dollar_variable'
3193 for details. */
3194
3195 struct value *
3196 value_from_history_ref (char *h, char **endp)
3197 {
3198 int index, len;
3199
3200 if (h[0] == '$')
3201 len = 1;
3202 else
3203 return NULL;
3204
3205 if (h[1] == '$')
3206 len = 2;
3207
3208 /* Find length of numeral string. */
3209 for (; isdigit (h[len]); len++)
3210 ;
3211
3212 /* Make sure numeral string is not part of an identifier. */
3213 if (h[len] == '_' || isalpha (h[len]))
3214 return NULL;
3215
3216 /* Now collect the index value. */
3217 if (h[1] == '$')
3218 {
3219 if (len == 2)
3220 {
3221 /* For some bizarre reason, "$$" is equivalent to "$$1",
3222 rather than to "$$0" as it ought to be! */
3223 index = -1;
3224 *endp += len;
3225 }
3226 else
3227 index = -strtol (&h[2], endp, 10);
3228 }
3229 else
3230 {
3231 if (len == 1)
3232 {
3233 /* "$" is equivalent to "$0". */
3234 index = 0;
3235 *endp += len;
3236 }
3237 else
3238 index = strtol (&h[1], endp, 10);
3239 }
3240
3241 return access_value_history (index);
3242 }
3243
3244 struct value *
3245 coerce_ref_if_computed (const struct value *arg)
3246 {
3247 const struct lval_funcs *funcs;
3248
3249 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3250 return NULL;
3251
3252 if (value_lval_const (arg) != lval_computed)
3253 return NULL;
3254
3255 funcs = value_computed_funcs (arg);
3256 if (funcs->coerce_ref == NULL)
3257 return NULL;
3258
3259 return funcs->coerce_ref (arg);
3260 }
3261
3262 /* Look at value.h for description. */
3263
3264 struct value *
3265 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3266 struct type *original_type,
3267 struct value *original_value)
3268 {
3269 /* Re-adjust type. */
3270 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3271
3272 /* Add embedding info. */
3273 set_value_enclosing_type (value, enc_type);
3274 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3275
3276 /* We may be pointing to an object of some derived type. */
3277 return value_full_object (value, NULL, 0, 0, 0);
3278 }
3279
3280 struct value *
3281 coerce_ref (struct value *arg)
3282 {
3283 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3284 struct value *retval;
3285 struct type *enc_type;
3286
3287 retval = coerce_ref_if_computed (arg);
3288 if (retval)
3289 return retval;
3290
3291 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3292 return arg;
3293
3294 enc_type = check_typedef (value_enclosing_type (arg));
3295 enc_type = TYPE_TARGET_TYPE (enc_type);
3296
3297 retval = value_at_lazy (enc_type,
3298 unpack_pointer (value_type (arg),
3299 value_contents (arg)));
3300 return readjust_indirect_value_type (retval, enc_type,
3301 value_type_arg_tmp, arg);
3302 }
3303
3304 struct value *
3305 coerce_array (struct value *arg)
3306 {
3307 struct type *type;
3308
3309 arg = coerce_ref (arg);
3310 type = check_typedef (value_type (arg));
3311
3312 switch (TYPE_CODE (type))
3313 {
3314 case TYPE_CODE_ARRAY:
3315 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3316 arg = value_coerce_array (arg);
3317 break;
3318 case TYPE_CODE_FUNC:
3319 arg = value_coerce_function (arg);
3320 break;
3321 }
3322 return arg;
3323 }
3324 \f
3325
3326 /* Return the return value convention that will be used for the
3327 specified type. */
3328
3329 enum return_value_convention
3330 struct_return_convention (struct gdbarch *gdbarch,
3331 struct value *function, struct type *value_type)
3332 {
3333 enum type_code code = TYPE_CODE (value_type);
3334
3335 if (code == TYPE_CODE_ERROR)
3336 error (_("Function return type unknown."));
3337
3338 /* Probe the architecture for the return-value convention. */
3339 return gdbarch_return_value (gdbarch, function, value_type,
3340 NULL, NULL, NULL);
3341 }
3342
3343 /* Return true if the function returning the specified type is using
3344 the convention of returning structures in memory (passing in the
3345 address as a hidden first parameter). */
3346
3347 int
3348 using_struct_return (struct gdbarch *gdbarch,
3349 struct value *function, struct type *value_type)
3350 {
3351 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3352 /* A void return value is never in memory. See also corresponding
3353 code in "print_return_value". */
3354 return 0;
3355
3356 return (struct_return_convention (gdbarch, function, value_type)
3357 != RETURN_VALUE_REGISTER_CONVENTION);
3358 }
3359
3360 /* Set the initialized field in a value struct. */
3361
3362 void
3363 set_value_initialized (struct value *val, int status)
3364 {
3365 val->initialized = status;
3366 }
3367
3368 /* Return the initialized field in a value struct. */
3369
3370 int
3371 value_initialized (struct value *val)
3372 {
3373 return val->initialized;
3374 }
3375
3376 void
3377 _initialize_values (void)
3378 {
3379 add_cmd ("convenience", no_class, show_convenience, _("\
3380 Debugger convenience (\"$foo\") variables and functions.\n\
3381 Convenience variables are created when you assign them values;\n\
3382 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3383 \n\
3384 A few convenience variables are given values automatically:\n\
3385 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3386 \"$__\" holds the contents of the last address examined with \"x\"."
3387 #ifdef HAVE_PYTHON
3388 "\n\n\
3389 Convenience functions are defined via the Python API."
3390 #endif
3391 ), &showlist);
3392 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3393
3394 add_cmd ("values", no_set_class, show_values, _("\
3395 Elements of value history around item number IDX (or last ten)."),
3396 &showlist);
3397
3398 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3399 Initialize a convenience variable if necessary.\n\
3400 init-if-undefined VARIABLE = EXPRESSION\n\
3401 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3402 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3403 VARIABLE is already initialized."));
3404
3405 add_prefix_cmd ("function", no_class, function_command, _("\
3406 Placeholder command for showing help on convenience functions."),
3407 &functionlist, "function ", 0, &cmdlist);
3408 }
This page took 0.097885 seconds and 4 git commands to generate.