Replace some xmalloc-family functions with XNEW-family ones
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "doublest.h"
32 #include "regcache.h"
33 #include "block.h"
34 #include "dfp.h"
35 #include "objfiles.h"
36 #include "valprint.h"
37 #include "cli/cli-decode.h"
38 #include "extension.h"
39 #include <ctype.h>
40 #include "tracepoint.h"
41 #include "cp-abi.h"
42 #include "user-regs.h"
43
44 /* Prototypes for exported functions. */
45
46 void _initialize_values (void);
47
48 /* Definition of a user function. */
49 struct internal_function
50 {
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61 };
62
63 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65 struct range
66 {
67 /* Lowest offset in the range. */
68 int offset;
69
70 /* Length of the range. */
71 int length;
72 };
73
74 typedef struct range range_s;
75
76 DEF_VEC_O(range_s);
77
78 /* Returns true if the ranges defined by [offset1, offset1+len1) and
79 [offset2, offset2+len2) overlap. */
80
81 static int
82 ranges_overlap (int offset1, int len1,
83 int offset2, int len2)
84 {
85 ULONGEST h, l;
86
87 l = max (offset1, offset2);
88 h = min (offset1 + len1, offset2 + len2);
89 return (l < h);
90 }
91
92 /* Returns true if the first argument is strictly less than the
93 second, useful for VEC_lower_bound. We keep ranges sorted by
94 offset and coalesce overlapping and contiguous ranges, so this just
95 compares the starting offset. */
96
97 static int
98 range_lessthan (const range_s *r1, const range_s *r2)
99 {
100 return r1->offset < r2->offset;
101 }
102
103 /* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106 static int
107 ranges_contain (VEC(range_s) *ranges, int offset, int length)
108 {
109 range_s what;
110 int i;
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
146 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
147
148 if (i > 0)
149 {
150 struct range *bef = VEC_index (range_s, ranges, i - 1);
151
152 if (ranges_overlap (bef->offset, bef->length, offset, length))
153 return 1;
154 }
155
156 if (i < VEC_length (range_s, ranges))
157 {
158 struct range *r = VEC_index (range_s, ranges, i);
159
160 if (ranges_overlap (r->offset, r->length, offset, length))
161 return 1;
162 }
163
164 return 0;
165 }
166
167 static struct cmd_list_element *functionlist;
168
169 /* Note that the fields in this structure are arranged to save a bit
170 of memory. */
171
172 struct value
173 {
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
179 unsigned int modifiable : 1;
180
181 /* If zero, contents of this value are in the contents field. If
182 nonzero, contents are in inferior. If the lval field is lval_memory,
183 the contents are in inferior memory at location.address plus offset.
184 The lval field may also be lval_register.
185
186 WARNING: This field is used by the code which handles watchpoints
187 (see breakpoint.c) to decide whether a particular value can be
188 watched by hardware watchpoints. If the lazy flag is set for
189 some member of a value chain, it is assumed that this member of
190 the chain doesn't need to be watched as part of watching the
191 value itself. This is how GDB avoids watching the entire struct
192 or array when the user wants to watch a single struct member or
193 array element. If you ever change the way lazy flag is set and
194 reset, be sure to consider this use as well! */
195 unsigned int lazy : 1;
196
197 /* If value is a variable, is it initialized or not. */
198 unsigned int initialized : 1;
199
200 /* If value is from the stack. If this is set, read_stack will be
201 used instead of read_memory to enable extra caching. */
202 unsigned int stack : 1;
203
204 /* If the value has been released. */
205 unsigned int released : 1;
206
207 /* Register number if the value is from a register. */
208 short regnum;
209
210 /* Location of value (if lval). */
211 union
212 {
213 /* If lval == lval_memory, this is the address in the inferior.
214 If lval == lval_register, this is the byte offset into the
215 registers structure. */
216 CORE_ADDR address;
217
218 /* Pointer to internal variable. */
219 struct internalvar *internalvar;
220
221 /* Pointer to xmethod worker. */
222 struct xmethod_worker *xm_worker;
223
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
234 } computed;
235 } location;
236
237 /* Describes offset of a value within lval of a structure in target
238 addressable memory units. If lval == lval_memory, this is an offset to
239 the address. If lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the member
241 embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
250 int bitpos;
251
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in target addressable memory
295 units. The value_contents() macro takes `embedded_offset' into account,
296 so most GDB code continues to see the `type' portion of the value, just
297 as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in target addressable memory units from the full object
302 to the pointed-to object -- that is, the value `embedded_offset' would
303 have if we followed the pointer and fetched the complete object.
304 (I don't really see the point. Why not just determine the
305 run-time type when you indirect, and avoid the special case? The
306 contents don't matter until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
319 struct value *next;
320
321 /* Actual contents of the value. Target byte-order. NULL or not
322 valid if lazy is nonzero. */
323 gdb_byte *contents;
324
325 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
326 rather than available, since the common and default case is for a
327 value to be available. This is filled in at value read time.
328 The unavailable ranges are tracked in bits. Note that a contents
329 bit that has been optimized out doesn't really exist in the
330 program, so it can't be marked unavailable either. */
331 VEC(range_s) *unavailable;
332
333 /* Likewise, but for optimized out contents (a chunk of the value of
334 a variable that does not actually exist in the program). If LVAL
335 is lval_register, this is a register ($pc, $sp, etc., never a
336 program variable) that has not been saved in the frame. Not
337 saved registers and optimized-out program variables values are
338 treated pretty much the same, except not-saved registers have a
339 different string representation and related error strings. */
340 VEC(range_s) *optimized_out;
341 };
342
343 /* See value.h. */
344
345 struct gdbarch *
346 get_value_arch (const struct value *value)
347 {
348 return get_type_arch (value_type (value));
349 }
350
351 int
352 value_bits_available (const struct value *value, int offset, int length)
353 {
354 gdb_assert (!value->lazy);
355
356 return !ranges_contain (value->unavailable, offset, length);
357 }
358
359 int
360 value_bytes_available (const struct value *value, int offset, int length)
361 {
362 return value_bits_available (value,
363 offset * TARGET_CHAR_BIT,
364 length * TARGET_CHAR_BIT);
365 }
366
367 int
368 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
369 {
370 gdb_assert (!value->lazy);
371
372 return ranges_contain (value->optimized_out, bit_offset, bit_length);
373 }
374
375 int
376 value_entirely_available (struct value *value)
377 {
378 /* We can only tell whether the whole value is available when we try
379 to read it. */
380 if (value->lazy)
381 value_fetch_lazy (value);
382
383 if (VEC_empty (range_s, value->unavailable))
384 return 1;
385 return 0;
386 }
387
388 /* Returns true if VALUE is entirely covered by RANGES. If the value
389 is lazy, it'll be read now. Note that RANGE is a pointer to
390 pointer because reading the value might change *RANGE. */
391
392 static int
393 value_entirely_covered_by_range_vector (struct value *value,
394 VEC(range_s) **ranges)
395 {
396 /* We can only tell whether the whole value is optimized out /
397 unavailable when we try to read it. */
398 if (value->lazy)
399 value_fetch_lazy (value);
400
401 if (VEC_length (range_s, *ranges) == 1)
402 {
403 struct range *t = VEC_index (range_s, *ranges, 0);
404
405 if (t->offset == 0
406 && t->length == (TARGET_CHAR_BIT
407 * TYPE_LENGTH (value_enclosing_type (value))))
408 return 1;
409 }
410
411 return 0;
412 }
413
414 int
415 value_entirely_unavailable (struct value *value)
416 {
417 return value_entirely_covered_by_range_vector (value, &value->unavailable);
418 }
419
420 int
421 value_entirely_optimized_out (struct value *value)
422 {
423 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
424 }
425
426 /* Insert into the vector pointed to by VECTORP the bit range starting of
427 OFFSET bits, and extending for the next LENGTH bits. */
428
429 static void
430 insert_into_bit_range_vector (VEC(range_s) **vectorp, int offset, int length)
431 {
432 range_s newr;
433 int i;
434
435 /* Insert the range sorted. If there's overlap or the new range
436 would be contiguous with an existing range, merge. */
437
438 newr.offset = offset;
439 newr.length = length;
440
441 /* Do a binary search for the position the given range would be
442 inserted if we only considered the starting OFFSET of ranges.
443 Call that position I. Since we also have LENGTH to care for
444 (this is a range afterall), we need to check if the _previous_
445 range overlaps the I range. E.g., calling R the new range:
446
447 #1 - overlaps with previous
448
449 R
450 |-...-|
451 |---| |---| |------| ... |--|
452 0 1 2 N
453
454 I=1
455
456 In the case #1 above, the binary search would return `I=1',
457 meaning, this OFFSET should be inserted at position 1, and the
458 current position 1 should be pushed further (and become 2). But,
459 note that `0' overlaps with R, so we want to merge them.
460
461 A similar consideration needs to be taken if the new range would
462 be contiguous with the previous range:
463
464 #2 - contiguous with previous
465
466 R
467 |-...-|
468 |--| |---| |------| ... |--|
469 0 1 2 N
470
471 I=1
472
473 If there's no overlap with the previous range, as in:
474
475 #3 - not overlapping and not contiguous
476
477 R
478 |-...-|
479 |--| |---| |------| ... |--|
480 0 1 2 N
481
482 I=1
483
484 or if I is 0:
485
486 #4 - R is the range with lowest offset
487
488 R
489 |-...-|
490 |--| |---| |------| ... |--|
491 0 1 2 N
492
493 I=0
494
495 ... we just push the new range to I.
496
497 All the 4 cases above need to consider that the new range may
498 also overlap several of the ranges that follow, or that R may be
499 contiguous with the following range, and merge. E.g.,
500
501 #5 - overlapping following ranges
502
503 R
504 |------------------------|
505 |--| |---| |------| ... |--|
506 0 1 2 N
507
508 I=0
509
510 or:
511
512 R
513 |-------|
514 |--| |---| |------| ... |--|
515 0 1 2 N
516
517 I=1
518
519 */
520
521 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
522 if (i > 0)
523 {
524 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
525
526 if (ranges_overlap (bef->offset, bef->length, offset, length))
527 {
528 /* #1 */
529 ULONGEST l = min (bef->offset, offset);
530 ULONGEST h = max (bef->offset + bef->length, offset + length);
531
532 bef->offset = l;
533 bef->length = h - l;
534 i--;
535 }
536 else if (offset == bef->offset + bef->length)
537 {
538 /* #2 */
539 bef->length += length;
540 i--;
541 }
542 else
543 {
544 /* #3 */
545 VEC_safe_insert (range_s, *vectorp, i, &newr);
546 }
547 }
548 else
549 {
550 /* #4 */
551 VEC_safe_insert (range_s, *vectorp, i, &newr);
552 }
553
554 /* Check whether the ranges following the one we've just added or
555 touched can be folded in (#5 above). */
556 if (i + 1 < VEC_length (range_s, *vectorp))
557 {
558 struct range *t;
559 struct range *r;
560 int removed = 0;
561 int next = i + 1;
562
563 /* Get the range we just touched. */
564 t = VEC_index (range_s, *vectorp, i);
565 removed = 0;
566
567 i = next;
568 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
569 if (r->offset <= t->offset + t->length)
570 {
571 ULONGEST l, h;
572
573 l = min (t->offset, r->offset);
574 h = max (t->offset + t->length, r->offset + r->length);
575
576 t->offset = l;
577 t->length = h - l;
578
579 removed++;
580 }
581 else
582 {
583 /* If we couldn't merge this one, we won't be able to
584 merge following ones either, since the ranges are
585 always sorted by OFFSET. */
586 break;
587 }
588
589 if (removed != 0)
590 VEC_block_remove (range_s, *vectorp, next, removed);
591 }
592 }
593
594 void
595 mark_value_bits_unavailable (struct value *value, int offset, int length)
596 {
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598 }
599
600 void
601 mark_value_bytes_unavailable (struct value *value, int offset, int length)
602 {
603 mark_value_bits_unavailable (value,
604 offset * TARGET_CHAR_BIT,
605 length * TARGET_CHAR_BIT);
606 }
607
608 /* Find the first range in RANGES that overlaps the range defined by
609 OFFSET and LENGTH, starting at element POS in the RANGES vector,
610 Returns the index into RANGES where such overlapping range was
611 found, or -1 if none was found. */
612
613 static int
614 find_first_range_overlap (VEC(range_s) *ranges, int pos,
615 int offset, int length)
616 {
617 range_s *r;
618 int i;
619
620 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
621 if (ranges_overlap (r->offset, r->length, offset, length))
622 return i;
623
624 return -1;
625 }
626
627 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
628 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
629 return non-zero.
630
631 It must always be the case that:
632 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
633
634 It is assumed that memory can be accessed from:
635 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
636 to:
637 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
638 / TARGET_CHAR_BIT) */
639 static int
640 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
641 const gdb_byte *ptr2, size_t offset2_bits,
642 size_t length_bits)
643 {
644 gdb_assert (offset1_bits % TARGET_CHAR_BIT
645 == offset2_bits % TARGET_CHAR_BIT);
646
647 if (offset1_bits % TARGET_CHAR_BIT != 0)
648 {
649 size_t bits;
650 gdb_byte mask, b1, b2;
651
652 /* The offset from the base pointers PTR1 and PTR2 is not a complete
653 number of bytes. A number of bits up to either the next exact
654 byte boundary, or LENGTH_BITS (which ever is sooner) will be
655 compared. */
656 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
657 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
658 mask = (1 << bits) - 1;
659
660 if (length_bits < bits)
661 {
662 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
663 bits = length_bits;
664 }
665
666 /* Now load the two bytes and mask off the bits we care about. */
667 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
668 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
669
670 if (b1 != b2)
671 return 1;
672
673 /* Now update the length and offsets to take account of the bits
674 we've just compared. */
675 length_bits -= bits;
676 offset1_bits += bits;
677 offset2_bits += bits;
678 }
679
680 if (length_bits % TARGET_CHAR_BIT != 0)
681 {
682 size_t bits;
683 size_t o1, o2;
684 gdb_byte mask, b1, b2;
685
686 /* The length is not an exact number of bytes. After the previous
687 IF.. block then the offsets are byte aligned, or the
688 length is zero (in which case this code is not reached). Compare
689 a number of bits at the end of the region, starting from an exact
690 byte boundary. */
691 bits = length_bits % TARGET_CHAR_BIT;
692 o1 = offset1_bits + length_bits - bits;
693 o2 = offset2_bits + length_bits - bits;
694
695 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
696 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
697
698 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
699 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
700
701 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
702 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
703
704 if (b1 != b2)
705 return 1;
706
707 length_bits -= bits;
708 }
709
710 if (length_bits > 0)
711 {
712 /* We've now taken care of any stray "bits" at the start, or end of
713 the region to compare, the remainder can be covered with a simple
714 memcmp. */
715 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
716 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
718
719 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
720 ptr2 + offset2_bits / TARGET_CHAR_BIT,
721 length_bits / TARGET_CHAR_BIT);
722 }
723
724 /* Length is zero, regions match. */
725 return 0;
726 }
727
728 /* Helper struct for find_first_range_overlap_and_match and
729 value_contents_bits_eq. Keep track of which slot of a given ranges
730 vector have we last looked at. */
731
732 struct ranges_and_idx
733 {
734 /* The ranges. */
735 VEC(range_s) *ranges;
736
737 /* The range we've last found in RANGES. Given ranges are sorted,
738 we can start the next lookup here. */
739 int idx;
740 };
741
742 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
743 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
744 ranges starting at OFFSET2 bits. Return true if the ranges match
745 and fill in *L and *H with the overlapping window relative to
746 (both) OFFSET1 or OFFSET2. */
747
748 static int
749 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
750 struct ranges_and_idx *rp2,
751 int offset1, int offset2,
752 int length, ULONGEST *l, ULONGEST *h)
753 {
754 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
755 offset1, length);
756 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
757 offset2, length);
758
759 if (rp1->idx == -1 && rp2->idx == -1)
760 {
761 *l = length;
762 *h = length;
763 return 1;
764 }
765 else if (rp1->idx == -1 || rp2->idx == -1)
766 return 0;
767 else
768 {
769 range_s *r1, *r2;
770 ULONGEST l1, h1;
771 ULONGEST l2, h2;
772
773 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
774 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
775
776 /* Get the unavailable windows intersected by the incoming
777 ranges. The first and last ranges that overlap the argument
778 range may be wider than said incoming arguments ranges. */
779 l1 = max (offset1, r1->offset);
780 h1 = min (offset1 + length, r1->offset + r1->length);
781
782 l2 = max (offset2, r2->offset);
783 h2 = min (offset2 + length, offset2 + r2->length);
784
785 /* Make them relative to the respective start offsets, so we can
786 compare them for equality. */
787 l1 -= offset1;
788 h1 -= offset1;
789
790 l2 -= offset2;
791 h2 -= offset2;
792
793 /* Different ranges, no match. */
794 if (l1 != l2 || h1 != h2)
795 return 0;
796
797 *h = h1;
798 *l = l1;
799 return 1;
800 }
801 }
802
803 /* Helper function for value_contents_eq. The only difference is that
804 this function is bit rather than byte based.
805
806 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
807 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
808 Return true if the available bits match. */
809
810 static int
811 value_contents_bits_eq (const struct value *val1, int offset1,
812 const struct value *val2, int offset2,
813 int length)
814 {
815 /* Each array element corresponds to a ranges source (unavailable,
816 optimized out). '1' is for VAL1, '2' for VAL2. */
817 struct ranges_and_idx rp1[2], rp2[2];
818
819 /* See function description in value.h. */
820 gdb_assert (!val1->lazy && !val2->lazy);
821
822 /* We shouldn't be trying to compare past the end of the values. */
823 gdb_assert (offset1 + length
824 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
825 gdb_assert (offset2 + length
826 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
827
828 memset (&rp1, 0, sizeof (rp1));
829 memset (&rp2, 0, sizeof (rp2));
830 rp1[0].ranges = val1->unavailable;
831 rp2[0].ranges = val2->unavailable;
832 rp1[1].ranges = val1->optimized_out;
833 rp2[1].ranges = val2->optimized_out;
834
835 while (length > 0)
836 {
837 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
838 int i;
839
840 for (i = 0; i < 2; i++)
841 {
842 ULONGEST l_tmp, h_tmp;
843
844 /* The contents only match equal if the invalid/unavailable
845 contents ranges match as well. */
846 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
847 offset1, offset2, length,
848 &l_tmp, &h_tmp))
849 return 0;
850
851 /* We're interested in the lowest/first range found. */
852 if (i == 0 || l_tmp < l)
853 {
854 l = l_tmp;
855 h = h_tmp;
856 }
857 }
858
859 /* Compare the available/valid contents. */
860 if (memcmp_with_bit_offsets (val1->contents, offset1,
861 val2->contents, offset2, l) != 0)
862 return 0;
863
864 length -= h;
865 offset1 += h;
866 offset2 += h;
867 }
868
869 return 1;
870 }
871
872 int
873 value_contents_eq (const struct value *val1, int offset1,
874 const struct value *val2, int offset2,
875 int length)
876 {
877 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
878 val2, offset2 * TARGET_CHAR_BIT,
879 length * TARGET_CHAR_BIT);
880 }
881
882 /* Prototypes for local functions. */
883
884 static void show_values (char *, int);
885
886 static void show_convenience (char *, int);
887
888
889 /* The value-history records all the values printed
890 by print commands during this session. Each chunk
891 records 60 consecutive values. The first chunk on
892 the chain records the most recent values.
893 The total number of values is in value_history_count. */
894
895 #define VALUE_HISTORY_CHUNK 60
896
897 struct value_history_chunk
898 {
899 struct value_history_chunk *next;
900 struct value *values[VALUE_HISTORY_CHUNK];
901 };
902
903 /* Chain of chunks now in use. */
904
905 static struct value_history_chunk *value_history_chain;
906
907 static int value_history_count; /* Abs number of last entry stored. */
908
909 \f
910 /* List of all value objects currently allocated
911 (except for those released by calls to release_value)
912 This is so they can be freed after each command. */
913
914 static struct value *all_values;
915
916 /* Allocate a lazy value for type TYPE. Its actual content is
917 "lazily" allocated too: the content field of the return value is
918 NULL; it will be allocated when it is fetched from the target. */
919
920 struct value *
921 allocate_value_lazy (struct type *type)
922 {
923 struct value *val;
924
925 /* Call check_typedef on our type to make sure that, if TYPE
926 is a TYPE_CODE_TYPEDEF, its length is set to the length
927 of the target type instead of zero. However, we do not
928 replace the typedef type by the target type, because we want
929 to keep the typedef in order to be able to set the VAL's type
930 description correctly. */
931 check_typedef (type);
932
933 val = XCNEW (struct value);
934 val->contents = NULL;
935 val->next = all_values;
936 all_values = val;
937 val->type = type;
938 val->enclosing_type = type;
939 VALUE_LVAL (val) = not_lval;
940 val->location.address = 0;
941 VALUE_FRAME_ID (val) = null_frame_id;
942 val->offset = 0;
943 val->bitpos = 0;
944 val->bitsize = 0;
945 VALUE_REGNUM (val) = -1;
946 val->lazy = 1;
947 val->embedded_offset = 0;
948 val->pointed_to_offset = 0;
949 val->modifiable = 1;
950 val->initialized = 1; /* Default to initialized. */
951
952 /* Values start out on the all_values chain. */
953 val->reference_count = 1;
954
955 return val;
956 }
957
958 /* Allocate the contents of VAL if it has not been allocated yet. */
959
960 static void
961 allocate_value_contents (struct value *val)
962 {
963 if (!val->contents)
964 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
965 }
966
967 /* Allocate a value and its contents for type TYPE. */
968
969 struct value *
970 allocate_value (struct type *type)
971 {
972 struct value *val = allocate_value_lazy (type);
973
974 allocate_value_contents (val);
975 val->lazy = 0;
976 return val;
977 }
978
979 /* Allocate a value that has the correct length
980 for COUNT repetitions of type TYPE. */
981
982 struct value *
983 allocate_repeat_value (struct type *type, int count)
984 {
985 int low_bound = current_language->string_lower_bound; /* ??? */
986 /* FIXME-type-allocation: need a way to free this type when we are
987 done with it. */
988 struct type *array_type
989 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
990
991 return allocate_value (array_type);
992 }
993
994 struct value *
995 allocate_computed_value (struct type *type,
996 const struct lval_funcs *funcs,
997 void *closure)
998 {
999 struct value *v = allocate_value_lazy (type);
1000
1001 VALUE_LVAL (v) = lval_computed;
1002 v->location.computed.funcs = funcs;
1003 v->location.computed.closure = closure;
1004
1005 return v;
1006 }
1007
1008 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1009
1010 struct value *
1011 allocate_optimized_out_value (struct type *type)
1012 {
1013 struct value *retval = allocate_value_lazy (type);
1014
1015 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1016 set_value_lazy (retval, 0);
1017 return retval;
1018 }
1019
1020 /* Accessor methods. */
1021
1022 struct value *
1023 value_next (struct value *value)
1024 {
1025 return value->next;
1026 }
1027
1028 struct type *
1029 value_type (const struct value *value)
1030 {
1031 return value->type;
1032 }
1033 void
1034 deprecated_set_value_type (struct value *value, struct type *type)
1035 {
1036 value->type = type;
1037 }
1038
1039 int
1040 value_offset (const struct value *value)
1041 {
1042 return value->offset;
1043 }
1044 void
1045 set_value_offset (struct value *value, int offset)
1046 {
1047 value->offset = offset;
1048 }
1049
1050 int
1051 value_bitpos (const struct value *value)
1052 {
1053 return value->bitpos;
1054 }
1055 void
1056 set_value_bitpos (struct value *value, int bit)
1057 {
1058 value->bitpos = bit;
1059 }
1060
1061 int
1062 value_bitsize (const struct value *value)
1063 {
1064 return value->bitsize;
1065 }
1066 void
1067 set_value_bitsize (struct value *value, int bit)
1068 {
1069 value->bitsize = bit;
1070 }
1071
1072 struct value *
1073 value_parent (struct value *value)
1074 {
1075 return value->parent;
1076 }
1077
1078 /* See value.h. */
1079
1080 void
1081 set_value_parent (struct value *value, struct value *parent)
1082 {
1083 struct value *old = value->parent;
1084
1085 value->parent = parent;
1086 if (parent != NULL)
1087 value_incref (parent);
1088 value_free (old);
1089 }
1090
1091 gdb_byte *
1092 value_contents_raw (struct value *value)
1093 {
1094 struct gdbarch *arch = get_value_arch (value);
1095 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1096
1097 allocate_value_contents (value);
1098 return value->contents + value->embedded_offset * unit_size;
1099 }
1100
1101 gdb_byte *
1102 value_contents_all_raw (struct value *value)
1103 {
1104 allocate_value_contents (value);
1105 return value->contents;
1106 }
1107
1108 struct type *
1109 value_enclosing_type (struct value *value)
1110 {
1111 return value->enclosing_type;
1112 }
1113
1114 /* Look at value.h for description. */
1115
1116 struct type *
1117 value_actual_type (struct value *value, int resolve_simple_types,
1118 int *real_type_found)
1119 {
1120 struct value_print_options opts;
1121 struct type *result;
1122
1123 get_user_print_options (&opts);
1124
1125 if (real_type_found)
1126 *real_type_found = 0;
1127 result = value_type (value);
1128 if (opts.objectprint)
1129 {
1130 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1131 fetch its rtti type. */
1132 if ((TYPE_CODE (result) == TYPE_CODE_PTR
1133 || TYPE_CODE (result) == TYPE_CODE_REF)
1134 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1135 == TYPE_CODE_STRUCT)
1136 {
1137 struct type *real_type;
1138
1139 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1140 if (real_type)
1141 {
1142 if (real_type_found)
1143 *real_type_found = 1;
1144 result = real_type;
1145 }
1146 }
1147 else if (resolve_simple_types)
1148 {
1149 if (real_type_found)
1150 *real_type_found = 1;
1151 result = value_enclosing_type (value);
1152 }
1153 }
1154
1155 return result;
1156 }
1157
1158 void
1159 error_value_optimized_out (void)
1160 {
1161 error (_("value has been optimized out"));
1162 }
1163
1164 static void
1165 require_not_optimized_out (const struct value *value)
1166 {
1167 if (!VEC_empty (range_s, value->optimized_out))
1168 {
1169 if (value->lval == lval_register)
1170 error (_("register has not been saved in frame"));
1171 else
1172 error_value_optimized_out ();
1173 }
1174 }
1175
1176 static void
1177 require_available (const struct value *value)
1178 {
1179 if (!VEC_empty (range_s, value->unavailable))
1180 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1181 }
1182
1183 const gdb_byte *
1184 value_contents_for_printing (struct value *value)
1185 {
1186 if (value->lazy)
1187 value_fetch_lazy (value);
1188 return value->contents;
1189 }
1190
1191 const gdb_byte *
1192 value_contents_for_printing_const (const struct value *value)
1193 {
1194 gdb_assert (!value->lazy);
1195 return value->contents;
1196 }
1197
1198 const gdb_byte *
1199 value_contents_all (struct value *value)
1200 {
1201 const gdb_byte *result = value_contents_for_printing (value);
1202 require_not_optimized_out (value);
1203 require_available (value);
1204 return result;
1205 }
1206
1207 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1208 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1209
1210 static void
1211 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1212 VEC (range_s) *src_range, int src_bit_offset,
1213 int bit_length)
1214 {
1215 range_s *r;
1216 int i;
1217
1218 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1219 {
1220 ULONGEST h, l;
1221
1222 l = max (r->offset, src_bit_offset);
1223 h = min (r->offset + r->length, src_bit_offset + bit_length);
1224
1225 if (l < h)
1226 insert_into_bit_range_vector (dst_range,
1227 dst_bit_offset + (l - src_bit_offset),
1228 h - l);
1229 }
1230 }
1231
1232 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1233 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1234
1235 static void
1236 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1237 const struct value *src, int src_bit_offset,
1238 int bit_length)
1239 {
1240 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1241 src->unavailable, src_bit_offset,
1242 bit_length);
1243 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1244 src->optimized_out, src_bit_offset,
1245 bit_length);
1246 }
1247
1248 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1249 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1250 contents, starting at DST_OFFSET. If unavailable contents are
1251 being copied from SRC, the corresponding DST contents are marked
1252 unavailable accordingly. Neither DST nor SRC may be lazy
1253 values.
1254
1255 It is assumed the contents of DST in the [DST_OFFSET,
1256 DST_OFFSET+LENGTH) range are wholly available. */
1257
1258 void
1259 value_contents_copy_raw (struct value *dst, int dst_offset,
1260 struct value *src, int src_offset, int length)
1261 {
1262 range_s *r;
1263 int src_bit_offset, dst_bit_offset, bit_length;
1264 struct gdbarch *arch = get_value_arch (src);
1265 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1266
1267 /* A lazy DST would make that this copy operation useless, since as
1268 soon as DST's contents were un-lazied (by a later value_contents
1269 call, say), the contents would be overwritten. A lazy SRC would
1270 mean we'd be copying garbage. */
1271 gdb_assert (!dst->lazy && !src->lazy);
1272
1273 /* The overwritten DST range gets unavailability ORed in, not
1274 replaced. Make sure to remember to implement replacing if it
1275 turns out actually necessary. */
1276 gdb_assert (value_bytes_available (dst, dst_offset, length));
1277 gdb_assert (!value_bits_any_optimized_out (dst,
1278 TARGET_CHAR_BIT * dst_offset,
1279 TARGET_CHAR_BIT * length));
1280
1281 /* Copy the data. */
1282 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1283 value_contents_all_raw (src) + src_offset * unit_size,
1284 length * unit_size);
1285
1286 /* Copy the meta-data, adjusted. */
1287 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1288 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1289 bit_length = length * unit_size * HOST_CHAR_BIT;
1290
1291 value_ranges_copy_adjusted (dst, dst_bit_offset,
1292 src, src_bit_offset,
1293 bit_length);
1294 }
1295
1296 /* Copy LENGTH bytes of SRC value's (all) contents
1297 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1298 (all) contents, starting at DST_OFFSET. If unavailable contents
1299 are being copied from SRC, the corresponding DST contents are
1300 marked unavailable accordingly. DST must not be lazy. If SRC is
1301 lazy, it will be fetched now.
1302
1303 It is assumed the contents of DST in the [DST_OFFSET,
1304 DST_OFFSET+LENGTH) range are wholly available. */
1305
1306 void
1307 value_contents_copy (struct value *dst, int dst_offset,
1308 struct value *src, int src_offset, int length)
1309 {
1310 if (src->lazy)
1311 value_fetch_lazy (src);
1312
1313 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1314 }
1315
1316 int
1317 value_lazy (struct value *value)
1318 {
1319 return value->lazy;
1320 }
1321
1322 void
1323 set_value_lazy (struct value *value, int val)
1324 {
1325 value->lazy = val;
1326 }
1327
1328 int
1329 value_stack (struct value *value)
1330 {
1331 return value->stack;
1332 }
1333
1334 void
1335 set_value_stack (struct value *value, int val)
1336 {
1337 value->stack = val;
1338 }
1339
1340 const gdb_byte *
1341 value_contents (struct value *value)
1342 {
1343 const gdb_byte *result = value_contents_writeable (value);
1344 require_not_optimized_out (value);
1345 require_available (value);
1346 return result;
1347 }
1348
1349 gdb_byte *
1350 value_contents_writeable (struct value *value)
1351 {
1352 if (value->lazy)
1353 value_fetch_lazy (value);
1354 return value_contents_raw (value);
1355 }
1356
1357 int
1358 value_optimized_out (struct value *value)
1359 {
1360 /* We can only know if a value is optimized out once we have tried to
1361 fetch it. */
1362 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1363 value_fetch_lazy (value);
1364
1365 return !VEC_empty (range_s, value->optimized_out);
1366 }
1367
1368 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1369 the following LENGTH bytes. */
1370
1371 void
1372 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1373 {
1374 mark_value_bits_optimized_out (value,
1375 offset * TARGET_CHAR_BIT,
1376 length * TARGET_CHAR_BIT);
1377 }
1378
1379 /* See value.h. */
1380
1381 void
1382 mark_value_bits_optimized_out (struct value *value, int offset, int length)
1383 {
1384 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1385 }
1386
1387 int
1388 value_bits_synthetic_pointer (const struct value *value,
1389 int offset, int length)
1390 {
1391 if (value->lval != lval_computed
1392 || !value->location.computed.funcs->check_synthetic_pointer)
1393 return 0;
1394 return value->location.computed.funcs->check_synthetic_pointer (value,
1395 offset,
1396 length);
1397 }
1398
1399 int
1400 value_embedded_offset (struct value *value)
1401 {
1402 return value->embedded_offset;
1403 }
1404
1405 void
1406 set_value_embedded_offset (struct value *value, int val)
1407 {
1408 value->embedded_offset = val;
1409 }
1410
1411 int
1412 value_pointed_to_offset (struct value *value)
1413 {
1414 return value->pointed_to_offset;
1415 }
1416
1417 void
1418 set_value_pointed_to_offset (struct value *value, int val)
1419 {
1420 value->pointed_to_offset = val;
1421 }
1422
1423 const struct lval_funcs *
1424 value_computed_funcs (const struct value *v)
1425 {
1426 gdb_assert (value_lval_const (v) == lval_computed);
1427
1428 return v->location.computed.funcs;
1429 }
1430
1431 void *
1432 value_computed_closure (const struct value *v)
1433 {
1434 gdb_assert (v->lval == lval_computed);
1435
1436 return v->location.computed.closure;
1437 }
1438
1439 enum lval_type *
1440 deprecated_value_lval_hack (struct value *value)
1441 {
1442 return &value->lval;
1443 }
1444
1445 enum lval_type
1446 value_lval_const (const struct value *value)
1447 {
1448 return value->lval;
1449 }
1450
1451 CORE_ADDR
1452 value_address (const struct value *value)
1453 {
1454 if (value->lval == lval_internalvar
1455 || value->lval == lval_internalvar_component
1456 || value->lval == lval_xcallable)
1457 return 0;
1458 if (value->parent != NULL)
1459 return value_address (value->parent) + value->offset;
1460 else
1461 return value->location.address + value->offset;
1462 }
1463
1464 CORE_ADDR
1465 value_raw_address (struct value *value)
1466 {
1467 if (value->lval == lval_internalvar
1468 || value->lval == lval_internalvar_component
1469 || value->lval == lval_xcallable)
1470 return 0;
1471 return value->location.address;
1472 }
1473
1474 void
1475 set_value_address (struct value *value, CORE_ADDR addr)
1476 {
1477 gdb_assert (value->lval != lval_internalvar
1478 && value->lval != lval_internalvar_component
1479 && value->lval != lval_xcallable);
1480 value->location.address = addr;
1481 }
1482
1483 struct internalvar **
1484 deprecated_value_internalvar_hack (struct value *value)
1485 {
1486 return &value->location.internalvar;
1487 }
1488
1489 struct frame_id *
1490 deprecated_value_frame_id_hack (struct value *value)
1491 {
1492 return &value->frame_id;
1493 }
1494
1495 short *
1496 deprecated_value_regnum_hack (struct value *value)
1497 {
1498 return &value->regnum;
1499 }
1500
1501 int
1502 deprecated_value_modifiable (struct value *value)
1503 {
1504 return value->modifiable;
1505 }
1506 \f
1507 /* Return a mark in the value chain. All values allocated after the
1508 mark is obtained (except for those released) are subject to being freed
1509 if a subsequent value_free_to_mark is passed the mark. */
1510 struct value *
1511 value_mark (void)
1512 {
1513 return all_values;
1514 }
1515
1516 /* Take a reference to VAL. VAL will not be deallocated until all
1517 references are released. */
1518
1519 void
1520 value_incref (struct value *val)
1521 {
1522 val->reference_count++;
1523 }
1524
1525 /* Release a reference to VAL, which was acquired with value_incref.
1526 This function is also called to deallocate values from the value
1527 chain. */
1528
1529 void
1530 value_free (struct value *val)
1531 {
1532 if (val)
1533 {
1534 gdb_assert (val->reference_count > 0);
1535 val->reference_count--;
1536 if (val->reference_count > 0)
1537 return;
1538
1539 /* If there's an associated parent value, drop our reference to
1540 it. */
1541 if (val->parent != NULL)
1542 value_free (val->parent);
1543
1544 if (VALUE_LVAL (val) == lval_computed)
1545 {
1546 const struct lval_funcs *funcs = val->location.computed.funcs;
1547
1548 if (funcs->free_closure)
1549 funcs->free_closure (val);
1550 }
1551 else if (VALUE_LVAL (val) == lval_xcallable)
1552 free_xmethod_worker (val->location.xm_worker);
1553
1554 xfree (val->contents);
1555 VEC_free (range_s, val->unavailable);
1556 }
1557 xfree (val);
1558 }
1559
1560 /* Free all values allocated since MARK was obtained by value_mark
1561 (except for those released). */
1562 void
1563 value_free_to_mark (struct value *mark)
1564 {
1565 struct value *val;
1566 struct value *next;
1567
1568 for (val = all_values; val && val != mark; val = next)
1569 {
1570 next = val->next;
1571 val->released = 1;
1572 value_free (val);
1573 }
1574 all_values = val;
1575 }
1576
1577 /* Free all the values that have been allocated (except for those released).
1578 Call after each command, successful or not.
1579 In practice this is called before each command, which is sufficient. */
1580
1581 void
1582 free_all_values (void)
1583 {
1584 struct value *val;
1585 struct value *next;
1586
1587 for (val = all_values; val; val = next)
1588 {
1589 next = val->next;
1590 val->released = 1;
1591 value_free (val);
1592 }
1593
1594 all_values = 0;
1595 }
1596
1597 /* Frees all the elements in a chain of values. */
1598
1599 void
1600 free_value_chain (struct value *v)
1601 {
1602 struct value *next;
1603
1604 for (; v; v = next)
1605 {
1606 next = value_next (v);
1607 value_free (v);
1608 }
1609 }
1610
1611 /* Remove VAL from the chain all_values
1612 so it will not be freed automatically. */
1613
1614 void
1615 release_value (struct value *val)
1616 {
1617 struct value *v;
1618
1619 if (all_values == val)
1620 {
1621 all_values = val->next;
1622 val->next = NULL;
1623 val->released = 1;
1624 return;
1625 }
1626
1627 for (v = all_values; v; v = v->next)
1628 {
1629 if (v->next == val)
1630 {
1631 v->next = val->next;
1632 val->next = NULL;
1633 val->released = 1;
1634 break;
1635 }
1636 }
1637 }
1638
1639 /* If the value is not already released, release it.
1640 If the value is already released, increment its reference count.
1641 That is, this function ensures that the value is released from the
1642 value chain and that the caller owns a reference to it. */
1643
1644 void
1645 release_value_or_incref (struct value *val)
1646 {
1647 if (val->released)
1648 value_incref (val);
1649 else
1650 release_value (val);
1651 }
1652
1653 /* Release all values up to mark */
1654 struct value *
1655 value_release_to_mark (struct value *mark)
1656 {
1657 struct value *val;
1658 struct value *next;
1659
1660 for (val = next = all_values; next; next = next->next)
1661 {
1662 if (next->next == mark)
1663 {
1664 all_values = next->next;
1665 next->next = NULL;
1666 return val;
1667 }
1668 next->released = 1;
1669 }
1670 all_values = 0;
1671 return val;
1672 }
1673
1674 /* Return a copy of the value ARG.
1675 It contains the same contents, for same memory address,
1676 but it's a different block of storage. */
1677
1678 struct value *
1679 value_copy (struct value *arg)
1680 {
1681 struct type *encl_type = value_enclosing_type (arg);
1682 struct value *val;
1683
1684 if (value_lazy (arg))
1685 val = allocate_value_lazy (encl_type);
1686 else
1687 val = allocate_value (encl_type);
1688 val->type = arg->type;
1689 VALUE_LVAL (val) = VALUE_LVAL (arg);
1690 val->location = arg->location;
1691 val->offset = arg->offset;
1692 val->bitpos = arg->bitpos;
1693 val->bitsize = arg->bitsize;
1694 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1695 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1696 val->lazy = arg->lazy;
1697 val->embedded_offset = value_embedded_offset (arg);
1698 val->pointed_to_offset = arg->pointed_to_offset;
1699 val->modifiable = arg->modifiable;
1700 if (!value_lazy (val))
1701 {
1702 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1703 TYPE_LENGTH (value_enclosing_type (arg)));
1704
1705 }
1706 val->unavailable = VEC_copy (range_s, arg->unavailable);
1707 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1708 set_value_parent (val, arg->parent);
1709 if (VALUE_LVAL (val) == lval_computed)
1710 {
1711 const struct lval_funcs *funcs = val->location.computed.funcs;
1712
1713 if (funcs->copy_closure)
1714 val->location.computed.closure = funcs->copy_closure (val);
1715 }
1716 return val;
1717 }
1718
1719 /* Return a "const" and/or "volatile" qualified version of the value V.
1720 If CNST is true, then the returned value will be qualified with
1721 "const".
1722 if VOLTL is true, then the returned value will be qualified with
1723 "volatile". */
1724
1725 struct value *
1726 make_cv_value (int cnst, int voltl, struct value *v)
1727 {
1728 struct type *val_type = value_type (v);
1729 struct type *enclosing_type = value_enclosing_type (v);
1730 struct value *cv_val = value_copy (v);
1731
1732 deprecated_set_value_type (cv_val,
1733 make_cv_type (cnst, voltl, val_type, NULL));
1734 set_value_enclosing_type (cv_val,
1735 make_cv_type (cnst, voltl, enclosing_type, NULL));
1736
1737 return cv_val;
1738 }
1739
1740 /* Return a version of ARG that is non-lvalue. */
1741
1742 struct value *
1743 value_non_lval (struct value *arg)
1744 {
1745 if (VALUE_LVAL (arg) != not_lval)
1746 {
1747 struct type *enc_type = value_enclosing_type (arg);
1748 struct value *val = allocate_value (enc_type);
1749
1750 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1751 TYPE_LENGTH (enc_type));
1752 val->type = arg->type;
1753 set_value_embedded_offset (val, value_embedded_offset (arg));
1754 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1755 return val;
1756 }
1757 return arg;
1758 }
1759
1760 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1761
1762 void
1763 value_force_lval (struct value *v, CORE_ADDR addr)
1764 {
1765 gdb_assert (VALUE_LVAL (v) == not_lval);
1766
1767 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1768 v->lval = lval_memory;
1769 v->location.address = addr;
1770 }
1771
1772 void
1773 set_value_component_location (struct value *component,
1774 const struct value *whole)
1775 {
1776 gdb_assert (whole->lval != lval_xcallable);
1777
1778 if (whole->lval == lval_internalvar)
1779 VALUE_LVAL (component) = lval_internalvar_component;
1780 else
1781 VALUE_LVAL (component) = whole->lval;
1782
1783 component->location = whole->location;
1784 if (whole->lval == lval_computed)
1785 {
1786 const struct lval_funcs *funcs = whole->location.computed.funcs;
1787
1788 if (funcs->copy_closure)
1789 component->location.computed.closure = funcs->copy_closure (whole);
1790 }
1791 }
1792
1793 \f
1794 /* Access to the value history. */
1795
1796 /* Record a new value in the value history.
1797 Returns the absolute history index of the entry. */
1798
1799 int
1800 record_latest_value (struct value *val)
1801 {
1802 int i;
1803
1804 /* We don't want this value to have anything to do with the inferior anymore.
1805 In particular, "set $1 = 50" should not affect the variable from which
1806 the value was taken, and fast watchpoints should be able to assume that
1807 a value on the value history never changes. */
1808 if (value_lazy (val))
1809 value_fetch_lazy (val);
1810 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1811 from. This is a bit dubious, because then *&$1 does not just return $1
1812 but the current contents of that location. c'est la vie... */
1813 val->modifiable = 0;
1814
1815 /* The value may have already been released, in which case we're adding a
1816 new reference for its entry in the history. That is why we call
1817 release_value_or_incref here instead of release_value. */
1818 release_value_or_incref (val);
1819
1820 /* Here we treat value_history_count as origin-zero
1821 and applying to the value being stored now. */
1822
1823 i = value_history_count % VALUE_HISTORY_CHUNK;
1824 if (i == 0)
1825 {
1826 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
1827
1828 newobj->next = value_history_chain;
1829 value_history_chain = newobj;
1830 }
1831
1832 value_history_chain->values[i] = val;
1833
1834 /* Now we regard value_history_count as origin-one
1835 and applying to the value just stored. */
1836
1837 return ++value_history_count;
1838 }
1839
1840 /* Return a copy of the value in the history with sequence number NUM. */
1841
1842 struct value *
1843 access_value_history (int num)
1844 {
1845 struct value_history_chunk *chunk;
1846 int i;
1847 int absnum = num;
1848
1849 if (absnum <= 0)
1850 absnum += value_history_count;
1851
1852 if (absnum <= 0)
1853 {
1854 if (num == 0)
1855 error (_("The history is empty."));
1856 else if (num == 1)
1857 error (_("There is only one value in the history."));
1858 else
1859 error (_("History does not go back to $$%d."), -num);
1860 }
1861 if (absnum > value_history_count)
1862 error (_("History has not yet reached $%d."), absnum);
1863
1864 absnum--;
1865
1866 /* Now absnum is always absolute and origin zero. */
1867
1868 chunk = value_history_chain;
1869 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1870 - absnum / VALUE_HISTORY_CHUNK;
1871 i > 0; i--)
1872 chunk = chunk->next;
1873
1874 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1875 }
1876
1877 static void
1878 show_values (char *num_exp, int from_tty)
1879 {
1880 int i;
1881 struct value *val;
1882 static int num = 1;
1883
1884 if (num_exp)
1885 {
1886 /* "show values +" should print from the stored position.
1887 "show values <exp>" should print around value number <exp>. */
1888 if (num_exp[0] != '+' || num_exp[1] != '\0')
1889 num = parse_and_eval_long (num_exp) - 5;
1890 }
1891 else
1892 {
1893 /* "show values" means print the last 10 values. */
1894 num = value_history_count - 9;
1895 }
1896
1897 if (num <= 0)
1898 num = 1;
1899
1900 for (i = num; i < num + 10 && i <= value_history_count; i++)
1901 {
1902 struct value_print_options opts;
1903
1904 val = access_value_history (i);
1905 printf_filtered (("$%d = "), i);
1906 get_user_print_options (&opts);
1907 value_print (val, gdb_stdout, &opts);
1908 printf_filtered (("\n"));
1909 }
1910
1911 /* The next "show values +" should start after what we just printed. */
1912 num += 10;
1913
1914 /* Hitting just return after this command should do the same thing as
1915 "show values +". If num_exp is null, this is unnecessary, since
1916 "show values +" is not useful after "show values". */
1917 if (from_tty && num_exp)
1918 {
1919 num_exp[0] = '+';
1920 num_exp[1] = '\0';
1921 }
1922 }
1923 \f
1924 enum internalvar_kind
1925 {
1926 /* The internal variable is empty. */
1927 INTERNALVAR_VOID,
1928
1929 /* The value of the internal variable is provided directly as
1930 a GDB value object. */
1931 INTERNALVAR_VALUE,
1932
1933 /* A fresh value is computed via a call-back routine on every
1934 access to the internal variable. */
1935 INTERNALVAR_MAKE_VALUE,
1936
1937 /* The internal variable holds a GDB internal convenience function. */
1938 INTERNALVAR_FUNCTION,
1939
1940 /* The variable holds an integer value. */
1941 INTERNALVAR_INTEGER,
1942
1943 /* The variable holds a GDB-provided string. */
1944 INTERNALVAR_STRING,
1945 };
1946
1947 union internalvar_data
1948 {
1949 /* A value object used with INTERNALVAR_VALUE. */
1950 struct value *value;
1951
1952 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1953 struct
1954 {
1955 /* The functions to call. */
1956 const struct internalvar_funcs *functions;
1957
1958 /* The function's user-data. */
1959 void *data;
1960 } make_value;
1961
1962 /* The internal function used with INTERNALVAR_FUNCTION. */
1963 struct
1964 {
1965 struct internal_function *function;
1966 /* True if this is the canonical name for the function. */
1967 int canonical;
1968 } fn;
1969
1970 /* An integer value used with INTERNALVAR_INTEGER. */
1971 struct
1972 {
1973 /* If type is non-NULL, it will be used as the type to generate
1974 a value for this internal variable. If type is NULL, a default
1975 integer type for the architecture is used. */
1976 struct type *type;
1977 LONGEST val;
1978 } integer;
1979
1980 /* A string value used with INTERNALVAR_STRING. */
1981 char *string;
1982 };
1983
1984 /* Internal variables. These are variables within the debugger
1985 that hold values assigned by debugger commands.
1986 The user refers to them with a '$' prefix
1987 that does not appear in the variable names stored internally. */
1988
1989 struct internalvar
1990 {
1991 struct internalvar *next;
1992 char *name;
1993
1994 /* We support various different kinds of content of an internal variable.
1995 enum internalvar_kind specifies the kind, and union internalvar_data
1996 provides the data associated with this particular kind. */
1997
1998 enum internalvar_kind kind;
1999
2000 union internalvar_data u;
2001 };
2002
2003 static struct internalvar *internalvars;
2004
2005 /* If the variable does not already exist create it and give it the
2006 value given. If no value is given then the default is zero. */
2007 static void
2008 init_if_undefined_command (char* args, int from_tty)
2009 {
2010 struct internalvar* intvar;
2011
2012 /* Parse the expression - this is taken from set_command(). */
2013 struct expression *expr = parse_expression (args);
2014 register struct cleanup *old_chain =
2015 make_cleanup (free_current_contents, &expr);
2016
2017 /* Validate the expression.
2018 Was the expression an assignment?
2019 Or even an expression at all? */
2020 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2021 error (_("Init-if-undefined requires an assignment expression."));
2022
2023 /* Extract the variable from the parsed expression.
2024 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2025 if (expr->elts[1].opcode != OP_INTERNALVAR)
2026 error (_("The first parameter to init-if-undefined "
2027 "should be a GDB variable."));
2028 intvar = expr->elts[2].internalvar;
2029
2030 /* Only evaluate the expression if the lvalue is void.
2031 This may still fail if the expresssion is invalid. */
2032 if (intvar->kind == INTERNALVAR_VOID)
2033 evaluate_expression (expr);
2034
2035 do_cleanups (old_chain);
2036 }
2037
2038
2039 /* Look up an internal variable with name NAME. NAME should not
2040 normally include a dollar sign.
2041
2042 If the specified internal variable does not exist,
2043 the return value is NULL. */
2044
2045 struct internalvar *
2046 lookup_only_internalvar (const char *name)
2047 {
2048 struct internalvar *var;
2049
2050 for (var = internalvars; var; var = var->next)
2051 if (strcmp (var->name, name) == 0)
2052 return var;
2053
2054 return NULL;
2055 }
2056
2057 /* Complete NAME by comparing it to the names of internal variables.
2058 Returns a vector of newly allocated strings, or NULL if no matches
2059 were found. */
2060
2061 VEC (char_ptr) *
2062 complete_internalvar (const char *name)
2063 {
2064 VEC (char_ptr) *result = NULL;
2065 struct internalvar *var;
2066 int len;
2067
2068 len = strlen (name);
2069
2070 for (var = internalvars; var; var = var->next)
2071 if (strncmp (var->name, name, len) == 0)
2072 {
2073 char *r = xstrdup (var->name);
2074
2075 VEC_safe_push (char_ptr, result, r);
2076 }
2077
2078 return result;
2079 }
2080
2081 /* Create an internal variable with name NAME and with a void value.
2082 NAME should not normally include a dollar sign. */
2083
2084 struct internalvar *
2085 create_internalvar (const char *name)
2086 {
2087 struct internalvar *var = XNEW (struct internalvar);
2088
2089 var->name = concat (name, (char *)NULL);
2090 var->kind = INTERNALVAR_VOID;
2091 var->next = internalvars;
2092 internalvars = var;
2093 return var;
2094 }
2095
2096 /* Create an internal variable with name NAME and register FUN as the
2097 function that value_of_internalvar uses to create a value whenever
2098 this variable is referenced. NAME should not normally include a
2099 dollar sign. DATA is passed uninterpreted to FUN when it is
2100 called. CLEANUP, if not NULL, is called when the internal variable
2101 is destroyed. It is passed DATA as its only argument. */
2102
2103 struct internalvar *
2104 create_internalvar_type_lazy (const char *name,
2105 const struct internalvar_funcs *funcs,
2106 void *data)
2107 {
2108 struct internalvar *var = create_internalvar (name);
2109
2110 var->kind = INTERNALVAR_MAKE_VALUE;
2111 var->u.make_value.functions = funcs;
2112 var->u.make_value.data = data;
2113 return var;
2114 }
2115
2116 /* See documentation in value.h. */
2117
2118 int
2119 compile_internalvar_to_ax (struct internalvar *var,
2120 struct agent_expr *expr,
2121 struct axs_value *value)
2122 {
2123 if (var->kind != INTERNALVAR_MAKE_VALUE
2124 || var->u.make_value.functions->compile_to_ax == NULL)
2125 return 0;
2126
2127 var->u.make_value.functions->compile_to_ax (var, expr, value,
2128 var->u.make_value.data);
2129 return 1;
2130 }
2131
2132 /* Look up an internal variable with name NAME. NAME should not
2133 normally include a dollar sign.
2134
2135 If the specified internal variable does not exist,
2136 one is created, with a void value. */
2137
2138 struct internalvar *
2139 lookup_internalvar (const char *name)
2140 {
2141 struct internalvar *var;
2142
2143 var = lookup_only_internalvar (name);
2144 if (var)
2145 return var;
2146
2147 return create_internalvar (name);
2148 }
2149
2150 /* Return current value of internal variable VAR. For variables that
2151 are not inherently typed, use a value type appropriate for GDBARCH. */
2152
2153 struct value *
2154 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2155 {
2156 struct value *val;
2157 struct trace_state_variable *tsv;
2158
2159 /* If there is a trace state variable of the same name, assume that
2160 is what we really want to see. */
2161 tsv = find_trace_state_variable (var->name);
2162 if (tsv)
2163 {
2164 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2165 &(tsv->value));
2166 if (tsv->value_known)
2167 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2168 tsv->value);
2169 else
2170 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2171 return val;
2172 }
2173
2174 switch (var->kind)
2175 {
2176 case INTERNALVAR_VOID:
2177 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2178 break;
2179
2180 case INTERNALVAR_FUNCTION:
2181 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2182 break;
2183
2184 case INTERNALVAR_INTEGER:
2185 if (!var->u.integer.type)
2186 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2187 var->u.integer.val);
2188 else
2189 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2190 break;
2191
2192 case INTERNALVAR_STRING:
2193 val = value_cstring (var->u.string, strlen (var->u.string),
2194 builtin_type (gdbarch)->builtin_char);
2195 break;
2196
2197 case INTERNALVAR_VALUE:
2198 val = value_copy (var->u.value);
2199 if (value_lazy (val))
2200 value_fetch_lazy (val);
2201 break;
2202
2203 case INTERNALVAR_MAKE_VALUE:
2204 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2205 var->u.make_value.data);
2206 break;
2207
2208 default:
2209 internal_error (__FILE__, __LINE__, _("bad kind"));
2210 }
2211
2212 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2213 on this value go back to affect the original internal variable.
2214
2215 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2216 no underlying modifyable state in the internal variable.
2217
2218 Likewise, if the variable's value is a computed lvalue, we want
2219 references to it to produce another computed lvalue, where
2220 references and assignments actually operate through the
2221 computed value's functions.
2222
2223 This means that internal variables with computed values
2224 behave a little differently from other internal variables:
2225 assignments to them don't just replace the previous value
2226 altogether. At the moment, this seems like the behavior we
2227 want. */
2228
2229 if (var->kind != INTERNALVAR_MAKE_VALUE
2230 && val->lval != lval_computed)
2231 {
2232 VALUE_LVAL (val) = lval_internalvar;
2233 VALUE_INTERNALVAR (val) = var;
2234 }
2235
2236 return val;
2237 }
2238
2239 int
2240 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2241 {
2242 if (var->kind == INTERNALVAR_INTEGER)
2243 {
2244 *result = var->u.integer.val;
2245 return 1;
2246 }
2247
2248 if (var->kind == INTERNALVAR_VALUE)
2249 {
2250 struct type *type = check_typedef (value_type (var->u.value));
2251
2252 if (TYPE_CODE (type) == TYPE_CODE_INT)
2253 {
2254 *result = value_as_long (var->u.value);
2255 return 1;
2256 }
2257 }
2258
2259 return 0;
2260 }
2261
2262 static int
2263 get_internalvar_function (struct internalvar *var,
2264 struct internal_function **result)
2265 {
2266 switch (var->kind)
2267 {
2268 case INTERNALVAR_FUNCTION:
2269 *result = var->u.fn.function;
2270 return 1;
2271
2272 default:
2273 return 0;
2274 }
2275 }
2276
2277 void
2278 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
2279 int bitsize, struct value *newval)
2280 {
2281 gdb_byte *addr;
2282 struct gdbarch *arch;
2283 int unit_size;
2284
2285 switch (var->kind)
2286 {
2287 case INTERNALVAR_VALUE:
2288 addr = value_contents_writeable (var->u.value);
2289 arch = get_value_arch (var->u.value);
2290 unit_size = gdbarch_addressable_memory_unit_size (arch);
2291
2292 if (bitsize)
2293 modify_field (value_type (var->u.value), addr + offset,
2294 value_as_long (newval), bitpos, bitsize);
2295 else
2296 memcpy (addr + offset * unit_size, value_contents (newval),
2297 TYPE_LENGTH (value_type (newval)));
2298 break;
2299
2300 default:
2301 /* We can never get a component of any other kind. */
2302 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2303 }
2304 }
2305
2306 void
2307 set_internalvar (struct internalvar *var, struct value *val)
2308 {
2309 enum internalvar_kind new_kind;
2310 union internalvar_data new_data = { 0 };
2311
2312 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2313 error (_("Cannot overwrite convenience function %s"), var->name);
2314
2315 /* Prepare new contents. */
2316 switch (TYPE_CODE (check_typedef (value_type (val))))
2317 {
2318 case TYPE_CODE_VOID:
2319 new_kind = INTERNALVAR_VOID;
2320 break;
2321
2322 case TYPE_CODE_INTERNAL_FUNCTION:
2323 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2324 new_kind = INTERNALVAR_FUNCTION;
2325 get_internalvar_function (VALUE_INTERNALVAR (val),
2326 &new_data.fn.function);
2327 /* Copies created here are never canonical. */
2328 break;
2329
2330 default:
2331 new_kind = INTERNALVAR_VALUE;
2332 new_data.value = value_copy (val);
2333 new_data.value->modifiable = 1;
2334
2335 /* Force the value to be fetched from the target now, to avoid problems
2336 later when this internalvar is referenced and the target is gone or
2337 has changed. */
2338 if (value_lazy (new_data.value))
2339 value_fetch_lazy (new_data.value);
2340
2341 /* Release the value from the value chain to prevent it from being
2342 deleted by free_all_values. From here on this function should not
2343 call error () until new_data is installed into the var->u to avoid
2344 leaking memory. */
2345 release_value (new_data.value);
2346 break;
2347 }
2348
2349 /* Clean up old contents. */
2350 clear_internalvar (var);
2351
2352 /* Switch over. */
2353 var->kind = new_kind;
2354 var->u = new_data;
2355 /* End code which must not call error(). */
2356 }
2357
2358 void
2359 set_internalvar_integer (struct internalvar *var, LONGEST l)
2360 {
2361 /* Clean up old contents. */
2362 clear_internalvar (var);
2363
2364 var->kind = INTERNALVAR_INTEGER;
2365 var->u.integer.type = NULL;
2366 var->u.integer.val = l;
2367 }
2368
2369 void
2370 set_internalvar_string (struct internalvar *var, const char *string)
2371 {
2372 /* Clean up old contents. */
2373 clear_internalvar (var);
2374
2375 var->kind = INTERNALVAR_STRING;
2376 var->u.string = xstrdup (string);
2377 }
2378
2379 static void
2380 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2381 {
2382 /* Clean up old contents. */
2383 clear_internalvar (var);
2384
2385 var->kind = INTERNALVAR_FUNCTION;
2386 var->u.fn.function = f;
2387 var->u.fn.canonical = 1;
2388 /* Variables installed here are always the canonical version. */
2389 }
2390
2391 void
2392 clear_internalvar (struct internalvar *var)
2393 {
2394 /* Clean up old contents. */
2395 switch (var->kind)
2396 {
2397 case INTERNALVAR_VALUE:
2398 value_free (var->u.value);
2399 break;
2400
2401 case INTERNALVAR_STRING:
2402 xfree (var->u.string);
2403 break;
2404
2405 case INTERNALVAR_MAKE_VALUE:
2406 if (var->u.make_value.functions->destroy != NULL)
2407 var->u.make_value.functions->destroy (var->u.make_value.data);
2408 break;
2409
2410 default:
2411 break;
2412 }
2413
2414 /* Reset to void kind. */
2415 var->kind = INTERNALVAR_VOID;
2416 }
2417
2418 char *
2419 internalvar_name (struct internalvar *var)
2420 {
2421 return var->name;
2422 }
2423
2424 static struct internal_function *
2425 create_internal_function (const char *name,
2426 internal_function_fn handler, void *cookie)
2427 {
2428 struct internal_function *ifn = XNEW (struct internal_function);
2429
2430 ifn->name = xstrdup (name);
2431 ifn->handler = handler;
2432 ifn->cookie = cookie;
2433 return ifn;
2434 }
2435
2436 char *
2437 value_internal_function_name (struct value *val)
2438 {
2439 struct internal_function *ifn;
2440 int result;
2441
2442 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2443 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2444 gdb_assert (result);
2445
2446 return ifn->name;
2447 }
2448
2449 struct value *
2450 call_internal_function (struct gdbarch *gdbarch,
2451 const struct language_defn *language,
2452 struct value *func, int argc, struct value **argv)
2453 {
2454 struct internal_function *ifn;
2455 int result;
2456
2457 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2458 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2459 gdb_assert (result);
2460
2461 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2462 }
2463
2464 /* The 'function' command. This does nothing -- it is just a
2465 placeholder to let "help function NAME" work. This is also used as
2466 the implementation of the sub-command that is created when
2467 registering an internal function. */
2468 static void
2469 function_command (char *command, int from_tty)
2470 {
2471 /* Do nothing. */
2472 }
2473
2474 /* Clean up if an internal function's command is destroyed. */
2475 static void
2476 function_destroyer (struct cmd_list_element *self, void *ignore)
2477 {
2478 xfree ((char *) self->name);
2479 xfree ((char *) self->doc);
2480 }
2481
2482 /* Add a new internal function. NAME is the name of the function; DOC
2483 is a documentation string describing the function. HANDLER is
2484 called when the function is invoked. COOKIE is an arbitrary
2485 pointer which is passed to HANDLER and is intended for "user
2486 data". */
2487 void
2488 add_internal_function (const char *name, const char *doc,
2489 internal_function_fn handler, void *cookie)
2490 {
2491 struct cmd_list_element *cmd;
2492 struct internal_function *ifn;
2493 struct internalvar *var = lookup_internalvar (name);
2494
2495 ifn = create_internal_function (name, handler, cookie);
2496 set_internalvar_function (var, ifn);
2497
2498 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2499 &functionlist);
2500 cmd->destroyer = function_destroyer;
2501 }
2502
2503 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2504 prevent cycles / duplicates. */
2505
2506 void
2507 preserve_one_value (struct value *value, struct objfile *objfile,
2508 htab_t copied_types)
2509 {
2510 if (TYPE_OBJFILE (value->type) == objfile)
2511 value->type = copy_type_recursive (objfile, value->type, copied_types);
2512
2513 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2514 value->enclosing_type = copy_type_recursive (objfile,
2515 value->enclosing_type,
2516 copied_types);
2517 }
2518
2519 /* Likewise for internal variable VAR. */
2520
2521 static void
2522 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2523 htab_t copied_types)
2524 {
2525 switch (var->kind)
2526 {
2527 case INTERNALVAR_INTEGER:
2528 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2529 var->u.integer.type
2530 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2531 break;
2532
2533 case INTERNALVAR_VALUE:
2534 preserve_one_value (var->u.value, objfile, copied_types);
2535 break;
2536 }
2537 }
2538
2539 /* Update the internal variables and value history when OBJFILE is
2540 discarded; we must copy the types out of the objfile. New global types
2541 will be created for every convenience variable which currently points to
2542 this objfile's types, and the convenience variables will be adjusted to
2543 use the new global types. */
2544
2545 void
2546 preserve_values (struct objfile *objfile)
2547 {
2548 htab_t copied_types;
2549 struct value_history_chunk *cur;
2550 struct internalvar *var;
2551 int i;
2552
2553 /* Create the hash table. We allocate on the objfile's obstack, since
2554 it is soon to be deleted. */
2555 copied_types = create_copied_types_hash (objfile);
2556
2557 for (cur = value_history_chain; cur; cur = cur->next)
2558 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2559 if (cur->values[i])
2560 preserve_one_value (cur->values[i], objfile, copied_types);
2561
2562 for (var = internalvars; var; var = var->next)
2563 preserve_one_internalvar (var, objfile, copied_types);
2564
2565 preserve_ext_lang_values (objfile, copied_types);
2566
2567 htab_delete (copied_types);
2568 }
2569
2570 static void
2571 show_convenience (char *ignore, int from_tty)
2572 {
2573 struct gdbarch *gdbarch = get_current_arch ();
2574 struct internalvar *var;
2575 int varseen = 0;
2576 struct value_print_options opts;
2577
2578 get_user_print_options (&opts);
2579 for (var = internalvars; var; var = var->next)
2580 {
2581
2582 if (!varseen)
2583 {
2584 varseen = 1;
2585 }
2586 printf_filtered (("$%s = "), var->name);
2587
2588 TRY
2589 {
2590 struct value *val;
2591
2592 val = value_of_internalvar (gdbarch, var);
2593 value_print (val, gdb_stdout, &opts);
2594 }
2595 CATCH (ex, RETURN_MASK_ERROR)
2596 {
2597 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2598 }
2599 END_CATCH
2600
2601 printf_filtered (("\n"));
2602 }
2603 if (!varseen)
2604 {
2605 /* This text does not mention convenience functions on purpose.
2606 The user can't create them except via Python, and if Python support
2607 is installed this message will never be printed ($_streq will
2608 exist). */
2609 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2610 "Convenience variables have "
2611 "names starting with \"$\";\n"
2612 "use \"set\" as in \"set "
2613 "$foo = 5\" to define them.\n"));
2614 }
2615 }
2616 \f
2617 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2618
2619 struct value *
2620 value_of_xmethod (struct xmethod_worker *worker)
2621 {
2622 if (worker->value == NULL)
2623 {
2624 struct value *v;
2625
2626 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2627 v->lval = lval_xcallable;
2628 v->location.xm_worker = worker;
2629 v->modifiable = 0;
2630 worker->value = v;
2631 }
2632
2633 return worker->value;
2634 }
2635
2636 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2637
2638 struct type *
2639 result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2640 {
2641 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2642 && method->lval == lval_xcallable && argc > 0);
2643
2644 return get_xmethod_result_type (method->location.xm_worker,
2645 argv[0], argv + 1, argc - 1);
2646 }
2647
2648 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2649
2650 struct value *
2651 call_xmethod (struct value *method, int argc, struct value **argv)
2652 {
2653 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2654 && method->lval == lval_xcallable && argc > 0);
2655
2656 return invoke_xmethod (method->location.xm_worker,
2657 argv[0], argv + 1, argc - 1);
2658 }
2659 \f
2660 /* Extract a value as a C number (either long or double).
2661 Knows how to convert fixed values to double, or
2662 floating values to long.
2663 Does not deallocate the value. */
2664
2665 LONGEST
2666 value_as_long (struct value *val)
2667 {
2668 /* This coerces arrays and functions, which is necessary (e.g.
2669 in disassemble_command). It also dereferences references, which
2670 I suspect is the most logical thing to do. */
2671 val = coerce_array (val);
2672 return unpack_long (value_type (val), value_contents (val));
2673 }
2674
2675 DOUBLEST
2676 value_as_double (struct value *val)
2677 {
2678 DOUBLEST foo;
2679 int inv;
2680
2681 foo = unpack_double (value_type (val), value_contents (val), &inv);
2682 if (inv)
2683 error (_("Invalid floating value found in program."));
2684 return foo;
2685 }
2686
2687 /* Extract a value as a C pointer. Does not deallocate the value.
2688 Note that val's type may not actually be a pointer; value_as_long
2689 handles all the cases. */
2690 CORE_ADDR
2691 value_as_address (struct value *val)
2692 {
2693 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2694
2695 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2696 whether we want this to be true eventually. */
2697 #if 0
2698 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2699 non-address (e.g. argument to "signal", "info break", etc.), or
2700 for pointers to char, in which the low bits *are* significant. */
2701 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2702 #else
2703
2704 /* There are several targets (IA-64, PowerPC, and others) which
2705 don't represent pointers to functions as simply the address of
2706 the function's entry point. For example, on the IA-64, a
2707 function pointer points to a two-word descriptor, generated by
2708 the linker, which contains the function's entry point, and the
2709 value the IA-64 "global pointer" register should have --- to
2710 support position-independent code. The linker generates
2711 descriptors only for those functions whose addresses are taken.
2712
2713 On such targets, it's difficult for GDB to convert an arbitrary
2714 function address into a function pointer; it has to either find
2715 an existing descriptor for that function, or call malloc and
2716 build its own. On some targets, it is impossible for GDB to
2717 build a descriptor at all: the descriptor must contain a jump
2718 instruction; data memory cannot be executed; and code memory
2719 cannot be modified.
2720
2721 Upon entry to this function, if VAL is a value of type `function'
2722 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2723 value_address (val) is the address of the function. This is what
2724 you'll get if you evaluate an expression like `main'. The call
2725 to COERCE_ARRAY below actually does all the usual unary
2726 conversions, which includes converting values of type `function'
2727 to `pointer to function'. This is the challenging conversion
2728 discussed above. Then, `unpack_long' will convert that pointer
2729 back into an address.
2730
2731 So, suppose the user types `disassemble foo' on an architecture
2732 with a strange function pointer representation, on which GDB
2733 cannot build its own descriptors, and suppose further that `foo'
2734 has no linker-built descriptor. The address->pointer conversion
2735 will signal an error and prevent the command from running, even
2736 though the next step would have been to convert the pointer
2737 directly back into the same address.
2738
2739 The following shortcut avoids this whole mess. If VAL is a
2740 function, just return its address directly. */
2741 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2742 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2743 return value_address (val);
2744
2745 val = coerce_array (val);
2746
2747 /* Some architectures (e.g. Harvard), map instruction and data
2748 addresses onto a single large unified address space. For
2749 instance: An architecture may consider a large integer in the
2750 range 0x10000000 .. 0x1000ffff to already represent a data
2751 addresses (hence not need a pointer to address conversion) while
2752 a small integer would still need to be converted integer to
2753 pointer to address. Just assume such architectures handle all
2754 integer conversions in a single function. */
2755
2756 /* JimB writes:
2757
2758 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2759 must admonish GDB hackers to make sure its behavior matches the
2760 compiler's, whenever possible.
2761
2762 In general, I think GDB should evaluate expressions the same way
2763 the compiler does. When the user copies an expression out of
2764 their source code and hands it to a `print' command, they should
2765 get the same value the compiler would have computed. Any
2766 deviation from this rule can cause major confusion and annoyance,
2767 and needs to be justified carefully. In other words, GDB doesn't
2768 really have the freedom to do these conversions in clever and
2769 useful ways.
2770
2771 AndrewC pointed out that users aren't complaining about how GDB
2772 casts integers to pointers; they are complaining that they can't
2773 take an address from a disassembly listing and give it to `x/i'.
2774 This is certainly important.
2775
2776 Adding an architecture method like integer_to_address() certainly
2777 makes it possible for GDB to "get it right" in all circumstances
2778 --- the target has complete control over how things get done, so
2779 people can Do The Right Thing for their target without breaking
2780 anyone else. The standard doesn't specify how integers get
2781 converted to pointers; usually, the ABI doesn't either, but
2782 ABI-specific code is a more reasonable place to handle it. */
2783
2784 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2785 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2786 && gdbarch_integer_to_address_p (gdbarch))
2787 return gdbarch_integer_to_address (gdbarch, value_type (val),
2788 value_contents (val));
2789
2790 return unpack_long (value_type (val), value_contents (val));
2791 #endif
2792 }
2793 \f
2794 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2795 as a long, or as a double, assuming the raw data is described
2796 by type TYPE. Knows how to convert different sizes of values
2797 and can convert between fixed and floating point. We don't assume
2798 any alignment for the raw data. Return value is in host byte order.
2799
2800 If you want functions and arrays to be coerced to pointers, and
2801 references to be dereferenced, call value_as_long() instead.
2802
2803 C++: It is assumed that the front-end has taken care of
2804 all matters concerning pointers to members. A pointer
2805 to member which reaches here is considered to be equivalent
2806 to an INT (or some size). After all, it is only an offset. */
2807
2808 LONGEST
2809 unpack_long (struct type *type, const gdb_byte *valaddr)
2810 {
2811 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2812 enum type_code code = TYPE_CODE (type);
2813 int len = TYPE_LENGTH (type);
2814 int nosign = TYPE_UNSIGNED (type);
2815
2816 switch (code)
2817 {
2818 case TYPE_CODE_TYPEDEF:
2819 return unpack_long (check_typedef (type), valaddr);
2820 case TYPE_CODE_ENUM:
2821 case TYPE_CODE_FLAGS:
2822 case TYPE_CODE_BOOL:
2823 case TYPE_CODE_INT:
2824 case TYPE_CODE_CHAR:
2825 case TYPE_CODE_RANGE:
2826 case TYPE_CODE_MEMBERPTR:
2827 if (nosign)
2828 return extract_unsigned_integer (valaddr, len, byte_order);
2829 else
2830 return extract_signed_integer (valaddr, len, byte_order);
2831
2832 case TYPE_CODE_FLT:
2833 return extract_typed_floating (valaddr, type);
2834
2835 case TYPE_CODE_DECFLOAT:
2836 /* libdecnumber has a function to convert from decimal to integer, but
2837 it doesn't work when the decimal number has a fractional part. */
2838 return decimal_to_doublest (valaddr, len, byte_order);
2839
2840 case TYPE_CODE_PTR:
2841 case TYPE_CODE_REF:
2842 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2843 whether we want this to be true eventually. */
2844 return extract_typed_address (valaddr, type);
2845
2846 default:
2847 error (_("Value can't be converted to integer."));
2848 }
2849 return 0; /* Placate lint. */
2850 }
2851
2852 /* Return a double value from the specified type and address.
2853 INVP points to an int which is set to 0 for valid value,
2854 1 for invalid value (bad float format). In either case,
2855 the returned double is OK to use. Argument is in target
2856 format, result is in host format. */
2857
2858 DOUBLEST
2859 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2860 {
2861 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2862 enum type_code code;
2863 int len;
2864 int nosign;
2865
2866 *invp = 0; /* Assume valid. */
2867 type = check_typedef (type);
2868 code = TYPE_CODE (type);
2869 len = TYPE_LENGTH (type);
2870 nosign = TYPE_UNSIGNED (type);
2871 if (code == TYPE_CODE_FLT)
2872 {
2873 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2874 floating-point value was valid (using the macro
2875 INVALID_FLOAT). That test/macro have been removed.
2876
2877 It turns out that only the VAX defined this macro and then
2878 only in a non-portable way. Fixing the portability problem
2879 wouldn't help since the VAX floating-point code is also badly
2880 bit-rotten. The target needs to add definitions for the
2881 methods gdbarch_float_format and gdbarch_double_format - these
2882 exactly describe the target floating-point format. The
2883 problem here is that the corresponding floatformat_vax_f and
2884 floatformat_vax_d values these methods should be set to are
2885 also not defined either. Oops!
2886
2887 Hopefully someone will add both the missing floatformat
2888 definitions and the new cases for floatformat_is_valid (). */
2889
2890 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2891 {
2892 *invp = 1;
2893 return 0.0;
2894 }
2895
2896 return extract_typed_floating (valaddr, type);
2897 }
2898 else if (code == TYPE_CODE_DECFLOAT)
2899 return decimal_to_doublest (valaddr, len, byte_order);
2900 else if (nosign)
2901 {
2902 /* Unsigned -- be sure we compensate for signed LONGEST. */
2903 return (ULONGEST) unpack_long (type, valaddr);
2904 }
2905 else
2906 {
2907 /* Signed -- we are OK with unpack_long. */
2908 return unpack_long (type, valaddr);
2909 }
2910 }
2911
2912 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2913 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2914 We don't assume any alignment for the raw data. Return value is in
2915 host byte order.
2916
2917 If you want functions and arrays to be coerced to pointers, and
2918 references to be dereferenced, call value_as_address() instead.
2919
2920 C++: It is assumed that the front-end has taken care of
2921 all matters concerning pointers to members. A pointer
2922 to member which reaches here is considered to be equivalent
2923 to an INT (or some size). After all, it is only an offset. */
2924
2925 CORE_ADDR
2926 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2927 {
2928 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2929 whether we want this to be true eventually. */
2930 return unpack_long (type, valaddr);
2931 }
2932
2933 \f
2934 /* Get the value of the FIELDNO'th field (which must be static) of
2935 TYPE. */
2936
2937 struct value *
2938 value_static_field (struct type *type, int fieldno)
2939 {
2940 struct value *retval;
2941
2942 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2943 {
2944 case FIELD_LOC_KIND_PHYSADDR:
2945 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2946 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2947 break;
2948 case FIELD_LOC_KIND_PHYSNAME:
2949 {
2950 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2951 /* TYPE_FIELD_NAME (type, fieldno); */
2952 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2953
2954 if (sym.symbol == NULL)
2955 {
2956 /* With some compilers, e.g. HP aCC, static data members are
2957 reported as non-debuggable symbols. */
2958 struct bound_minimal_symbol msym
2959 = lookup_minimal_symbol (phys_name, NULL, NULL);
2960
2961 if (!msym.minsym)
2962 return allocate_optimized_out_value (type);
2963 else
2964 {
2965 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2966 BMSYMBOL_VALUE_ADDRESS (msym));
2967 }
2968 }
2969 else
2970 retval = value_of_variable (sym.symbol, sym.block);
2971 break;
2972 }
2973 default:
2974 gdb_assert_not_reached ("unexpected field location kind");
2975 }
2976
2977 return retval;
2978 }
2979
2980 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2981 You have to be careful here, since the size of the data area for the value
2982 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2983 than the old enclosing type, you have to allocate more space for the
2984 data. */
2985
2986 void
2987 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2988 {
2989 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2990 val->contents =
2991 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2992
2993 val->enclosing_type = new_encl_type;
2994 }
2995
2996 /* Given a value ARG1 (offset by OFFSET bytes)
2997 of a struct or union type ARG_TYPE,
2998 extract and return the value of one of its (non-static) fields.
2999 FIELDNO says which field. */
3000
3001 struct value *
3002 value_primitive_field (struct value *arg1, int offset,
3003 int fieldno, struct type *arg_type)
3004 {
3005 struct value *v;
3006 struct type *type;
3007 struct gdbarch *arch = get_value_arch (arg1);
3008 int unit_size = gdbarch_addressable_memory_unit_size (arch);
3009
3010 arg_type = check_typedef (arg_type);
3011 type = TYPE_FIELD_TYPE (arg_type, fieldno);
3012
3013 /* Call check_typedef on our type to make sure that, if TYPE
3014 is a TYPE_CODE_TYPEDEF, its length is set to the length
3015 of the target type instead of zero. However, we do not
3016 replace the typedef type by the target type, because we want
3017 to keep the typedef in order to be able to print the type
3018 description correctly. */
3019 check_typedef (type);
3020
3021 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
3022 {
3023 /* Handle packed fields.
3024
3025 Create a new value for the bitfield, with bitpos and bitsize
3026 set. If possible, arrange offset and bitpos so that we can
3027 do a single aligned read of the size of the containing type.
3028 Otherwise, adjust offset to the byte containing the first
3029 bit. Assume that the address, offset, and embedded offset
3030 are sufficiently aligned. */
3031
3032 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3033 int container_bitsize = TYPE_LENGTH (type) * 8;
3034
3035 v = allocate_value_lazy (type);
3036 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3037 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3038 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3039 v->bitpos = bitpos % container_bitsize;
3040 else
3041 v->bitpos = bitpos % 8;
3042 v->offset = (value_embedded_offset (arg1)
3043 + offset
3044 + (bitpos - v->bitpos) / 8);
3045 set_value_parent (v, arg1);
3046 if (!value_lazy (arg1))
3047 value_fetch_lazy (v);
3048 }
3049 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3050 {
3051 /* This field is actually a base subobject, so preserve the
3052 entire object's contents for later references to virtual
3053 bases, etc. */
3054 int boffset;
3055
3056 /* Lazy register values with offsets are not supported. */
3057 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3058 value_fetch_lazy (arg1);
3059
3060 /* We special case virtual inheritance here because this
3061 requires access to the contents, which we would rather avoid
3062 for references to ordinary fields of unavailable values. */
3063 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3064 boffset = baseclass_offset (arg_type, fieldno,
3065 value_contents (arg1),
3066 value_embedded_offset (arg1),
3067 value_address (arg1),
3068 arg1);
3069 else
3070 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3071
3072 if (value_lazy (arg1))
3073 v = allocate_value_lazy (value_enclosing_type (arg1));
3074 else
3075 {
3076 v = allocate_value (value_enclosing_type (arg1));
3077 value_contents_copy_raw (v, 0, arg1, 0,
3078 TYPE_LENGTH (value_enclosing_type (arg1)));
3079 }
3080 v->type = type;
3081 v->offset = value_offset (arg1);
3082 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3083 }
3084 else
3085 {
3086 /* Plain old data member */
3087 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3088 / (HOST_CHAR_BIT * unit_size));
3089
3090 /* Lazy register values with offsets are not supported. */
3091 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3092 value_fetch_lazy (arg1);
3093
3094 if (value_lazy (arg1))
3095 v = allocate_value_lazy (type);
3096 else
3097 {
3098 v = allocate_value (type);
3099 value_contents_copy_raw (v, value_embedded_offset (v),
3100 arg1, value_embedded_offset (arg1) + offset,
3101 type_length_units (type));
3102 }
3103 v->offset = (value_offset (arg1) + offset
3104 + value_embedded_offset (arg1));
3105 }
3106 set_value_component_location (v, arg1);
3107 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
3108 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
3109 return v;
3110 }
3111
3112 /* Given a value ARG1 of a struct or union type,
3113 extract and return the value of one of its (non-static) fields.
3114 FIELDNO says which field. */
3115
3116 struct value *
3117 value_field (struct value *arg1, int fieldno)
3118 {
3119 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3120 }
3121
3122 /* Return a non-virtual function as a value.
3123 F is the list of member functions which contains the desired method.
3124 J is an index into F which provides the desired method.
3125
3126 We only use the symbol for its address, so be happy with either a
3127 full symbol or a minimal symbol. */
3128
3129 struct value *
3130 value_fn_field (struct value **arg1p, struct fn_field *f,
3131 int j, struct type *type,
3132 int offset)
3133 {
3134 struct value *v;
3135 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3136 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3137 struct symbol *sym;
3138 struct bound_minimal_symbol msym;
3139
3140 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3141 if (sym != NULL)
3142 {
3143 memset (&msym, 0, sizeof (msym));
3144 }
3145 else
3146 {
3147 gdb_assert (sym == NULL);
3148 msym = lookup_bound_minimal_symbol (physname);
3149 if (msym.minsym == NULL)
3150 return NULL;
3151 }
3152
3153 v = allocate_value (ftype);
3154 if (sym)
3155 {
3156 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3157 }
3158 else
3159 {
3160 /* The minimal symbol might point to a function descriptor;
3161 resolve it to the actual code address instead. */
3162 struct objfile *objfile = msym.objfile;
3163 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3164
3165 set_value_address (v,
3166 gdbarch_convert_from_func_ptr_addr
3167 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
3168 }
3169
3170 if (arg1p)
3171 {
3172 if (type != value_type (*arg1p))
3173 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3174 value_addr (*arg1p)));
3175
3176 /* Move the `this' pointer according to the offset.
3177 VALUE_OFFSET (*arg1p) += offset; */
3178 }
3179
3180 return v;
3181 }
3182
3183 \f
3184
3185 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3186 VALADDR, and store the result in *RESULT.
3187 The bitfield starts at BITPOS bits and contains BITSIZE bits.
3188
3189 Extracting bits depends on endianness of the machine. Compute the
3190 number of least significant bits to discard. For big endian machines,
3191 we compute the total number of bits in the anonymous object, subtract
3192 off the bit count from the MSB of the object to the MSB of the
3193 bitfield, then the size of the bitfield, which leaves the LSB discard
3194 count. For little endian machines, the discard count is simply the
3195 number of bits from the LSB of the anonymous object to the LSB of the
3196 bitfield.
3197
3198 If the field is signed, we also do sign extension. */
3199
3200 static LONGEST
3201 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3202 int bitpos, int bitsize)
3203 {
3204 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3205 ULONGEST val;
3206 ULONGEST valmask;
3207 int lsbcount;
3208 int bytes_read;
3209 int read_offset;
3210
3211 /* Read the minimum number of bytes required; there may not be
3212 enough bytes to read an entire ULONGEST. */
3213 field_type = check_typedef (field_type);
3214 if (bitsize)
3215 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3216 else
3217 bytes_read = TYPE_LENGTH (field_type);
3218
3219 read_offset = bitpos / 8;
3220
3221 val = extract_unsigned_integer (valaddr + read_offset,
3222 bytes_read, byte_order);
3223
3224 /* Extract bits. See comment above. */
3225
3226 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3227 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3228 else
3229 lsbcount = (bitpos % 8);
3230 val >>= lsbcount;
3231
3232 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3233 If the field is signed, and is negative, then sign extend. */
3234
3235 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3236 {
3237 valmask = (((ULONGEST) 1) << bitsize) - 1;
3238 val &= valmask;
3239 if (!TYPE_UNSIGNED (field_type))
3240 {
3241 if (val & (valmask ^ (valmask >> 1)))
3242 {
3243 val |= ~valmask;
3244 }
3245 }
3246 }
3247
3248 return val;
3249 }
3250
3251 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3252 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3253 ORIGINAL_VALUE, which must not be NULL. See
3254 unpack_value_bits_as_long for more details. */
3255
3256 int
3257 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3258 int embedded_offset, int fieldno,
3259 const struct value *val, LONGEST *result)
3260 {
3261 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3262 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3263 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3264 int bit_offset;
3265
3266 gdb_assert (val != NULL);
3267
3268 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3269 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3270 || !value_bits_available (val, bit_offset, bitsize))
3271 return 0;
3272
3273 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3274 bitpos, bitsize);
3275 return 1;
3276 }
3277
3278 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3279 object at VALADDR. See unpack_bits_as_long for more details. */
3280
3281 LONGEST
3282 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3283 {
3284 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3285 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3286 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3287
3288 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3289 }
3290
3291 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3292 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3293 the contents in DEST_VAL, zero or sign extending if the type of
3294 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3295 VAL. If the VAL's contents required to extract the bitfield from
3296 are unavailable/optimized out, DEST_VAL is correspondingly
3297 marked unavailable/optimized out. */
3298
3299 void
3300 unpack_value_bitfield (struct value *dest_val,
3301 int bitpos, int bitsize,
3302 const gdb_byte *valaddr, int embedded_offset,
3303 const struct value *val)
3304 {
3305 enum bfd_endian byte_order;
3306 int src_bit_offset;
3307 int dst_bit_offset;
3308 LONGEST num;
3309 struct type *field_type = value_type (dest_val);
3310
3311 /* First, unpack and sign extend the bitfield as if it was wholly
3312 available. Invalid/unavailable bits are read as zero, but that's
3313 OK, as they'll end up marked below. */
3314 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3315 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3316 bitpos, bitsize);
3317 store_signed_integer (value_contents_raw (dest_val),
3318 TYPE_LENGTH (field_type), byte_order, num);
3319
3320 /* Now copy the optimized out / unavailability ranges to the right
3321 bits. */
3322 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3323 if (byte_order == BFD_ENDIAN_BIG)
3324 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3325 else
3326 dst_bit_offset = 0;
3327 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3328 val, src_bit_offset, bitsize);
3329 }
3330
3331 /* Return a new value with type TYPE, which is FIELDNO field of the
3332 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3333 of VAL. If the VAL's contents required to extract the bitfield
3334 from are unavailable/optimized out, the new value is
3335 correspondingly marked unavailable/optimized out. */
3336
3337 struct value *
3338 value_field_bitfield (struct type *type, int fieldno,
3339 const gdb_byte *valaddr,
3340 int embedded_offset, const struct value *val)
3341 {
3342 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3343 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3344 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3345
3346 unpack_value_bitfield (res_val, bitpos, bitsize,
3347 valaddr, embedded_offset, val);
3348
3349 return res_val;
3350 }
3351
3352 /* Modify the value of a bitfield. ADDR points to a block of memory in
3353 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3354 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3355 indicate which bits (in target bit order) comprise the bitfield.
3356 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3357 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3358
3359 void
3360 modify_field (struct type *type, gdb_byte *addr,
3361 LONGEST fieldval, int bitpos, int bitsize)
3362 {
3363 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3364 ULONGEST oword;
3365 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3366 int bytesize;
3367
3368 /* Normalize BITPOS. */
3369 addr += bitpos / 8;
3370 bitpos %= 8;
3371
3372 /* If a negative fieldval fits in the field in question, chop
3373 off the sign extension bits. */
3374 if ((~fieldval & ~(mask >> 1)) == 0)
3375 fieldval &= mask;
3376
3377 /* Warn if value is too big to fit in the field in question. */
3378 if (0 != (fieldval & ~mask))
3379 {
3380 /* FIXME: would like to include fieldval in the message, but
3381 we don't have a sprintf_longest. */
3382 warning (_("Value does not fit in %d bits."), bitsize);
3383
3384 /* Truncate it, otherwise adjoining fields may be corrupted. */
3385 fieldval &= mask;
3386 }
3387
3388 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3389 false valgrind reports. */
3390
3391 bytesize = (bitpos + bitsize + 7) / 8;
3392 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3393
3394 /* Shifting for bit field depends on endianness of the target machine. */
3395 if (gdbarch_bits_big_endian (get_type_arch (type)))
3396 bitpos = bytesize * 8 - bitpos - bitsize;
3397
3398 oword &= ~(mask << bitpos);
3399 oword |= fieldval << bitpos;
3400
3401 store_unsigned_integer (addr, bytesize, byte_order, oword);
3402 }
3403 \f
3404 /* Pack NUM into BUF using a target format of TYPE. */
3405
3406 void
3407 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3408 {
3409 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3410 int len;
3411
3412 type = check_typedef (type);
3413 len = TYPE_LENGTH (type);
3414
3415 switch (TYPE_CODE (type))
3416 {
3417 case TYPE_CODE_INT:
3418 case TYPE_CODE_CHAR:
3419 case TYPE_CODE_ENUM:
3420 case TYPE_CODE_FLAGS:
3421 case TYPE_CODE_BOOL:
3422 case TYPE_CODE_RANGE:
3423 case TYPE_CODE_MEMBERPTR:
3424 store_signed_integer (buf, len, byte_order, num);
3425 break;
3426
3427 case TYPE_CODE_REF:
3428 case TYPE_CODE_PTR:
3429 store_typed_address (buf, type, (CORE_ADDR) num);
3430 break;
3431
3432 default:
3433 error (_("Unexpected type (%d) encountered for integer constant."),
3434 TYPE_CODE (type));
3435 }
3436 }
3437
3438
3439 /* Pack NUM into BUF using a target format of TYPE. */
3440
3441 static void
3442 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3443 {
3444 int len;
3445 enum bfd_endian byte_order;
3446
3447 type = check_typedef (type);
3448 len = TYPE_LENGTH (type);
3449 byte_order = gdbarch_byte_order (get_type_arch (type));
3450
3451 switch (TYPE_CODE (type))
3452 {
3453 case TYPE_CODE_INT:
3454 case TYPE_CODE_CHAR:
3455 case TYPE_CODE_ENUM:
3456 case TYPE_CODE_FLAGS:
3457 case TYPE_CODE_BOOL:
3458 case TYPE_CODE_RANGE:
3459 case TYPE_CODE_MEMBERPTR:
3460 store_unsigned_integer (buf, len, byte_order, num);
3461 break;
3462
3463 case TYPE_CODE_REF:
3464 case TYPE_CODE_PTR:
3465 store_typed_address (buf, type, (CORE_ADDR) num);
3466 break;
3467
3468 default:
3469 error (_("Unexpected type (%d) encountered "
3470 "for unsigned integer constant."),
3471 TYPE_CODE (type));
3472 }
3473 }
3474
3475
3476 /* Convert C numbers into newly allocated values. */
3477
3478 struct value *
3479 value_from_longest (struct type *type, LONGEST num)
3480 {
3481 struct value *val = allocate_value (type);
3482
3483 pack_long (value_contents_raw (val), type, num);
3484 return val;
3485 }
3486
3487
3488 /* Convert C unsigned numbers into newly allocated values. */
3489
3490 struct value *
3491 value_from_ulongest (struct type *type, ULONGEST num)
3492 {
3493 struct value *val = allocate_value (type);
3494
3495 pack_unsigned_long (value_contents_raw (val), type, num);
3496
3497 return val;
3498 }
3499
3500
3501 /* Create a value representing a pointer of type TYPE to the address
3502 ADDR. */
3503
3504 struct value *
3505 value_from_pointer (struct type *type, CORE_ADDR addr)
3506 {
3507 struct value *val = allocate_value (type);
3508
3509 store_typed_address (value_contents_raw (val),
3510 check_typedef (type), addr);
3511 return val;
3512 }
3513
3514
3515 /* Create a value of type TYPE whose contents come from VALADDR, if it
3516 is non-null, and whose memory address (in the inferior) is
3517 ADDRESS. The type of the created value may differ from the passed
3518 type TYPE. Make sure to retrieve values new type after this call.
3519 Note that TYPE is not passed through resolve_dynamic_type; this is
3520 a special API intended for use only by Ada. */
3521
3522 struct value *
3523 value_from_contents_and_address_unresolved (struct type *type,
3524 const gdb_byte *valaddr,
3525 CORE_ADDR address)
3526 {
3527 struct value *v;
3528
3529 if (valaddr == NULL)
3530 v = allocate_value_lazy (type);
3531 else
3532 v = value_from_contents (type, valaddr);
3533 set_value_address (v, address);
3534 VALUE_LVAL (v) = lval_memory;
3535 return v;
3536 }
3537
3538 /* Create a value of type TYPE whose contents come from VALADDR, if it
3539 is non-null, and whose memory address (in the inferior) is
3540 ADDRESS. The type of the created value may differ from the passed
3541 type TYPE. Make sure to retrieve values new type after this call. */
3542
3543 struct value *
3544 value_from_contents_and_address (struct type *type,
3545 const gdb_byte *valaddr,
3546 CORE_ADDR address)
3547 {
3548 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3549 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3550 struct value *v;
3551
3552 if (valaddr == NULL)
3553 v = allocate_value_lazy (resolved_type);
3554 else
3555 v = value_from_contents (resolved_type, valaddr);
3556 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3557 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3558 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3559 set_value_address (v, address);
3560 VALUE_LVAL (v) = lval_memory;
3561 return v;
3562 }
3563
3564 /* Create a value of type TYPE holding the contents CONTENTS.
3565 The new value is `not_lval'. */
3566
3567 struct value *
3568 value_from_contents (struct type *type, const gdb_byte *contents)
3569 {
3570 struct value *result;
3571
3572 result = allocate_value (type);
3573 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3574 return result;
3575 }
3576
3577 struct value *
3578 value_from_double (struct type *type, DOUBLEST num)
3579 {
3580 struct value *val = allocate_value (type);
3581 struct type *base_type = check_typedef (type);
3582 enum type_code code = TYPE_CODE (base_type);
3583
3584 if (code == TYPE_CODE_FLT)
3585 {
3586 store_typed_floating (value_contents_raw (val), base_type, num);
3587 }
3588 else
3589 error (_("Unexpected type encountered for floating constant."));
3590
3591 return val;
3592 }
3593
3594 struct value *
3595 value_from_decfloat (struct type *type, const gdb_byte *dec)
3596 {
3597 struct value *val = allocate_value (type);
3598
3599 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3600 return val;
3601 }
3602
3603 /* Extract a value from the history file. Input will be of the form
3604 $digits or $$digits. See block comment above 'write_dollar_variable'
3605 for details. */
3606
3607 struct value *
3608 value_from_history_ref (const char *h, const char **endp)
3609 {
3610 int index, len;
3611
3612 if (h[0] == '$')
3613 len = 1;
3614 else
3615 return NULL;
3616
3617 if (h[1] == '$')
3618 len = 2;
3619
3620 /* Find length of numeral string. */
3621 for (; isdigit (h[len]); len++)
3622 ;
3623
3624 /* Make sure numeral string is not part of an identifier. */
3625 if (h[len] == '_' || isalpha (h[len]))
3626 return NULL;
3627
3628 /* Now collect the index value. */
3629 if (h[1] == '$')
3630 {
3631 if (len == 2)
3632 {
3633 /* For some bizarre reason, "$$" is equivalent to "$$1",
3634 rather than to "$$0" as it ought to be! */
3635 index = -1;
3636 *endp += len;
3637 }
3638 else
3639 {
3640 char *local_end;
3641
3642 index = -strtol (&h[2], &local_end, 10);
3643 *endp = local_end;
3644 }
3645 }
3646 else
3647 {
3648 if (len == 1)
3649 {
3650 /* "$" is equivalent to "$0". */
3651 index = 0;
3652 *endp += len;
3653 }
3654 else
3655 {
3656 char *local_end;
3657
3658 index = strtol (&h[1], &local_end, 10);
3659 *endp = local_end;
3660 }
3661 }
3662
3663 return access_value_history (index);
3664 }
3665
3666 struct value *
3667 coerce_ref_if_computed (const struct value *arg)
3668 {
3669 const struct lval_funcs *funcs;
3670
3671 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3672 return NULL;
3673
3674 if (value_lval_const (arg) != lval_computed)
3675 return NULL;
3676
3677 funcs = value_computed_funcs (arg);
3678 if (funcs->coerce_ref == NULL)
3679 return NULL;
3680
3681 return funcs->coerce_ref (arg);
3682 }
3683
3684 /* Look at value.h for description. */
3685
3686 struct value *
3687 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3688 struct type *original_type,
3689 struct value *original_value)
3690 {
3691 /* Re-adjust type. */
3692 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3693
3694 /* Add embedding info. */
3695 set_value_enclosing_type (value, enc_type);
3696 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3697
3698 /* We may be pointing to an object of some derived type. */
3699 return value_full_object (value, NULL, 0, 0, 0);
3700 }
3701
3702 struct value *
3703 coerce_ref (struct value *arg)
3704 {
3705 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3706 struct value *retval;
3707 struct type *enc_type;
3708
3709 retval = coerce_ref_if_computed (arg);
3710 if (retval)
3711 return retval;
3712
3713 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3714 return arg;
3715
3716 enc_type = check_typedef (value_enclosing_type (arg));
3717 enc_type = TYPE_TARGET_TYPE (enc_type);
3718
3719 retval = value_at_lazy (enc_type,
3720 unpack_pointer (value_type (arg),
3721 value_contents (arg)));
3722 enc_type = value_type (retval);
3723 return readjust_indirect_value_type (retval, enc_type,
3724 value_type_arg_tmp, arg);
3725 }
3726
3727 struct value *
3728 coerce_array (struct value *arg)
3729 {
3730 struct type *type;
3731
3732 arg = coerce_ref (arg);
3733 type = check_typedef (value_type (arg));
3734
3735 switch (TYPE_CODE (type))
3736 {
3737 case TYPE_CODE_ARRAY:
3738 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3739 arg = value_coerce_array (arg);
3740 break;
3741 case TYPE_CODE_FUNC:
3742 arg = value_coerce_function (arg);
3743 break;
3744 }
3745 return arg;
3746 }
3747 \f
3748
3749 /* Return the return value convention that will be used for the
3750 specified type. */
3751
3752 enum return_value_convention
3753 struct_return_convention (struct gdbarch *gdbarch,
3754 struct value *function, struct type *value_type)
3755 {
3756 enum type_code code = TYPE_CODE (value_type);
3757
3758 if (code == TYPE_CODE_ERROR)
3759 error (_("Function return type unknown."));
3760
3761 /* Probe the architecture for the return-value convention. */
3762 return gdbarch_return_value (gdbarch, function, value_type,
3763 NULL, NULL, NULL);
3764 }
3765
3766 /* Return true if the function returning the specified type is using
3767 the convention of returning structures in memory (passing in the
3768 address as a hidden first parameter). */
3769
3770 int
3771 using_struct_return (struct gdbarch *gdbarch,
3772 struct value *function, struct type *value_type)
3773 {
3774 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3775 /* A void return value is never in memory. See also corresponding
3776 code in "print_return_value". */
3777 return 0;
3778
3779 return (struct_return_convention (gdbarch, function, value_type)
3780 != RETURN_VALUE_REGISTER_CONVENTION);
3781 }
3782
3783 /* Set the initialized field in a value struct. */
3784
3785 void
3786 set_value_initialized (struct value *val, int status)
3787 {
3788 val->initialized = status;
3789 }
3790
3791 /* Return the initialized field in a value struct. */
3792
3793 int
3794 value_initialized (struct value *val)
3795 {
3796 return val->initialized;
3797 }
3798
3799 /* Load the actual content of a lazy value. Fetch the data from the
3800 user's process and clear the lazy flag to indicate that the data in
3801 the buffer is valid.
3802
3803 If the value is zero-length, we avoid calling read_memory, which
3804 would abort. We mark the value as fetched anyway -- all 0 bytes of
3805 it. */
3806
3807 void
3808 value_fetch_lazy (struct value *val)
3809 {
3810 gdb_assert (value_lazy (val));
3811 allocate_value_contents (val);
3812 /* A value is either lazy, or fully fetched. The
3813 availability/validity is only established as we try to fetch a
3814 value. */
3815 gdb_assert (VEC_empty (range_s, val->optimized_out));
3816 gdb_assert (VEC_empty (range_s, val->unavailable));
3817 if (value_bitsize (val))
3818 {
3819 /* To read a lazy bitfield, read the entire enclosing value. This
3820 prevents reading the same block of (possibly volatile) memory once
3821 per bitfield. It would be even better to read only the containing
3822 word, but we have no way to record that just specific bits of a
3823 value have been fetched. */
3824 struct type *type = check_typedef (value_type (val));
3825 struct value *parent = value_parent (val);
3826
3827 if (value_lazy (parent))
3828 value_fetch_lazy (parent);
3829
3830 unpack_value_bitfield (val,
3831 value_bitpos (val), value_bitsize (val),
3832 value_contents_for_printing (parent),
3833 value_offset (val), parent);
3834 }
3835 else if (VALUE_LVAL (val) == lval_memory)
3836 {
3837 CORE_ADDR addr = value_address (val);
3838 struct type *type = check_typedef (value_enclosing_type (val));
3839
3840 if (TYPE_LENGTH (type))
3841 read_value_memory (val, 0, value_stack (val),
3842 addr, value_contents_all_raw (val),
3843 type_length_units (type));
3844 }
3845 else if (VALUE_LVAL (val) == lval_register)
3846 {
3847 struct frame_info *frame;
3848 int regnum;
3849 struct type *type = check_typedef (value_type (val));
3850 struct value *new_val = val, *mark = value_mark ();
3851
3852 /* Offsets are not supported here; lazy register values must
3853 refer to the entire register. */
3854 gdb_assert (value_offset (val) == 0);
3855
3856 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3857 {
3858 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3859
3860 frame = frame_find_by_id (frame_id);
3861 regnum = VALUE_REGNUM (new_val);
3862
3863 gdb_assert (frame != NULL);
3864
3865 /* Convertible register routines are used for multi-register
3866 values and for interpretation in different types
3867 (e.g. float or int from a double register). Lazy
3868 register values should have the register's natural type,
3869 so they do not apply. */
3870 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3871 regnum, type));
3872
3873 new_val = get_frame_register_value (frame, regnum);
3874
3875 /* If we get another lazy lval_register value, it means the
3876 register is found by reading it from the next frame.
3877 get_frame_register_value should never return a value with
3878 the frame id pointing to FRAME. If it does, it means we
3879 either have two consecutive frames with the same frame id
3880 in the frame chain, or some code is trying to unwind
3881 behind get_prev_frame's back (e.g., a frame unwind
3882 sniffer trying to unwind), bypassing its validations. In
3883 any case, it should always be an internal error to end up
3884 in this situation. */
3885 if (VALUE_LVAL (new_val) == lval_register
3886 && value_lazy (new_val)
3887 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3888 internal_error (__FILE__, __LINE__,
3889 _("infinite loop while fetching a register"));
3890 }
3891
3892 /* If it's still lazy (for instance, a saved register on the
3893 stack), fetch it. */
3894 if (value_lazy (new_val))
3895 value_fetch_lazy (new_val);
3896
3897 /* Copy the contents and the unavailability/optimized-out
3898 meta-data from NEW_VAL to VAL. */
3899 set_value_lazy (val, 0);
3900 value_contents_copy (val, value_embedded_offset (val),
3901 new_val, value_embedded_offset (new_val),
3902 type_length_units (type));
3903
3904 if (frame_debug)
3905 {
3906 struct gdbarch *gdbarch;
3907 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3908 regnum = VALUE_REGNUM (val);
3909 gdbarch = get_frame_arch (frame);
3910
3911 fprintf_unfiltered (gdb_stdlog,
3912 "{ value_fetch_lazy "
3913 "(frame=%d,regnum=%d(%s),...) ",
3914 frame_relative_level (frame), regnum,
3915 user_reg_map_regnum_to_name (gdbarch, regnum));
3916
3917 fprintf_unfiltered (gdb_stdlog, "->");
3918 if (value_optimized_out (new_val))
3919 {
3920 fprintf_unfiltered (gdb_stdlog, " ");
3921 val_print_optimized_out (new_val, gdb_stdlog);
3922 }
3923 else
3924 {
3925 int i;
3926 const gdb_byte *buf = value_contents (new_val);
3927
3928 if (VALUE_LVAL (new_val) == lval_register)
3929 fprintf_unfiltered (gdb_stdlog, " register=%d",
3930 VALUE_REGNUM (new_val));
3931 else if (VALUE_LVAL (new_val) == lval_memory)
3932 fprintf_unfiltered (gdb_stdlog, " address=%s",
3933 paddress (gdbarch,
3934 value_address (new_val)));
3935 else
3936 fprintf_unfiltered (gdb_stdlog, " computed");
3937
3938 fprintf_unfiltered (gdb_stdlog, " bytes=");
3939 fprintf_unfiltered (gdb_stdlog, "[");
3940 for (i = 0; i < register_size (gdbarch, regnum); i++)
3941 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3942 fprintf_unfiltered (gdb_stdlog, "]");
3943 }
3944
3945 fprintf_unfiltered (gdb_stdlog, " }\n");
3946 }
3947
3948 /* Dispose of the intermediate values. This prevents
3949 watchpoints from trying to watch the saved frame pointer. */
3950 value_free_to_mark (mark);
3951 }
3952 else if (VALUE_LVAL (val) == lval_computed
3953 && value_computed_funcs (val)->read != NULL)
3954 value_computed_funcs (val)->read (val);
3955 else
3956 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3957
3958 set_value_lazy (val, 0);
3959 }
3960
3961 /* Implementation of the convenience function $_isvoid. */
3962
3963 static struct value *
3964 isvoid_internal_fn (struct gdbarch *gdbarch,
3965 const struct language_defn *language,
3966 void *cookie, int argc, struct value **argv)
3967 {
3968 int ret;
3969
3970 if (argc != 1)
3971 error (_("You must provide one argument for $_isvoid."));
3972
3973 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3974
3975 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3976 }
3977
3978 void
3979 _initialize_values (void)
3980 {
3981 add_cmd ("convenience", no_class, show_convenience, _("\
3982 Debugger convenience (\"$foo\") variables and functions.\n\
3983 Convenience variables are created when you assign them values;\n\
3984 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3985 \n\
3986 A few convenience variables are given values automatically:\n\
3987 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3988 \"$__\" holds the contents of the last address examined with \"x\"."
3989 #ifdef HAVE_PYTHON
3990 "\n\n\
3991 Convenience functions are defined via the Python API."
3992 #endif
3993 ), &showlist);
3994 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3995
3996 add_cmd ("values", no_set_class, show_values, _("\
3997 Elements of value history around item number IDX (or last ten)."),
3998 &showlist);
3999
4000 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4001 Initialize a convenience variable if necessary.\n\
4002 init-if-undefined VARIABLE = EXPRESSION\n\
4003 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4004 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4005 VARIABLE is already initialized."));
4006
4007 add_prefix_cmd ("function", no_class, function_command, _("\
4008 Placeholder command for showing help on convenience functions."),
4009 &functionlist, "function ", 0, &cmdlist);
4010
4011 add_internal_function ("_isvoid", _("\
4012 Check whether an expression is void.\n\
4013 Usage: $_isvoid (expression)\n\
4014 Return 1 if the expression is void, zero otherwise."),
4015 isvoid_internal_fn, NULL);
4016 }
This page took 0.139596 seconds and 4 git commands to generate.