Linux process record and replay support.
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33 #include "doublest.h"
34 #include "gdb_assert.h"
35 #include "regcache.h"
36 #include "block.h"
37 #include "dfp.h"
38 #include "objfiles.h"
39 #include "valprint.h"
40 #include "cli/cli-decode.h"
41
42 #include "python/python.h"
43
44 /* Prototypes for exported functions. */
45
46 void _initialize_values (void);
47
48 /* Definition of a user function. */
49 struct internal_function
50 {
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61 };
62
63 static struct cmd_list_element *functionlist;
64
65 struct value
66 {
67 /* Type of value; either not an lval, or one of the various
68 different possible kinds of lval. */
69 enum lval_type lval;
70
71 /* Is it modifiable? Only relevant if lval != not_lval. */
72 int modifiable;
73
74 /* Location of value (if lval). */
75 union
76 {
77 /* If lval == lval_memory, this is the address in the inferior.
78 If lval == lval_register, this is the byte offset into the
79 registers structure. */
80 CORE_ADDR address;
81
82 /* Pointer to internal variable. */
83 struct internalvar *internalvar;
84
85 /* If lval == lval_computed, this is a set of function pointers
86 to use to access and describe the value, and a closure pointer
87 for them to use. */
88 struct
89 {
90 struct lval_funcs *funcs; /* Functions to call. */
91 void *closure; /* Closure for those functions to use. */
92 } computed;
93 } location;
94
95 /* Describes offset of a value within lval of a structure in bytes.
96 If lval == lval_memory, this is an offset to the address. If
97 lval == lval_register, this is a further offset from
98 location.address within the registers structure. Note also the
99 member embedded_offset below. */
100 int offset;
101
102 /* Only used for bitfields; number of bits contained in them. */
103 int bitsize;
104
105 /* Only used for bitfields; position of start of field. For
106 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
107 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
108 int bitpos;
109
110 /* Frame register value is relative to. This will be described in
111 the lval enum above as "lval_register". */
112 struct frame_id frame_id;
113
114 /* Type of the value. */
115 struct type *type;
116
117 /* If a value represents a C++ object, then the `type' field gives
118 the object's compile-time type. If the object actually belongs
119 to some class derived from `type', perhaps with other base
120 classes and additional members, then `type' is just a subobject
121 of the real thing, and the full object is probably larger than
122 `type' would suggest.
123
124 If `type' is a dynamic class (i.e. one with a vtable), then GDB
125 can actually determine the object's run-time type by looking at
126 the run-time type information in the vtable. When this
127 information is available, we may elect to read in the entire
128 object, for several reasons:
129
130 - When printing the value, the user would probably rather see the
131 full object, not just the limited portion apparent from the
132 compile-time type.
133
134 - If `type' has virtual base classes, then even printing `type'
135 alone may require reaching outside the `type' portion of the
136 object to wherever the virtual base class has been stored.
137
138 When we store the entire object, `enclosing_type' is the run-time
139 type -- the complete object -- and `embedded_offset' is the
140 offset of `type' within that larger type, in bytes. The
141 value_contents() macro takes `embedded_offset' into account, so
142 most GDB code continues to see the `type' portion of the value,
143 just as the inferior would.
144
145 If `type' is a pointer to an object, then `enclosing_type' is a
146 pointer to the object's run-time type, and `pointed_to_offset' is
147 the offset in bytes from the full object to the pointed-to object
148 -- that is, the value `embedded_offset' would have if we followed
149 the pointer and fetched the complete object. (I don't really see
150 the point. Why not just determine the run-time type when you
151 indirect, and avoid the special case? The contents don't matter
152 until you indirect anyway.)
153
154 If we're not doing anything fancy, `enclosing_type' is equal to
155 `type', and `embedded_offset' is zero, so everything works
156 normally. */
157 struct type *enclosing_type;
158 int embedded_offset;
159 int pointed_to_offset;
160
161 /* Values are stored in a chain, so that they can be deleted easily
162 over calls to the inferior. Values assigned to internal
163 variables, put into the value history or exposed to Python are
164 taken off this list. */
165 struct value *next;
166
167 /* Register number if the value is from a register. */
168 short regnum;
169
170 /* If zero, contents of this value are in the contents field. If
171 nonzero, contents are in inferior. If the lval field is lval_memory,
172 the contents are in inferior memory at location.address plus offset.
173 The lval field may also be lval_register.
174
175 WARNING: This field is used by the code which handles watchpoints
176 (see breakpoint.c) to decide whether a particular value can be
177 watched by hardware watchpoints. If the lazy flag is set for
178 some member of a value chain, it is assumed that this member of
179 the chain doesn't need to be watched as part of watching the
180 value itself. This is how GDB avoids watching the entire struct
181 or array when the user wants to watch a single struct member or
182 array element. If you ever change the way lazy flag is set and
183 reset, be sure to consider this use as well! */
184 char lazy;
185
186 /* If nonzero, this is the value of a variable which does not
187 actually exist in the program. */
188 char optimized_out;
189
190 /* If value is a variable, is it initialized or not. */
191 int initialized;
192
193 /* Actual contents of the value. Target byte-order. NULL or not
194 valid if lazy is nonzero. */
195 gdb_byte *contents;
196 };
197
198 /* Prototypes for local functions. */
199
200 static void show_values (char *, int);
201
202 static void show_convenience (char *, int);
203
204
205 /* The value-history records all the values printed
206 by print commands during this session. Each chunk
207 records 60 consecutive values. The first chunk on
208 the chain records the most recent values.
209 The total number of values is in value_history_count. */
210
211 #define VALUE_HISTORY_CHUNK 60
212
213 struct value_history_chunk
214 {
215 struct value_history_chunk *next;
216 struct value *values[VALUE_HISTORY_CHUNK];
217 };
218
219 /* Chain of chunks now in use. */
220
221 static struct value_history_chunk *value_history_chain;
222
223 static int value_history_count; /* Abs number of last entry stored */
224
225 /* The type of internal functions. */
226
227 static struct type *internal_fn_type;
228 \f
229 /* List of all value objects currently allocated
230 (except for those released by calls to release_value)
231 This is so they can be freed after each command. */
232
233 static struct value *all_values;
234
235 /* Allocate a lazy value for type TYPE. Its actual content is
236 "lazily" allocated too: the content field of the return value is
237 NULL; it will be allocated when it is fetched from the target. */
238
239 struct value *
240 allocate_value_lazy (struct type *type)
241 {
242 struct value *val;
243 struct type *atype = check_typedef (type);
244
245 val = (struct value *) xzalloc (sizeof (struct value));
246 val->contents = NULL;
247 val->next = all_values;
248 all_values = val;
249 val->type = type;
250 val->enclosing_type = type;
251 VALUE_LVAL (val) = not_lval;
252 VALUE_ADDRESS (val) = 0;
253 VALUE_FRAME_ID (val) = null_frame_id;
254 val->offset = 0;
255 val->bitpos = 0;
256 val->bitsize = 0;
257 VALUE_REGNUM (val) = -1;
258 val->lazy = 1;
259 val->optimized_out = 0;
260 val->embedded_offset = 0;
261 val->pointed_to_offset = 0;
262 val->modifiable = 1;
263 val->initialized = 1; /* Default to initialized. */
264 return val;
265 }
266
267 /* Allocate the contents of VAL if it has not been allocated yet. */
268
269 void
270 allocate_value_contents (struct value *val)
271 {
272 if (!val->contents)
273 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
274 }
275
276 /* Allocate a value and its contents for type TYPE. */
277
278 struct value *
279 allocate_value (struct type *type)
280 {
281 struct value *val = allocate_value_lazy (type);
282 allocate_value_contents (val);
283 val->lazy = 0;
284 return val;
285 }
286
287 /* Allocate a value that has the correct length
288 for COUNT repetitions of type TYPE. */
289
290 struct value *
291 allocate_repeat_value (struct type *type, int count)
292 {
293 int low_bound = current_language->string_lower_bound; /* ??? */
294 /* FIXME-type-allocation: need a way to free this type when we are
295 done with it. */
296 struct type *range_type
297 = create_range_type ((struct type *) NULL, builtin_type_int32,
298 low_bound, count + low_bound - 1);
299 /* FIXME-type-allocation: need a way to free this type when we are
300 done with it. */
301 return allocate_value (create_array_type ((struct type *) NULL,
302 type, range_type));
303 }
304
305 /* Needed if another module needs to maintain its on list of values. */
306 void
307 value_prepend_to_list (struct value **head, struct value *val)
308 {
309 val->next = *head;
310 *head = val;
311 }
312
313 /* Needed if another module needs to maintain its on list of values. */
314 void
315 value_remove_from_list (struct value **head, struct value *val)
316 {
317 struct value *prev;
318
319 if (*head == val)
320 *head = (*head)->next;
321 else
322 for (prev = *head; prev->next; prev = prev->next)
323 if (prev->next == val)
324 {
325 prev->next = val->next;
326 break;
327 }
328 }
329
330 struct value *
331 allocate_computed_value (struct type *type,
332 struct lval_funcs *funcs,
333 void *closure)
334 {
335 struct value *v = allocate_value (type);
336 VALUE_LVAL (v) = lval_computed;
337 v->location.computed.funcs = funcs;
338 v->location.computed.closure = closure;
339 set_value_lazy (v, 1);
340
341 return v;
342 }
343
344 /* Accessor methods. */
345
346 struct value *
347 value_next (struct value *value)
348 {
349 return value->next;
350 }
351
352 struct type *
353 value_type (struct value *value)
354 {
355 return value->type;
356 }
357 void
358 deprecated_set_value_type (struct value *value, struct type *type)
359 {
360 value->type = type;
361 }
362
363 int
364 value_offset (struct value *value)
365 {
366 return value->offset;
367 }
368 void
369 set_value_offset (struct value *value, int offset)
370 {
371 value->offset = offset;
372 }
373
374 int
375 value_bitpos (struct value *value)
376 {
377 return value->bitpos;
378 }
379 void
380 set_value_bitpos (struct value *value, int bit)
381 {
382 value->bitpos = bit;
383 }
384
385 int
386 value_bitsize (struct value *value)
387 {
388 return value->bitsize;
389 }
390 void
391 set_value_bitsize (struct value *value, int bit)
392 {
393 value->bitsize = bit;
394 }
395
396 gdb_byte *
397 value_contents_raw (struct value *value)
398 {
399 allocate_value_contents (value);
400 return value->contents + value->embedded_offset;
401 }
402
403 gdb_byte *
404 value_contents_all_raw (struct value *value)
405 {
406 allocate_value_contents (value);
407 return value->contents;
408 }
409
410 struct type *
411 value_enclosing_type (struct value *value)
412 {
413 return value->enclosing_type;
414 }
415
416 const gdb_byte *
417 value_contents_all (struct value *value)
418 {
419 if (value->lazy)
420 value_fetch_lazy (value);
421 return value->contents;
422 }
423
424 int
425 value_lazy (struct value *value)
426 {
427 return value->lazy;
428 }
429
430 void
431 set_value_lazy (struct value *value, int val)
432 {
433 value->lazy = val;
434 }
435
436 const gdb_byte *
437 value_contents (struct value *value)
438 {
439 return value_contents_writeable (value);
440 }
441
442 gdb_byte *
443 value_contents_writeable (struct value *value)
444 {
445 if (value->lazy)
446 value_fetch_lazy (value);
447 return value_contents_raw (value);
448 }
449
450 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
451 this function is different from value_equal; in C the operator ==
452 can return 0 even if the two values being compared are equal. */
453
454 int
455 value_contents_equal (struct value *val1, struct value *val2)
456 {
457 struct type *type1;
458 struct type *type2;
459 int len;
460
461 type1 = check_typedef (value_type (val1));
462 type2 = check_typedef (value_type (val2));
463 len = TYPE_LENGTH (type1);
464 if (len != TYPE_LENGTH (type2))
465 return 0;
466
467 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
468 }
469
470 int
471 value_optimized_out (struct value *value)
472 {
473 return value->optimized_out;
474 }
475
476 void
477 set_value_optimized_out (struct value *value, int val)
478 {
479 value->optimized_out = val;
480 }
481
482 int
483 value_embedded_offset (struct value *value)
484 {
485 return value->embedded_offset;
486 }
487
488 void
489 set_value_embedded_offset (struct value *value, int val)
490 {
491 value->embedded_offset = val;
492 }
493
494 int
495 value_pointed_to_offset (struct value *value)
496 {
497 return value->pointed_to_offset;
498 }
499
500 void
501 set_value_pointed_to_offset (struct value *value, int val)
502 {
503 value->pointed_to_offset = val;
504 }
505
506 struct lval_funcs *
507 value_computed_funcs (struct value *v)
508 {
509 gdb_assert (VALUE_LVAL (v) == lval_computed);
510
511 return v->location.computed.funcs;
512 }
513
514 void *
515 value_computed_closure (struct value *v)
516 {
517 gdb_assert (VALUE_LVAL (v) == lval_computed);
518
519 return v->location.computed.closure;
520 }
521
522 enum lval_type *
523 deprecated_value_lval_hack (struct value *value)
524 {
525 return &value->lval;
526 }
527
528 CORE_ADDR *
529 deprecated_value_address_hack (struct value *value)
530 {
531 return &value->location.address;
532 }
533
534 struct internalvar **
535 deprecated_value_internalvar_hack (struct value *value)
536 {
537 return &value->location.internalvar;
538 }
539
540 struct frame_id *
541 deprecated_value_frame_id_hack (struct value *value)
542 {
543 return &value->frame_id;
544 }
545
546 short *
547 deprecated_value_regnum_hack (struct value *value)
548 {
549 return &value->regnum;
550 }
551
552 int
553 deprecated_value_modifiable (struct value *value)
554 {
555 return value->modifiable;
556 }
557 void
558 deprecated_set_value_modifiable (struct value *value, int modifiable)
559 {
560 value->modifiable = modifiable;
561 }
562 \f
563 /* Return a mark in the value chain. All values allocated after the
564 mark is obtained (except for those released) are subject to being freed
565 if a subsequent value_free_to_mark is passed the mark. */
566 struct value *
567 value_mark (void)
568 {
569 return all_values;
570 }
571
572 void
573 value_free (struct value *val)
574 {
575 if (val)
576 {
577 if (VALUE_LVAL (val) == lval_computed)
578 {
579 struct lval_funcs *funcs = val->location.computed.funcs;
580
581 if (funcs->free_closure)
582 funcs->free_closure (val);
583 }
584
585 xfree (val->contents);
586 }
587 xfree (val);
588 }
589
590 /* Free all values allocated since MARK was obtained by value_mark
591 (except for those released). */
592 void
593 value_free_to_mark (struct value *mark)
594 {
595 struct value *val;
596 struct value *next;
597
598 for (val = all_values; val && val != mark; val = next)
599 {
600 next = val->next;
601 value_free (val);
602 }
603 all_values = val;
604 }
605
606 /* Free all the values that have been allocated (except for those released).
607 Called after each command, successful or not. */
608
609 void
610 free_all_values (void)
611 {
612 struct value *val;
613 struct value *next;
614
615 for (val = all_values; val; val = next)
616 {
617 next = val->next;
618 value_free (val);
619 }
620
621 all_values = 0;
622 }
623
624 /* Remove VAL from the chain all_values
625 so it will not be freed automatically. */
626
627 void
628 release_value (struct value *val)
629 {
630 struct value *v;
631
632 if (all_values == val)
633 {
634 all_values = val->next;
635 return;
636 }
637
638 for (v = all_values; v; v = v->next)
639 {
640 if (v->next == val)
641 {
642 v->next = val->next;
643 break;
644 }
645 }
646 }
647
648 /* Release all values up to mark */
649 struct value *
650 value_release_to_mark (struct value *mark)
651 {
652 struct value *val;
653 struct value *next;
654
655 for (val = next = all_values; next; next = next->next)
656 if (next->next == mark)
657 {
658 all_values = next->next;
659 next->next = NULL;
660 return val;
661 }
662 all_values = 0;
663 return val;
664 }
665
666 /* Return a copy of the value ARG.
667 It contains the same contents, for same memory address,
668 but it's a different block of storage. */
669
670 struct value *
671 value_copy (struct value *arg)
672 {
673 struct type *encl_type = value_enclosing_type (arg);
674 struct value *val;
675
676 if (value_lazy (arg))
677 val = allocate_value_lazy (encl_type);
678 else
679 val = allocate_value (encl_type);
680 val->type = arg->type;
681 VALUE_LVAL (val) = VALUE_LVAL (arg);
682 val->location = arg->location;
683 val->offset = arg->offset;
684 val->bitpos = arg->bitpos;
685 val->bitsize = arg->bitsize;
686 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
687 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
688 val->lazy = arg->lazy;
689 val->optimized_out = arg->optimized_out;
690 val->embedded_offset = value_embedded_offset (arg);
691 val->pointed_to_offset = arg->pointed_to_offset;
692 val->modifiable = arg->modifiable;
693 if (!value_lazy (val))
694 {
695 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
696 TYPE_LENGTH (value_enclosing_type (arg)));
697
698 }
699 if (VALUE_LVAL (val) == lval_computed)
700 {
701 struct lval_funcs *funcs = val->location.computed.funcs;
702
703 if (funcs->copy_closure)
704 val->location.computed.closure = funcs->copy_closure (val);
705 }
706 return val;
707 }
708
709 void
710 set_value_component_location (struct value *component, struct value *whole)
711 {
712 if (VALUE_LVAL (whole) == lval_internalvar)
713 VALUE_LVAL (component) = lval_internalvar_component;
714 else
715 VALUE_LVAL (component) = VALUE_LVAL (whole);
716
717 component->location = whole->location;
718 if (VALUE_LVAL (whole) == lval_computed)
719 {
720 struct lval_funcs *funcs = whole->location.computed.funcs;
721
722 if (funcs->copy_closure)
723 component->location.computed.closure = funcs->copy_closure (whole);
724 }
725 }
726
727 \f
728 /* Access to the value history. */
729
730 /* Record a new value in the value history.
731 Returns the absolute history index of the entry.
732 Result of -1 indicates the value was not saved; otherwise it is the
733 value history index of this new item. */
734
735 int
736 record_latest_value (struct value *val)
737 {
738 int i;
739
740 /* We don't want this value to have anything to do with the inferior anymore.
741 In particular, "set $1 = 50" should not affect the variable from which
742 the value was taken, and fast watchpoints should be able to assume that
743 a value on the value history never changes. */
744 if (value_lazy (val))
745 value_fetch_lazy (val);
746 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
747 from. This is a bit dubious, because then *&$1 does not just return $1
748 but the current contents of that location. c'est la vie... */
749 val->modifiable = 0;
750 release_value (val);
751
752 /* Here we treat value_history_count as origin-zero
753 and applying to the value being stored now. */
754
755 i = value_history_count % VALUE_HISTORY_CHUNK;
756 if (i == 0)
757 {
758 struct value_history_chunk *new
759 = (struct value_history_chunk *)
760 xmalloc (sizeof (struct value_history_chunk));
761 memset (new->values, 0, sizeof new->values);
762 new->next = value_history_chain;
763 value_history_chain = new;
764 }
765
766 value_history_chain->values[i] = val;
767
768 /* Now we regard value_history_count as origin-one
769 and applying to the value just stored. */
770
771 return ++value_history_count;
772 }
773
774 /* Return a copy of the value in the history with sequence number NUM. */
775
776 struct value *
777 access_value_history (int num)
778 {
779 struct value_history_chunk *chunk;
780 int i;
781 int absnum = num;
782
783 if (absnum <= 0)
784 absnum += value_history_count;
785
786 if (absnum <= 0)
787 {
788 if (num == 0)
789 error (_("The history is empty."));
790 else if (num == 1)
791 error (_("There is only one value in the history."));
792 else
793 error (_("History does not go back to $$%d."), -num);
794 }
795 if (absnum > value_history_count)
796 error (_("History has not yet reached $%d."), absnum);
797
798 absnum--;
799
800 /* Now absnum is always absolute and origin zero. */
801
802 chunk = value_history_chain;
803 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
804 i > 0; i--)
805 chunk = chunk->next;
806
807 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
808 }
809
810 static void
811 show_values (char *num_exp, int from_tty)
812 {
813 int i;
814 struct value *val;
815 static int num = 1;
816
817 if (num_exp)
818 {
819 /* "show values +" should print from the stored position.
820 "show values <exp>" should print around value number <exp>. */
821 if (num_exp[0] != '+' || num_exp[1] != '\0')
822 num = parse_and_eval_long (num_exp) - 5;
823 }
824 else
825 {
826 /* "show values" means print the last 10 values. */
827 num = value_history_count - 9;
828 }
829
830 if (num <= 0)
831 num = 1;
832
833 for (i = num; i < num + 10 && i <= value_history_count; i++)
834 {
835 struct value_print_options opts;
836 val = access_value_history (i);
837 printf_filtered (("$%d = "), i);
838 get_user_print_options (&opts);
839 value_print (val, gdb_stdout, &opts);
840 printf_filtered (("\n"));
841 }
842
843 /* The next "show values +" should start after what we just printed. */
844 num += 10;
845
846 /* Hitting just return after this command should do the same thing as
847 "show values +". If num_exp is null, this is unnecessary, since
848 "show values +" is not useful after "show values". */
849 if (from_tty && num_exp)
850 {
851 num_exp[0] = '+';
852 num_exp[1] = '\0';
853 }
854 }
855 \f
856 /* Internal variables. These are variables within the debugger
857 that hold values assigned by debugger commands.
858 The user refers to them with a '$' prefix
859 that does not appear in the variable names stored internally. */
860
861 static struct internalvar *internalvars;
862
863 /* If the variable does not already exist create it and give it the value given.
864 If no value is given then the default is zero. */
865 static void
866 init_if_undefined_command (char* args, int from_tty)
867 {
868 struct internalvar* intvar;
869
870 /* Parse the expression - this is taken from set_command(). */
871 struct expression *expr = parse_expression (args);
872 register struct cleanup *old_chain =
873 make_cleanup (free_current_contents, &expr);
874
875 /* Validate the expression.
876 Was the expression an assignment?
877 Or even an expression at all? */
878 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
879 error (_("Init-if-undefined requires an assignment expression."));
880
881 /* Extract the variable from the parsed expression.
882 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
883 if (expr->elts[1].opcode != OP_INTERNALVAR)
884 error (_("The first parameter to init-if-undefined should be a GDB variable."));
885 intvar = expr->elts[2].internalvar;
886
887 /* Only evaluate the expression if the lvalue is void.
888 This may still fail if the expresssion is invalid. */
889 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
890 evaluate_expression (expr);
891
892 do_cleanups (old_chain);
893 }
894
895
896 /* Look up an internal variable with name NAME. NAME should not
897 normally include a dollar sign.
898
899 If the specified internal variable does not exist,
900 the return value is NULL. */
901
902 struct internalvar *
903 lookup_only_internalvar (const char *name)
904 {
905 struct internalvar *var;
906
907 for (var = internalvars; var; var = var->next)
908 if (strcmp (var->name, name) == 0)
909 return var;
910
911 return NULL;
912 }
913
914
915 /* Create an internal variable with name NAME and with a void value.
916 NAME should not normally include a dollar sign. */
917
918 struct internalvar *
919 create_internalvar (const char *name)
920 {
921 struct internalvar *var;
922 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
923 var->name = concat (name, (char *)NULL);
924 var->value = allocate_value (builtin_type_void);
925 var->endian = gdbarch_byte_order (current_gdbarch);
926 var->make_value = NULL;
927 var->canonical = 0;
928 release_value (var->value);
929 var->next = internalvars;
930 internalvars = var;
931 return var;
932 }
933
934 /* Create an internal variable with name NAME and register FUN as the
935 function that value_of_internalvar uses to create a value whenever
936 this variable is referenced. NAME should not normally include a
937 dollar sign. */
938
939 struct internalvar *
940 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
941 {
942 struct internalvar *var;
943 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
944 var->name = concat (name, (char *)NULL);
945 var->value = NULL;
946 var->make_value = fun;
947 var->endian = gdbarch_byte_order (current_gdbarch);
948 var->next = internalvars;
949 internalvars = var;
950 return var;
951 }
952
953 /* Look up an internal variable with name NAME. NAME should not
954 normally include a dollar sign.
955
956 If the specified internal variable does not exist,
957 one is created, with a void value. */
958
959 struct internalvar *
960 lookup_internalvar (const char *name)
961 {
962 struct internalvar *var;
963
964 var = lookup_only_internalvar (name);
965 if (var)
966 return var;
967
968 return create_internalvar (name);
969 }
970
971 struct value *
972 value_of_internalvar (struct internalvar *var)
973 {
974 struct value *val;
975 int i, j;
976 gdb_byte temp;
977
978 if (var->make_value != NULL)
979 val = (*var->make_value) (var);
980 else
981 {
982 val = value_copy (var->value);
983 if (value_lazy (val))
984 value_fetch_lazy (val);
985
986 /* If the variable's value is a computed lvalue, we want
987 references to it to produce another computed lvalue, where
988 referencces and assignments actually operate through the
989 computed value's functions.
990
991 This means that internal variables with computed values
992 behave a little differently from other internal variables:
993 assignments to them don't just replace the previous value
994 altogether. At the moment, this seems like the behavior we
995 want. */
996 if (var->value->lval == lval_computed)
997 VALUE_LVAL (val) = lval_computed;
998 else
999 {
1000 VALUE_LVAL (val) = lval_internalvar;
1001 VALUE_INTERNALVAR (val) = var;
1002 }
1003 }
1004
1005 /* Values are always stored in the target's byte order. When connected to a
1006 target this will most likely always be correct, so there's normally no
1007 need to worry about it.
1008
1009 However, internal variables can be set up before the target endian is
1010 known and so may become out of date. Fix it up before anybody sees.
1011
1012 Internal variables usually hold simple scalar values, and we can
1013 correct those. More complex values (e.g. structures and floating
1014 point types) are left alone, because they would be too complicated
1015 to correct. */
1016
1017 if (var->endian != gdbarch_byte_order (current_gdbarch))
1018 {
1019 gdb_byte *array = value_contents_raw (val);
1020 struct type *type = check_typedef (value_enclosing_type (val));
1021 switch (TYPE_CODE (type))
1022 {
1023 case TYPE_CODE_INT:
1024 case TYPE_CODE_PTR:
1025 /* Reverse the bytes. */
1026 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
1027 {
1028 temp = array[j];
1029 array[j] = array[i];
1030 array[i] = temp;
1031 }
1032 break;
1033 }
1034 }
1035
1036 return val;
1037 }
1038
1039 void
1040 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1041 int bitsize, struct value *newval)
1042 {
1043 gdb_byte *addr = value_contents_writeable (var->value) + offset;
1044
1045 if (bitsize)
1046 modify_field (addr, value_as_long (newval),
1047 bitpos, bitsize);
1048 else
1049 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
1050 }
1051
1052 void
1053 set_internalvar (struct internalvar *var, struct value *val)
1054 {
1055 struct value *newval;
1056
1057 if (var->canonical)
1058 error (_("Cannot overwrite convenience function %s"), var->name);
1059
1060 newval = value_copy (val);
1061 newval->modifiable = 1;
1062
1063 /* Force the value to be fetched from the target now, to avoid problems
1064 later when this internalvar is referenced and the target is gone or
1065 has changed. */
1066 if (value_lazy (newval))
1067 value_fetch_lazy (newval);
1068
1069 /* Begin code which must not call error(). If var->value points to
1070 something free'd, an error() obviously leaves a dangling pointer.
1071 But we also get a dangling pointer if var->value points to
1072 something in the value chain (i.e., before release_value is
1073 called), because after the error free_all_values will get called before
1074 long. */
1075 value_free (var->value);
1076 var->value = newval;
1077 var->endian = gdbarch_byte_order (current_gdbarch);
1078 release_value (newval);
1079 /* End code which must not call error(). */
1080 }
1081
1082 char *
1083 internalvar_name (struct internalvar *var)
1084 {
1085 return var->name;
1086 }
1087
1088 static struct value *
1089 value_create_internal_function (const char *name,
1090 internal_function_fn handler,
1091 void *cookie)
1092 {
1093 struct value *result = allocate_value (internal_fn_type);
1094 gdb_byte *addr = value_contents_writeable (result);
1095 struct internal_function **fnp = (struct internal_function **) addr;
1096 struct internal_function *ifn = XNEW (struct internal_function);
1097 ifn->name = xstrdup (name);
1098 ifn->handler = handler;
1099 ifn->cookie = cookie;
1100 *fnp = ifn;
1101 return result;
1102 }
1103
1104 char *
1105 value_internal_function_name (struct value *val)
1106 {
1107 gdb_byte *addr = value_contents_writeable (val);
1108 struct internal_function *ifn = * (struct internal_function **) addr;
1109 return ifn->name;
1110 }
1111
1112 struct value *
1113 call_internal_function (struct value *func, int argc, struct value **argv)
1114 {
1115 gdb_byte *addr = value_contents_writeable (func);
1116 struct internal_function *ifn = * (struct internal_function **) addr;
1117 return (*ifn->handler) (ifn->cookie, argc, argv);
1118 }
1119
1120 /* The 'function' command. This does nothing -- it is just a
1121 placeholder to let "help function NAME" work. This is also used as
1122 the implementation of the sub-command that is created when
1123 registering an internal function. */
1124 static void
1125 function_command (char *command, int from_tty)
1126 {
1127 /* Do nothing. */
1128 }
1129
1130 /* Clean up if an internal function's command is destroyed. */
1131 static void
1132 function_destroyer (struct cmd_list_element *self, void *ignore)
1133 {
1134 xfree (self->name);
1135 xfree (self->doc);
1136 }
1137
1138 /* Add a new internal function. NAME is the name of the function; DOC
1139 is a documentation string describing the function. HANDLER is
1140 called when the function is invoked. COOKIE is an arbitrary
1141 pointer which is passed to HANDLER and is intended for "user
1142 data". */
1143 void
1144 add_internal_function (const char *name, const char *doc,
1145 internal_function_fn handler, void *cookie)
1146 {
1147 struct cmd_list_element *cmd;
1148 struct internalvar *var = lookup_internalvar (name);
1149 struct value *fnval = value_create_internal_function (name, handler, cookie);
1150 set_internalvar (var, fnval);
1151 var->canonical = 1;
1152
1153 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1154 &functionlist);
1155 cmd->destroyer = function_destroyer;
1156 }
1157
1158 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1159 prevent cycles / duplicates. */
1160
1161 static void
1162 preserve_one_value (struct value *value, struct objfile *objfile,
1163 htab_t copied_types)
1164 {
1165 if (TYPE_OBJFILE (value->type) == objfile)
1166 value->type = copy_type_recursive (objfile, value->type, copied_types);
1167
1168 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1169 value->enclosing_type = copy_type_recursive (objfile,
1170 value->enclosing_type,
1171 copied_types);
1172 }
1173
1174 /* Update the internal variables and value history when OBJFILE is
1175 discarded; we must copy the types out of the objfile. New global types
1176 will be created for every convenience variable which currently points to
1177 this objfile's types, and the convenience variables will be adjusted to
1178 use the new global types. */
1179
1180 void
1181 preserve_values (struct objfile *objfile)
1182 {
1183 htab_t copied_types;
1184 struct value_history_chunk *cur;
1185 struct internalvar *var;
1186 struct value *val;
1187 int i;
1188
1189 /* Create the hash table. We allocate on the objfile's obstack, since
1190 it is soon to be deleted. */
1191 copied_types = create_copied_types_hash (objfile);
1192
1193 for (cur = value_history_chain; cur; cur = cur->next)
1194 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1195 if (cur->values[i])
1196 preserve_one_value (cur->values[i], objfile, copied_types);
1197
1198 for (var = internalvars; var; var = var->next)
1199 if (var->value)
1200 preserve_one_value (var->value, objfile, copied_types);
1201
1202 for (val = values_in_python; val; val = val->next)
1203 preserve_one_value (val, objfile, copied_types);
1204
1205 htab_delete (copied_types);
1206 }
1207
1208 static void
1209 show_convenience (char *ignore, int from_tty)
1210 {
1211 struct internalvar *var;
1212 int varseen = 0;
1213 struct value_print_options opts;
1214
1215 get_user_print_options (&opts);
1216 for (var = internalvars; var; var = var->next)
1217 {
1218 if (!varseen)
1219 {
1220 varseen = 1;
1221 }
1222 printf_filtered (("$%s = "), var->name);
1223 value_print (value_of_internalvar (var), gdb_stdout,
1224 &opts);
1225 printf_filtered (("\n"));
1226 }
1227 if (!varseen)
1228 printf_unfiltered (_("\
1229 No debugger convenience variables now defined.\n\
1230 Convenience variables have names starting with \"$\";\n\
1231 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1232 }
1233 \f
1234 /* Extract a value as a C number (either long or double).
1235 Knows how to convert fixed values to double, or
1236 floating values to long.
1237 Does not deallocate the value. */
1238
1239 LONGEST
1240 value_as_long (struct value *val)
1241 {
1242 /* This coerces arrays and functions, which is necessary (e.g.
1243 in disassemble_command). It also dereferences references, which
1244 I suspect is the most logical thing to do. */
1245 val = coerce_array (val);
1246 return unpack_long (value_type (val), value_contents (val));
1247 }
1248
1249 DOUBLEST
1250 value_as_double (struct value *val)
1251 {
1252 DOUBLEST foo;
1253 int inv;
1254
1255 foo = unpack_double (value_type (val), value_contents (val), &inv);
1256 if (inv)
1257 error (_("Invalid floating value found in program."));
1258 return foo;
1259 }
1260
1261 /* Extract a value as a C pointer. Does not deallocate the value.
1262 Note that val's type may not actually be a pointer; value_as_long
1263 handles all the cases. */
1264 CORE_ADDR
1265 value_as_address (struct value *val)
1266 {
1267 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1268 whether we want this to be true eventually. */
1269 #if 0
1270 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1271 non-address (e.g. argument to "signal", "info break", etc.), or
1272 for pointers to char, in which the low bits *are* significant. */
1273 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
1274 #else
1275
1276 /* There are several targets (IA-64, PowerPC, and others) which
1277 don't represent pointers to functions as simply the address of
1278 the function's entry point. For example, on the IA-64, a
1279 function pointer points to a two-word descriptor, generated by
1280 the linker, which contains the function's entry point, and the
1281 value the IA-64 "global pointer" register should have --- to
1282 support position-independent code. The linker generates
1283 descriptors only for those functions whose addresses are taken.
1284
1285 On such targets, it's difficult for GDB to convert an arbitrary
1286 function address into a function pointer; it has to either find
1287 an existing descriptor for that function, or call malloc and
1288 build its own. On some targets, it is impossible for GDB to
1289 build a descriptor at all: the descriptor must contain a jump
1290 instruction; data memory cannot be executed; and code memory
1291 cannot be modified.
1292
1293 Upon entry to this function, if VAL is a value of type `function'
1294 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1295 VALUE_ADDRESS (val) is the address of the function. This is what
1296 you'll get if you evaluate an expression like `main'. The call
1297 to COERCE_ARRAY below actually does all the usual unary
1298 conversions, which includes converting values of type `function'
1299 to `pointer to function'. This is the challenging conversion
1300 discussed above. Then, `unpack_long' will convert that pointer
1301 back into an address.
1302
1303 So, suppose the user types `disassemble foo' on an architecture
1304 with a strange function pointer representation, on which GDB
1305 cannot build its own descriptors, and suppose further that `foo'
1306 has no linker-built descriptor. The address->pointer conversion
1307 will signal an error and prevent the command from running, even
1308 though the next step would have been to convert the pointer
1309 directly back into the same address.
1310
1311 The following shortcut avoids this whole mess. If VAL is a
1312 function, just return its address directly. */
1313 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1314 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1315 return VALUE_ADDRESS (val);
1316
1317 val = coerce_array (val);
1318
1319 /* Some architectures (e.g. Harvard), map instruction and data
1320 addresses onto a single large unified address space. For
1321 instance: An architecture may consider a large integer in the
1322 range 0x10000000 .. 0x1000ffff to already represent a data
1323 addresses (hence not need a pointer to address conversion) while
1324 a small integer would still need to be converted integer to
1325 pointer to address. Just assume such architectures handle all
1326 integer conversions in a single function. */
1327
1328 /* JimB writes:
1329
1330 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1331 must admonish GDB hackers to make sure its behavior matches the
1332 compiler's, whenever possible.
1333
1334 In general, I think GDB should evaluate expressions the same way
1335 the compiler does. When the user copies an expression out of
1336 their source code and hands it to a `print' command, they should
1337 get the same value the compiler would have computed. Any
1338 deviation from this rule can cause major confusion and annoyance,
1339 and needs to be justified carefully. In other words, GDB doesn't
1340 really have the freedom to do these conversions in clever and
1341 useful ways.
1342
1343 AndrewC pointed out that users aren't complaining about how GDB
1344 casts integers to pointers; they are complaining that they can't
1345 take an address from a disassembly listing and give it to `x/i'.
1346 This is certainly important.
1347
1348 Adding an architecture method like integer_to_address() certainly
1349 makes it possible for GDB to "get it right" in all circumstances
1350 --- the target has complete control over how things get done, so
1351 people can Do The Right Thing for their target without breaking
1352 anyone else. The standard doesn't specify how integers get
1353 converted to pointers; usually, the ABI doesn't either, but
1354 ABI-specific code is a more reasonable place to handle it. */
1355
1356 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1357 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1358 && gdbarch_integer_to_address_p (current_gdbarch))
1359 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
1360 value_contents (val));
1361
1362 return unpack_long (value_type (val), value_contents (val));
1363 #endif
1364 }
1365 \f
1366 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1367 as a long, or as a double, assuming the raw data is described
1368 by type TYPE. Knows how to convert different sizes of values
1369 and can convert between fixed and floating point. We don't assume
1370 any alignment for the raw data. Return value is in host byte order.
1371
1372 If you want functions and arrays to be coerced to pointers, and
1373 references to be dereferenced, call value_as_long() instead.
1374
1375 C++: It is assumed that the front-end has taken care of
1376 all matters concerning pointers to members. A pointer
1377 to member which reaches here is considered to be equivalent
1378 to an INT (or some size). After all, it is only an offset. */
1379
1380 LONGEST
1381 unpack_long (struct type *type, const gdb_byte *valaddr)
1382 {
1383 enum type_code code = TYPE_CODE (type);
1384 int len = TYPE_LENGTH (type);
1385 int nosign = TYPE_UNSIGNED (type);
1386
1387 switch (code)
1388 {
1389 case TYPE_CODE_TYPEDEF:
1390 return unpack_long (check_typedef (type), valaddr);
1391 case TYPE_CODE_ENUM:
1392 case TYPE_CODE_FLAGS:
1393 case TYPE_CODE_BOOL:
1394 case TYPE_CODE_INT:
1395 case TYPE_CODE_CHAR:
1396 case TYPE_CODE_RANGE:
1397 case TYPE_CODE_MEMBERPTR:
1398 if (nosign)
1399 return extract_unsigned_integer (valaddr, len);
1400 else
1401 return extract_signed_integer (valaddr, len);
1402
1403 case TYPE_CODE_FLT:
1404 return extract_typed_floating (valaddr, type);
1405
1406 case TYPE_CODE_DECFLOAT:
1407 /* libdecnumber has a function to convert from decimal to integer, but
1408 it doesn't work when the decimal number has a fractional part. */
1409 return decimal_to_doublest (valaddr, len);
1410
1411 case TYPE_CODE_PTR:
1412 case TYPE_CODE_REF:
1413 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1414 whether we want this to be true eventually. */
1415 return extract_typed_address (valaddr, type);
1416
1417 default:
1418 error (_("Value can't be converted to integer."));
1419 }
1420 return 0; /* Placate lint. */
1421 }
1422
1423 /* Return a double value from the specified type and address.
1424 INVP points to an int which is set to 0 for valid value,
1425 1 for invalid value (bad float format). In either case,
1426 the returned double is OK to use. Argument is in target
1427 format, result is in host format. */
1428
1429 DOUBLEST
1430 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1431 {
1432 enum type_code code;
1433 int len;
1434 int nosign;
1435
1436 *invp = 0; /* Assume valid. */
1437 CHECK_TYPEDEF (type);
1438 code = TYPE_CODE (type);
1439 len = TYPE_LENGTH (type);
1440 nosign = TYPE_UNSIGNED (type);
1441 if (code == TYPE_CODE_FLT)
1442 {
1443 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1444 floating-point value was valid (using the macro
1445 INVALID_FLOAT). That test/macro have been removed.
1446
1447 It turns out that only the VAX defined this macro and then
1448 only in a non-portable way. Fixing the portability problem
1449 wouldn't help since the VAX floating-point code is also badly
1450 bit-rotten. The target needs to add definitions for the
1451 methods gdbarch_float_format and gdbarch_double_format - these
1452 exactly describe the target floating-point format. The
1453 problem here is that the corresponding floatformat_vax_f and
1454 floatformat_vax_d values these methods should be set to are
1455 also not defined either. Oops!
1456
1457 Hopefully someone will add both the missing floatformat
1458 definitions and the new cases for floatformat_is_valid (). */
1459
1460 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1461 {
1462 *invp = 1;
1463 return 0.0;
1464 }
1465
1466 return extract_typed_floating (valaddr, type);
1467 }
1468 else if (code == TYPE_CODE_DECFLOAT)
1469 return decimal_to_doublest (valaddr, len);
1470 else if (nosign)
1471 {
1472 /* Unsigned -- be sure we compensate for signed LONGEST. */
1473 return (ULONGEST) unpack_long (type, valaddr);
1474 }
1475 else
1476 {
1477 /* Signed -- we are OK with unpack_long. */
1478 return unpack_long (type, valaddr);
1479 }
1480 }
1481
1482 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1483 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1484 We don't assume any alignment for the raw data. Return value is in
1485 host byte order.
1486
1487 If you want functions and arrays to be coerced to pointers, and
1488 references to be dereferenced, call value_as_address() instead.
1489
1490 C++: It is assumed that the front-end has taken care of
1491 all matters concerning pointers to members. A pointer
1492 to member which reaches here is considered to be equivalent
1493 to an INT (or some size). After all, it is only an offset. */
1494
1495 CORE_ADDR
1496 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1497 {
1498 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1499 whether we want this to be true eventually. */
1500 return unpack_long (type, valaddr);
1501 }
1502
1503 \f
1504 /* Get the value of the FIELDN'th field (which must be static) of
1505 TYPE. Return NULL if the field doesn't exist or has been
1506 optimized out. */
1507
1508 struct value *
1509 value_static_field (struct type *type, int fieldno)
1510 {
1511 struct value *retval;
1512
1513 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1514 {
1515 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1516 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1517 }
1518 else
1519 {
1520 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1521 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1522 if (sym == NULL)
1523 {
1524 /* With some compilers, e.g. HP aCC, static data members are reported
1525 as non-debuggable symbols */
1526 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1527 if (!msym)
1528 return NULL;
1529 else
1530 {
1531 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1532 SYMBOL_VALUE_ADDRESS (msym));
1533 }
1534 }
1535 else
1536 {
1537 /* SYM should never have a SYMBOL_CLASS which will require
1538 read_var_value to use the FRAME parameter. */
1539 if (symbol_read_needs_frame (sym))
1540 warning (_("static field's value depends on the current "
1541 "frame - bad debug info?"));
1542 retval = read_var_value (sym, NULL);
1543 }
1544 if (retval && VALUE_LVAL (retval) == lval_memory)
1545 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1546 VALUE_ADDRESS (retval));
1547 }
1548 return retval;
1549 }
1550
1551 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1552 You have to be careful here, since the size of the data area for the value
1553 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1554 than the old enclosing type, you have to allocate more space for the data.
1555 The return value is a pointer to the new version of this value structure. */
1556
1557 struct value *
1558 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1559 {
1560 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1561 val->contents =
1562 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1563
1564 val->enclosing_type = new_encl_type;
1565 return val;
1566 }
1567
1568 /* Given a value ARG1 (offset by OFFSET bytes)
1569 of a struct or union type ARG_TYPE,
1570 extract and return the value of one of its (non-static) fields.
1571 FIELDNO says which field. */
1572
1573 struct value *
1574 value_primitive_field (struct value *arg1, int offset,
1575 int fieldno, struct type *arg_type)
1576 {
1577 struct value *v;
1578 struct type *type;
1579
1580 CHECK_TYPEDEF (arg_type);
1581 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1582
1583 /* Handle packed fields */
1584
1585 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1586 {
1587 v = value_from_longest (type,
1588 unpack_field_as_long (arg_type,
1589 value_contents (arg1)
1590 + offset,
1591 fieldno));
1592 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1593 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1594 v->offset = value_offset (arg1) + offset
1595 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1596 }
1597 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1598 {
1599 /* This field is actually a base subobject, so preserve the
1600 entire object's contents for later references to virtual
1601 bases, etc. */
1602
1603 /* Lazy register values with offsets are not supported. */
1604 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1605 value_fetch_lazy (arg1);
1606
1607 if (value_lazy (arg1))
1608 v = allocate_value_lazy (value_enclosing_type (arg1));
1609 else
1610 {
1611 v = allocate_value (value_enclosing_type (arg1));
1612 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1613 TYPE_LENGTH (value_enclosing_type (arg1)));
1614 }
1615 v->type = type;
1616 v->offset = value_offset (arg1);
1617 v->embedded_offset = (offset + value_embedded_offset (arg1)
1618 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1619 }
1620 else
1621 {
1622 /* Plain old data member */
1623 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1624
1625 /* Lazy register values with offsets are not supported. */
1626 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1627 value_fetch_lazy (arg1);
1628
1629 if (value_lazy (arg1))
1630 v = allocate_value_lazy (type);
1631 else
1632 {
1633 v = allocate_value (type);
1634 memcpy (value_contents_raw (v),
1635 value_contents_raw (arg1) + offset,
1636 TYPE_LENGTH (type));
1637 }
1638 v->offset = (value_offset (arg1) + offset
1639 + value_embedded_offset (arg1));
1640 }
1641 set_value_component_location (v, arg1);
1642 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1643 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1644 return v;
1645 }
1646
1647 /* Given a value ARG1 of a struct or union type,
1648 extract and return the value of one of its (non-static) fields.
1649 FIELDNO says which field. */
1650
1651 struct value *
1652 value_field (struct value *arg1, int fieldno)
1653 {
1654 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1655 }
1656
1657 /* Return a non-virtual function as a value.
1658 F is the list of member functions which contains the desired method.
1659 J is an index into F which provides the desired method.
1660
1661 We only use the symbol for its address, so be happy with either a
1662 full symbol or a minimal symbol.
1663 */
1664
1665 struct value *
1666 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1667 int offset)
1668 {
1669 struct value *v;
1670 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1671 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1672 struct symbol *sym;
1673 struct minimal_symbol *msym;
1674
1675 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
1676 if (sym != NULL)
1677 {
1678 msym = NULL;
1679 }
1680 else
1681 {
1682 gdb_assert (sym == NULL);
1683 msym = lookup_minimal_symbol (physname, NULL, NULL);
1684 if (msym == NULL)
1685 return NULL;
1686 }
1687
1688 v = allocate_value (ftype);
1689 if (sym)
1690 {
1691 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1692 }
1693 else
1694 {
1695 /* The minimal symbol might point to a function descriptor;
1696 resolve it to the actual code address instead. */
1697 struct objfile *objfile = msymbol_objfile (msym);
1698 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1699
1700 VALUE_ADDRESS (v)
1701 = gdbarch_convert_from_func_ptr_addr
1702 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target);
1703 }
1704
1705 if (arg1p)
1706 {
1707 if (type != value_type (*arg1p))
1708 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1709 value_addr (*arg1p)));
1710
1711 /* Move the `this' pointer according to the offset.
1712 VALUE_OFFSET (*arg1p) += offset;
1713 */
1714 }
1715
1716 return v;
1717 }
1718
1719 \f
1720 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1721 VALADDR.
1722
1723 Extracting bits depends on endianness of the machine. Compute the
1724 number of least significant bits to discard. For big endian machines,
1725 we compute the total number of bits in the anonymous object, subtract
1726 off the bit count from the MSB of the object to the MSB of the
1727 bitfield, then the size of the bitfield, which leaves the LSB discard
1728 count. For little endian machines, the discard count is simply the
1729 number of bits from the LSB of the anonymous object to the LSB of the
1730 bitfield.
1731
1732 If the field is signed, we also do sign extension. */
1733
1734 LONGEST
1735 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
1736 {
1737 ULONGEST val;
1738 ULONGEST valmask;
1739 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1740 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1741 int lsbcount;
1742 struct type *field_type;
1743
1744 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1745 field_type = TYPE_FIELD_TYPE (type, fieldno);
1746 CHECK_TYPEDEF (field_type);
1747
1748 /* Extract bits. See comment above. */
1749
1750 if (gdbarch_bits_big_endian (current_gdbarch))
1751 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1752 else
1753 lsbcount = (bitpos % 8);
1754 val >>= lsbcount;
1755
1756 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1757 If the field is signed, and is negative, then sign extend. */
1758
1759 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1760 {
1761 valmask = (((ULONGEST) 1) << bitsize) - 1;
1762 val &= valmask;
1763 if (!TYPE_UNSIGNED (field_type))
1764 {
1765 if (val & (valmask ^ (valmask >> 1)))
1766 {
1767 val |= ~valmask;
1768 }
1769 }
1770 }
1771 return (val);
1772 }
1773
1774 /* Modify the value of a bitfield. ADDR points to a block of memory in
1775 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1776 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1777 indicate which bits (in target bit order) comprise the bitfield.
1778 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1779 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1780
1781 void
1782 modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
1783 {
1784 ULONGEST oword;
1785 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1786
1787 /* If a negative fieldval fits in the field in question, chop
1788 off the sign extension bits. */
1789 if ((~fieldval & ~(mask >> 1)) == 0)
1790 fieldval &= mask;
1791
1792 /* Warn if value is too big to fit in the field in question. */
1793 if (0 != (fieldval & ~mask))
1794 {
1795 /* FIXME: would like to include fieldval in the message, but
1796 we don't have a sprintf_longest. */
1797 warning (_("Value does not fit in %d bits."), bitsize);
1798
1799 /* Truncate it, otherwise adjoining fields may be corrupted. */
1800 fieldval &= mask;
1801 }
1802
1803 oword = extract_unsigned_integer (addr, sizeof oword);
1804
1805 /* Shifting for bit field depends on endianness of the target machine. */
1806 if (gdbarch_bits_big_endian (current_gdbarch))
1807 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1808
1809 oword &= ~(mask << bitpos);
1810 oword |= fieldval << bitpos;
1811
1812 store_unsigned_integer (addr, sizeof oword, oword);
1813 }
1814 \f
1815 /* Pack NUM into BUF using a target format of TYPE. */
1816
1817 void
1818 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
1819 {
1820 int len;
1821
1822 type = check_typedef (type);
1823 len = TYPE_LENGTH (type);
1824
1825 switch (TYPE_CODE (type))
1826 {
1827 case TYPE_CODE_INT:
1828 case TYPE_CODE_CHAR:
1829 case TYPE_CODE_ENUM:
1830 case TYPE_CODE_FLAGS:
1831 case TYPE_CODE_BOOL:
1832 case TYPE_CODE_RANGE:
1833 case TYPE_CODE_MEMBERPTR:
1834 store_signed_integer (buf, len, num);
1835 break;
1836
1837 case TYPE_CODE_REF:
1838 case TYPE_CODE_PTR:
1839 store_typed_address (buf, type, (CORE_ADDR) num);
1840 break;
1841
1842 default:
1843 error (_("Unexpected type (%d) encountered for integer constant."),
1844 TYPE_CODE (type));
1845 }
1846 }
1847
1848
1849 /* Convert C numbers into newly allocated values. */
1850
1851 struct value *
1852 value_from_longest (struct type *type, LONGEST num)
1853 {
1854 struct value *val = allocate_value (type);
1855
1856 pack_long (value_contents_raw (val), type, num);
1857
1858 return val;
1859 }
1860
1861
1862 /* Create a value representing a pointer of type TYPE to the address
1863 ADDR. */
1864 struct value *
1865 value_from_pointer (struct type *type, CORE_ADDR addr)
1866 {
1867 struct value *val = allocate_value (type);
1868 store_typed_address (value_contents_raw (val), type, addr);
1869 return val;
1870 }
1871
1872
1873 /* Create a value for a string constant to be stored locally
1874 (not in the inferior's memory space, but in GDB memory).
1875 This is analogous to value_from_longest, which also does not
1876 use inferior memory. String shall NOT contain embedded nulls. */
1877
1878 struct value *
1879 value_from_string (char *ptr)
1880 {
1881 struct value *val;
1882 int len = strlen (ptr);
1883 int lowbound = current_language->string_lower_bound;
1884 struct type *string_char_type;
1885 struct type *rangetype;
1886 struct type *stringtype;
1887
1888 rangetype = create_range_type ((struct type *) NULL,
1889 builtin_type_int32,
1890 lowbound, len + lowbound - 1);
1891 string_char_type = language_string_char_type (current_language,
1892 current_gdbarch);
1893 stringtype = create_array_type ((struct type *) NULL,
1894 string_char_type,
1895 rangetype);
1896 val = allocate_value (stringtype);
1897 memcpy (value_contents_raw (val), ptr, len);
1898 return val;
1899 }
1900
1901 /* Create a value of type TYPE whose contents come from VALADDR, if it
1902 is non-null, and whose memory address (in the inferior) is
1903 ADDRESS. */
1904
1905 struct value *
1906 value_from_contents_and_address (struct type *type,
1907 const gdb_byte *valaddr,
1908 CORE_ADDR address)
1909 {
1910 struct value *v = allocate_value (type);
1911 if (valaddr == NULL)
1912 set_value_lazy (v, 1);
1913 else
1914 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
1915 VALUE_ADDRESS (v) = address;
1916 VALUE_LVAL (v) = lval_memory;
1917 return v;
1918 }
1919
1920 struct value *
1921 value_from_double (struct type *type, DOUBLEST num)
1922 {
1923 struct value *val = allocate_value (type);
1924 struct type *base_type = check_typedef (type);
1925 enum type_code code = TYPE_CODE (base_type);
1926 int len = TYPE_LENGTH (base_type);
1927
1928 if (code == TYPE_CODE_FLT)
1929 {
1930 store_typed_floating (value_contents_raw (val), base_type, num);
1931 }
1932 else
1933 error (_("Unexpected type encountered for floating constant."));
1934
1935 return val;
1936 }
1937
1938 struct value *
1939 value_from_decfloat (struct type *type, const gdb_byte *dec)
1940 {
1941 struct value *val = allocate_value (type);
1942
1943 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
1944
1945 return val;
1946 }
1947
1948 struct value *
1949 coerce_ref (struct value *arg)
1950 {
1951 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1952 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1953 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1954 unpack_pointer (value_type (arg),
1955 value_contents (arg)));
1956 return arg;
1957 }
1958
1959 struct value *
1960 coerce_array (struct value *arg)
1961 {
1962 struct type *type;
1963
1964 arg = coerce_ref (arg);
1965 type = check_typedef (value_type (arg));
1966
1967 switch (TYPE_CODE (type))
1968 {
1969 case TYPE_CODE_ARRAY:
1970 if (current_language->c_style_arrays)
1971 arg = value_coerce_array (arg);
1972 break;
1973 case TYPE_CODE_FUNC:
1974 arg = value_coerce_function (arg);
1975 break;
1976 }
1977 return arg;
1978 }
1979 \f
1980
1981 /* Return true if the function returning the specified type is using
1982 the convention of returning structures in memory (passing in the
1983 address as a hidden first parameter). */
1984
1985 int
1986 using_struct_return (struct type *func_type, struct type *value_type)
1987 {
1988 enum type_code code = TYPE_CODE (value_type);
1989
1990 if (code == TYPE_CODE_ERROR)
1991 error (_("Function return type unknown."));
1992
1993 if (code == TYPE_CODE_VOID)
1994 /* A void return value is never in memory. See also corresponding
1995 code in "print_return_value". */
1996 return 0;
1997
1998 /* Probe the architecture for the return-value convention. */
1999 return (gdbarch_return_value (current_gdbarch, func_type, value_type,
2000 NULL, NULL, NULL)
2001 != RETURN_VALUE_REGISTER_CONVENTION);
2002 }
2003
2004 /* Set the initialized field in a value struct. */
2005
2006 void
2007 set_value_initialized (struct value *val, int status)
2008 {
2009 val->initialized = status;
2010 }
2011
2012 /* Return the initialized field in a value struct. */
2013
2014 int
2015 value_initialized (struct value *val)
2016 {
2017 return val->initialized;
2018 }
2019
2020 void
2021 _initialize_values (void)
2022 {
2023 add_cmd ("convenience", no_class, show_convenience, _("\
2024 Debugger convenience (\"$foo\") variables.\n\
2025 These variables are created when you assign them values;\n\
2026 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2027 \n\
2028 A few convenience variables are given values automatically:\n\
2029 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2030 \"$__\" holds the contents of the last address examined with \"x\"."),
2031 &showlist);
2032
2033 add_cmd ("values", no_class, show_values,
2034 _("Elements of value history around item number IDX (or last ten)."),
2035 &showlist);
2036
2037 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2038 Initialize a convenience variable if necessary.\n\
2039 init-if-undefined VARIABLE = EXPRESSION\n\
2040 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2041 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2042 VARIABLE is already initialized."));
2043
2044 add_prefix_cmd ("function", no_class, function_command, _("\
2045 Placeholder command for showing help on convenience functions."),
2046 &functionlist, "function ", 0, &cmdlist);
2047
2048 internal_fn_type = alloc_type (NULL);
2049 TYPE_CODE (internal_fn_type) = TYPE_CODE_INTERNAL_FUNCTION;
2050 TYPE_LENGTH (internal_fn_type) = sizeof (struct internal_function *);
2051 TYPE_NAME (internal_fn_type) = "<internal function>";
2052 }
This page took 0.073324 seconds and 4 git commands to generate.