gdb: Add $_cimag and $_creal internal functions
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "regcache.h"
32 #include "block.h"
33 #include "target-float.h"
34 #include "objfiles.h"
35 #include "valprint.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
38 #include <ctype.h>
39 #include "tracepoint.h"
40 #include "cp-abi.h"
41 #include "user-regs.h"
42 #include <algorithm>
43 #include "completer.h"
44 #include "common/selftest.h"
45 #include "common/array-view.h"
46
47 /* Definition of a user function. */
48 struct internal_function
49 {
50 /* The name of the function. It is a bit odd to have this in the
51 function itself -- the user might use a differently-named
52 convenience variable to hold the function. */
53 char *name;
54
55 /* The handler. */
56 internal_function_fn handler;
57
58 /* User data for the handler. */
59 void *cookie;
60 };
61
62 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
63
64 struct range
65 {
66 /* Lowest offset in the range. */
67 LONGEST offset;
68
69 /* Length of the range. */
70 LONGEST length;
71
72 /* Returns true if THIS is strictly less than OTHER, useful for
73 searching. We keep ranges sorted by offset and coalesce
74 overlapping and contiguous ranges, so this just compares the
75 starting offset. */
76
77 bool operator< (const range &other) const
78 {
79 return offset < other.offset;
80 }
81
82 /* Returns true if THIS is equal to OTHER. */
83 bool operator== (const range &other) const
84 {
85 return offset == other.offset && length == other.length;
86 }
87 };
88
89 /* Returns true if the ranges defined by [offset1, offset1+len1) and
90 [offset2, offset2+len2) overlap. */
91
92 static int
93 ranges_overlap (LONGEST offset1, LONGEST len1,
94 LONGEST offset2, LONGEST len2)
95 {
96 ULONGEST h, l;
97
98 l = std::max (offset1, offset2);
99 h = std::min (offset1 + len1, offset2 + len2);
100 return (l < h);
101 }
102
103 /* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106 static int
107 ranges_contain (const std::vector<range> &ranges, LONGEST offset,
108 LONGEST length)
109 {
110 range what;
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
146
147 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
148
149 if (i > ranges.begin ())
150 {
151 const struct range &bef = *(i - 1);
152
153 if (ranges_overlap (bef.offset, bef.length, offset, length))
154 return 1;
155 }
156
157 if (i < ranges.end ())
158 {
159 const struct range &r = *i;
160
161 if (ranges_overlap (r.offset, r.length, offset, length))
162 return 1;
163 }
164
165 return 0;
166 }
167
168 static struct cmd_list_element *functionlist;
169
170 /* Note that the fields in this structure are arranged to save a bit
171 of memory. */
172
173 struct value
174 {
175 explicit value (struct type *type_)
176 : modifiable (1),
177 lazy (1),
178 initialized (1),
179 stack (0),
180 type (type_),
181 enclosing_type (type_)
182 {
183 }
184
185 ~value ()
186 {
187 if (VALUE_LVAL (this) == lval_computed)
188 {
189 const struct lval_funcs *funcs = location.computed.funcs;
190
191 if (funcs->free_closure)
192 funcs->free_closure (this);
193 }
194 else if (VALUE_LVAL (this) == lval_xcallable)
195 delete location.xm_worker;
196 }
197
198 DISABLE_COPY_AND_ASSIGN (value);
199
200 /* Type of value; either not an lval, or one of the various
201 different possible kinds of lval. */
202 enum lval_type lval = not_lval;
203
204 /* Is it modifiable? Only relevant if lval != not_lval. */
205 unsigned int modifiable : 1;
206
207 /* If zero, contents of this value are in the contents field. If
208 nonzero, contents are in inferior. If the lval field is lval_memory,
209 the contents are in inferior memory at location.address plus offset.
210 The lval field may also be lval_register.
211
212 WARNING: This field is used by the code which handles watchpoints
213 (see breakpoint.c) to decide whether a particular value can be
214 watched by hardware watchpoints. If the lazy flag is set for
215 some member of a value chain, it is assumed that this member of
216 the chain doesn't need to be watched as part of watching the
217 value itself. This is how GDB avoids watching the entire struct
218 or array when the user wants to watch a single struct member or
219 array element. If you ever change the way lazy flag is set and
220 reset, be sure to consider this use as well! */
221 unsigned int lazy : 1;
222
223 /* If value is a variable, is it initialized or not. */
224 unsigned int initialized : 1;
225
226 /* If value is from the stack. If this is set, read_stack will be
227 used instead of read_memory to enable extra caching. */
228 unsigned int stack : 1;
229
230 /* Location of value (if lval). */
231 union
232 {
233 /* If lval == lval_memory, this is the address in the inferior */
234 CORE_ADDR address;
235
236 /*If lval == lval_register, the value is from a register. */
237 struct
238 {
239 /* Register number. */
240 int regnum;
241 /* Frame ID of "next" frame to which a register value is relative.
242 If the register value is found relative to frame F, then the
243 frame id of F->next will be stored in next_frame_id. */
244 struct frame_id next_frame_id;
245 } reg;
246
247 /* Pointer to internal variable. */
248 struct internalvar *internalvar;
249
250 /* Pointer to xmethod worker. */
251 struct xmethod_worker *xm_worker;
252
253 /* If lval == lval_computed, this is a set of function pointers
254 to use to access and describe the value, and a closure pointer
255 for them to use. */
256 struct
257 {
258 /* Functions to call. */
259 const struct lval_funcs *funcs;
260
261 /* Closure for those functions to use. */
262 void *closure;
263 } computed;
264 } location {};
265
266 /* Describes offset of a value within lval of a structure in target
267 addressable memory units. Note also the member embedded_offset
268 below. */
269 LONGEST offset = 0;
270
271 /* Only used for bitfields; number of bits contained in them. */
272 LONGEST bitsize = 0;
273
274 /* Only used for bitfields; position of start of field. For
275 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
276 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
277 LONGEST bitpos = 0;
278
279 /* The number of references to this value. When a value is created,
280 the value chain holds a reference, so REFERENCE_COUNT is 1. If
281 release_value is called, this value is removed from the chain but
282 the caller of release_value now has a reference to this value.
283 The caller must arrange for a call to value_free later. */
284 int reference_count = 1;
285
286 /* Only used for bitfields; the containing value. This allows a
287 single read from the target when displaying multiple
288 bitfields. */
289 value_ref_ptr parent;
290
291 /* Type of the value. */
292 struct type *type;
293
294 /* If a value represents a C++ object, then the `type' field gives
295 the object's compile-time type. If the object actually belongs
296 to some class derived from `type', perhaps with other base
297 classes and additional members, then `type' is just a subobject
298 of the real thing, and the full object is probably larger than
299 `type' would suggest.
300
301 If `type' is a dynamic class (i.e. one with a vtable), then GDB
302 can actually determine the object's run-time type by looking at
303 the run-time type information in the vtable. When this
304 information is available, we may elect to read in the entire
305 object, for several reasons:
306
307 - When printing the value, the user would probably rather see the
308 full object, not just the limited portion apparent from the
309 compile-time type.
310
311 - If `type' has virtual base classes, then even printing `type'
312 alone may require reaching outside the `type' portion of the
313 object to wherever the virtual base class has been stored.
314
315 When we store the entire object, `enclosing_type' is the run-time
316 type -- the complete object -- and `embedded_offset' is the
317 offset of `type' within that larger type, in target addressable memory
318 units. The value_contents() macro takes `embedded_offset' into account,
319 so most GDB code continues to see the `type' portion of the value, just
320 as the inferior would.
321
322 If `type' is a pointer to an object, then `enclosing_type' is a
323 pointer to the object's run-time type, and `pointed_to_offset' is
324 the offset in target addressable memory units from the full object
325 to the pointed-to object -- that is, the value `embedded_offset' would
326 have if we followed the pointer and fetched the complete object.
327 (I don't really see the point. Why not just determine the
328 run-time type when you indirect, and avoid the special case? The
329 contents don't matter until you indirect anyway.)
330
331 If we're not doing anything fancy, `enclosing_type' is equal to
332 `type', and `embedded_offset' is zero, so everything works
333 normally. */
334 struct type *enclosing_type;
335 LONGEST embedded_offset = 0;
336 LONGEST pointed_to_offset = 0;
337
338 /* Actual contents of the value. Target byte-order. NULL or not
339 valid if lazy is nonzero. */
340 gdb::unique_xmalloc_ptr<gdb_byte> contents;
341
342 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
343 rather than available, since the common and default case is for a
344 value to be available. This is filled in at value read time.
345 The unavailable ranges are tracked in bits. Note that a contents
346 bit that has been optimized out doesn't really exist in the
347 program, so it can't be marked unavailable either. */
348 std::vector<range> unavailable;
349
350 /* Likewise, but for optimized out contents (a chunk of the value of
351 a variable that does not actually exist in the program). If LVAL
352 is lval_register, this is a register ($pc, $sp, etc., never a
353 program variable) that has not been saved in the frame. Not
354 saved registers and optimized-out program variables values are
355 treated pretty much the same, except not-saved registers have a
356 different string representation and related error strings. */
357 std::vector<range> optimized_out;
358 };
359
360 /* See value.h. */
361
362 struct gdbarch *
363 get_value_arch (const struct value *value)
364 {
365 return get_type_arch (value_type (value));
366 }
367
368 int
369 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
370 {
371 gdb_assert (!value->lazy);
372
373 return !ranges_contain (value->unavailable, offset, length);
374 }
375
376 int
377 value_bytes_available (const struct value *value,
378 LONGEST offset, LONGEST length)
379 {
380 return value_bits_available (value,
381 offset * TARGET_CHAR_BIT,
382 length * TARGET_CHAR_BIT);
383 }
384
385 int
386 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
387 {
388 gdb_assert (!value->lazy);
389
390 return ranges_contain (value->optimized_out, bit_offset, bit_length);
391 }
392
393 int
394 value_entirely_available (struct value *value)
395 {
396 /* We can only tell whether the whole value is available when we try
397 to read it. */
398 if (value->lazy)
399 value_fetch_lazy (value);
400
401 if (value->unavailable.empty ())
402 return 1;
403 return 0;
404 }
405
406 /* Returns true if VALUE is entirely covered by RANGES. If the value
407 is lazy, it'll be read now. Note that RANGE is a pointer to
408 pointer because reading the value might change *RANGE. */
409
410 static int
411 value_entirely_covered_by_range_vector (struct value *value,
412 const std::vector<range> &ranges)
413 {
414 /* We can only tell whether the whole value is optimized out /
415 unavailable when we try to read it. */
416 if (value->lazy)
417 value_fetch_lazy (value);
418
419 if (ranges.size () == 1)
420 {
421 const struct range &t = ranges[0];
422
423 if (t.offset == 0
424 && t.length == (TARGET_CHAR_BIT
425 * TYPE_LENGTH (value_enclosing_type (value))))
426 return 1;
427 }
428
429 return 0;
430 }
431
432 int
433 value_entirely_unavailable (struct value *value)
434 {
435 return value_entirely_covered_by_range_vector (value, value->unavailable);
436 }
437
438 int
439 value_entirely_optimized_out (struct value *value)
440 {
441 return value_entirely_covered_by_range_vector (value, value->optimized_out);
442 }
443
444 /* Insert into the vector pointed to by VECTORP the bit range starting of
445 OFFSET bits, and extending for the next LENGTH bits. */
446
447 static void
448 insert_into_bit_range_vector (std::vector<range> *vectorp,
449 LONGEST offset, LONGEST length)
450 {
451 range newr;
452
453 /* Insert the range sorted. If there's overlap or the new range
454 would be contiguous with an existing range, merge. */
455
456 newr.offset = offset;
457 newr.length = length;
458
459 /* Do a binary search for the position the given range would be
460 inserted if we only considered the starting OFFSET of ranges.
461 Call that position I. Since we also have LENGTH to care for
462 (this is a range afterall), we need to check if the _previous_
463 range overlaps the I range. E.g., calling R the new range:
464
465 #1 - overlaps with previous
466
467 R
468 |-...-|
469 |---| |---| |------| ... |--|
470 0 1 2 N
471
472 I=1
473
474 In the case #1 above, the binary search would return `I=1',
475 meaning, this OFFSET should be inserted at position 1, and the
476 current position 1 should be pushed further (and become 2). But,
477 note that `0' overlaps with R, so we want to merge them.
478
479 A similar consideration needs to be taken if the new range would
480 be contiguous with the previous range:
481
482 #2 - contiguous with previous
483
484 R
485 |-...-|
486 |--| |---| |------| ... |--|
487 0 1 2 N
488
489 I=1
490
491 If there's no overlap with the previous range, as in:
492
493 #3 - not overlapping and not contiguous
494
495 R
496 |-...-|
497 |--| |---| |------| ... |--|
498 0 1 2 N
499
500 I=1
501
502 or if I is 0:
503
504 #4 - R is the range with lowest offset
505
506 R
507 |-...-|
508 |--| |---| |------| ... |--|
509 0 1 2 N
510
511 I=0
512
513 ... we just push the new range to I.
514
515 All the 4 cases above need to consider that the new range may
516 also overlap several of the ranges that follow, or that R may be
517 contiguous with the following range, and merge. E.g.,
518
519 #5 - overlapping following ranges
520
521 R
522 |------------------------|
523 |--| |---| |------| ... |--|
524 0 1 2 N
525
526 I=0
527
528 or:
529
530 R
531 |-------|
532 |--| |---| |------| ... |--|
533 0 1 2 N
534
535 I=1
536
537 */
538
539 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
540 if (i > vectorp->begin ())
541 {
542 struct range &bef = *(i - 1);
543
544 if (ranges_overlap (bef.offset, bef.length, offset, length))
545 {
546 /* #1 */
547 ULONGEST l = std::min (bef.offset, offset);
548 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
549
550 bef.offset = l;
551 bef.length = h - l;
552 i--;
553 }
554 else if (offset == bef.offset + bef.length)
555 {
556 /* #2 */
557 bef.length += length;
558 i--;
559 }
560 else
561 {
562 /* #3 */
563 i = vectorp->insert (i, newr);
564 }
565 }
566 else
567 {
568 /* #4 */
569 i = vectorp->insert (i, newr);
570 }
571
572 /* Check whether the ranges following the one we've just added or
573 touched can be folded in (#5 above). */
574 if (i != vectorp->end () && i + 1 < vectorp->end ())
575 {
576 int removed = 0;
577 auto next = i + 1;
578
579 /* Get the range we just touched. */
580 struct range &t = *i;
581 removed = 0;
582
583 i = next;
584 for (; i < vectorp->end (); i++)
585 {
586 struct range &r = *i;
587 if (r.offset <= t.offset + t.length)
588 {
589 ULONGEST l, h;
590
591 l = std::min (t.offset, r.offset);
592 h = std::max (t.offset + t.length, r.offset + r.length);
593
594 t.offset = l;
595 t.length = h - l;
596
597 removed++;
598 }
599 else
600 {
601 /* If we couldn't merge this one, we won't be able to
602 merge following ones either, since the ranges are
603 always sorted by OFFSET. */
604 break;
605 }
606 }
607
608 if (removed != 0)
609 vectorp->erase (next, next + removed);
610 }
611 }
612
613 void
614 mark_value_bits_unavailable (struct value *value,
615 LONGEST offset, LONGEST length)
616 {
617 insert_into_bit_range_vector (&value->unavailable, offset, length);
618 }
619
620 void
621 mark_value_bytes_unavailable (struct value *value,
622 LONGEST offset, LONGEST length)
623 {
624 mark_value_bits_unavailable (value,
625 offset * TARGET_CHAR_BIT,
626 length * TARGET_CHAR_BIT);
627 }
628
629 /* Find the first range in RANGES that overlaps the range defined by
630 OFFSET and LENGTH, starting at element POS in the RANGES vector,
631 Returns the index into RANGES where such overlapping range was
632 found, or -1 if none was found. */
633
634 static int
635 find_first_range_overlap (const std::vector<range> *ranges, int pos,
636 LONGEST offset, LONGEST length)
637 {
638 int i;
639
640 for (i = pos; i < ranges->size (); i++)
641 {
642 const range &r = (*ranges)[i];
643 if (ranges_overlap (r.offset, r.length, offset, length))
644 return i;
645 }
646
647 return -1;
648 }
649
650 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
651 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
652 return non-zero.
653
654 It must always be the case that:
655 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
656
657 It is assumed that memory can be accessed from:
658 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
659 to:
660 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
661 / TARGET_CHAR_BIT) */
662 static int
663 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
664 const gdb_byte *ptr2, size_t offset2_bits,
665 size_t length_bits)
666 {
667 gdb_assert (offset1_bits % TARGET_CHAR_BIT
668 == offset2_bits % TARGET_CHAR_BIT);
669
670 if (offset1_bits % TARGET_CHAR_BIT != 0)
671 {
672 size_t bits;
673 gdb_byte mask, b1, b2;
674
675 /* The offset from the base pointers PTR1 and PTR2 is not a complete
676 number of bytes. A number of bits up to either the next exact
677 byte boundary, or LENGTH_BITS (which ever is sooner) will be
678 compared. */
679 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
680 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
681 mask = (1 << bits) - 1;
682
683 if (length_bits < bits)
684 {
685 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
686 bits = length_bits;
687 }
688
689 /* Now load the two bytes and mask off the bits we care about. */
690 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
691 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
692
693 if (b1 != b2)
694 return 1;
695
696 /* Now update the length and offsets to take account of the bits
697 we've just compared. */
698 length_bits -= bits;
699 offset1_bits += bits;
700 offset2_bits += bits;
701 }
702
703 if (length_bits % TARGET_CHAR_BIT != 0)
704 {
705 size_t bits;
706 size_t o1, o2;
707 gdb_byte mask, b1, b2;
708
709 /* The length is not an exact number of bytes. After the previous
710 IF.. block then the offsets are byte aligned, or the
711 length is zero (in which case this code is not reached). Compare
712 a number of bits at the end of the region, starting from an exact
713 byte boundary. */
714 bits = length_bits % TARGET_CHAR_BIT;
715 o1 = offset1_bits + length_bits - bits;
716 o2 = offset2_bits + length_bits - bits;
717
718 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
719 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
720
721 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
722 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
723
724 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
725 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
726
727 if (b1 != b2)
728 return 1;
729
730 length_bits -= bits;
731 }
732
733 if (length_bits > 0)
734 {
735 /* We've now taken care of any stray "bits" at the start, or end of
736 the region to compare, the remainder can be covered with a simple
737 memcmp. */
738 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
739 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
740 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
741
742 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
743 ptr2 + offset2_bits / TARGET_CHAR_BIT,
744 length_bits / TARGET_CHAR_BIT);
745 }
746
747 /* Length is zero, regions match. */
748 return 0;
749 }
750
751 /* Helper struct for find_first_range_overlap_and_match and
752 value_contents_bits_eq. Keep track of which slot of a given ranges
753 vector have we last looked at. */
754
755 struct ranges_and_idx
756 {
757 /* The ranges. */
758 const std::vector<range> *ranges;
759
760 /* The range we've last found in RANGES. Given ranges are sorted,
761 we can start the next lookup here. */
762 int idx;
763 };
764
765 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
766 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
767 ranges starting at OFFSET2 bits. Return true if the ranges match
768 and fill in *L and *H with the overlapping window relative to
769 (both) OFFSET1 or OFFSET2. */
770
771 static int
772 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
773 struct ranges_and_idx *rp2,
774 LONGEST offset1, LONGEST offset2,
775 LONGEST length, ULONGEST *l, ULONGEST *h)
776 {
777 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
778 offset1, length);
779 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
780 offset2, length);
781
782 if (rp1->idx == -1 && rp2->idx == -1)
783 {
784 *l = length;
785 *h = length;
786 return 1;
787 }
788 else if (rp1->idx == -1 || rp2->idx == -1)
789 return 0;
790 else
791 {
792 const range *r1, *r2;
793 ULONGEST l1, h1;
794 ULONGEST l2, h2;
795
796 r1 = &(*rp1->ranges)[rp1->idx];
797 r2 = &(*rp2->ranges)[rp2->idx];
798
799 /* Get the unavailable windows intersected by the incoming
800 ranges. The first and last ranges that overlap the argument
801 range may be wider than said incoming arguments ranges. */
802 l1 = std::max (offset1, r1->offset);
803 h1 = std::min (offset1 + length, r1->offset + r1->length);
804
805 l2 = std::max (offset2, r2->offset);
806 h2 = std::min (offset2 + length, offset2 + r2->length);
807
808 /* Make them relative to the respective start offsets, so we can
809 compare them for equality. */
810 l1 -= offset1;
811 h1 -= offset1;
812
813 l2 -= offset2;
814 h2 -= offset2;
815
816 /* Different ranges, no match. */
817 if (l1 != l2 || h1 != h2)
818 return 0;
819
820 *h = h1;
821 *l = l1;
822 return 1;
823 }
824 }
825
826 /* Helper function for value_contents_eq. The only difference is that
827 this function is bit rather than byte based.
828
829 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
830 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
831 Return true if the available bits match. */
832
833 static bool
834 value_contents_bits_eq (const struct value *val1, int offset1,
835 const struct value *val2, int offset2,
836 int length)
837 {
838 /* Each array element corresponds to a ranges source (unavailable,
839 optimized out). '1' is for VAL1, '2' for VAL2. */
840 struct ranges_and_idx rp1[2], rp2[2];
841
842 /* See function description in value.h. */
843 gdb_assert (!val1->lazy && !val2->lazy);
844
845 /* We shouldn't be trying to compare past the end of the values. */
846 gdb_assert (offset1 + length
847 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
848 gdb_assert (offset2 + length
849 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
850
851 memset (&rp1, 0, sizeof (rp1));
852 memset (&rp2, 0, sizeof (rp2));
853 rp1[0].ranges = &val1->unavailable;
854 rp2[0].ranges = &val2->unavailable;
855 rp1[1].ranges = &val1->optimized_out;
856 rp2[1].ranges = &val2->optimized_out;
857
858 while (length > 0)
859 {
860 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
861 int i;
862
863 for (i = 0; i < 2; i++)
864 {
865 ULONGEST l_tmp, h_tmp;
866
867 /* The contents only match equal if the invalid/unavailable
868 contents ranges match as well. */
869 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
870 offset1, offset2, length,
871 &l_tmp, &h_tmp))
872 return false;
873
874 /* We're interested in the lowest/first range found. */
875 if (i == 0 || l_tmp < l)
876 {
877 l = l_tmp;
878 h = h_tmp;
879 }
880 }
881
882 /* Compare the available/valid contents. */
883 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
884 val2->contents.get (), offset2, l) != 0)
885 return false;
886
887 length -= h;
888 offset1 += h;
889 offset2 += h;
890 }
891
892 return true;
893 }
894
895 bool
896 value_contents_eq (const struct value *val1, LONGEST offset1,
897 const struct value *val2, LONGEST offset2,
898 LONGEST length)
899 {
900 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
901 val2, offset2 * TARGET_CHAR_BIT,
902 length * TARGET_CHAR_BIT);
903 }
904
905
906 /* The value-history records all the values printed by print commands
907 during this session. */
908
909 static std::vector<value_ref_ptr> value_history;
910
911 \f
912 /* List of all value objects currently allocated
913 (except for those released by calls to release_value)
914 This is so they can be freed after each command. */
915
916 static std::vector<value_ref_ptr> all_values;
917
918 /* Allocate a lazy value for type TYPE. Its actual content is
919 "lazily" allocated too: the content field of the return value is
920 NULL; it will be allocated when it is fetched from the target. */
921
922 struct value *
923 allocate_value_lazy (struct type *type)
924 {
925 struct value *val;
926
927 /* Call check_typedef on our type to make sure that, if TYPE
928 is a TYPE_CODE_TYPEDEF, its length is set to the length
929 of the target type instead of zero. However, we do not
930 replace the typedef type by the target type, because we want
931 to keep the typedef in order to be able to set the VAL's type
932 description correctly. */
933 check_typedef (type);
934
935 val = new struct value (type);
936
937 /* Values start out on the all_values chain. */
938 all_values.emplace_back (val);
939
940 return val;
941 }
942
943 /* The maximum size, in bytes, that GDB will try to allocate for a value.
944 The initial value of 64k was not selected for any specific reason, it is
945 just a reasonable starting point. */
946
947 static int max_value_size = 65536; /* 64k bytes */
948
949 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
950 LONGEST, otherwise GDB will not be able to parse integer values from the
951 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
952 be unable to parse "set max-value-size 2".
953
954 As we want a consistent GDB experience across hosts with different sizes
955 of LONGEST, this arbitrary minimum value was selected, so long as this
956 is bigger than LONGEST on all GDB supported hosts we're fine. */
957
958 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
959 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
960
961 /* Implement the "set max-value-size" command. */
962
963 static void
964 set_max_value_size (const char *args, int from_tty,
965 struct cmd_list_element *c)
966 {
967 gdb_assert (max_value_size == -1 || max_value_size >= 0);
968
969 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
970 {
971 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
972 error (_("max-value-size set too low, increasing to %d bytes"),
973 max_value_size);
974 }
975 }
976
977 /* Implement the "show max-value-size" command. */
978
979 static void
980 show_max_value_size (struct ui_file *file, int from_tty,
981 struct cmd_list_element *c, const char *value)
982 {
983 if (max_value_size == -1)
984 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
985 else
986 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
987 max_value_size);
988 }
989
990 /* Called before we attempt to allocate or reallocate a buffer for the
991 contents of a value. TYPE is the type of the value for which we are
992 allocating the buffer. If the buffer is too large (based on the user
993 controllable setting) then throw an error. If this function returns
994 then we should attempt to allocate the buffer. */
995
996 static void
997 check_type_length_before_alloc (const struct type *type)
998 {
999 unsigned int length = TYPE_LENGTH (type);
1000
1001 if (max_value_size > -1 && length > max_value_size)
1002 {
1003 if (TYPE_NAME (type) != NULL)
1004 error (_("value of type `%s' requires %u bytes, which is more "
1005 "than max-value-size"), TYPE_NAME (type), length);
1006 else
1007 error (_("value requires %u bytes, which is more than "
1008 "max-value-size"), length);
1009 }
1010 }
1011
1012 /* Allocate the contents of VAL if it has not been allocated yet. */
1013
1014 static void
1015 allocate_value_contents (struct value *val)
1016 {
1017 if (!val->contents)
1018 {
1019 check_type_length_before_alloc (val->enclosing_type);
1020 val->contents.reset
1021 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
1022 }
1023 }
1024
1025 /* Allocate a value and its contents for type TYPE. */
1026
1027 struct value *
1028 allocate_value (struct type *type)
1029 {
1030 struct value *val = allocate_value_lazy (type);
1031
1032 allocate_value_contents (val);
1033 val->lazy = 0;
1034 return val;
1035 }
1036
1037 /* Allocate a value that has the correct length
1038 for COUNT repetitions of type TYPE. */
1039
1040 struct value *
1041 allocate_repeat_value (struct type *type, int count)
1042 {
1043 int low_bound = current_language->string_lower_bound; /* ??? */
1044 /* FIXME-type-allocation: need a way to free this type when we are
1045 done with it. */
1046 struct type *array_type
1047 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1048
1049 return allocate_value (array_type);
1050 }
1051
1052 struct value *
1053 allocate_computed_value (struct type *type,
1054 const struct lval_funcs *funcs,
1055 void *closure)
1056 {
1057 struct value *v = allocate_value_lazy (type);
1058
1059 VALUE_LVAL (v) = lval_computed;
1060 v->location.computed.funcs = funcs;
1061 v->location.computed.closure = closure;
1062
1063 return v;
1064 }
1065
1066 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1067
1068 struct value *
1069 allocate_optimized_out_value (struct type *type)
1070 {
1071 struct value *retval = allocate_value_lazy (type);
1072
1073 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1074 set_value_lazy (retval, 0);
1075 return retval;
1076 }
1077
1078 /* Accessor methods. */
1079
1080 struct type *
1081 value_type (const struct value *value)
1082 {
1083 return value->type;
1084 }
1085 void
1086 deprecated_set_value_type (struct value *value, struct type *type)
1087 {
1088 value->type = type;
1089 }
1090
1091 LONGEST
1092 value_offset (const struct value *value)
1093 {
1094 return value->offset;
1095 }
1096 void
1097 set_value_offset (struct value *value, LONGEST offset)
1098 {
1099 value->offset = offset;
1100 }
1101
1102 LONGEST
1103 value_bitpos (const struct value *value)
1104 {
1105 return value->bitpos;
1106 }
1107 void
1108 set_value_bitpos (struct value *value, LONGEST bit)
1109 {
1110 value->bitpos = bit;
1111 }
1112
1113 LONGEST
1114 value_bitsize (const struct value *value)
1115 {
1116 return value->bitsize;
1117 }
1118 void
1119 set_value_bitsize (struct value *value, LONGEST bit)
1120 {
1121 value->bitsize = bit;
1122 }
1123
1124 struct value *
1125 value_parent (const struct value *value)
1126 {
1127 return value->parent.get ();
1128 }
1129
1130 /* See value.h. */
1131
1132 void
1133 set_value_parent (struct value *value, struct value *parent)
1134 {
1135 value->parent = value_ref_ptr::new_reference (parent);
1136 }
1137
1138 gdb_byte *
1139 value_contents_raw (struct value *value)
1140 {
1141 struct gdbarch *arch = get_value_arch (value);
1142 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1143
1144 allocate_value_contents (value);
1145 return value->contents.get () + value->embedded_offset * unit_size;
1146 }
1147
1148 gdb_byte *
1149 value_contents_all_raw (struct value *value)
1150 {
1151 allocate_value_contents (value);
1152 return value->contents.get ();
1153 }
1154
1155 struct type *
1156 value_enclosing_type (const struct value *value)
1157 {
1158 return value->enclosing_type;
1159 }
1160
1161 /* Look at value.h for description. */
1162
1163 struct type *
1164 value_actual_type (struct value *value, int resolve_simple_types,
1165 int *real_type_found)
1166 {
1167 struct value_print_options opts;
1168 struct type *result;
1169
1170 get_user_print_options (&opts);
1171
1172 if (real_type_found)
1173 *real_type_found = 0;
1174 result = value_type (value);
1175 if (opts.objectprint)
1176 {
1177 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1178 fetch its rtti type. */
1179 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1180 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1181 == TYPE_CODE_STRUCT
1182 && !value_optimized_out (value))
1183 {
1184 struct type *real_type;
1185
1186 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1187 if (real_type)
1188 {
1189 if (real_type_found)
1190 *real_type_found = 1;
1191 result = real_type;
1192 }
1193 }
1194 else if (resolve_simple_types)
1195 {
1196 if (real_type_found)
1197 *real_type_found = 1;
1198 result = value_enclosing_type (value);
1199 }
1200 }
1201
1202 return result;
1203 }
1204
1205 void
1206 error_value_optimized_out (void)
1207 {
1208 error (_("value has been optimized out"));
1209 }
1210
1211 static void
1212 require_not_optimized_out (const struct value *value)
1213 {
1214 if (!value->optimized_out.empty ())
1215 {
1216 if (value->lval == lval_register)
1217 error (_("register has not been saved in frame"));
1218 else
1219 error_value_optimized_out ();
1220 }
1221 }
1222
1223 static void
1224 require_available (const struct value *value)
1225 {
1226 if (!value->unavailable.empty ())
1227 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1228 }
1229
1230 const gdb_byte *
1231 value_contents_for_printing (struct value *value)
1232 {
1233 if (value->lazy)
1234 value_fetch_lazy (value);
1235 return value->contents.get ();
1236 }
1237
1238 const gdb_byte *
1239 value_contents_for_printing_const (const struct value *value)
1240 {
1241 gdb_assert (!value->lazy);
1242 return value->contents.get ();
1243 }
1244
1245 const gdb_byte *
1246 value_contents_all (struct value *value)
1247 {
1248 const gdb_byte *result = value_contents_for_printing (value);
1249 require_not_optimized_out (value);
1250 require_available (value);
1251 return result;
1252 }
1253
1254 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1255 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1256
1257 static void
1258 ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1259 const std::vector<range> &src_range, int src_bit_offset,
1260 int bit_length)
1261 {
1262 for (const range &r : src_range)
1263 {
1264 ULONGEST h, l;
1265
1266 l = std::max (r.offset, (LONGEST) src_bit_offset);
1267 h = std::min (r.offset + r.length,
1268 (LONGEST) src_bit_offset + bit_length);
1269
1270 if (l < h)
1271 insert_into_bit_range_vector (dst_range,
1272 dst_bit_offset + (l - src_bit_offset),
1273 h - l);
1274 }
1275 }
1276
1277 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1278 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1279
1280 static void
1281 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1282 const struct value *src, int src_bit_offset,
1283 int bit_length)
1284 {
1285 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1286 src->unavailable, src_bit_offset,
1287 bit_length);
1288 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1289 src->optimized_out, src_bit_offset,
1290 bit_length);
1291 }
1292
1293 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1294 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1295 contents, starting at DST_OFFSET. If unavailable contents are
1296 being copied from SRC, the corresponding DST contents are marked
1297 unavailable accordingly. Neither DST nor SRC may be lazy
1298 values.
1299
1300 It is assumed the contents of DST in the [DST_OFFSET,
1301 DST_OFFSET+LENGTH) range are wholly available. */
1302
1303 void
1304 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1305 struct value *src, LONGEST src_offset, LONGEST length)
1306 {
1307 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1308 struct gdbarch *arch = get_value_arch (src);
1309 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1310
1311 /* A lazy DST would make that this copy operation useless, since as
1312 soon as DST's contents were un-lazied (by a later value_contents
1313 call, say), the contents would be overwritten. A lazy SRC would
1314 mean we'd be copying garbage. */
1315 gdb_assert (!dst->lazy && !src->lazy);
1316
1317 /* The overwritten DST range gets unavailability ORed in, not
1318 replaced. Make sure to remember to implement replacing if it
1319 turns out actually necessary. */
1320 gdb_assert (value_bytes_available (dst, dst_offset, length));
1321 gdb_assert (!value_bits_any_optimized_out (dst,
1322 TARGET_CHAR_BIT * dst_offset,
1323 TARGET_CHAR_BIT * length));
1324
1325 /* Copy the data. */
1326 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1327 value_contents_all_raw (src) + src_offset * unit_size,
1328 length * unit_size);
1329
1330 /* Copy the meta-data, adjusted. */
1331 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1332 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1333 bit_length = length * unit_size * HOST_CHAR_BIT;
1334
1335 value_ranges_copy_adjusted (dst, dst_bit_offset,
1336 src, src_bit_offset,
1337 bit_length);
1338 }
1339
1340 /* Copy LENGTH bytes of SRC value's (all) contents
1341 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1342 (all) contents, starting at DST_OFFSET. If unavailable contents
1343 are being copied from SRC, the corresponding DST contents are
1344 marked unavailable accordingly. DST must not be lazy. If SRC is
1345 lazy, it will be fetched now.
1346
1347 It is assumed the contents of DST in the [DST_OFFSET,
1348 DST_OFFSET+LENGTH) range are wholly available. */
1349
1350 void
1351 value_contents_copy (struct value *dst, LONGEST dst_offset,
1352 struct value *src, LONGEST src_offset, LONGEST length)
1353 {
1354 if (src->lazy)
1355 value_fetch_lazy (src);
1356
1357 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1358 }
1359
1360 int
1361 value_lazy (const struct value *value)
1362 {
1363 return value->lazy;
1364 }
1365
1366 void
1367 set_value_lazy (struct value *value, int val)
1368 {
1369 value->lazy = val;
1370 }
1371
1372 int
1373 value_stack (const struct value *value)
1374 {
1375 return value->stack;
1376 }
1377
1378 void
1379 set_value_stack (struct value *value, int val)
1380 {
1381 value->stack = val;
1382 }
1383
1384 const gdb_byte *
1385 value_contents (struct value *value)
1386 {
1387 const gdb_byte *result = value_contents_writeable (value);
1388 require_not_optimized_out (value);
1389 require_available (value);
1390 return result;
1391 }
1392
1393 gdb_byte *
1394 value_contents_writeable (struct value *value)
1395 {
1396 if (value->lazy)
1397 value_fetch_lazy (value);
1398 return value_contents_raw (value);
1399 }
1400
1401 int
1402 value_optimized_out (struct value *value)
1403 {
1404 /* We can only know if a value is optimized out once we have tried to
1405 fetch it. */
1406 if (value->optimized_out.empty () && value->lazy)
1407 {
1408 TRY
1409 {
1410 value_fetch_lazy (value);
1411 }
1412 CATCH (ex, RETURN_MASK_ERROR)
1413 {
1414 /* Fall back to checking value->optimized_out. */
1415 }
1416 END_CATCH
1417 }
1418
1419 return !value->optimized_out.empty ();
1420 }
1421
1422 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1423 the following LENGTH bytes. */
1424
1425 void
1426 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1427 {
1428 mark_value_bits_optimized_out (value,
1429 offset * TARGET_CHAR_BIT,
1430 length * TARGET_CHAR_BIT);
1431 }
1432
1433 /* See value.h. */
1434
1435 void
1436 mark_value_bits_optimized_out (struct value *value,
1437 LONGEST offset, LONGEST length)
1438 {
1439 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1440 }
1441
1442 int
1443 value_bits_synthetic_pointer (const struct value *value,
1444 LONGEST offset, LONGEST length)
1445 {
1446 if (value->lval != lval_computed
1447 || !value->location.computed.funcs->check_synthetic_pointer)
1448 return 0;
1449 return value->location.computed.funcs->check_synthetic_pointer (value,
1450 offset,
1451 length);
1452 }
1453
1454 LONGEST
1455 value_embedded_offset (const struct value *value)
1456 {
1457 return value->embedded_offset;
1458 }
1459
1460 void
1461 set_value_embedded_offset (struct value *value, LONGEST val)
1462 {
1463 value->embedded_offset = val;
1464 }
1465
1466 LONGEST
1467 value_pointed_to_offset (const struct value *value)
1468 {
1469 return value->pointed_to_offset;
1470 }
1471
1472 void
1473 set_value_pointed_to_offset (struct value *value, LONGEST val)
1474 {
1475 value->pointed_to_offset = val;
1476 }
1477
1478 const struct lval_funcs *
1479 value_computed_funcs (const struct value *v)
1480 {
1481 gdb_assert (value_lval_const (v) == lval_computed);
1482
1483 return v->location.computed.funcs;
1484 }
1485
1486 void *
1487 value_computed_closure (const struct value *v)
1488 {
1489 gdb_assert (v->lval == lval_computed);
1490
1491 return v->location.computed.closure;
1492 }
1493
1494 enum lval_type *
1495 deprecated_value_lval_hack (struct value *value)
1496 {
1497 return &value->lval;
1498 }
1499
1500 enum lval_type
1501 value_lval_const (const struct value *value)
1502 {
1503 return value->lval;
1504 }
1505
1506 CORE_ADDR
1507 value_address (const struct value *value)
1508 {
1509 if (value->lval != lval_memory)
1510 return 0;
1511 if (value->parent != NULL)
1512 return value_address (value->parent.get ()) + value->offset;
1513 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1514 {
1515 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1516 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1517 }
1518
1519 return value->location.address + value->offset;
1520 }
1521
1522 CORE_ADDR
1523 value_raw_address (const struct value *value)
1524 {
1525 if (value->lval != lval_memory)
1526 return 0;
1527 return value->location.address;
1528 }
1529
1530 void
1531 set_value_address (struct value *value, CORE_ADDR addr)
1532 {
1533 gdb_assert (value->lval == lval_memory);
1534 value->location.address = addr;
1535 }
1536
1537 struct internalvar **
1538 deprecated_value_internalvar_hack (struct value *value)
1539 {
1540 return &value->location.internalvar;
1541 }
1542
1543 struct frame_id *
1544 deprecated_value_next_frame_id_hack (struct value *value)
1545 {
1546 gdb_assert (value->lval == lval_register);
1547 return &value->location.reg.next_frame_id;
1548 }
1549
1550 int *
1551 deprecated_value_regnum_hack (struct value *value)
1552 {
1553 gdb_assert (value->lval == lval_register);
1554 return &value->location.reg.regnum;
1555 }
1556
1557 int
1558 deprecated_value_modifiable (const struct value *value)
1559 {
1560 return value->modifiable;
1561 }
1562 \f
1563 /* Return a mark in the value chain. All values allocated after the
1564 mark is obtained (except for those released) are subject to being freed
1565 if a subsequent value_free_to_mark is passed the mark. */
1566 struct value *
1567 value_mark (void)
1568 {
1569 if (all_values.empty ())
1570 return nullptr;
1571 return all_values.back ().get ();
1572 }
1573
1574 /* See value.h. */
1575
1576 void
1577 value_incref (struct value *val)
1578 {
1579 val->reference_count++;
1580 }
1581
1582 /* Release a reference to VAL, which was acquired with value_incref.
1583 This function is also called to deallocate values from the value
1584 chain. */
1585
1586 void
1587 value_decref (struct value *val)
1588 {
1589 if (val != nullptr)
1590 {
1591 gdb_assert (val->reference_count > 0);
1592 val->reference_count--;
1593 if (val->reference_count == 0)
1594 delete val;
1595 }
1596 }
1597
1598 /* Free all values allocated since MARK was obtained by value_mark
1599 (except for those released). */
1600 void
1601 value_free_to_mark (const struct value *mark)
1602 {
1603 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1604 if (iter == all_values.end ())
1605 all_values.clear ();
1606 else
1607 all_values.erase (iter + 1, all_values.end ());
1608 }
1609
1610 /* Remove VAL from the chain all_values
1611 so it will not be freed automatically. */
1612
1613 value_ref_ptr
1614 release_value (struct value *val)
1615 {
1616 if (val == nullptr)
1617 return value_ref_ptr ();
1618
1619 std::vector<value_ref_ptr>::reverse_iterator iter;
1620 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
1621 {
1622 if (*iter == val)
1623 {
1624 value_ref_ptr result = *iter;
1625 all_values.erase (iter.base () - 1);
1626 return result;
1627 }
1628 }
1629
1630 /* We must always return an owned reference. Normally this happens
1631 because we transfer the reference from the value chain, but in
1632 this case the value was not on the chain. */
1633 return value_ref_ptr::new_reference (val);
1634 }
1635
1636 /* See value.h. */
1637
1638 std::vector<value_ref_ptr>
1639 value_release_to_mark (const struct value *mark)
1640 {
1641 std::vector<value_ref_ptr> result;
1642
1643 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1644 if (iter == all_values.end ())
1645 std::swap (result, all_values);
1646 else
1647 {
1648 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1649 all_values.erase (iter + 1, all_values.end ());
1650 }
1651 std::reverse (result.begin (), result.end ());
1652 return result;
1653 }
1654
1655 /* Return a copy of the value ARG.
1656 It contains the same contents, for same memory address,
1657 but it's a different block of storage. */
1658
1659 struct value *
1660 value_copy (struct value *arg)
1661 {
1662 struct type *encl_type = value_enclosing_type (arg);
1663 struct value *val;
1664
1665 if (value_lazy (arg))
1666 val = allocate_value_lazy (encl_type);
1667 else
1668 val = allocate_value (encl_type);
1669 val->type = arg->type;
1670 VALUE_LVAL (val) = VALUE_LVAL (arg);
1671 val->location = arg->location;
1672 val->offset = arg->offset;
1673 val->bitpos = arg->bitpos;
1674 val->bitsize = arg->bitsize;
1675 val->lazy = arg->lazy;
1676 val->embedded_offset = value_embedded_offset (arg);
1677 val->pointed_to_offset = arg->pointed_to_offset;
1678 val->modifiable = arg->modifiable;
1679 if (!value_lazy (val))
1680 {
1681 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1682 TYPE_LENGTH (value_enclosing_type (arg)));
1683
1684 }
1685 val->unavailable = arg->unavailable;
1686 val->optimized_out = arg->optimized_out;
1687 val->parent = arg->parent;
1688 if (VALUE_LVAL (val) == lval_computed)
1689 {
1690 const struct lval_funcs *funcs = val->location.computed.funcs;
1691
1692 if (funcs->copy_closure)
1693 val->location.computed.closure = funcs->copy_closure (val);
1694 }
1695 return val;
1696 }
1697
1698 /* Return a "const" and/or "volatile" qualified version of the value V.
1699 If CNST is true, then the returned value will be qualified with
1700 "const".
1701 if VOLTL is true, then the returned value will be qualified with
1702 "volatile". */
1703
1704 struct value *
1705 make_cv_value (int cnst, int voltl, struct value *v)
1706 {
1707 struct type *val_type = value_type (v);
1708 struct type *enclosing_type = value_enclosing_type (v);
1709 struct value *cv_val = value_copy (v);
1710
1711 deprecated_set_value_type (cv_val,
1712 make_cv_type (cnst, voltl, val_type, NULL));
1713 set_value_enclosing_type (cv_val,
1714 make_cv_type (cnst, voltl, enclosing_type, NULL));
1715
1716 return cv_val;
1717 }
1718
1719 /* Return a version of ARG that is non-lvalue. */
1720
1721 struct value *
1722 value_non_lval (struct value *arg)
1723 {
1724 if (VALUE_LVAL (arg) != not_lval)
1725 {
1726 struct type *enc_type = value_enclosing_type (arg);
1727 struct value *val = allocate_value (enc_type);
1728
1729 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1730 TYPE_LENGTH (enc_type));
1731 val->type = arg->type;
1732 set_value_embedded_offset (val, value_embedded_offset (arg));
1733 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1734 return val;
1735 }
1736 return arg;
1737 }
1738
1739 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1740
1741 void
1742 value_force_lval (struct value *v, CORE_ADDR addr)
1743 {
1744 gdb_assert (VALUE_LVAL (v) == not_lval);
1745
1746 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1747 v->lval = lval_memory;
1748 v->location.address = addr;
1749 }
1750
1751 void
1752 set_value_component_location (struct value *component,
1753 const struct value *whole)
1754 {
1755 struct type *type;
1756
1757 gdb_assert (whole->lval != lval_xcallable);
1758
1759 if (whole->lval == lval_internalvar)
1760 VALUE_LVAL (component) = lval_internalvar_component;
1761 else
1762 VALUE_LVAL (component) = whole->lval;
1763
1764 component->location = whole->location;
1765 if (whole->lval == lval_computed)
1766 {
1767 const struct lval_funcs *funcs = whole->location.computed.funcs;
1768
1769 if (funcs->copy_closure)
1770 component->location.computed.closure = funcs->copy_closure (whole);
1771 }
1772
1773 /* If type has a dynamic resolved location property
1774 update it's value address. */
1775 type = value_type (whole);
1776 if (NULL != TYPE_DATA_LOCATION (type)
1777 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1778 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1779 }
1780
1781 /* Access to the value history. */
1782
1783 /* Record a new value in the value history.
1784 Returns the absolute history index of the entry. */
1785
1786 int
1787 record_latest_value (struct value *val)
1788 {
1789 /* We don't want this value to have anything to do with the inferior anymore.
1790 In particular, "set $1 = 50" should not affect the variable from which
1791 the value was taken, and fast watchpoints should be able to assume that
1792 a value on the value history never changes. */
1793 if (value_lazy (val))
1794 value_fetch_lazy (val);
1795 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1796 from. This is a bit dubious, because then *&$1 does not just return $1
1797 but the current contents of that location. c'est la vie... */
1798 val->modifiable = 0;
1799
1800 value_history.push_back (release_value (val));
1801
1802 return value_history.size ();
1803 }
1804
1805 /* Return a copy of the value in the history with sequence number NUM. */
1806
1807 struct value *
1808 access_value_history (int num)
1809 {
1810 int absnum = num;
1811
1812 if (absnum <= 0)
1813 absnum += value_history.size ();
1814
1815 if (absnum <= 0)
1816 {
1817 if (num == 0)
1818 error (_("The history is empty."));
1819 else if (num == 1)
1820 error (_("There is only one value in the history."));
1821 else
1822 error (_("History does not go back to $$%d."), -num);
1823 }
1824 if (absnum > value_history.size ())
1825 error (_("History has not yet reached $%d."), absnum);
1826
1827 absnum--;
1828
1829 return value_copy (value_history[absnum].get ());
1830 }
1831
1832 static void
1833 show_values (const char *num_exp, int from_tty)
1834 {
1835 int i;
1836 struct value *val;
1837 static int num = 1;
1838
1839 if (num_exp)
1840 {
1841 /* "show values +" should print from the stored position.
1842 "show values <exp>" should print around value number <exp>. */
1843 if (num_exp[0] != '+' || num_exp[1] != '\0')
1844 num = parse_and_eval_long (num_exp) - 5;
1845 }
1846 else
1847 {
1848 /* "show values" means print the last 10 values. */
1849 num = value_history.size () - 9;
1850 }
1851
1852 if (num <= 0)
1853 num = 1;
1854
1855 for (i = num; i < num + 10 && i <= value_history.size (); i++)
1856 {
1857 struct value_print_options opts;
1858
1859 val = access_value_history (i);
1860 printf_filtered (("$%d = "), i);
1861 get_user_print_options (&opts);
1862 value_print (val, gdb_stdout, &opts);
1863 printf_filtered (("\n"));
1864 }
1865
1866 /* The next "show values +" should start after what we just printed. */
1867 num += 10;
1868
1869 /* Hitting just return after this command should do the same thing as
1870 "show values +". If num_exp is null, this is unnecessary, since
1871 "show values +" is not useful after "show values". */
1872 if (from_tty && num_exp)
1873 set_repeat_arguments ("+");
1874 }
1875 \f
1876 enum internalvar_kind
1877 {
1878 /* The internal variable is empty. */
1879 INTERNALVAR_VOID,
1880
1881 /* The value of the internal variable is provided directly as
1882 a GDB value object. */
1883 INTERNALVAR_VALUE,
1884
1885 /* A fresh value is computed via a call-back routine on every
1886 access to the internal variable. */
1887 INTERNALVAR_MAKE_VALUE,
1888
1889 /* The internal variable holds a GDB internal convenience function. */
1890 INTERNALVAR_FUNCTION,
1891
1892 /* The variable holds an integer value. */
1893 INTERNALVAR_INTEGER,
1894
1895 /* The variable holds a GDB-provided string. */
1896 INTERNALVAR_STRING,
1897 };
1898
1899 union internalvar_data
1900 {
1901 /* A value object used with INTERNALVAR_VALUE. */
1902 struct value *value;
1903
1904 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1905 struct
1906 {
1907 /* The functions to call. */
1908 const struct internalvar_funcs *functions;
1909
1910 /* The function's user-data. */
1911 void *data;
1912 } make_value;
1913
1914 /* The internal function used with INTERNALVAR_FUNCTION. */
1915 struct
1916 {
1917 struct internal_function *function;
1918 /* True if this is the canonical name for the function. */
1919 int canonical;
1920 } fn;
1921
1922 /* An integer value used with INTERNALVAR_INTEGER. */
1923 struct
1924 {
1925 /* If type is non-NULL, it will be used as the type to generate
1926 a value for this internal variable. If type is NULL, a default
1927 integer type for the architecture is used. */
1928 struct type *type;
1929 LONGEST val;
1930 } integer;
1931
1932 /* A string value used with INTERNALVAR_STRING. */
1933 char *string;
1934 };
1935
1936 /* Internal variables. These are variables within the debugger
1937 that hold values assigned by debugger commands.
1938 The user refers to them with a '$' prefix
1939 that does not appear in the variable names stored internally. */
1940
1941 struct internalvar
1942 {
1943 struct internalvar *next;
1944 char *name;
1945
1946 /* We support various different kinds of content of an internal variable.
1947 enum internalvar_kind specifies the kind, and union internalvar_data
1948 provides the data associated with this particular kind. */
1949
1950 enum internalvar_kind kind;
1951
1952 union internalvar_data u;
1953 };
1954
1955 static struct internalvar *internalvars;
1956
1957 /* If the variable does not already exist create it and give it the
1958 value given. If no value is given then the default is zero. */
1959 static void
1960 init_if_undefined_command (const char* args, int from_tty)
1961 {
1962 struct internalvar* intvar;
1963
1964 /* Parse the expression - this is taken from set_command(). */
1965 expression_up expr = parse_expression (args);
1966
1967 /* Validate the expression.
1968 Was the expression an assignment?
1969 Or even an expression at all? */
1970 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1971 error (_("Init-if-undefined requires an assignment expression."));
1972
1973 /* Extract the variable from the parsed expression.
1974 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1975 if (expr->elts[1].opcode != OP_INTERNALVAR)
1976 error (_("The first parameter to init-if-undefined "
1977 "should be a GDB variable."));
1978 intvar = expr->elts[2].internalvar;
1979
1980 /* Only evaluate the expression if the lvalue is void.
1981 This may still fail if the expresssion is invalid. */
1982 if (intvar->kind == INTERNALVAR_VOID)
1983 evaluate_expression (expr.get ());
1984 }
1985
1986
1987 /* Look up an internal variable with name NAME. NAME should not
1988 normally include a dollar sign.
1989
1990 If the specified internal variable does not exist,
1991 the return value is NULL. */
1992
1993 struct internalvar *
1994 lookup_only_internalvar (const char *name)
1995 {
1996 struct internalvar *var;
1997
1998 for (var = internalvars; var; var = var->next)
1999 if (strcmp (var->name, name) == 0)
2000 return var;
2001
2002 return NULL;
2003 }
2004
2005 /* Complete NAME by comparing it to the names of internal
2006 variables. */
2007
2008 void
2009 complete_internalvar (completion_tracker &tracker, const char *name)
2010 {
2011 struct internalvar *var;
2012 int len;
2013
2014 len = strlen (name);
2015
2016 for (var = internalvars; var; var = var->next)
2017 if (strncmp (var->name, name, len) == 0)
2018 {
2019 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
2020
2021 tracker.add_completion (std::move (copy));
2022 }
2023 }
2024
2025 /* Create an internal variable with name NAME and with a void value.
2026 NAME should not normally include a dollar sign. */
2027
2028 struct internalvar *
2029 create_internalvar (const char *name)
2030 {
2031 struct internalvar *var = XNEW (struct internalvar);
2032
2033 var->name = concat (name, (char *)NULL);
2034 var->kind = INTERNALVAR_VOID;
2035 var->next = internalvars;
2036 internalvars = var;
2037 return var;
2038 }
2039
2040 /* Create an internal variable with name NAME and register FUN as the
2041 function that value_of_internalvar uses to create a value whenever
2042 this variable is referenced. NAME should not normally include a
2043 dollar sign. DATA is passed uninterpreted to FUN when it is
2044 called. CLEANUP, if not NULL, is called when the internal variable
2045 is destroyed. It is passed DATA as its only argument. */
2046
2047 struct internalvar *
2048 create_internalvar_type_lazy (const char *name,
2049 const struct internalvar_funcs *funcs,
2050 void *data)
2051 {
2052 struct internalvar *var = create_internalvar (name);
2053
2054 var->kind = INTERNALVAR_MAKE_VALUE;
2055 var->u.make_value.functions = funcs;
2056 var->u.make_value.data = data;
2057 return var;
2058 }
2059
2060 /* See documentation in value.h. */
2061
2062 int
2063 compile_internalvar_to_ax (struct internalvar *var,
2064 struct agent_expr *expr,
2065 struct axs_value *value)
2066 {
2067 if (var->kind != INTERNALVAR_MAKE_VALUE
2068 || var->u.make_value.functions->compile_to_ax == NULL)
2069 return 0;
2070
2071 var->u.make_value.functions->compile_to_ax (var, expr, value,
2072 var->u.make_value.data);
2073 return 1;
2074 }
2075
2076 /* Look up an internal variable with name NAME. NAME should not
2077 normally include a dollar sign.
2078
2079 If the specified internal variable does not exist,
2080 one is created, with a void value. */
2081
2082 struct internalvar *
2083 lookup_internalvar (const char *name)
2084 {
2085 struct internalvar *var;
2086
2087 var = lookup_only_internalvar (name);
2088 if (var)
2089 return var;
2090
2091 return create_internalvar (name);
2092 }
2093
2094 /* Return current value of internal variable VAR. For variables that
2095 are not inherently typed, use a value type appropriate for GDBARCH. */
2096
2097 struct value *
2098 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2099 {
2100 struct value *val;
2101 struct trace_state_variable *tsv;
2102
2103 /* If there is a trace state variable of the same name, assume that
2104 is what we really want to see. */
2105 tsv = find_trace_state_variable (var->name);
2106 if (tsv)
2107 {
2108 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2109 &(tsv->value));
2110 if (tsv->value_known)
2111 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2112 tsv->value);
2113 else
2114 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2115 return val;
2116 }
2117
2118 switch (var->kind)
2119 {
2120 case INTERNALVAR_VOID:
2121 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2122 break;
2123
2124 case INTERNALVAR_FUNCTION:
2125 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2126 break;
2127
2128 case INTERNALVAR_INTEGER:
2129 if (!var->u.integer.type)
2130 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2131 var->u.integer.val);
2132 else
2133 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2134 break;
2135
2136 case INTERNALVAR_STRING:
2137 val = value_cstring (var->u.string, strlen (var->u.string),
2138 builtin_type (gdbarch)->builtin_char);
2139 break;
2140
2141 case INTERNALVAR_VALUE:
2142 val = value_copy (var->u.value);
2143 if (value_lazy (val))
2144 value_fetch_lazy (val);
2145 break;
2146
2147 case INTERNALVAR_MAKE_VALUE:
2148 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2149 var->u.make_value.data);
2150 break;
2151
2152 default:
2153 internal_error (__FILE__, __LINE__, _("bad kind"));
2154 }
2155
2156 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2157 on this value go back to affect the original internal variable.
2158
2159 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2160 no underlying modifyable state in the internal variable.
2161
2162 Likewise, if the variable's value is a computed lvalue, we want
2163 references to it to produce another computed lvalue, where
2164 references and assignments actually operate through the
2165 computed value's functions.
2166
2167 This means that internal variables with computed values
2168 behave a little differently from other internal variables:
2169 assignments to them don't just replace the previous value
2170 altogether. At the moment, this seems like the behavior we
2171 want. */
2172
2173 if (var->kind != INTERNALVAR_MAKE_VALUE
2174 && val->lval != lval_computed)
2175 {
2176 VALUE_LVAL (val) = lval_internalvar;
2177 VALUE_INTERNALVAR (val) = var;
2178 }
2179
2180 return val;
2181 }
2182
2183 int
2184 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2185 {
2186 if (var->kind == INTERNALVAR_INTEGER)
2187 {
2188 *result = var->u.integer.val;
2189 return 1;
2190 }
2191
2192 if (var->kind == INTERNALVAR_VALUE)
2193 {
2194 struct type *type = check_typedef (value_type (var->u.value));
2195
2196 if (TYPE_CODE (type) == TYPE_CODE_INT)
2197 {
2198 *result = value_as_long (var->u.value);
2199 return 1;
2200 }
2201 }
2202
2203 return 0;
2204 }
2205
2206 static int
2207 get_internalvar_function (struct internalvar *var,
2208 struct internal_function **result)
2209 {
2210 switch (var->kind)
2211 {
2212 case INTERNALVAR_FUNCTION:
2213 *result = var->u.fn.function;
2214 return 1;
2215
2216 default:
2217 return 0;
2218 }
2219 }
2220
2221 void
2222 set_internalvar_component (struct internalvar *var,
2223 LONGEST offset, LONGEST bitpos,
2224 LONGEST bitsize, struct value *newval)
2225 {
2226 gdb_byte *addr;
2227 struct gdbarch *arch;
2228 int unit_size;
2229
2230 switch (var->kind)
2231 {
2232 case INTERNALVAR_VALUE:
2233 addr = value_contents_writeable (var->u.value);
2234 arch = get_value_arch (var->u.value);
2235 unit_size = gdbarch_addressable_memory_unit_size (arch);
2236
2237 if (bitsize)
2238 modify_field (value_type (var->u.value), addr + offset,
2239 value_as_long (newval), bitpos, bitsize);
2240 else
2241 memcpy (addr + offset * unit_size, value_contents (newval),
2242 TYPE_LENGTH (value_type (newval)));
2243 break;
2244
2245 default:
2246 /* We can never get a component of any other kind. */
2247 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2248 }
2249 }
2250
2251 void
2252 set_internalvar (struct internalvar *var, struct value *val)
2253 {
2254 enum internalvar_kind new_kind;
2255 union internalvar_data new_data = { 0 };
2256
2257 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2258 error (_("Cannot overwrite convenience function %s"), var->name);
2259
2260 /* Prepare new contents. */
2261 switch (TYPE_CODE (check_typedef (value_type (val))))
2262 {
2263 case TYPE_CODE_VOID:
2264 new_kind = INTERNALVAR_VOID;
2265 break;
2266
2267 case TYPE_CODE_INTERNAL_FUNCTION:
2268 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2269 new_kind = INTERNALVAR_FUNCTION;
2270 get_internalvar_function (VALUE_INTERNALVAR (val),
2271 &new_data.fn.function);
2272 /* Copies created here are never canonical. */
2273 break;
2274
2275 default:
2276 new_kind = INTERNALVAR_VALUE;
2277 struct value *copy = value_copy (val);
2278 copy->modifiable = 1;
2279
2280 /* Force the value to be fetched from the target now, to avoid problems
2281 later when this internalvar is referenced and the target is gone or
2282 has changed. */
2283 if (value_lazy (copy))
2284 value_fetch_lazy (copy);
2285
2286 /* Release the value from the value chain to prevent it from being
2287 deleted by free_all_values. From here on this function should not
2288 call error () until new_data is installed into the var->u to avoid
2289 leaking memory. */
2290 new_data.value = release_value (copy).release ();
2291
2292 /* Internal variables which are created from values with a dynamic
2293 location don't need the location property of the origin anymore.
2294 The resolved dynamic location is used prior then any other address
2295 when accessing the value.
2296 If we keep it, we would still refer to the origin value.
2297 Remove the location property in case it exist. */
2298 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2299
2300 break;
2301 }
2302
2303 /* Clean up old contents. */
2304 clear_internalvar (var);
2305
2306 /* Switch over. */
2307 var->kind = new_kind;
2308 var->u = new_data;
2309 /* End code which must not call error(). */
2310 }
2311
2312 void
2313 set_internalvar_integer (struct internalvar *var, LONGEST l)
2314 {
2315 /* Clean up old contents. */
2316 clear_internalvar (var);
2317
2318 var->kind = INTERNALVAR_INTEGER;
2319 var->u.integer.type = NULL;
2320 var->u.integer.val = l;
2321 }
2322
2323 void
2324 set_internalvar_string (struct internalvar *var, const char *string)
2325 {
2326 /* Clean up old contents. */
2327 clear_internalvar (var);
2328
2329 var->kind = INTERNALVAR_STRING;
2330 var->u.string = xstrdup (string);
2331 }
2332
2333 static void
2334 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2335 {
2336 /* Clean up old contents. */
2337 clear_internalvar (var);
2338
2339 var->kind = INTERNALVAR_FUNCTION;
2340 var->u.fn.function = f;
2341 var->u.fn.canonical = 1;
2342 /* Variables installed here are always the canonical version. */
2343 }
2344
2345 void
2346 clear_internalvar (struct internalvar *var)
2347 {
2348 /* Clean up old contents. */
2349 switch (var->kind)
2350 {
2351 case INTERNALVAR_VALUE:
2352 value_decref (var->u.value);
2353 break;
2354
2355 case INTERNALVAR_STRING:
2356 xfree (var->u.string);
2357 break;
2358
2359 case INTERNALVAR_MAKE_VALUE:
2360 if (var->u.make_value.functions->destroy != NULL)
2361 var->u.make_value.functions->destroy (var->u.make_value.data);
2362 break;
2363
2364 default:
2365 break;
2366 }
2367
2368 /* Reset to void kind. */
2369 var->kind = INTERNALVAR_VOID;
2370 }
2371
2372 char *
2373 internalvar_name (const struct internalvar *var)
2374 {
2375 return var->name;
2376 }
2377
2378 static struct internal_function *
2379 create_internal_function (const char *name,
2380 internal_function_fn handler, void *cookie)
2381 {
2382 struct internal_function *ifn = XNEW (struct internal_function);
2383
2384 ifn->name = xstrdup (name);
2385 ifn->handler = handler;
2386 ifn->cookie = cookie;
2387 return ifn;
2388 }
2389
2390 char *
2391 value_internal_function_name (struct value *val)
2392 {
2393 struct internal_function *ifn;
2394 int result;
2395
2396 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2397 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2398 gdb_assert (result);
2399
2400 return ifn->name;
2401 }
2402
2403 struct value *
2404 call_internal_function (struct gdbarch *gdbarch,
2405 const struct language_defn *language,
2406 struct value *func, int argc, struct value **argv)
2407 {
2408 struct internal_function *ifn;
2409 int result;
2410
2411 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2412 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2413 gdb_assert (result);
2414
2415 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2416 }
2417
2418 /* The 'function' command. This does nothing -- it is just a
2419 placeholder to let "help function NAME" work. This is also used as
2420 the implementation of the sub-command that is created when
2421 registering an internal function. */
2422 static void
2423 function_command (const char *command, int from_tty)
2424 {
2425 /* Do nothing. */
2426 }
2427
2428 /* Clean up if an internal function's command is destroyed. */
2429 static void
2430 function_destroyer (struct cmd_list_element *self, void *ignore)
2431 {
2432 xfree ((char *) self->name);
2433 xfree ((char *) self->doc);
2434 }
2435
2436 /* Add a new internal function. NAME is the name of the function; DOC
2437 is a documentation string describing the function. HANDLER is
2438 called when the function is invoked. COOKIE is an arbitrary
2439 pointer which is passed to HANDLER and is intended for "user
2440 data". */
2441 void
2442 add_internal_function (const char *name, const char *doc,
2443 internal_function_fn handler, void *cookie)
2444 {
2445 struct cmd_list_element *cmd;
2446 struct internal_function *ifn;
2447 struct internalvar *var = lookup_internalvar (name);
2448
2449 ifn = create_internal_function (name, handler, cookie);
2450 set_internalvar_function (var, ifn);
2451
2452 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2453 &functionlist);
2454 cmd->destroyer = function_destroyer;
2455 }
2456
2457 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2458 prevent cycles / duplicates. */
2459
2460 void
2461 preserve_one_value (struct value *value, struct objfile *objfile,
2462 htab_t copied_types)
2463 {
2464 if (TYPE_OBJFILE (value->type) == objfile)
2465 value->type = copy_type_recursive (objfile, value->type, copied_types);
2466
2467 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2468 value->enclosing_type = copy_type_recursive (objfile,
2469 value->enclosing_type,
2470 copied_types);
2471 }
2472
2473 /* Likewise for internal variable VAR. */
2474
2475 static void
2476 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2477 htab_t copied_types)
2478 {
2479 switch (var->kind)
2480 {
2481 case INTERNALVAR_INTEGER:
2482 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2483 var->u.integer.type
2484 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2485 break;
2486
2487 case INTERNALVAR_VALUE:
2488 preserve_one_value (var->u.value, objfile, copied_types);
2489 break;
2490 }
2491 }
2492
2493 /* Update the internal variables and value history when OBJFILE is
2494 discarded; we must copy the types out of the objfile. New global types
2495 will be created for every convenience variable which currently points to
2496 this objfile's types, and the convenience variables will be adjusted to
2497 use the new global types. */
2498
2499 void
2500 preserve_values (struct objfile *objfile)
2501 {
2502 htab_t copied_types;
2503 struct internalvar *var;
2504
2505 /* Create the hash table. We allocate on the objfile's obstack, since
2506 it is soon to be deleted. */
2507 copied_types = create_copied_types_hash (objfile);
2508
2509 for (const value_ref_ptr &item : value_history)
2510 preserve_one_value (item.get (), objfile, copied_types);
2511
2512 for (var = internalvars; var; var = var->next)
2513 preserve_one_internalvar (var, objfile, copied_types);
2514
2515 preserve_ext_lang_values (objfile, copied_types);
2516
2517 htab_delete (copied_types);
2518 }
2519
2520 static void
2521 show_convenience (const char *ignore, int from_tty)
2522 {
2523 struct gdbarch *gdbarch = get_current_arch ();
2524 struct internalvar *var;
2525 int varseen = 0;
2526 struct value_print_options opts;
2527
2528 get_user_print_options (&opts);
2529 for (var = internalvars; var; var = var->next)
2530 {
2531
2532 if (!varseen)
2533 {
2534 varseen = 1;
2535 }
2536 printf_filtered (("$%s = "), var->name);
2537
2538 TRY
2539 {
2540 struct value *val;
2541
2542 val = value_of_internalvar (gdbarch, var);
2543 value_print (val, gdb_stdout, &opts);
2544 }
2545 CATCH (ex, RETURN_MASK_ERROR)
2546 {
2547 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2548 }
2549 END_CATCH
2550
2551 printf_filtered (("\n"));
2552 }
2553 if (!varseen)
2554 {
2555 /* This text does not mention convenience functions on purpose.
2556 The user can't create them except via Python, and if Python support
2557 is installed this message will never be printed ($_streq will
2558 exist). */
2559 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2560 "Convenience variables have "
2561 "names starting with \"$\";\n"
2562 "use \"set\" as in \"set "
2563 "$foo = 5\" to define them.\n"));
2564 }
2565 }
2566 \f
2567
2568 /* See value.h. */
2569
2570 struct value *
2571 value_from_xmethod (xmethod_worker_up &&worker)
2572 {
2573 struct value *v;
2574
2575 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2576 v->lval = lval_xcallable;
2577 v->location.xm_worker = worker.release ();
2578 v->modifiable = 0;
2579
2580 return v;
2581 }
2582
2583 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2584
2585 struct type *
2586 result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
2587 {
2588 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2589 && method->lval == lval_xcallable && !argv.empty ());
2590
2591 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
2592 }
2593
2594 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2595
2596 struct value *
2597 call_xmethod (struct value *method, gdb::array_view<value *> argv)
2598 {
2599 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2600 && method->lval == lval_xcallable && !argv.empty ());
2601
2602 return method->location.xm_worker->invoke (argv[0], argv.slice (1));
2603 }
2604 \f
2605 /* Extract a value as a C number (either long or double).
2606 Knows how to convert fixed values to double, or
2607 floating values to long.
2608 Does not deallocate the value. */
2609
2610 LONGEST
2611 value_as_long (struct value *val)
2612 {
2613 /* This coerces arrays and functions, which is necessary (e.g.
2614 in disassemble_command). It also dereferences references, which
2615 I suspect is the most logical thing to do. */
2616 val = coerce_array (val);
2617 return unpack_long (value_type (val), value_contents (val));
2618 }
2619
2620 /* Extract a value as a C pointer. Does not deallocate the value.
2621 Note that val's type may not actually be a pointer; value_as_long
2622 handles all the cases. */
2623 CORE_ADDR
2624 value_as_address (struct value *val)
2625 {
2626 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2627
2628 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2629 whether we want this to be true eventually. */
2630 #if 0
2631 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2632 non-address (e.g. argument to "signal", "info break", etc.), or
2633 for pointers to char, in which the low bits *are* significant. */
2634 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2635 #else
2636
2637 /* There are several targets (IA-64, PowerPC, and others) which
2638 don't represent pointers to functions as simply the address of
2639 the function's entry point. For example, on the IA-64, a
2640 function pointer points to a two-word descriptor, generated by
2641 the linker, which contains the function's entry point, and the
2642 value the IA-64 "global pointer" register should have --- to
2643 support position-independent code. The linker generates
2644 descriptors only for those functions whose addresses are taken.
2645
2646 On such targets, it's difficult for GDB to convert an arbitrary
2647 function address into a function pointer; it has to either find
2648 an existing descriptor for that function, or call malloc and
2649 build its own. On some targets, it is impossible for GDB to
2650 build a descriptor at all: the descriptor must contain a jump
2651 instruction; data memory cannot be executed; and code memory
2652 cannot be modified.
2653
2654 Upon entry to this function, if VAL is a value of type `function'
2655 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2656 value_address (val) is the address of the function. This is what
2657 you'll get if you evaluate an expression like `main'. The call
2658 to COERCE_ARRAY below actually does all the usual unary
2659 conversions, which includes converting values of type `function'
2660 to `pointer to function'. This is the challenging conversion
2661 discussed above. Then, `unpack_long' will convert that pointer
2662 back into an address.
2663
2664 So, suppose the user types `disassemble foo' on an architecture
2665 with a strange function pointer representation, on which GDB
2666 cannot build its own descriptors, and suppose further that `foo'
2667 has no linker-built descriptor. The address->pointer conversion
2668 will signal an error and prevent the command from running, even
2669 though the next step would have been to convert the pointer
2670 directly back into the same address.
2671
2672 The following shortcut avoids this whole mess. If VAL is a
2673 function, just return its address directly. */
2674 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2675 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2676 return value_address (val);
2677
2678 val = coerce_array (val);
2679
2680 /* Some architectures (e.g. Harvard), map instruction and data
2681 addresses onto a single large unified address space. For
2682 instance: An architecture may consider a large integer in the
2683 range 0x10000000 .. 0x1000ffff to already represent a data
2684 addresses (hence not need a pointer to address conversion) while
2685 a small integer would still need to be converted integer to
2686 pointer to address. Just assume such architectures handle all
2687 integer conversions in a single function. */
2688
2689 /* JimB writes:
2690
2691 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2692 must admonish GDB hackers to make sure its behavior matches the
2693 compiler's, whenever possible.
2694
2695 In general, I think GDB should evaluate expressions the same way
2696 the compiler does. When the user copies an expression out of
2697 their source code and hands it to a `print' command, they should
2698 get the same value the compiler would have computed. Any
2699 deviation from this rule can cause major confusion and annoyance,
2700 and needs to be justified carefully. In other words, GDB doesn't
2701 really have the freedom to do these conversions in clever and
2702 useful ways.
2703
2704 AndrewC pointed out that users aren't complaining about how GDB
2705 casts integers to pointers; they are complaining that they can't
2706 take an address from a disassembly listing and give it to `x/i'.
2707 This is certainly important.
2708
2709 Adding an architecture method like integer_to_address() certainly
2710 makes it possible for GDB to "get it right" in all circumstances
2711 --- the target has complete control over how things get done, so
2712 people can Do The Right Thing for their target without breaking
2713 anyone else. The standard doesn't specify how integers get
2714 converted to pointers; usually, the ABI doesn't either, but
2715 ABI-specific code is a more reasonable place to handle it. */
2716
2717 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2718 && !TYPE_IS_REFERENCE (value_type (val))
2719 && gdbarch_integer_to_address_p (gdbarch))
2720 return gdbarch_integer_to_address (gdbarch, value_type (val),
2721 value_contents (val));
2722
2723 return unpack_long (value_type (val), value_contents (val));
2724 #endif
2725 }
2726 \f
2727 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2728 as a long, or as a double, assuming the raw data is described
2729 by type TYPE. Knows how to convert different sizes of values
2730 and can convert between fixed and floating point. We don't assume
2731 any alignment for the raw data. Return value is in host byte order.
2732
2733 If you want functions and arrays to be coerced to pointers, and
2734 references to be dereferenced, call value_as_long() instead.
2735
2736 C++: It is assumed that the front-end has taken care of
2737 all matters concerning pointers to members. A pointer
2738 to member which reaches here is considered to be equivalent
2739 to an INT (or some size). After all, it is only an offset. */
2740
2741 LONGEST
2742 unpack_long (struct type *type, const gdb_byte *valaddr)
2743 {
2744 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2745 enum type_code code = TYPE_CODE (type);
2746 int len = TYPE_LENGTH (type);
2747 int nosign = TYPE_UNSIGNED (type);
2748
2749 switch (code)
2750 {
2751 case TYPE_CODE_TYPEDEF:
2752 return unpack_long (check_typedef (type), valaddr);
2753 case TYPE_CODE_ENUM:
2754 case TYPE_CODE_FLAGS:
2755 case TYPE_CODE_BOOL:
2756 case TYPE_CODE_INT:
2757 case TYPE_CODE_CHAR:
2758 case TYPE_CODE_RANGE:
2759 case TYPE_CODE_MEMBERPTR:
2760 if (nosign)
2761 return extract_unsigned_integer (valaddr, len, byte_order);
2762 else
2763 return extract_signed_integer (valaddr, len, byte_order);
2764
2765 case TYPE_CODE_FLT:
2766 case TYPE_CODE_DECFLOAT:
2767 return target_float_to_longest (valaddr, type);
2768
2769 case TYPE_CODE_PTR:
2770 case TYPE_CODE_REF:
2771 case TYPE_CODE_RVALUE_REF:
2772 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2773 whether we want this to be true eventually. */
2774 return extract_typed_address (valaddr, type);
2775
2776 default:
2777 error (_("Value can't be converted to integer."));
2778 }
2779 }
2780
2781 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2782 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2783 We don't assume any alignment for the raw data. Return value is in
2784 host byte order.
2785
2786 If you want functions and arrays to be coerced to pointers, and
2787 references to be dereferenced, call value_as_address() instead.
2788
2789 C++: It is assumed that the front-end has taken care of
2790 all matters concerning pointers to members. A pointer
2791 to member which reaches here is considered to be equivalent
2792 to an INT (or some size). After all, it is only an offset. */
2793
2794 CORE_ADDR
2795 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2796 {
2797 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2798 whether we want this to be true eventually. */
2799 return unpack_long (type, valaddr);
2800 }
2801
2802 bool
2803 is_floating_value (struct value *val)
2804 {
2805 struct type *type = check_typedef (value_type (val));
2806
2807 if (is_floating_type (type))
2808 {
2809 if (!target_float_is_valid (value_contents (val), type))
2810 error (_("Invalid floating value found in program."));
2811 return true;
2812 }
2813
2814 return false;
2815 }
2816
2817 \f
2818 /* Get the value of the FIELDNO'th field (which must be static) of
2819 TYPE. */
2820
2821 struct value *
2822 value_static_field (struct type *type, int fieldno)
2823 {
2824 struct value *retval;
2825
2826 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2827 {
2828 case FIELD_LOC_KIND_PHYSADDR:
2829 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2830 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2831 break;
2832 case FIELD_LOC_KIND_PHYSNAME:
2833 {
2834 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2835 /* TYPE_FIELD_NAME (type, fieldno); */
2836 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2837
2838 if (sym.symbol == NULL)
2839 {
2840 /* With some compilers, e.g. HP aCC, static data members are
2841 reported as non-debuggable symbols. */
2842 struct bound_minimal_symbol msym
2843 = lookup_minimal_symbol (phys_name, NULL, NULL);
2844 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2845
2846 if (!msym.minsym)
2847 retval = allocate_optimized_out_value (field_type);
2848 else
2849 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
2850 }
2851 else
2852 retval = value_of_variable (sym.symbol, sym.block);
2853 break;
2854 }
2855 default:
2856 gdb_assert_not_reached ("unexpected field location kind");
2857 }
2858
2859 return retval;
2860 }
2861
2862 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2863 You have to be careful here, since the size of the data area for the value
2864 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2865 than the old enclosing type, you have to allocate more space for the
2866 data. */
2867
2868 void
2869 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2870 {
2871 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2872 {
2873 check_type_length_before_alloc (new_encl_type);
2874 val->contents
2875 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2876 TYPE_LENGTH (new_encl_type)));
2877 }
2878
2879 val->enclosing_type = new_encl_type;
2880 }
2881
2882 /* Given a value ARG1 (offset by OFFSET bytes)
2883 of a struct or union type ARG_TYPE,
2884 extract and return the value of one of its (non-static) fields.
2885 FIELDNO says which field. */
2886
2887 struct value *
2888 value_primitive_field (struct value *arg1, LONGEST offset,
2889 int fieldno, struct type *arg_type)
2890 {
2891 struct value *v;
2892 struct type *type;
2893 struct gdbarch *arch = get_value_arch (arg1);
2894 int unit_size = gdbarch_addressable_memory_unit_size (arch);
2895
2896 arg_type = check_typedef (arg_type);
2897 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2898
2899 /* Call check_typedef on our type to make sure that, if TYPE
2900 is a TYPE_CODE_TYPEDEF, its length is set to the length
2901 of the target type instead of zero. However, we do not
2902 replace the typedef type by the target type, because we want
2903 to keep the typedef in order to be able to print the type
2904 description correctly. */
2905 check_typedef (type);
2906
2907 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2908 {
2909 /* Handle packed fields.
2910
2911 Create a new value for the bitfield, with bitpos and bitsize
2912 set. If possible, arrange offset and bitpos so that we can
2913 do a single aligned read of the size of the containing type.
2914 Otherwise, adjust offset to the byte containing the first
2915 bit. Assume that the address, offset, and embedded offset
2916 are sufficiently aligned. */
2917
2918 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2919 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
2920
2921 v = allocate_value_lazy (type);
2922 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2923 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2924 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2925 v->bitpos = bitpos % container_bitsize;
2926 else
2927 v->bitpos = bitpos % 8;
2928 v->offset = (value_embedded_offset (arg1)
2929 + offset
2930 + (bitpos - v->bitpos) / 8);
2931 set_value_parent (v, arg1);
2932 if (!value_lazy (arg1))
2933 value_fetch_lazy (v);
2934 }
2935 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2936 {
2937 /* This field is actually a base subobject, so preserve the
2938 entire object's contents for later references to virtual
2939 bases, etc. */
2940 LONGEST boffset;
2941
2942 /* Lazy register values with offsets are not supported. */
2943 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2944 value_fetch_lazy (arg1);
2945
2946 /* We special case virtual inheritance here because this
2947 requires access to the contents, which we would rather avoid
2948 for references to ordinary fields of unavailable values. */
2949 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2950 boffset = baseclass_offset (arg_type, fieldno,
2951 value_contents (arg1),
2952 value_embedded_offset (arg1),
2953 value_address (arg1),
2954 arg1);
2955 else
2956 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2957
2958 if (value_lazy (arg1))
2959 v = allocate_value_lazy (value_enclosing_type (arg1));
2960 else
2961 {
2962 v = allocate_value (value_enclosing_type (arg1));
2963 value_contents_copy_raw (v, 0, arg1, 0,
2964 TYPE_LENGTH (value_enclosing_type (arg1)));
2965 }
2966 v->type = type;
2967 v->offset = value_offset (arg1);
2968 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2969 }
2970 else if (NULL != TYPE_DATA_LOCATION (type))
2971 {
2972 /* Field is a dynamic data member. */
2973
2974 gdb_assert (0 == offset);
2975 /* We expect an already resolved data location. */
2976 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
2977 /* For dynamic data types defer memory allocation
2978 until we actual access the value. */
2979 v = allocate_value_lazy (type);
2980 }
2981 else
2982 {
2983 /* Plain old data member */
2984 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
2985 / (HOST_CHAR_BIT * unit_size));
2986
2987 /* Lazy register values with offsets are not supported. */
2988 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2989 value_fetch_lazy (arg1);
2990
2991 if (value_lazy (arg1))
2992 v = allocate_value_lazy (type);
2993 else
2994 {
2995 v = allocate_value (type);
2996 value_contents_copy_raw (v, value_embedded_offset (v),
2997 arg1, value_embedded_offset (arg1) + offset,
2998 type_length_units (type));
2999 }
3000 v->offset = (value_offset (arg1) + offset
3001 + value_embedded_offset (arg1));
3002 }
3003 set_value_component_location (v, arg1);
3004 return v;
3005 }
3006
3007 /* Given a value ARG1 of a struct or union type,
3008 extract and return the value of one of its (non-static) fields.
3009 FIELDNO says which field. */
3010
3011 struct value *
3012 value_field (struct value *arg1, int fieldno)
3013 {
3014 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3015 }
3016
3017 /* Return a non-virtual function as a value.
3018 F is the list of member functions which contains the desired method.
3019 J is an index into F which provides the desired method.
3020
3021 We only use the symbol for its address, so be happy with either a
3022 full symbol or a minimal symbol. */
3023
3024 struct value *
3025 value_fn_field (struct value **arg1p, struct fn_field *f,
3026 int j, struct type *type,
3027 LONGEST offset)
3028 {
3029 struct value *v;
3030 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3031 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3032 struct symbol *sym;
3033 struct bound_minimal_symbol msym;
3034
3035 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3036 if (sym != NULL)
3037 {
3038 memset (&msym, 0, sizeof (msym));
3039 }
3040 else
3041 {
3042 gdb_assert (sym == NULL);
3043 msym = lookup_bound_minimal_symbol (physname);
3044 if (msym.minsym == NULL)
3045 return NULL;
3046 }
3047
3048 v = allocate_value (ftype);
3049 VALUE_LVAL (v) = lval_memory;
3050 if (sym)
3051 {
3052 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
3053 }
3054 else
3055 {
3056 /* The minimal symbol might point to a function descriptor;
3057 resolve it to the actual code address instead. */
3058 struct objfile *objfile = msym.objfile;
3059 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3060
3061 set_value_address (v,
3062 gdbarch_convert_from_func_ptr_addr
3063 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), current_top_target ()));
3064 }
3065
3066 if (arg1p)
3067 {
3068 if (type != value_type (*arg1p))
3069 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3070 value_addr (*arg1p)));
3071
3072 /* Move the `this' pointer according to the offset.
3073 VALUE_OFFSET (*arg1p) += offset; */
3074 }
3075
3076 return v;
3077 }
3078
3079 \f
3080
3081 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3082 VALADDR, and store the result in *RESULT.
3083 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3084 BITSIZE is zero, then the length is taken from FIELD_TYPE.
3085
3086 Extracting bits depends on endianness of the machine. Compute the
3087 number of least significant bits to discard. For big endian machines,
3088 we compute the total number of bits in the anonymous object, subtract
3089 off the bit count from the MSB of the object to the MSB of the
3090 bitfield, then the size of the bitfield, which leaves the LSB discard
3091 count. For little endian machines, the discard count is simply the
3092 number of bits from the LSB of the anonymous object to the LSB of the
3093 bitfield.
3094
3095 If the field is signed, we also do sign extension. */
3096
3097 static LONGEST
3098 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3099 LONGEST bitpos, LONGEST bitsize)
3100 {
3101 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3102 ULONGEST val;
3103 ULONGEST valmask;
3104 int lsbcount;
3105 LONGEST bytes_read;
3106 LONGEST read_offset;
3107
3108 /* Read the minimum number of bytes required; there may not be
3109 enough bytes to read an entire ULONGEST. */
3110 field_type = check_typedef (field_type);
3111 if (bitsize)
3112 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3113 else
3114 {
3115 bytes_read = TYPE_LENGTH (field_type);
3116 bitsize = 8 * bytes_read;
3117 }
3118
3119 read_offset = bitpos / 8;
3120
3121 val = extract_unsigned_integer (valaddr + read_offset,
3122 bytes_read, byte_order);
3123
3124 /* Extract bits. See comment above. */
3125
3126 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3127 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3128 else
3129 lsbcount = (bitpos % 8);
3130 val >>= lsbcount;
3131
3132 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3133 If the field is signed, and is negative, then sign extend. */
3134
3135 if (bitsize < 8 * (int) sizeof (val))
3136 {
3137 valmask = (((ULONGEST) 1) << bitsize) - 1;
3138 val &= valmask;
3139 if (!TYPE_UNSIGNED (field_type))
3140 {
3141 if (val & (valmask ^ (valmask >> 1)))
3142 {
3143 val |= ~valmask;
3144 }
3145 }
3146 }
3147
3148 return val;
3149 }
3150
3151 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3152 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3153 ORIGINAL_VALUE, which must not be NULL. See
3154 unpack_value_bits_as_long for more details. */
3155
3156 int
3157 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3158 LONGEST embedded_offset, int fieldno,
3159 const struct value *val, LONGEST *result)
3160 {
3161 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3162 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3163 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3164 int bit_offset;
3165
3166 gdb_assert (val != NULL);
3167
3168 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3169 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3170 || !value_bits_available (val, bit_offset, bitsize))
3171 return 0;
3172
3173 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3174 bitpos, bitsize);
3175 return 1;
3176 }
3177
3178 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3179 object at VALADDR. See unpack_bits_as_long for more details. */
3180
3181 LONGEST
3182 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3183 {
3184 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3185 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3186 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3187
3188 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3189 }
3190
3191 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3192 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3193 the contents in DEST_VAL, zero or sign extending if the type of
3194 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3195 VAL. If the VAL's contents required to extract the bitfield from
3196 are unavailable/optimized out, DEST_VAL is correspondingly
3197 marked unavailable/optimized out. */
3198
3199 void
3200 unpack_value_bitfield (struct value *dest_val,
3201 LONGEST bitpos, LONGEST bitsize,
3202 const gdb_byte *valaddr, LONGEST embedded_offset,
3203 const struct value *val)
3204 {
3205 enum bfd_endian byte_order;
3206 int src_bit_offset;
3207 int dst_bit_offset;
3208 struct type *field_type = value_type (dest_val);
3209
3210 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3211
3212 /* First, unpack and sign extend the bitfield as if it was wholly
3213 valid. Optimized out/unavailable bits are read as zero, but
3214 that's OK, as they'll end up marked below. If the VAL is
3215 wholly-invalid we may have skipped allocating its contents,
3216 though. See allocate_optimized_out_value. */
3217 if (valaddr != NULL)
3218 {
3219 LONGEST num;
3220
3221 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3222 bitpos, bitsize);
3223 store_signed_integer (value_contents_raw (dest_val),
3224 TYPE_LENGTH (field_type), byte_order, num);
3225 }
3226
3227 /* Now copy the optimized out / unavailability ranges to the right
3228 bits. */
3229 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3230 if (byte_order == BFD_ENDIAN_BIG)
3231 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3232 else
3233 dst_bit_offset = 0;
3234 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3235 val, src_bit_offset, bitsize);
3236 }
3237
3238 /* Return a new value with type TYPE, which is FIELDNO field of the
3239 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3240 of VAL. If the VAL's contents required to extract the bitfield
3241 from are unavailable/optimized out, the new value is
3242 correspondingly marked unavailable/optimized out. */
3243
3244 struct value *
3245 value_field_bitfield (struct type *type, int fieldno,
3246 const gdb_byte *valaddr,
3247 LONGEST embedded_offset, const struct value *val)
3248 {
3249 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3250 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3251 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3252
3253 unpack_value_bitfield (res_val, bitpos, bitsize,
3254 valaddr, embedded_offset, val);
3255
3256 return res_val;
3257 }
3258
3259 /* Modify the value of a bitfield. ADDR points to a block of memory in
3260 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3261 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3262 indicate which bits (in target bit order) comprise the bitfield.
3263 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3264 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3265
3266 void
3267 modify_field (struct type *type, gdb_byte *addr,
3268 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3269 {
3270 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3271 ULONGEST oword;
3272 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3273 LONGEST bytesize;
3274
3275 /* Normalize BITPOS. */
3276 addr += bitpos / 8;
3277 bitpos %= 8;
3278
3279 /* If a negative fieldval fits in the field in question, chop
3280 off the sign extension bits. */
3281 if ((~fieldval & ~(mask >> 1)) == 0)
3282 fieldval &= mask;
3283
3284 /* Warn if value is too big to fit in the field in question. */
3285 if (0 != (fieldval & ~mask))
3286 {
3287 /* FIXME: would like to include fieldval in the message, but
3288 we don't have a sprintf_longest. */
3289 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3290
3291 /* Truncate it, otherwise adjoining fields may be corrupted. */
3292 fieldval &= mask;
3293 }
3294
3295 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3296 false valgrind reports. */
3297
3298 bytesize = (bitpos + bitsize + 7) / 8;
3299 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3300
3301 /* Shifting for bit field depends on endianness of the target machine. */
3302 if (gdbarch_bits_big_endian (get_type_arch (type)))
3303 bitpos = bytesize * 8 - bitpos - bitsize;
3304
3305 oword &= ~(mask << bitpos);
3306 oword |= fieldval << bitpos;
3307
3308 store_unsigned_integer (addr, bytesize, byte_order, oword);
3309 }
3310 \f
3311 /* Pack NUM into BUF using a target format of TYPE. */
3312
3313 void
3314 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3315 {
3316 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3317 LONGEST len;
3318
3319 type = check_typedef (type);
3320 len = TYPE_LENGTH (type);
3321
3322 switch (TYPE_CODE (type))
3323 {
3324 case TYPE_CODE_INT:
3325 case TYPE_CODE_CHAR:
3326 case TYPE_CODE_ENUM:
3327 case TYPE_CODE_FLAGS:
3328 case TYPE_CODE_BOOL:
3329 case TYPE_CODE_RANGE:
3330 case TYPE_CODE_MEMBERPTR:
3331 store_signed_integer (buf, len, byte_order, num);
3332 break;
3333
3334 case TYPE_CODE_REF:
3335 case TYPE_CODE_RVALUE_REF:
3336 case TYPE_CODE_PTR:
3337 store_typed_address (buf, type, (CORE_ADDR) num);
3338 break;
3339
3340 case TYPE_CODE_FLT:
3341 case TYPE_CODE_DECFLOAT:
3342 target_float_from_longest (buf, type, num);
3343 break;
3344
3345 default:
3346 error (_("Unexpected type (%d) encountered for integer constant."),
3347 TYPE_CODE (type));
3348 }
3349 }
3350
3351
3352 /* Pack NUM into BUF using a target format of TYPE. */
3353
3354 static void
3355 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3356 {
3357 LONGEST len;
3358 enum bfd_endian byte_order;
3359
3360 type = check_typedef (type);
3361 len = TYPE_LENGTH (type);
3362 byte_order = gdbarch_byte_order (get_type_arch (type));
3363
3364 switch (TYPE_CODE (type))
3365 {
3366 case TYPE_CODE_INT:
3367 case TYPE_CODE_CHAR:
3368 case TYPE_CODE_ENUM:
3369 case TYPE_CODE_FLAGS:
3370 case TYPE_CODE_BOOL:
3371 case TYPE_CODE_RANGE:
3372 case TYPE_CODE_MEMBERPTR:
3373 store_unsigned_integer (buf, len, byte_order, num);
3374 break;
3375
3376 case TYPE_CODE_REF:
3377 case TYPE_CODE_RVALUE_REF:
3378 case TYPE_CODE_PTR:
3379 store_typed_address (buf, type, (CORE_ADDR) num);
3380 break;
3381
3382 case TYPE_CODE_FLT:
3383 case TYPE_CODE_DECFLOAT:
3384 target_float_from_ulongest (buf, type, num);
3385 break;
3386
3387 default:
3388 error (_("Unexpected type (%d) encountered "
3389 "for unsigned integer constant."),
3390 TYPE_CODE (type));
3391 }
3392 }
3393
3394
3395 /* Convert C numbers into newly allocated values. */
3396
3397 struct value *
3398 value_from_longest (struct type *type, LONGEST num)
3399 {
3400 struct value *val = allocate_value (type);
3401
3402 pack_long (value_contents_raw (val), type, num);
3403 return val;
3404 }
3405
3406
3407 /* Convert C unsigned numbers into newly allocated values. */
3408
3409 struct value *
3410 value_from_ulongest (struct type *type, ULONGEST num)
3411 {
3412 struct value *val = allocate_value (type);
3413
3414 pack_unsigned_long (value_contents_raw (val), type, num);
3415
3416 return val;
3417 }
3418
3419
3420 /* Create a value representing a pointer of type TYPE to the address
3421 ADDR. */
3422
3423 struct value *
3424 value_from_pointer (struct type *type, CORE_ADDR addr)
3425 {
3426 struct value *val = allocate_value (type);
3427
3428 store_typed_address (value_contents_raw (val),
3429 check_typedef (type), addr);
3430 return val;
3431 }
3432
3433 /* Create and return a value object of TYPE containing the value D. The
3434 TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
3435 it is converted to target format. */
3436
3437 struct value *
3438 value_from_host_double (struct type *type, double d)
3439 {
3440 struct value *value = allocate_value (type);
3441 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
3442 target_float_from_host_double (value_contents_raw (value),
3443 value_type (value), d);
3444 return value;
3445 }
3446
3447 /* Create a value of type TYPE whose contents come from VALADDR, if it
3448 is non-null, and whose memory address (in the inferior) is
3449 ADDRESS. The type of the created value may differ from the passed
3450 type TYPE. Make sure to retrieve values new type after this call.
3451 Note that TYPE is not passed through resolve_dynamic_type; this is
3452 a special API intended for use only by Ada. */
3453
3454 struct value *
3455 value_from_contents_and_address_unresolved (struct type *type,
3456 const gdb_byte *valaddr,
3457 CORE_ADDR address)
3458 {
3459 struct value *v;
3460
3461 if (valaddr == NULL)
3462 v = allocate_value_lazy (type);
3463 else
3464 v = value_from_contents (type, valaddr);
3465 VALUE_LVAL (v) = lval_memory;
3466 set_value_address (v, address);
3467 return v;
3468 }
3469
3470 /* Create a value of type TYPE whose contents come from VALADDR, if it
3471 is non-null, and whose memory address (in the inferior) is
3472 ADDRESS. The type of the created value may differ from the passed
3473 type TYPE. Make sure to retrieve values new type after this call. */
3474
3475 struct value *
3476 value_from_contents_and_address (struct type *type,
3477 const gdb_byte *valaddr,
3478 CORE_ADDR address)
3479 {
3480 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3481 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3482 struct value *v;
3483
3484 if (valaddr == NULL)
3485 v = allocate_value_lazy (resolved_type);
3486 else
3487 v = value_from_contents (resolved_type, valaddr);
3488 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3489 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3490 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3491 VALUE_LVAL (v) = lval_memory;
3492 set_value_address (v, address);
3493 return v;
3494 }
3495
3496 /* Create a value of type TYPE holding the contents CONTENTS.
3497 The new value is `not_lval'. */
3498
3499 struct value *
3500 value_from_contents (struct type *type, const gdb_byte *contents)
3501 {
3502 struct value *result;
3503
3504 result = allocate_value (type);
3505 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3506 return result;
3507 }
3508
3509 /* Extract a value from the history file. Input will be of the form
3510 $digits or $$digits. See block comment above 'write_dollar_variable'
3511 for details. */
3512
3513 struct value *
3514 value_from_history_ref (const char *h, const char **endp)
3515 {
3516 int index, len;
3517
3518 if (h[0] == '$')
3519 len = 1;
3520 else
3521 return NULL;
3522
3523 if (h[1] == '$')
3524 len = 2;
3525
3526 /* Find length of numeral string. */
3527 for (; isdigit (h[len]); len++)
3528 ;
3529
3530 /* Make sure numeral string is not part of an identifier. */
3531 if (h[len] == '_' || isalpha (h[len]))
3532 return NULL;
3533
3534 /* Now collect the index value. */
3535 if (h[1] == '$')
3536 {
3537 if (len == 2)
3538 {
3539 /* For some bizarre reason, "$$" is equivalent to "$$1",
3540 rather than to "$$0" as it ought to be! */
3541 index = -1;
3542 *endp += len;
3543 }
3544 else
3545 {
3546 char *local_end;
3547
3548 index = -strtol (&h[2], &local_end, 10);
3549 *endp = local_end;
3550 }
3551 }
3552 else
3553 {
3554 if (len == 1)
3555 {
3556 /* "$" is equivalent to "$0". */
3557 index = 0;
3558 *endp += len;
3559 }
3560 else
3561 {
3562 char *local_end;
3563
3564 index = strtol (&h[1], &local_end, 10);
3565 *endp = local_end;
3566 }
3567 }
3568
3569 return access_value_history (index);
3570 }
3571
3572 /* Get the component value (offset by OFFSET bytes) of a struct or
3573 union WHOLE. Component's type is TYPE. */
3574
3575 struct value *
3576 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3577 {
3578 struct value *v;
3579
3580 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3581 v = allocate_value_lazy (type);
3582 else
3583 {
3584 v = allocate_value (type);
3585 value_contents_copy (v, value_embedded_offset (v),
3586 whole, value_embedded_offset (whole) + offset,
3587 type_length_units (type));
3588 }
3589 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3590 set_value_component_location (v, whole);
3591
3592 return v;
3593 }
3594
3595 struct value *
3596 coerce_ref_if_computed (const struct value *arg)
3597 {
3598 const struct lval_funcs *funcs;
3599
3600 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3601 return NULL;
3602
3603 if (value_lval_const (arg) != lval_computed)
3604 return NULL;
3605
3606 funcs = value_computed_funcs (arg);
3607 if (funcs->coerce_ref == NULL)
3608 return NULL;
3609
3610 return funcs->coerce_ref (arg);
3611 }
3612
3613 /* Look at value.h for description. */
3614
3615 struct value *
3616 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3617 const struct type *original_type,
3618 const struct value *original_value)
3619 {
3620 /* Re-adjust type. */
3621 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3622
3623 /* Add embedding info. */
3624 set_value_enclosing_type (value, enc_type);
3625 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3626
3627 /* We may be pointing to an object of some derived type. */
3628 return value_full_object (value, NULL, 0, 0, 0);
3629 }
3630
3631 struct value *
3632 coerce_ref (struct value *arg)
3633 {
3634 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3635 struct value *retval;
3636 struct type *enc_type;
3637
3638 retval = coerce_ref_if_computed (arg);
3639 if (retval)
3640 return retval;
3641
3642 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3643 return arg;
3644
3645 enc_type = check_typedef (value_enclosing_type (arg));
3646 enc_type = TYPE_TARGET_TYPE (enc_type);
3647
3648 retval = value_at_lazy (enc_type,
3649 unpack_pointer (value_type (arg),
3650 value_contents (arg)));
3651 enc_type = value_type (retval);
3652 return readjust_indirect_value_type (retval, enc_type,
3653 value_type_arg_tmp, arg);
3654 }
3655
3656 struct value *
3657 coerce_array (struct value *arg)
3658 {
3659 struct type *type;
3660
3661 arg = coerce_ref (arg);
3662 type = check_typedef (value_type (arg));
3663
3664 switch (TYPE_CODE (type))
3665 {
3666 case TYPE_CODE_ARRAY:
3667 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3668 arg = value_coerce_array (arg);
3669 break;
3670 case TYPE_CODE_FUNC:
3671 arg = value_coerce_function (arg);
3672 break;
3673 }
3674 return arg;
3675 }
3676 \f
3677
3678 /* Return the return value convention that will be used for the
3679 specified type. */
3680
3681 enum return_value_convention
3682 struct_return_convention (struct gdbarch *gdbarch,
3683 struct value *function, struct type *value_type)
3684 {
3685 enum type_code code = TYPE_CODE (value_type);
3686
3687 if (code == TYPE_CODE_ERROR)
3688 error (_("Function return type unknown."));
3689
3690 /* Probe the architecture for the return-value convention. */
3691 return gdbarch_return_value (gdbarch, function, value_type,
3692 NULL, NULL, NULL);
3693 }
3694
3695 /* Return true if the function returning the specified type is using
3696 the convention of returning structures in memory (passing in the
3697 address as a hidden first parameter). */
3698
3699 int
3700 using_struct_return (struct gdbarch *gdbarch,
3701 struct value *function, struct type *value_type)
3702 {
3703 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3704 /* A void return value is never in memory. See also corresponding
3705 code in "print_return_value". */
3706 return 0;
3707
3708 return (struct_return_convention (gdbarch, function, value_type)
3709 != RETURN_VALUE_REGISTER_CONVENTION);
3710 }
3711
3712 /* Set the initialized field in a value struct. */
3713
3714 void
3715 set_value_initialized (struct value *val, int status)
3716 {
3717 val->initialized = status;
3718 }
3719
3720 /* Return the initialized field in a value struct. */
3721
3722 int
3723 value_initialized (const struct value *val)
3724 {
3725 return val->initialized;
3726 }
3727
3728 /* Helper for value_fetch_lazy when the value is a bitfield. */
3729
3730 static void
3731 value_fetch_lazy_bitfield (struct value *val)
3732 {
3733 gdb_assert (value_bitsize (val) != 0);
3734
3735 /* To read a lazy bitfield, read the entire enclosing value. This
3736 prevents reading the same block of (possibly volatile) memory once
3737 per bitfield. It would be even better to read only the containing
3738 word, but we have no way to record that just specific bits of a
3739 value have been fetched. */
3740 struct value *parent = value_parent (val);
3741
3742 if (value_lazy (parent))
3743 value_fetch_lazy (parent);
3744
3745 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
3746 value_contents_for_printing (parent),
3747 value_offset (val), parent);
3748 }
3749
3750 /* Helper for value_fetch_lazy when the value is in memory. */
3751
3752 static void
3753 value_fetch_lazy_memory (struct value *val)
3754 {
3755 gdb_assert (VALUE_LVAL (val) == lval_memory);
3756
3757 CORE_ADDR addr = value_address (val);
3758 struct type *type = check_typedef (value_enclosing_type (val));
3759
3760 if (TYPE_LENGTH (type))
3761 read_value_memory (val, 0, value_stack (val),
3762 addr, value_contents_all_raw (val),
3763 type_length_units (type));
3764 }
3765
3766 /* Helper for value_fetch_lazy when the value is in a register. */
3767
3768 static void
3769 value_fetch_lazy_register (struct value *val)
3770 {
3771 struct frame_info *next_frame;
3772 int regnum;
3773 struct type *type = check_typedef (value_type (val));
3774 struct value *new_val = val, *mark = value_mark ();
3775
3776 /* Offsets are not supported here; lazy register values must
3777 refer to the entire register. */
3778 gdb_assert (value_offset (val) == 0);
3779
3780 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3781 {
3782 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3783
3784 next_frame = frame_find_by_id (next_frame_id);
3785 regnum = VALUE_REGNUM (new_val);
3786
3787 gdb_assert (next_frame != NULL);
3788
3789 /* Convertible register routines are used for multi-register
3790 values and for interpretation in different types
3791 (e.g. float or int from a double register). Lazy
3792 register values should have the register's natural type,
3793 so they do not apply. */
3794 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3795 regnum, type));
3796
3797 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3798 Since a "->next" operation was performed when setting
3799 this field, we do not need to perform a "next" operation
3800 again when unwinding the register. That's why
3801 frame_unwind_register_value() is called here instead of
3802 get_frame_register_value(). */
3803 new_val = frame_unwind_register_value (next_frame, regnum);
3804
3805 /* If we get another lazy lval_register value, it means the
3806 register is found by reading it from NEXT_FRAME's next frame.
3807 frame_unwind_register_value should never return a value with
3808 the frame id pointing to NEXT_FRAME. If it does, it means we
3809 either have two consecutive frames with the same frame id
3810 in the frame chain, or some code is trying to unwind
3811 behind get_prev_frame's back (e.g., a frame unwind
3812 sniffer trying to unwind), bypassing its validations. In
3813 any case, it should always be an internal error to end up
3814 in this situation. */
3815 if (VALUE_LVAL (new_val) == lval_register
3816 && value_lazy (new_val)
3817 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3818 internal_error (__FILE__, __LINE__,
3819 _("infinite loop while fetching a register"));
3820 }
3821
3822 /* If it's still lazy (for instance, a saved register on the
3823 stack), fetch it. */
3824 if (value_lazy (new_val))
3825 value_fetch_lazy (new_val);
3826
3827 /* Copy the contents and the unavailability/optimized-out
3828 meta-data from NEW_VAL to VAL. */
3829 set_value_lazy (val, 0);
3830 value_contents_copy (val, value_embedded_offset (val),
3831 new_val, value_embedded_offset (new_val),
3832 type_length_units (type));
3833
3834 if (frame_debug)
3835 {
3836 struct gdbarch *gdbarch;
3837 struct frame_info *frame;
3838 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3839 so that the frame level will be shown correctly. */
3840 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3841 regnum = VALUE_REGNUM (val);
3842 gdbarch = get_frame_arch (frame);
3843
3844 fprintf_unfiltered (gdb_stdlog,
3845 "{ value_fetch_lazy "
3846 "(frame=%d,regnum=%d(%s),...) ",
3847 frame_relative_level (frame), regnum,
3848 user_reg_map_regnum_to_name (gdbarch, regnum));
3849
3850 fprintf_unfiltered (gdb_stdlog, "->");
3851 if (value_optimized_out (new_val))
3852 {
3853 fprintf_unfiltered (gdb_stdlog, " ");
3854 val_print_optimized_out (new_val, gdb_stdlog);
3855 }
3856 else
3857 {
3858 int i;
3859 const gdb_byte *buf = value_contents (new_val);
3860
3861 if (VALUE_LVAL (new_val) == lval_register)
3862 fprintf_unfiltered (gdb_stdlog, " register=%d",
3863 VALUE_REGNUM (new_val));
3864 else if (VALUE_LVAL (new_val) == lval_memory)
3865 fprintf_unfiltered (gdb_stdlog, " address=%s",
3866 paddress (gdbarch,
3867 value_address (new_val)));
3868 else
3869 fprintf_unfiltered (gdb_stdlog, " computed");
3870
3871 fprintf_unfiltered (gdb_stdlog, " bytes=");
3872 fprintf_unfiltered (gdb_stdlog, "[");
3873 for (i = 0; i < register_size (gdbarch, regnum); i++)
3874 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3875 fprintf_unfiltered (gdb_stdlog, "]");
3876 }
3877
3878 fprintf_unfiltered (gdb_stdlog, " }\n");
3879 }
3880
3881 /* Dispose of the intermediate values. This prevents
3882 watchpoints from trying to watch the saved frame pointer. */
3883 value_free_to_mark (mark);
3884 }
3885
3886 /* Load the actual content of a lazy value. Fetch the data from the
3887 user's process and clear the lazy flag to indicate that the data in
3888 the buffer is valid.
3889
3890 If the value is zero-length, we avoid calling read_memory, which
3891 would abort. We mark the value as fetched anyway -- all 0 bytes of
3892 it. */
3893
3894 void
3895 value_fetch_lazy (struct value *val)
3896 {
3897 gdb_assert (value_lazy (val));
3898 allocate_value_contents (val);
3899 /* A value is either lazy, or fully fetched. The
3900 availability/validity is only established as we try to fetch a
3901 value. */
3902 gdb_assert (val->optimized_out.empty ());
3903 gdb_assert (val->unavailable.empty ());
3904 if (value_bitsize (val))
3905 value_fetch_lazy_bitfield (val);
3906 else if (VALUE_LVAL (val) == lval_memory)
3907 value_fetch_lazy_memory (val);
3908 else if (VALUE_LVAL (val) == lval_register)
3909 value_fetch_lazy_register (val);
3910 else if (VALUE_LVAL (val) == lval_computed
3911 && value_computed_funcs (val)->read != NULL)
3912 value_computed_funcs (val)->read (val);
3913 else
3914 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3915
3916 set_value_lazy (val, 0);
3917 }
3918
3919 /* Implementation of the convenience function $_isvoid. */
3920
3921 static struct value *
3922 isvoid_internal_fn (struct gdbarch *gdbarch,
3923 const struct language_defn *language,
3924 void *cookie, int argc, struct value **argv)
3925 {
3926 int ret;
3927
3928 if (argc != 1)
3929 error (_("You must provide one argument for $_isvoid."));
3930
3931 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3932
3933 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3934 }
3935
3936 /* Implementation of the convenience function $_cimag. Extracts the
3937 real part from a complex number. */
3938
3939 static struct value *
3940 creal_internal_fn (struct gdbarch *gdbarch,
3941 const struct language_defn *language,
3942 void *cookie, int argc, struct value **argv)
3943 {
3944 if (argc != 1)
3945 error (_("You must provide one argument for $_creal."));
3946
3947 value *cval = argv[0];
3948 type *ctype = check_typedef (value_type (cval));
3949 if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX)
3950 error (_("expected a complex number"));
3951 return value_from_component (cval, TYPE_TARGET_TYPE (ctype), 0);
3952 }
3953
3954 /* Implementation of the convenience function $_cimag. Extracts the
3955 imaginary part from a complex number. */
3956
3957 static struct value *
3958 cimag_internal_fn (struct gdbarch *gdbarch,
3959 const struct language_defn *language,
3960 void *cookie, int argc,
3961 struct value **argv)
3962 {
3963 if (argc != 1)
3964 error (_("You must provide one argument for $_cimag."));
3965
3966 value *cval = argv[0];
3967 type *ctype = check_typedef (value_type (cval));
3968 if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX)
3969 error (_("expected a complex number"));
3970 return value_from_component (cval, TYPE_TARGET_TYPE (ctype),
3971 TYPE_LENGTH (TYPE_TARGET_TYPE (ctype)));
3972 }
3973
3974 #if GDB_SELF_TEST
3975 namespace selftests
3976 {
3977
3978 /* Test the ranges_contain function. */
3979
3980 static void
3981 test_ranges_contain ()
3982 {
3983 std::vector<range> ranges;
3984 range r;
3985
3986 /* [10, 14] */
3987 r.offset = 10;
3988 r.length = 5;
3989 ranges.push_back (r);
3990
3991 /* [20, 24] */
3992 r.offset = 20;
3993 r.length = 5;
3994 ranges.push_back (r);
3995
3996 /* [2, 6] */
3997 SELF_CHECK (!ranges_contain (ranges, 2, 5));
3998 /* [9, 13] */
3999 SELF_CHECK (ranges_contain (ranges, 9, 5));
4000 /* [10, 11] */
4001 SELF_CHECK (ranges_contain (ranges, 10, 2));
4002 /* [10, 14] */
4003 SELF_CHECK (ranges_contain (ranges, 10, 5));
4004 /* [13, 18] */
4005 SELF_CHECK (ranges_contain (ranges, 13, 6));
4006 /* [14, 18] */
4007 SELF_CHECK (ranges_contain (ranges, 14, 5));
4008 /* [15, 18] */
4009 SELF_CHECK (!ranges_contain (ranges, 15, 4));
4010 /* [16, 19] */
4011 SELF_CHECK (!ranges_contain (ranges, 16, 4));
4012 /* [16, 21] */
4013 SELF_CHECK (ranges_contain (ranges, 16, 6));
4014 /* [21, 21] */
4015 SELF_CHECK (ranges_contain (ranges, 21, 1));
4016 /* [21, 25] */
4017 SELF_CHECK (ranges_contain (ranges, 21, 5));
4018 /* [26, 28] */
4019 SELF_CHECK (!ranges_contain (ranges, 26, 3));
4020 }
4021
4022 /* Check that RANGES contains the same ranges as EXPECTED. */
4023
4024 static bool
4025 check_ranges_vector (gdb::array_view<const range> ranges,
4026 gdb::array_view<const range> expected)
4027 {
4028 return ranges == expected;
4029 }
4030
4031 /* Test the insert_into_bit_range_vector function. */
4032
4033 static void
4034 test_insert_into_bit_range_vector ()
4035 {
4036 std::vector<range> ranges;
4037
4038 /* [10, 14] */
4039 {
4040 insert_into_bit_range_vector (&ranges, 10, 5);
4041 static const range expected[] = {
4042 {10, 5}
4043 };
4044 SELF_CHECK (check_ranges_vector (ranges, expected));
4045 }
4046
4047 /* [10, 14] */
4048 {
4049 insert_into_bit_range_vector (&ranges, 11, 4);
4050 static const range expected = {10, 5};
4051 SELF_CHECK (check_ranges_vector (ranges, expected));
4052 }
4053
4054 /* [10, 14] [20, 24] */
4055 {
4056 insert_into_bit_range_vector (&ranges, 20, 5);
4057 static const range expected[] = {
4058 {10, 5},
4059 {20, 5},
4060 };
4061 SELF_CHECK (check_ranges_vector (ranges, expected));
4062 }
4063
4064 /* [10, 14] [17, 24] */
4065 {
4066 insert_into_bit_range_vector (&ranges, 17, 5);
4067 static const range expected[] = {
4068 {10, 5},
4069 {17, 8},
4070 };
4071 SELF_CHECK (check_ranges_vector (ranges, expected));
4072 }
4073
4074 /* [2, 8] [10, 14] [17, 24] */
4075 {
4076 insert_into_bit_range_vector (&ranges, 2, 7);
4077 static const range expected[] = {
4078 {2, 7},
4079 {10, 5},
4080 {17, 8},
4081 };
4082 SELF_CHECK (check_ranges_vector (ranges, expected));
4083 }
4084
4085 /* [2, 14] [17, 24] */
4086 {
4087 insert_into_bit_range_vector (&ranges, 9, 1);
4088 static const range expected[] = {
4089 {2, 13},
4090 {17, 8},
4091 };
4092 SELF_CHECK (check_ranges_vector (ranges, expected));
4093 }
4094
4095 /* [2, 14] [17, 24] */
4096 {
4097 insert_into_bit_range_vector (&ranges, 9, 1);
4098 static const range expected[] = {
4099 {2, 13},
4100 {17, 8},
4101 };
4102 SELF_CHECK (check_ranges_vector (ranges, expected));
4103 }
4104
4105 /* [2, 33] */
4106 {
4107 insert_into_bit_range_vector (&ranges, 4, 30);
4108 static const range expected = {2, 32};
4109 SELF_CHECK (check_ranges_vector (ranges, expected));
4110 }
4111 }
4112
4113 } /* namespace selftests */
4114 #endif /* GDB_SELF_TEST */
4115
4116 void
4117 _initialize_values (void)
4118 {
4119 add_cmd ("convenience", no_class, show_convenience, _("\
4120 Debugger convenience (\"$foo\") variables and functions.\n\
4121 Convenience variables are created when you assign them values;\n\
4122 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4123 \n\
4124 A few convenience variables are given values automatically:\n\
4125 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4126 \"$__\" holds the contents of the last address examined with \"x\"."
4127 #ifdef HAVE_PYTHON
4128 "\n\n\
4129 Convenience functions are defined via the Python API."
4130 #endif
4131 ), &showlist);
4132 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4133
4134 add_cmd ("values", no_set_class, show_values, _("\
4135 Elements of value history around item number IDX (or last ten)."),
4136 &showlist);
4137
4138 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4139 Initialize a convenience variable if necessary.\n\
4140 init-if-undefined VARIABLE = EXPRESSION\n\
4141 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4142 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4143 VARIABLE is already initialized."));
4144
4145 add_prefix_cmd ("function", no_class, function_command, _("\
4146 Placeholder command for showing help on convenience functions."),
4147 &functionlist, "function ", 0, &cmdlist);
4148
4149 add_internal_function ("_isvoid", _("\
4150 Check whether an expression is void.\n\
4151 Usage: $_isvoid (expression)\n\
4152 Return 1 if the expression is void, zero otherwise."),
4153 isvoid_internal_fn, NULL);
4154
4155 add_internal_function ("_creal", _("\
4156 Extract the real part of a complex number.\n\
4157 Usage: $_creal (expression)\n\
4158 Return the real part of a complex number, the type depends on the\n\
4159 type of a complex number."),
4160 creal_internal_fn, NULL);
4161
4162 add_internal_function ("_cimag", _("\
4163 Extract the imaginary part of a complex number.\n\
4164 Usage: $_cimag (expression)\n\
4165 Return the imaginary part of a complex number, the type depends on the\n\
4166 type of a complex number."),
4167 cimag_internal_fn, NULL);
4168
4169 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4170 class_support, &max_value_size, _("\
4171 Set maximum sized value gdb will load from the inferior."), _("\
4172 Show maximum sized value gdb will load from the inferior."), _("\
4173 Use this to control the maximum size, in bytes, of a value that gdb\n\
4174 will load from the inferior. Setting this value to 'unlimited'\n\
4175 disables checking.\n\
4176 Setting this does not invalidate already allocated values, it only\n\
4177 prevents future values, larger than this size, from being allocated."),
4178 set_max_value_size,
4179 show_max_value_size,
4180 &setlist, &showlist);
4181 #if GDB_SELF_TEST
4182 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4183 selftests::register_test ("insert_into_bit_range_vector",
4184 selftests::test_insert_into_bit_range_vector);
4185 #endif
4186 }
4187
4188 /* See value.h. */
4189
4190 void
4191 finalize_values ()
4192 {
4193 all_values.clear ();
4194 }
This page took 0.121109 seconds and 4 git commands to generate.