[ARC] Add checking for LP_COUNT reg usage, improve error reporting.
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "doublest.h"
32 #include "regcache.h"
33 #include "block.h"
34 #include "dfp.h"
35 #include "objfiles.h"
36 #include "valprint.h"
37 #include "cli/cli-decode.h"
38 #include "extension.h"
39 #include <ctype.h>
40 #include "tracepoint.h"
41 #include "cp-abi.h"
42 #include "user-regs.h"
43 #include <algorithm>
44
45 /* Prototypes for exported functions. */
46
47 void _initialize_values (void);
48
49 /* Definition of a user function. */
50 struct internal_function
51 {
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62 };
63
64 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
65
66 struct range
67 {
68 /* Lowest offset in the range. */
69 LONGEST offset;
70
71 /* Length of the range. */
72 LONGEST length;
73 };
74
75 typedef struct range range_s;
76
77 DEF_VEC_O(range_s);
78
79 /* Returns true if the ranges defined by [offset1, offset1+len1) and
80 [offset2, offset2+len2) overlap. */
81
82 static int
83 ranges_overlap (LONGEST offset1, LONGEST len1,
84 LONGEST offset2, LONGEST len2)
85 {
86 ULONGEST h, l;
87
88 l = std::max (offset1, offset2);
89 h = std::min (offset1 + len1, offset2 + len2);
90 return (l < h);
91 }
92
93 /* Returns true if the first argument is strictly less than the
94 second, useful for VEC_lower_bound. We keep ranges sorted by
95 offset and coalesce overlapping and contiguous ranges, so this just
96 compares the starting offset. */
97
98 static int
99 range_lessthan (const range_s *r1, const range_s *r2)
100 {
101 return r1->offset < r2->offset;
102 }
103
104 /* Returns true if RANGES contains any range that overlaps [OFFSET,
105 OFFSET+LENGTH). */
106
107 static int
108 ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
109 {
110 range_s what;
111 LONGEST i;
112
113 what.offset = offset;
114 what.length = length;
115
116 /* We keep ranges sorted by offset and coalesce overlapping and
117 contiguous ranges, so to check if a range list contains a given
118 range, we can do a binary search for the position the given range
119 would be inserted if we only considered the starting OFFSET of
120 ranges. We call that position I. Since we also have LENGTH to
121 care for (this is a range afterall), we need to check if the
122 _previous_ range overlaps the I range. E.g.,
123
124 R
125 |---|
126 |---| |---| |------| ... |--|
127 0 1 2 N
128
129 I=1
130
131 In the case above, the binary search would return `I=1', meaning,
132 this OFFSET should be inserted at position 1, and the current
133 position 1 should be pushed further (and before 2). But, `0'
134 overlaps with R.
135
136 Then we need to check if the I range overlaps the I range itself.
137 E.g.,
138
139 R
140 |---|
141 |---| |---| |-------| ... |--|
142 0 1 2 N
143
144 I=1
145 */
146
147 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
148
149 if (i > 0)
150 {
151 struct range *bef = VEC_index (range_s, ranges, i - 1);
152
153 if (ranges_overlap (bef->offset, bef->length, offset, length))
154 return 1;
155 }
156
157 if (i < VEC_length (range_s, ranges))
158 {
159 struct range *r = VEC_index (range_s, ranges, i);
160
161 if (ranges_overlap (r->offset, r->length, offset, length))
162 return 1;
163 }
164
165 return 0;
166 }
167
168 static struct cmd_list_element *functionlist;
169
170 /* Note that the fields in this structure are arranged to save a bit
171 of memory. */
172
173 struct value
174 {
175 /* Type of value; either not an lval, or one of the various
176 different possible kinds of lval. */
177 enum lval_type lval;
178
179 /* Is it modifiable? Only relevant if lval != not_lval. */
180 unsigned int modifiable : 1;
181
182 /* If zero, contents of this value are in the contents field. If
183 nonzero, contents are in inferior. If the lval field is lval_memory,
184 the contents are in inferior memory at location.address plus offset.
185 The lval field may also be lval_register.
186
187 WARNING: This field is used by the code which handles watchpoints
188 (see breakpoint.c) to decide whether a particular value can be
189 watched by hardware watchpoints. If the lazy flag is set for
190 some member of a value chain, it is assumed that this member of
191 the chain doesn't need to be watched as part of watching the
192 value itself. This is how GDB avoids watching the entire struct
193 or array when the user wants to watch a single struct member or
194 array element. If you ever change the way lazy flag is set and
195 reset, be sure to consider this use as well! */
196 unsigned int lazy : 1;
197
198 /* If value is a variable, is it initialized or not. */
199 unsigned int initialized : 1;
200
201 /* If value is from the stack. If this is set, read_stack will be
202 used instead of read_memory to enable extra caching. */
203 unsigned int stack : 1;
204
205 /* If the value has been released. */
206 unsigned int released : 1;
207
208 /* Location of value (if lval). */
209 union
210 {
211 /* If lval == lval_memory, this is the address in the inferior */
212 CORE_ADDR address;
213
214 /*If lval == lval_register, the value is from a register. */
215 struct
216 {
217 /* Register number. */
218 int regnum;
219 /* Frame ID of "next" frame to which a register value is relative.
220 If the register value is found relative to frame F, then the
221 frame id of F->next will be stored in next_frame_id. */
222 struct frame_id next_frame_id;
223 } reg;
224
225 /* Pointer to internal variable. */
226 struct internalvar *internalvar;
227
228 /* Pointer to xmethod worker. */
229 struct xmethod_worker *xm_worker;
230
231 /* If lval == lval_computed, this is a set of function pointers
232 to use to access and describe the value, and a closure pointer
233 for them to use. */
234 struct
235 {
236 /* Functions to call. */
237 const struct lval_funcs *funcs;
238
239 /* Closure for those functions to use. */
240 void *closure;
241 } computed;
242 } location;
243
244 /* Describes offset of a value within lval of a structure in target
245 addressable memory units. Note also the member embedded_offset
246 below. */
247 LONGEST offset;
248
249 /* Only used for bitfields; number of bits contained in them. */
250 LONGEST bitsize;
251
252 /* Only used for bitfields; position of start of field. For
253 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
254 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
255 LONGEST bitpos;
256
257 /* The number of references to this value. When a value is created,
258 the value chain holds a reference, so REFERENCE_COUNT is 1. If
259 release_value is called, this value is removed from the chain but
260 the caller of release_value now has a reference to this value.
261 The caller must arrange for a call to value_free later. */
262 int reference_count;
263
264 /* Only used for bitfields; the containing value. This allows a
265 single read from the target when displaying multiple
266 bitfields. */
267 struct value *parent;
268
269 /* Type of the value. */
270 struct type *type;
271
272 /* If a value represents a C++ object, then the `type' field gives
273 the object's compile-time type. If the object actually belongs
274 to some class derived from `type', perhaps with other base
275 classes and additional members, then `type' is just a subobject
276 of the real thing, and the full object is probably larger than
277 `type' would suggest.
278
279 If `type' is a dynamic class (i.e. one with a vtable), then GDB
280 can actually determine the object's run-time type by looking at
281 the run-time type information in the vtable. When this
282 information is available, we may elect to read in the entire
283 object, for several reasons:
284
285 - When printing the value, the user would probably rather see the
286 full object, not just the limited portion apparent from the
287 compile-time type.
288
289 - If `type' has virtual base classes, then even printing `type'
290 alone may require reaching outside the `type' portion of the
291 object to wherever the virtual base class has been stored.
292
293 When we store the entire object, `enclosing_type' is the run-time
294 type -- the complete object -- and `embedded_offset' is the
295 offset of `type' within that larger type, in target addressable memory
296 units. The value_contents() macro takes `embedded_offset' into account,
297 so most GDB code continues to see the `type' portion of the value, just
298 as the inferior would.
299
300 If `type' is a pointer to an object, then `enclosing_type' is a
301 pointer to the object's run-time type, and `pointed_to_offset' is
302 the offset in target addressable memory units from the full object
303 to the pointed-to object -- that is, the value `embedded_offset' would
304 have if we followed the pointer and fetched the complete object.
305 (I don't really see the point. Why not just determine the
306 run-time type when you indirect, and avoid the special case? The
307 contents don't matter until you indirect anyway.)
308
309 If we're not doing anything fancy, `enclosing_type' is equal to
310 `type', and `embedded_offset' is zero, so everything works
311 normally. */
312 struct type *enclosing_type;
313 LONGEST embedded_offset;
314 LONGEST pointed_to_offset;
315
316 /* Values are stored in a chain, so that they can be deleted easily
317 over calls to the inferior. Values assigned to internal
318 variables, put into the value history or exposed to Python are
319 taken off this list. */
320 struct value *next;
321
322 /* Actual contents of the value. Target byte-order. NULL or not
323 valid if lazy is nonzero. */
324 gdb_byte *contents;
325
326 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
327 rather than available, since the common and default case is for a
328 value to be available. This is filled in at value read time.
329 The unavailable ranges are tracked in bits. Note that a contents
330 bit that has been optimized out doesn't really exist in the
331 program, so it can't be marked unavailable either. */
332 VEC(range_s) *unavailable;
333
334 /* Likewise, but for optimized out contents (a chunk of the value of
335 a variable that does not actually exist in the program). If LVAL
336 is lval_register, this is a register ($pc, $sp, etc., never a
337 program variable) that has not been saved in the frame. Not
338 saved registers and optimized-out program variables values are
339 treated pretty much the same, except not-saved registers have a
340 different string representation and related error strings. */
341 VEC(range_s) *optimized_out;
342 };
343
344 /* See value.h. */
345
346 struct gdbarch *
347 get_value_arch (const struct value *value)
348 {
349 return get_type_arch (value_type (value));
350 }
351
352 int
353 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
354 {
355 gdb_assert (!value->lazy);
356
357 return !ranges_contain (value->unavailable, offset, length);
358 }
359
360 int
361 value_bytes_available (const struct value *value,
362 LONGEST offset, LONGEST length)
363 {
364 return value_bits_available (value,
365 offset * TARGET_CHAR_BIT,
366 length * TARGET_CHAR_BIT);
367 }
368
369 int
370 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
371 {
372 gdb_assert (!value->lazy);
373
374 return ranges_contain (value->optimized_out, bit_offset, bit_length);
375 }
376
377 int
378 value_entirely_available (struct value *value)
379 {
380 /* We can only tell whether the whole value is available when we try
381 to read it. */
382 if (value->lazy)
383 value_fetch_lazy (value);
384
385 if (VEC_empty (range_s, value->unavailable))
386 return 1;
387 return 0;
388 }
389
390 /* Returns true if VALUE is entirely covered by RANGES. If the value
391 is lazy, it'll be read now. Note that RANGE is a pointer to
392 pointer because reading the value might change *RANGE. */
393
394 static int
395 value_entirely_covered_by_range_vector (struct value *value,
396 VEC(range_s) **ranges)
397 {
398 /* We can only tell whether the whole value is optimized out /
399 unavailable when we try to read it. */
400 if (value->lazy)
401 value_fetch_lazy (value);
402
403 if (VEC_length (range_s, *ranges) == 1)
404 {
405 struct range *t = VEC_index (range_s, *ranges, 0);
406
407 if (t->offset == 0
408 && t->length == (TARGET_CHAR_BIT
409 * TYPE_LENGTH (value_enclosing_type (value))))
410 return 1;
411 }
412
413 return 0;
414 }
415
416 int
417 value_entirely_unavailable (struct value *value)
418 {
419 return value_entirely_covered_by_range_vector (value, &value->unavailable);
420 }
421
422 int
423 value_entirely_optimized_out (struct value *value)
424 {
425 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
426 }
427
428 /* Insert into the vector pointed to by VECTORP the bit range starting of
429 OFFSET bits, and extending for the next LENGTH bits. */
430
431 static void
432 insert_into_bit_range_vector (VEC(range_s) **vectorp,
433 LONGEST offset, LONGEST length)
434 {
435 range_s newr;
436 int i;
437
438 /* Insert the range sorted. If there's overlap or the new range
439 would be contiguous with an existing range, merge. */
440
441 newr.offset = offset;
442 newr.length = length;
443
444 /* Do a binary search for the position the given range would be
445 inserted if we only considered the starting OFFSET of ranges.
446 Call that position I. Since we also have LENGTH to care for
447 (this is a range afterall), we need to check if the _previous_
448 range overlaps the I range. E.g., calling R the new range:
449
450 #1 - overlaps with previous
451
452 R
453 |-...-|
454 |---| |---| |------| ... |--|
455 0 1 2 N
456
457 I=1
458
459 In the case #1 above, the binary search would return `I=1',
460 meaning, this OFFSET should be inserted at position 1, and the
461 current position 1 should be pushed further (and become 2). But,
462 note that `0' overlaps with R, so we want to merge them.
463
464 A similar consideration needs to be taken if the new range would
465 be contiguous with the previous range:
466
467 #2 - contiguous with previous
468
469 R
470 |-...-|
471 |--| |---| |------| ... |--|
472 0 1 2 N
473
474 I=1
475
476 If there's no overlap with the previous range, as in:
477
478 #3 - not overlapping and not contiguous
479
480 R
481 |-...-|
482 |--| |---| |------| ... |--|
483 0 1 2 N
484
485 I=1
486
487 or if I is 0:
488
489 #4 - R is the range with lowest offset
490
491 R
492 |-...-|
493 |--| |---| |------| ... |--|
494 0 1 2 N
495
496 I=0
497
498 ... we just push the new range to I.
499
500 All the 4 cases above need to consider that the new range may
501 also overlap several of the ranges that follow, or that R may be
502 contiguous with the following range, and merge. E.g.,
503
504 #5 - overlapping following ranges
505
506 R
507 |------------------------|
508 |--| |---| |------| ... |--|
509 0 1 2 N
510
511 I=0
512
513 or:
514
515 R
516 |-------|
517 |--| |---| |------| ... |--|
518 0 1 2 N
519
520 I=1
521
522 */
523
524 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
525 if (i > 0)
526 {
527 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
528
529 if (ranges_overlap (bef->offset, bef->length, offset, length))
530 {
531 /* #1 */
532 ULONGEST l = std::min (bef->offset, offset);
533 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
534
535 bef->offset = l;
536 bef->length = h - l;
537 i--;
538 }
539 else if (offset == bef->offset + bef->length)
540 {
541 /* #2 */
542 bef->length += length;
543 i--;
544 }
545 else
546 {
547 /* #3 */
548 VEC_safe_insert (range_s, *vectorp, i, &newr);
549 }
550 }
551 else
552 {
553 /* #4 */
554 VEC_safe_insert (range_s, *vectorp, i, &newr);
555 }
556
557 /* Check whether the ranges following the one we've just added or
558 touched can be folded in (#5 above). */
559 if (i + 1 < VEC_length (range_s, *vectorp))
560 {
561 struct range *t;
562 struct range *r;
563 int removed = 0;
564 int next = i + 1;
565
566 /* Get the range we just touched. */
567 t = VEC_index (range_s, *vectorp, i);
568 removed = 0;
569
570 i = next;
571 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
572 if (r->offset <= t->offset + t->length)
573 {
574 ULONGEST l, h;
575
576 l = std::min (t->offset, r->offset);
577 h = std::max (t->offset + t->length, r->offset + r->length);
578
579 t->offset = l;
580 t->length = h - l;
581
582 removed++;
583 }
584 else
585 {
586 /* If we couldn't merge this one, we won't be able to
587 merge following ones either, since the ranges are
588 always sorted by OFFSET. */
589 break;
590 }
591
592 if (removed != 0)
593 VEC_block_remove (range_s, *vectorp, next, removed);
594 }
595 }
596
597 void
598 mark_value_bits_unavailable (struct value *value,
599 LONGEST offset, LONGEST length)
600 {
601 insert_into_bit_range_vector (&value->unavailable, offset, length);
602 }
603
604 void
605 mark_value_bytes_unavailable (struct value *value,
606 LONGEST offset, LONGEST length)
607 {
608 mark_value_bits_unavailable (value,
609 offset * TARGET_CHAR_BIT,
610 length * TARGET_CHAR_BIT);
611 }
612
613 /* Find the first range in RANGES that overlaps the range defined by
614 OFFSET and LENGTH, starting at element POS in the RANGES vector,
615 Returns the index into RANGES where such overlapping range was
616 found, or -1 if none was found. */
617
618 static int
619 find_first_range_overlap (VEC(range_s) *ranges, int pos,
620 LONGEST offset, LONGEST length)
621 {
622 range_s *r;
623 int i;
624
625 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
626 if (ranges_overlap (r->offset, r->length, offset, length))
627 return i;
628
629 return -1;
630 }
631
632 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
633 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
634 return non-zero.
635
636 It must always be the case that:
637 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
638
639 It is assumed that memory can be accessed from:
640 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
641 to:
642 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
643 / TARGET_CHAR_BIT) */
644 static int
645 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
646 const gdb_byte *ptr2, size_t offset2_bits,
647 size_t length_bits)
648 {
649 gdb_assert (offset1_bits % TARGET_CHAR_BIT
650 == offset2_bits % TARGET_CHAR_BIT);
651
652 if (offset1_bits % TARGET_CHAR_BIT != 0)
653 {
654 size_t bits;
655 gdb_byte mask, b1, b2;
656
657 /* The offset from the base pointers PTR1 and PTR2 is not a complete
658 number of bytes. A number of bits up to either the next exact
659 byte boundary, or LENGTH_BITS (which ever is sooner) will be
660 compared. */
661 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
662 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
663 mask = (1 << bits) - 1;
664
665 if (length_bits < bits)
666 {
667 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
668 bits = length_bits;
669 }
670
671 /* Now load the two bytes and mask off the bits we care about. */
672 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
673 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
674
675 if (b1 != b2)
676 return 1;
677
678 /* Now update the length and offsets to take account of the bits
679 we've just compared. */
680 length_bits -= bits;
681 offset1_bits += bits;
682 offset2_bits += bits;
683 }
684
685 if (length_bits % TARGET_CHAR_BIT != 0)
686 {
687 size_t bits;
688 size_t o1, o2;
689 gdb_byte mask, b1, b2;
690
691 /* The length is not an exact number of bytes. After the previous
692 IF.. block then the offsets are byte aligned, or the
693 length is zero (in which case this code is not reached). Compare
694 a number of bits at the end of the region, starting from an exact
695 byte boundary. */
696 bits = length_bits % TARGET_CHAR_BIT;
697 o1 = offset1_bits + length_bits - bits;
698 o2 = offset2_bits + length_bits - bits;
699
700 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
701 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
702
703 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
704 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
705
706 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
707 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
708
709 if (b1 != b2)
710 return 1;
711
712 length_bits -= bits;
713 }
714
715 if (length_bits > 0)
716 {
717 /* We've now taken care of any stray "bits" at the start, or end of
718 the region to compare, the remainder can be covered with a simple
719 memcmp. */
720 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
721 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
722 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
723
724 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
725 ptr2 + offset2_bits / TARGET_CHAR_BIT,
726 length_bits / TARGET_CHAR_BIT);
727 }
728
729 /* Length is zero, regions match. */
730 return 0;
731 }
732
733 /* Helper struct for find_first_range_overlap_and_match and
734 value_contents_bits_eq. Keep track of which slot of a given ranges
735 vector have we last looked at. */
736
737 struct ranges_and_idx
738 {
739 /* The ranges. */
740 VEC(range_s) *ranges;
741
742 /* The range we've last found in RANGES. Given ranges are sorted,
743 we can start the next lookup here. */
744 int idx;
745 };
746
747 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
748 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
749 ranges starting at OFFSET2 bits. Return true if the ranges match
750 and fill in *L and *H with the overlapping window relative to
751 (both) OFFSET1 or OFFSET2. */
752
753 static int
754 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
755 struct ranges_and_idx *rp2,
756 LONGEST offset1, LONGEST offset2,
757 LONGEST length, ULONGEST *l, ULONGEST *h)
758 {
759 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
760 offset1, length);
761 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
762 offset2, length);
763
764 if (rp1->idx == -1 && rp2->idx == -1)
765 {
766 *l = length;
767 *h = length;
768 return 1;
769 }
770 else if (rp1->idx == -1 || rp2->idx == -1)
771 return 0;
772 else
773 {
774 range_s *r1, *r2;
775 ULONGEST l1, h1;
776 ULONGEST l2, h2;
777
778 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
779 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
780
781 /* Get the unavailable windows intersected by the incoming
782 ranges. The first and last ranges that overlap the argument
783 range may be wider than said incoming arguments ranges. */
784 l1 = std::max (offset1, r1->offset);
785 h1 = std::min (offset1 + length, r1->offset + r1->length);
786
787 l2 = std::max (offset2, r2->offset);
788 h2 = std::min (offset2 + length, offset2 + r2->length);
789
790 /* Make them relative to the respective start offsets, so we can
791 compare them for equality. */
792 l1 -= offset1;
793 h1 -= offset1;
794
795 l2 -= offset2;
796 h2 -= offset2;
797
798 /* Different ranges, no match. */
799 if (l1 != l2 || h1 != h2)
800 return 0;
801
802 *h = h1;
803 *l = l1;
804 return 1;
805 }
806 }
807
808 /* Helper function for value_contents_eq. The only difference is that
809 this function is bit rather than byte based.
810
811 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
812 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
813 Return true if the available bits match. */
814
815 static int
816 value_contents_bits_eq (const struct value *val1, int offset1,
817 const struct value *val2, int offset2,
818 int length)
819 {
820 /* Each array element corresponds to a ranges source (unavailable,
821 optimized out). '1' is for VAL1, '2' for VAL2. */
822 struct ranges_and_idx rp1[2], rp2[2];
823
824 /* See function description in value.h. */
825 gdb_assert (!val1->lazy && !val2->lazy);
826
827 /* We shouldn't be trying to compare past the end of the values. */
828 gdb_assert (offset1 + length
829 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
830 gdb_assert (offset2 + length
831 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
832
833 memset (&rp1, 0, sizeof (rp1));
834 memset (&rp2, 0, sizeof (rp2));
835 rp1[0].ranges = val1->unavailable;
836 rp2[0].ranges = val2->unavailable;
837 rp1[1].ranges = val1->optimized_out;
838 rp2[1].ranges = val2->optimized_out;
839
840 while (length > 0)
841 {
842 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
843 int i;
844
845 for (i = 0; i < 2; i++)
846 {
847 ULONGEST l_tmp, h_tmp;
848
849 /* The contents only match equal if the invalid/unavailable
850 contents ranges match as well. */
851 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
852 offset1, offset2, length,
853 &l_tmp, &h_tmp))
854 return 0;
855
856 /* We're interested in the lowest/first range found. */
857 if (i == 0 || l_tmp < l)
858 {
859 l = l_tmp;
860 h = h_tmp;
861 }
862 }
863
864 /* Compare the available/valid contents. */
865 if (memcmp_with_bit_offsets (val1->contents, offset1,
866 val2->contents, offset2, l) != 0)
867 return 0;
868
869 length -= h;
870 offset1 += h;
871 offset2 += h;
872 }
873
874 return 1;
875 }
876
877 int
878 value_contents_eq (const struct value *val1, LONGEST offset1,
879 const struct value *val2, LONGEST offset2,
880 LONGEST length)
881 {
882 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
883 val2, offset2 * TARGET_CHAR_BIT,
884 length * TARGET_CHAR_BIT);
885 }
886
887 /* Prototypes for local functions. */
888
889 static void show_values (char *, int);
890
891 static void show_convenience (char *, int);
892
893
894 /* The value-history records all the values printed
895 by print commands during this session. Each chunk
896 records 60 consecutive values. The first chunk on
897 the chain records the most recent values.
898 The total number of values is in value_history_count. */
899
900 #define VALUE_HISTORY_CHUNK 60
901
902 struct value_history_chunk
903 {
904 struct value_history_chunk *next;
905 struct value *values[VALUE_HISTORY_CHUNK];
906 };
907
908 /* Chain of chunks now in use. */
909
910 static struct value_history_chunk *value_history_chain;
911
912 static int value_history_count; /* Abs number of last entry stored. */
913
914 \f
915 /* List of all value objects currently allocated
916 (except for those released by calls to release_value)
917 This is so they can be freed after each command. */
918
919 static struct value *all_values;
920
921 /* Allocate a lazy value for type TYPE. Its actual content is
922 "lazily" allocated too: the content field of the return value is
923 NULL; it will be allocated when it is fetched from the target. */
924
925 struct value *
926 allocate_value_lazy (struct type *type)
927 {
928 struct value *val;
929
930 /* Call check_typedef on our type to make sure that, if TYPE
931 is a TYPE_CODE_TYPEDEF, its length is set to the length
932 of the target type instead of zero. However, we do not
933 replace the typedef type by the target type, because we want
934 to keep the typedef in order to be able to set the VAL's type
935 description correctly. */
936 check_typedef (type);
937
938 val = XCNEW (struct value);
939 val->contents = NULL;
940 val->next = all_values;
941 all_values = val;
942 val->type = type;
943 val->enclosing_type = type;
944 VALUE_LVAL (val) = not_lval;
945 val->location.address = 0;
946 val->offset = 0;
947 val->bitpos = 0;
948 val->bitsize = 0;
949 val->lazy = 1;
950 val->embedded_offset = 0;
951 val->pointed_to_offset = 0;
952 val->modifiable = 1;
953 val->initialized = 1; /* Default to initialized. */
954
955 /* Values start out on the all_values chain. */
956 val->reference_count = 1;
957
958 return val;
959 }
960
961 /* The maximum size, in bytes, that GDB will try to allocate for a value.
962 The initial value of 64k was not selected for any specific reason, it is
963 just a reasonable starting point. */
964
965 static int max_value_size = 65536; /* 64k bytes */
966
967 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
968 LONGEST, otherwise GDB will not be able to parse integer values from the
969 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
970 be unable to parse "set max-value-size 2".
971
972 As we want a consistent GDB experience across hosts with different sizes
973 of LONGEST, this arbitrary minimum value was selected, so long as this
974 is bigger than LONGEST on all GDB supported hosts we're fine. */
975
976 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
977 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
978
979 /* Implement the "set max-value-size" command. */
980
981 static void
982 set_max_value_size (char *args, int from_tty,
983 struct cmd_list_element *c)
984 {
985 gdb_assert (max_value_size == -1 || max_value_size >= 0);
986
987 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
988 {
989 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
990 error (_("max-value-size set too low, increasing to %d bytes"),
991 max_value_size);
992 }
993 }
994
995 /* Implement the "show max-value-size" command. */
996
997 static void
998 show_max_value_size (struct ui_file *file, int from_tty,
999 struct cmd_list_element *c, const char *value)
1000 {
1001 if (max_value_size == -1)
1002 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
1003 else
1004 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
1005 max_value_size);
1006 }
1007
1008 /* Called before we attempt to allocate or reallocate a buffer for the
1009 contents of a value. TYPE is the type of the value for which we are
1010 allocating the buffer. If the buffer is too large (based on the user
1011 controllable setting) then throw an error. If this function returns
1012 then we should attempt to allocate the buffer. */
1013
1014 static void
1015 check_type_length_before_alloc (const struct type *type)
1016 {
1017 unsigned int length = TYPE_LENGTH (type);
1018
1019 if (max_value_size > -1 && length > max_value_size)
1020 {
1021 if (TYPE_NAME (type) != NULL)
1022 error (_("value of type `%s' requires %u bytes, which is more "
1023 "than max-value-size"), TYPE_NAME (type), length);
1024 else
1025 error (_("value requires %u bytes, which is more than "
1026 "max-value-size"), length);
1027 }
1028 }
1029
1030 /* Allocate the contents of VAL if it has not been allocated yet. */
1031
1032 static void
1033 allocate_value_contents (struct value *val)
1034 {
1035 if (!val->contents)
1036 {
1037 check_type_length_before_alloc (val->enclosing_type);
1038 val->contents
1039 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1040 }
1041 }
1042
1043 /* Allocate a value and its contents for type TYPE. */
1044
1045 struct value *
1046 allocate_value (struct type *type)
1047 {
1048 struct value *val = allocate_value_lazy (type);
1049
1050 allocate_value_contents (val);
1051 val->lazy = 0;
1052 return val;
1053 }
1054
1055 /* Allocate a value that has the correct length
1056 for COUNT repetitions of type TYPE. */
1057
1058 struct value *
1059 allocate_repeat_value (struct type *type, int count)
1060 {
1061 int low_bound = current_language->string_lower_bound; /* ??? */
1062 /* FIXME-type-allocation: need a way to free this type when we are
1063 done with it. */
1064 struct type *array_type
1065 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1066
1067 return allocate_value (array_type);
1068 }
1069
1070 struct value *
1071 allocate_computed_value (struct type *type,
1072 const struct lval_funcs *funcs,
1073 void *closure)
1074 {
1075 struct value *v = allocate_value_lazy (type);
1076
1077 VALUE_LVAL (v) = lval_computed;
1078 v->location.computed.funcs = funcs;
1079 v->location.computed.closure = closure;
1080
1081 return v;
1082 }
1083
1084 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1085
1086 struct value *
1087 allocate_optimized_out_value (struct type *type)
1088 {
1089 struct value *retval = allocate_value_lazy (type);
1090
1091 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1092 set_value_lazy (retval, 0);
1093 return retval;
1094 }
1095
1096 /* Accessor methods. */
1097
1098 struct value *
1099 value_next (const struct value *value)
1100 {
1101 return value->next;
1102 }
1103
1104 struct type *
1105 value_type (const struct value *value)
1106 {
1107 return value->type;
1108 }
1109 void
1110 deprecated_set_value_type (struct value *value, struct type *type)
1111 {
1112 value->type = type;
1113 }
1114
1115 LONGEST
1116 value_offset (const struct value *value)
1117 {
1118 return value->offset;
1119 }
1120 void
1121 set_value_offset (struct value *value, LONGEST offset)
1122 {
1123 value->offset = offset;
1124 }
1125
1126 LONGEST
1127 value_bitpos (const struct value *value)
1128 {
1129 return value->bitpos;
1130 }
1131 void
1132 set_value_bitpos (struct value *value, LONGEST bit)
1133 {
1134 value->bitpos = bit;
1135 }
1136
1137 LONGEST
1138 value_bitsize (const struct value *value)
1139 {
1140 return value->bitsize;
1141 }
1142 void
1143 set_value_bitsize (struct value *value, LONGEST bit)
1144 {
1145 value->bitsize = bit;
1146 }
1147
1148 struct value *
1149 value_parent (const struct value *value)
1150 {
1151 return value->parent;
1152 }
1153
1154 /* See value.h. */
1155
1156 void
1157 set_value_parent (struct value *value, struct value *parent)
1158 {
1159 struct value *old = value->parent;
1160
1161 value->parent = parent;
1162 if (parent != NULL)
1163 value_incref (parent);
1164 value_free (old);
1165 }
1166
1167 gdb_byte *
1168 value_contents_raw (struct value *value)
1169 {
1170 struct gdbarch *arch = get_value_arch (value);
1171 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1172
1173 allocate_value_contents (value);
1174 return value->contents + value->embedded_offset * unit_size;
1175 }
1176
1177 gdb_byte *
1178 value_contents_all_raw (struct value *value)
1179 {
1180 allocate_value_contents (value);
1181 return value->contents;
1182 }
1183
1184 struct type *
1185 value_enclosing_type (const struct value *value)
1186 {
1187 return value->enclosing_type;
1188 }
1189
1190 /* Look at value.h for description. */
1191
1192 struct type *
1193 value_actual_type (struct value *value, int resolve_simple_types,
1194 int *real_type_found)
1195 {
1196 struct value_print_options opts;
1197 struct type *result;
1198
1199 get_user_print_options (&opts);
1200
1201 if (real_type_found)
1202 *real_type_found = 0;
1203 result = value_type (value);
1204 if (opts.objectprint)
1205 {
1206 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1207 fetch its rtti type. */
1208 if ((TYPE_CODE (result) == TYPE_CODE_PTR
1209 || TYPE_CODE (result) == TYPE_CODE_REF)
1210 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1211 == TYPE_CODE_STRUCT
1212 && !value_optimized_out (value))
1213 {
1214 struct type *real_type;
1215
1216 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1217 if (real_type)
1218 {
1219 if (real_type_found)
1220 *real_type_found = 1;
1221 result = real_type;
1222 }
1223 }
1224 else if (resolve_simple_types)
1225 {
1226 if (real_type_found)
1227 *real_type_found = 1;
1228 result = value_enclosing_type (value);
1229 }
1230 }
1231
1232 return result;
1233 }
1234
1235 void
1236 error_value_optimized_out (void)
1237 {
1238 error (_("value has been optimized out"));
1239 }
1240
1241 static void
1242 require_not_optimized_out (const struct value *value)
1243 {
1244 if (!VEC_empty (range_s, value->optimized_out))
1245 {
1246 if (value->lval == lval_register)
1247 error (_("register has not been saved in frame"));
1248 else
1249 error_value_optimized_out ();
1250 }
1251 }
1252
1253 static void
1254 require_available (const struct value *value)
1255 {
1256 if (!VEC_empty (range_s, value->unavailable))
1257 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1258 }
1259
1260 const gdb_byte *
1261 value_contents_for_printing (struct value *value)
1262 {
1263 if (value->lazy)
1264 value_fetch_lazy (value);
1265 return value->contents;
1266 }
1267
1268 const gdb_byte *
1269 value_contents_for_printing_const (const struct value *value)
1270 {
1271 gdb_assert (!value->lazy);
1272 return value->contents;
1273 }
1274
1275 const gdb_byte *
1276 value_contents_all (struct value *value)
1277 {
1278 const gdb_byte *result = value_contents_for_printing (value);
1279 require_not_optimized_out (value);
1280 require_available (value);
1281 return result;
1282 }
1283
1284 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1285 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1286
1287 static void
1288 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1289 VEC (range_s) *src_range, int src_bit_offset,
1290 int bit_length)
1291 {
1292 range_s *r;
1293 int i;
1294
1295 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1296 {
1297 ULONGEST h, l;
1298
1299 l = std::max (r->offset, (LONGEST) src_bit_offset);
1300 h = std::min (r->offset + r->length,
1301 (LONGEST) src_bit_offset + bit_length);
1302
1303 if (l < h)
1304 insert_into_bit_range_vector (dst_range,
1305 dst_bit_offset + (l - src_bit_offset),
1306 h - l);
1307 }
1308 }
1309
1310 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1311 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1312
1313 static void
1314 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1315 const struct value *src, int src_bit_offset,
1316 int bit_length)
1317 {
1318 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1319 src->unavailable, src_bit_offset,
1320 bit_length);
1321 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1322 src->optimized_out, src_bit_offset,
1323 bit_length);
1324 }
1325
1326 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1327 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1328 contents, starting at DST_OFFSET. If unavailable contents are
1329 being copied from SRC, the corresponding DST contents are marked
1330 unavailable accordingly. Neither DST nor SRC may be lazy
1331 values.
1332
1333 It is assumed the contents of DST in the [DST_OFFSET,
1334 DST_OFFSET+LENGTH) range are wholly available. */
1335
1336 void
1337 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1338 struct value *src, LONGEST src_offset, LONGEST length)
1339 {
1340 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1341 struct gdbarch *arch = get_value_arch (src);
1342 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1343
1344 /* A lazy DST would make that this copy operation useless, since as
1345 soon as DST's contents were un-lazied (by a later value_contents
1346 call, say), the contents would be overwritten. A lazy SRC would
1347 mean we'd be copying garbage. */
1348 gdb_assert (!dst->lazy && !src->lazy);
1349
1350 /* The overwritten DST range gets unavailability ORed in, not
1351 replaced. Make sure to remember to implement replacing if it
1352 turns out actually necessary. */
1353 gdb_assert (value_bytes_available (dst, dst_offset, length));
1354 gdb_assert (!value_bits_any_optimized_out (dst,
1355 TARGET_CHAR_BIT * dst_offset,
1356 TARGET_CHAR_BIT * length));
1357
1358 /* Copy the data. */
1359 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1360 value_contents_all_raw (src) + src_offset * unit_size,
1361 length * unit_size);
1362
1363 /* Copy the meta-data, adjusted. */
1364 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1365 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1366 bit_length = length * unit_size * HOST_CHAR_BIT;
1367
1368 value_ranges_copy_adjusted (dst, dst_bit_offset,
1369 src, src_bit_offset,
1370 bit_length);
1371 }
1372
1373 /* Copy LENGTH bytes of SRC value's (all) contents
1374 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1375 (all) contents, starting at DST_OFFSET. If unavailable contents
1376 are being copied from SRC, the corresponding DST contents are
1377 marked unavailable accordingly. DST must not be lazy. If SRC is
1378 lazy, it will be fetched now.
1379
1380 It is assumed the contents of DST in the [DST_OFFSET,
1381 DST_OFFSET+LENGTH) range are wholly available. */
1382
1383 void
1384 value_contents_copy (struct value *dst, LONGEST dst_offset,
1385 struct value *src, LONGEST src_offset, LONGEST length)
1386 {
1387 if (src->lazy)
1388 value_fetch_lazy (src);
1389
1390 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1391 }
1392
1393 int
1394 value_lazy (const struct value *value)
1395 {
1396 return value->lazy;
1397 }
1398
1399 void
1400 set_value_lazy (struct value *value, int val)
1401 {
1402 value->lazy = val;
1403 }
1404
1405 int
1406 value_stack (const struct value *value)
1407 {
1408 return value->stack;
1409 }
1410
1411 void
1412 set_value_stack (struct value *value, int val)
1413 {
1414 value->stack = val;
1415 }
1416
1417 const gdb_byte *
1418 value_contents (struct value *value)
1419 {
1420 const gdb_byte *result = value_contents_writeable (value);
1421 require_not_optimized_out (value);
1422 require_available (value);
1423 return result;
1424 }
1425
1426 gdb_byte *
1427 value_contents_writeable (struct value *value)
1428 {
1429 if (value->lazy)
1430 value_fetch_lazy (value);
1431 return value_contents_raw (value);
1432 }
1433
1434 int
1435 value_optimized_out (struct value *value)
1436 {
1437 /* We can only know if a value is optimized out once we have tried to
1438 fetch it. */
1439 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1440 {
1441 TRY
1442 {
1443 value_fetch_lazy (value);
1444 }
1445 CATCH (ex, RETURN_MASK_ERROR)
1446 {
1447 /* Fall back to checking value->optimized_out. */
1448 }
1449 END_CATCH
1450 }
1451
1452 return !VEC_empty (range_s, value->optimized_out);
1453 }
1454
1455 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1456 the following LENGTH bytes. */
1457
1458 void
1459 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1460 {
1461 mark_value_bits_optimized_out (value,
1462 offset * TARGET_CHAR_BIT,
1463 length * TARGET_CHAR_BIT);
1464 }
1465
1466 /* See value.h. */
1467
1468 void
1469 mark_value_bits_optimized_out (struct value *value,
1470 LONGEST offset, LONGEST length)
1471 {
1472 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1473 }
1474
1475 int
1476 value_bits_synthetic_pointer (const struct value *value,
1477 LONGEST offset, LONGEST length)
1478 {
1479 if (value->lval != lval_computed
1480 || !value->location.computed.funcs->check_synthetic_pointer)
1481 return 0;
1482 return value->location.computed.funcs->check_synthetic_pointer (value,
1483 offset,
1484 length);
1485 }
1486
1487 LONGEST
1488 value_embedded_offset (const struct value *value)
1489 {
1490 return value->embedded_offset;
1491 }
1492
1493 void
1494 set_value_embedded_offset (struct value *value, LONGEST val)
1495 {
1496 value->embedded_offset = val;
1497 }
1498
1499 LONGEST
1500 value_pointed_to_offset (const struct value *value)
1501 {
1502 return value->pointed_to_offset;
1503 }
1504
1505 void
1506 set_value_pointed_to_offset (struct value *value, LONGEST val)
1507 {
1508 value->pointed_to_offset = val;
1509 }
1510
1511 const struct lval_funcs *
1512 value_computed_funcs (const struct value *v)
1513 {
1514 gdb_assert (value_lval_const (v) == lval_computed);
1515
1516 return v->location.computed.funcs;
1517 }
1518
1519 void *
1520 value_computed_closure (const struct value *v)
1521 {
1522 gdb_assert (v->lval == lval_computed);
1523
1524 return v->location.computed.closure;
1525 }
1526
1527 enum lval_type *
1528 deprecated_value_lval_hack (struct value *value)
1529 {
1530 return &value->lval;
1531 }
1532
1533 enum lval_type
1534 value_lval_const (const struct value *value)
1535 {
1536 return value->lval;
1537 }
1538
1539 CORE_ADDR
1540 value_address (const struct value *value)
1541 {
1542 if (value->lval != lval_memory)
1543 return 0;
1544 if (value->parent != NULL)
1545 return value_address (value->parent) + value->offset;
1546 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1547 {
1548 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1549 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1550 }
1551
1552 return value->location.address + value->offset;
1553 }
1554
1555 CORE_ADDR
1556 value_raw_address (const struct value *value)
1557 {
1558 if (value->lval != lval_memory)
1559 return 0;
1560 return value->location.address;
1561 }
1562
1563 void
1564 set_value_address (struct value *value, CORE_ADDR addr)
1565 {
1566 gdb_assert (value->lval == lval_memory);
1567 value->location.address = addr;
1568 }
1569
1570 struct internalvar **
1571 deprecated_value_internalvar_hack (struct value *value)
1572 {
1573 return &value->location.internalvar;
1574 }
1575
1576 struct frame_id *
1577 deprecated_value_next_frame_id_hack (struct value *value)
1578 {
1579 return &value->location.reg.next_frame_id;
1580 }
1581
1582 int *
1583 deprecated_value_regnum_hack (struct value *value)
1584 {
1585 return &value->location.reg.regnum;
1586 }
1587
1588 int
1589 deprecated_value_modifiable (const struct value *value)
1590 {
1591 return value->modifiable;
1592 }
1593 \f
1594 /* Return a mark in the value chain. All values allocated after the
1595 mark is obtained (except for those released) are subject to being freed
1596 if a subsequent value_free_to_mark is passed the mark. */
1597 struct value *
1598 value_mark (void)
1599 {
1600 return all_values;
1601 }
1602
1603 /* Take a reference to VAL. VAL will not be deallocated until all
1604 references are released. */
1605
1606 void
1607 value_incref (struct value *val)
1608 {
1609 val->reference_count++;
1610 }
1611
1612 /* Release a reference to VAL, which was acquired with value_incref.
1613 This function is also called to deallocate values from the value
1614 chain. */
1615
1616 void
1617 value_free (struct value *val)
1618 {
1619 if (val)
1620 {
1621 gdb_assert (val->reference_count > 0);
1622 val->reference_count--;
1623 if (val->reference_count > 0)
1624 return;
1625
1626 /* If there's an associated parent value, drop our reference to
1627 it. */
1628 if (val->parent != NULL)
1629 value_free (val->parent);
1630
1631 if (VALUE_LVAL (val) == lval_computed)
1632 {
1633 const struct lval_funcs *funcs = val->location.computed.funcs;
1634
1635 if (funcs->free_closure)
1636 funcs->free_closure (val);
1637 }
1638 else if (VALUE_LVAL (val) == lval_xcallable)
1639 free_xmethod_worker (val->location.xm_worker);
1640
1641 xfree (val->contents);
1642 VEC_free (range_s, val->unavailable);
1643 }
1644 xfree (val);
1645 }
1646
1647 /* Free all values allocated since MARK was obtained by value_mark
1648 (except for those released). */
1649 void
1650 value_free_to_mark (const struct value *mark)
1651 {
1652 struct value *val;
1653 struct value *next;
1654
1655 for (val = all_values; val && val != mark; val = next)
1656 {
1657 next = val->next;
1658 val->released = 1;
1659 value_free (val);
1660 }
1661 all_values = val;
1662 }
1663
1664 /* Free all the values that have been allocated (except for those released).
1665 Call after each command, successful or not.
1666 In practice this is called before each command, which is sufficient. */
1667
1668 void
1669 free_all_values (void)
1670 {
1671 struct value *val;
1672 struct value *next;
1673
1674 for (val = all_values; val; val = next)
1675 {
1676 next = val->next;
1677 val->released = 1;
1678 value_free (val);
1679 }
1680
1681 all_values = 0;
1682 }
1683
1684 /* Frees all the elements in a chain of values. */
1685
1686 void
1687 free_value_chain (struct value *v)
1688 {
1689 struct value *next;
1690
1691 for (; v; v = next)
1692 {
1693 next = value_next (v);
1694 value_free (v);
1695 }
1696 }
1697
1698 /* Remove VAL from the chain all_values
1699 so it will not be freed automatically. */
1700
1701 void
1702 release_value (struct value *val)
1703 {
1704 struct value *v;
1705
1706 if (all_values == val)
1707 {
1708 all_values = val->next;
1709 val->next = NULL;
1710 val->released = 1;
1711 return;
1712 }
1713
1714 for (v = all_values; v; v = v->next)
1715 {
1716 if (v->next == val)
1717 {
1718 v->next = val->next;
1719 val->next = NULL;
1720 val->released = 1;
1721 break;
1722 }
1723 }
1724 }
1725
1726 /* If the value is not already released, release it.
1727 If the value is already released, increment its reference count.
1728 That is, this function ensures that the value is released from the
1729 value chain and that the caller owns a reference to it. */
1730
1731 void
1732 release_value_or_incref (struct value *val)
1733 {
1734 if (val->released)
1735 value_incref (val);
1736 else
1737 release_value (val);
1738 }
1739
1740 /* Release all values up to mark */
1741 struct value *
1742 value_release_to_mark (const struct value *mark)
1743 {
1744 struct value *val;
1745 struct value *next;
1746
1747 for (val = next = all_values; next; next = next->next)
1748 {
1749 if (next->next == mark)
1750 {
1751 all_values = next->next;
1752 next->next = NULL;
1753 return val;
1754 }
1755 next->released = 1;
1756 }
1757 all_values = 0;
1758 return val;
1759 }
1760
1761 /* Return a copy of the value ARG.
1762 It contains the same contents, for same memory address,
1763 but it's a different block of storage. */
1764
1765 struct value *
1766 value_copy (struct value *arg)
1767 {
1768 struct type *encl_type = value_enclosing_type (arg);
1769 struct value *val;
1770
1771 if (value_lazy (arg))
1772 val = allocate_value_lazy (encl_type);
1773 else
1774 val = allocate_value (encl_type);
1775 val->type = arg->type;
1776 VALUE_LVAL (val) = VALUE_LVAL (arg);
1777 val->location = arg->location;
1778 val->offset = arg->offset;
1779 val->bitpos = arg->bitpos;
1780 val->bitsize = arg->bitsize;
1781 val->lazy = arg->lazy;
1782 val->embedded_offset = value_embedded_offset (arg);
1783 val->pointed_to_offset = arg->pointed_to_offset;
1784 val->modifiable = arg->modifiable;
1785 if (!value_lazy (val))
1786 {
1787 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1788 TYPE_LENGTH (value_enclosing_type (arg)));
1789
1790 }
1791 val->unavailable = VEC_copy (range_s, arg->unavailable);
1792 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1793 set_value_parent (val, arg->parent);
1794 if (VALUE_LVAL (val) == lval_computed)
1795 {
1796 const struct lval_funcs *funcs = val->location.computed.funcs;
1797
1798 if (funcs->copy_closure)
1799 val->location.computed.closure = funcs->copy_closure (val);
1800 }
1801 return val;
1802 }
1803
1804 /* Return a "const" and/or "volatile" qualified version of the value V.
1805 If CNST is true, then the returned value will be qualified with
1806 "const".
1807 if VOLTL is true, then the returned value will be qualified with
1808 "volatile". */
1809
1810 struct value *
1811 make_cv_value (int cnst, int voltl, struct value *v)
1812 {
1813 struct type *val_type = value_type (v);
1814 struct type *enclosing_type = value_enclosing_type (v);
1815 struct value *cv_val = value_copy (v);
1816
1817 deprecated_set_value_type (cv_val,
1818 make_cv_type (cnst, voltl, val_type, NULL));
1819 set_value_enclosing_type (cv_val,
1820 make_cv_type (cnst, voltl, enclosing_type, NULL));
1821
1822 return cv_val;
1823 }
1824
1825 /* Return a version of ARG that is non-lvalue. */
1826
1827 struct value *
1828 value_non_lval (struct value *arg)
1829 {
1830 if (VALUE_LVAL (arg) != not_lval)
1831 {
1832 struct type *enc_type = value_enclosing_type (arg);
1833 struct value *val = allocate_value (enc_type);
1834
1835 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1836 TYPE_LENGTH (enc_type));
1837 val->type = arg->type;
1838 set_value_embedded_offset (val, value_embedded_offset (arg));
1839 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1840 return val;
1841 }
1842 return arg;
1843 }
1844
1845 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1846
1847 void
1848 value_force_lval (struct value *v, CORE_ADDR addr)
1849 {
1850 gdb_assert (VALUE_LVAL (v) == not_lval);
1851
1852 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1853 v->lval = lval_memory;
1854 v->location.address = addr;
1855 }
1856
1857 void
1858 set_value_component_location (struct value *component,
1859 const struct value *whole)
1860 {
1861 struct type *type;
1862
1863 gdb_assert (whole->lval != lval_xcallable);
1864
1865 if (whole->lval == lval_internalvar)
1866 VALUE_LVAL (component) = lval_internalvar_component;
1867 else
1868 VALUE_LVAL (component) = whole->lval;
1869
1870 component->location = whole->location;
1871 if (whole->lval == lval_computed)
1872 {
1873 const struct lval_funcs *funcs = whole->location.computed.funcs;
1874
1875 if (funcs->copy_closure)
1876 component->location.computed.closure = funcs->copy_closure (whole);
1877 }
1878
1879 /* If type has a dynamic resolved location property
1880 update it's value address. */
1881 type = value_type (whole);
1882 if (NULL != TYPE_DATA_LOCATION (type)
1883 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1884 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1885 }
1886
1887 /* Access to the value history. */
1888
1889 /* Record a new value in the value history.
1890 Returns the absolute history index of the entry. */
1891
1892 int
1893 record_latest_value (struct value *val)
1894 {
1895 int i;
1896
1897 /* We don't want this value to have anything to do with the inferior anymore.
1898 In particular, "set $1 = 50" should not affect the variable from which
1899 the value was taken, and fast watchpoints should be able to assume that
1900 a value on the value history never changes. */
1901 if (value_lazy (val))
1902 value_fetch_lazy (val);
1903 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1904 from. This is a bit dubious, because then *&$1 does not just return $1
1905 but the current contents of that location. c'est la vie... */
1906 val->modifiable = 0;
1907
1908 /* The value may have already been released, in which case we're adding a
1909 new reference for its entry in the history. That is why we call
1910 release_value_or_incref here instead of release_value. */
1911 release_value_or_incref (val);
1912
1913 /* Here we treat value_history_count as origin-zero
1914 and applying to the value being stored now. */
1915
1916 i = value_history_count % VALUE_HISTORY_CHUNK;
1917 if (i == 0)
1918 {
1919 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
1920
1921 newobj->next = value_history_chain;
1922 value_history_chain = newobj;
1923 }
1924
1925 value_history_chain->values[i] = val;
1926
1927 /* Now we regard value_history_count as origin-one
1928 and applying to the value just stored. */
1929
1930 return ++value_history_count;
1931 }
1932
1933 /* Return a copy of the value in the history with sequence number NUM. */
1934
1935 struct value *
1936 access_value_history (int num)
1937 {
1938 struct value_history_chunk *chunk;
1939 int i;
1940 int absnum = num;
1941
1942 if (absnum <= 0)
1943 absnum += value_history_count;
1944
1945 if (absnum <= 0)
1946 {
1947 if (num == 0)
1948 error (_("The history is empty."));
1949 else if (num == 1)
1950 error (_("There is only one value in the history."));
1951 else
1952 error (_("History does not go back to $$%d."), -num);
1953 }
1954 if (absnum > value_history_count)
1955 error (_("History has not yet reached $%d."), absnum);
1956
1957 absnum--;
1958
1959 /* Now absnum is always absolute and origin zero. */
1960
1961 chunk = value_history_chain;
1962 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1963 - absnum / VALUE_HISTORY_CHUNK;
1964 i > 0; i--)
1965 chunk = chunk->next;
1966
1967 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1968 }
1969
1970 static void
1971 show_values (char *num_exp, int from_tty)
1972 {
1973 int i;
1974 struct value *val;
1975 static int num = 1;
1976
1977 if (num_exp)
1978 {
1979 /* "show values +" should print from the stored position.
1980 "show values <exp>" should print around value number <exp>. */
1981 if (num_exp[0] != '+' || num_exp[1] != '\0')
1982 num = parse_and_eval_long (num_exp) - 5;
1983 }
1984 else
1985 {
1986 /* "show values" means print the last 10 values. */
1987 num = value_history_count - 9;
1988 }
1989
1990 if (num <= 0)
1991 num = 1;
1992
1993 for (i = num; i < num + 10 && i <= value_history_count; i++)
1994 {
1995 struct value_print_options opts;
1996
1997 val = access_value_history (i);
1998 printf_filtered (("$%d = "), i);
1999 get_user_print_options (&opts);
2000 value_print (val, gdb_stdout, &opts);
2001 printf_filtered (("\n"));
2002 }
2003
2004 /* The next "show values +" should start after what we just printed. */
2005 num += 10;
2006
2007 /* Hitting just return after this command should do the same thing as
2008 "show values +". If num_exp is null, this is unnecessary, since
2009 "show values +" is not useful after "show values". */
2010 if (from_tty && num_exp)
2011 {
2012 num_exp[0] = '+';
2013 num_exp[1] = '\0';
2014 }
2015 }
2016 \f
2017 enum internalvar_kind
2018 {
2019 /* The internal variable is empty. */
2020 INTERNALVAR_VOID,
2021
2022 /* The value of the internal variable is provided directly as
2023 a GDB value object. */
2024 INTERNALVAR_VALUE,
2025
2026 /* A fresh value is computed via a call-back routine on every
2027 access to the internal variable. */
2028 INTERNALVAR_MAKE_VALUE,
2029
2030 /* The internal variable holds a GDB internal convenience function. */
2031 INTERNALVAR_FUNCTION,
2032
2033 /* The variable holds an integer value. */
2034 INTERNALVAR_INTEGER,
2035
2036 /* The variable holds a GDB-provided string. */
2037 INTERNALVAR_STRING,
2038 };
2039
2040 union internalvar_data
2041 {
2042 /* A value object used with INTERNALVAR_VALUE. */
2043 struct value *value;
2044
2045 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2046 struct
2047 {
2048 /* The functions to call. */
2049 const struct internalvar_funcs *functions;
2050
2051 /* The function's user-data. */
2052 void *data;
2053 } make_value;
2054
2055 /* The internal function used with INTERNALVAR_FUNCTION. */
2056 struct
2057 {
2058 struct internal_function *function;
2059 /* True if this is the canonical name for the function. */
2060 int canonical;
2061 } fn;
2062
2063 /* An integer value used with INTERNALVAR_INTEGER. */
2064 struct
2065 {
2066 /* If type is non-NULL, it will be used as the type to generate
2067 a value for this internal variable. If type is NULL, a default
2068 integer type for the architecture is used. */
2069 struct type *type;
2070 LONGEST val;
2071 } integer;
2072
2073 /* A string value used with INTERNALVAR_STRING. */
2074 char *string;
2075 };
2076
2077 /* Internal variables. These are variables within the debugger
2078 that hold values assigned by debugger commands.
2079 The user refers to them with a '$' prefix
2080 that does not appear in the variable names stored internally. */
2081
2082 struct internalvar
2083 {
2084 struct internalvar *next;
2085 char *name;
2086
2087 /* We support various different kinds of content of an internal variable.
2088 enum internalvar_kind specifies the kind, and union internalvar_data
2089 provides the data associated with this particular kind. */
2090
2091 enum internalvar_kind kind;
2092
2093 union internalvar_data u;
2094 };
2095
2096 static struct internalvar *internalvars;
2097
2098 /* If the variable does not already exist create it and give it the
2099 value given. If no value is given then the default is zero. */
2100 static void
2101 init_if_undefined_command (char* args, int from_tty)
2102 {
2103 struct internalvar* intvar;
2104
2105 /* Parse the expression - this is taken from set_command(). */
2106 expression_up expr = parse_expression (args);
2107
2108 /* Validate the expression.
2109 Was the expression an assignment?
2110 Or even an expression at all? */
2111 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2112 error (_("Init-if-undefined requires an assignment expression."));
2113
2114 /* Extract the variable from the parsed expression.
2115 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2116 if (expr->elts[1].opcode != OP_INTERNALVAR)
2117 error (_("The first parameter to init-if-undefined "
2118 "should be a GDB variable."));
2119 intvar = expr->elts[2].internalvar;
2120
2121 /* Only evaluate the expression if the lvalue is void.
2122 This may still fail if the expresssion is invalid. */
2123 if (intvar->kind == INTERNALVAR_VOID)
2124 evaluate_expression (expr.get ());
2125 }
2126
2127
2128 /* Look up an internal variable with name NAME. NAME should not
2129 normally include a dollar sign.
2130
2131 If the specified internal variable does not exist,
2132 the return value is NULL. */
2133
2134 struct internalvar *
2135 lookup_only_internalvar (const char *name)
2136 {
2137 struct internalvar *var;
2138
2139 for (var = internalvars; var; var = var->next)
2140 if (strcmp (var->name, name) == 0)
2141 return var;
2142
2143 return NULL;
2144 }
2145
2146 /* Complete NAME by comparing it to the names of internal variables.
2147 Returns a vector of newly allocated strings, or NULL if no matches
2148 were found. */
2149
2150 VEC (char_ptr) *
2151 complete_internalvar (const char *name)
2152 {
2153 VEC (char_ptr) *result = NULL;
2154 struct internalvar *var;
2155 int len;
2156
2157 len = strlen (name);
2158
2159 for (var = internalvars; var; var = var->next)
2160 if (strncmp (var->name, name, len) == 0)
2161 {
2162 char *r = xstrdup (var->name);
2163
2164 VEC_safe_push (char_ptr, result, r);
2165 }
2166
2167 return result;
2168 }
2169
2170 /* Create an internal variable with name NAME and with a void value.
2171 NAME should not normally include a dollar sign. */
2172
2173 struct internalvar *
2174 create_internalvar (const char *name)
2175 {
2176 struct internalvar *var = XNEW (struct internalvar);
2177
2178 var->name = concat (name, (char *)NULL);
2179 var->kind = INTERNALVAR_VOID;
2180 var->next = internalvars;
2181 internalvars = var;
2182 return var;
2183 }
2184
2185 /* Create an internal variable with name NAME and register FUN as the
2186 function that value_of_internalvar uses to create a value whenever
2187 this variable is referenced. NAME should not normally include a
2188 dollar sign. DATA is passed uninterpreted to FUN when it is
2189 called. CLEANUP, if not NULL, is called when the internal variable
2190 is destroyed. It is passed DATA as its only argument. */
2191
2192 struct internalvar *
2193 create_internalvar_type_lazy (const char *name,
2194 const struct internalvar_funcs *funcs,
2195 void *data)
2196 {
2197 struct internalvar *var = create_internalvar (name);
2198
2199 var->kind = INTERNALVAR_MAKE_VALUE;
2200 var->u.make_value.functions = funcs;
2201 var->u.make_value.data = data;
2202 return var;
2203 }
2204
2205 /* See documentation in value.h. */
2206
2207 int
2208 compile_internalvar_to_ax (struct internalvar *var,
2209 struct agent_expr *expr,
2210 struct axs_value *value)
2211 {
2212 if (var->kind != INTERNALVAR_MAKE_VALUE
2213 || var->u.make_value.functions->compile_to_ax == NULL)
2214 return 0;
2215
2216 var->u.make_value.functions->compile_to_ax (var, expr, value,
2217 var->u.make_value.data);
2218 return 1;
2219 }
2220
2221 /* Look up an internal variable with name NAME. NAME should not
2222 normally include a dollar sign.
2223
2224 If the specified internal variable does not exist,
2225 one is created, with a void value. */
2226
2227 struct internalvar *
2228 lookup_internalvar (const char *name)
2229 {
2230 struct internalvar *var;
2231
2232 var = lookup_only_internalvar (name);
2233 if (var)
2234 return var;
2235
2236 return create_internalvar (name);
2237 }
2238
2239 /* Return current value of internal variable VAR. For variables that
2240 are not inherently typed, use a value type appropriate for GDBARCH. */
2241
2242 struct value *
2243 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2244 {
2245 struct value *val;
2246 struct trace_state_variable *tsv;
2247
2248 /* If there is a trace state variable of the same name, assume that
2249 is what we really want to see. */
2250 tsv = find_trace_state_variable (var->name);
2251 if (tsv)
2252 {
2253 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2254 &(tsv->value));
2255 if (tsv->value_known)
2256 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2257 tsv->value);
2258 else
2259 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2260 return val;
2261 }
2262
2263 switch (var->kind)
2264 {
2265 case INTERNALVAR_VOID:
2266 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2267 break;
2268
2269 case INTERNALVAR_FUNCTION:
2270 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2271 break;
2272
2273 case INTERNALVAR_INTEGER:
2274 if (!var->u.integer.type)
2275 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2276 var->u.integer.val);
2277 else
2278 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2279 break;
2280
2281 case INTERNALVAR_STRING:
2282 val = value_cstring (var->u.string, strlen (var->u.string),
2283 builtin_type (gdbarch)->builtin_char);
2284 break;
2285
2286 case INTERNALVAR_VALUE:
2287 val = value_copy (var->u.value);
2288 if (value_lazy (val))
2289 value_fetch_lazy (val);
2290 break;
2291
2292 case INTERNALVAR_MAKE_VALUE:
2293 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2294 var->u.make_value.data);
2295 break;
2296
2297 default:
2298 internal_error (__FILE__, __LINE__, _("bad kind"));
2299 }
2300
2301 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2302 on this value go back to affect the original internal variable.
2303
2304 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2305 no underlying modifyable state in the internal variable.
2306
2307 Likewise, if the variable's value is a computed lvalue, we want
2308 references to it to produce another computed lvalue, where
2309 references and assignments actually operate through the
2310 computed value's functions.
2311
2312 This means that internal variables with computed values
2313 behave a little differently from other internal variables:
2314 assignments to them don't just replace the previous value
2315 altogether. At the moment, this seems like the behavior we
2316 want. */
2317
2318 if (var->kind != INTERNALVAR_MAKE_VALUE
2319 && val->lval != lval_computed)
2320 {
2321 VALUE_LVAL (val) = lval_internalvar;
2322 VALUE_INTERNALVAR (val) = var;
2323 }
2324
2325 return val;
2326 }
2327
2328 int
2329 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2330 {
2331 if (var->kind == INTERNALVAR_INTEGER)
2332 {
2333 *result = var->u.integer.val;
2334 return 1;
2335 }
2336
2337 if (var->kind == INTERNALVAR_VALUE)
2338 {
2339 struct type *type = check_typedef (value_type (var->u.value));
2340
2341 if (TYPE_CODE (type) == TYPE_CODE_INT)
2342 {
2343 *result = value_as_long (var->u.value);
2344 return 1;
2345 }
2346 }
2347
2348 return 0;
2349 }
2350
2351 static int
2352 get_internalvar_function (struct internalvar *var,
2353 struct internal_function **result)
2354 {
2355 switch (var->kind)
2356 {
2357 case INTERNALVAR_FUNCTION:
2358 *result = var->u.fn.function;
2359 return 1;
2360
2361 default:
2362 return 0;
2363 }
2364 }
2365
2366 void
2367 set_internalvar_component (struct internalvar *var,
2368 LONGEST offset, LONGEST bitpos,
2369 LONGEST bitsize, struct value *newval)
2370 {
2371 gdb_byte *addr;
2372 struct gdbarch *arch;
2373 int unit_size;
2374
2375 switch (var->kind)
2376 {
2377 case INTERNALVAR_VALUE:
2378 addr = value_contents_writeable (var->u.value);
2379 arch = get_value_arch (var->u.value);
2380 unit_size = gdbarch_addressable_memory_unit_size (arch);
2381
2382 if (bitsize)
2383 modify_field (value_type (var->u.value), addr + offset,
2384 value_as_long (newval), bitpos, bitsize);
2385 else
2386 memcpy (addr + offset * unit_size, value_contents (newval),
2387 TYPE_LENGTH (value_type (newval)));
2388 break;
2389
2390 default:
2391 /* We can never get a component of any other kind. */
2392 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2393 }
2394 }
2395
2396 void
2397 set_internalvar (struct internalvar *var, struct value *val)
2398 {
2399 enum internalvar_kind new_kind;
2400 union internalvar_data new_data = { 0 };
2401
2402 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2403 error (_("Cannot overwrite convenience function %s"), var->name);
2404
2405 /* Prepare new contents. */
2406 switch (TYPE_CODE (check_typedef (value_type (val))))
2407 {
2408 case TYPE_CODE_VOID:
2409 new_kind = INTERNALVAR_VOID;
2410 break;
2411
2412 case TYPE_CODE_INTERNAL_FUNCTION:
2413 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2414 new_kind = INTERNALVAR_FUNCTION;
2415 get_internalvar_function (VALUE_INTERNALVAR (val),
2416 &new_data.fn.function);
2417 /* Copies created here are never canonical. */
2418 break;
2419
2420 default:
2421 new_kind = INTERNALVAR_VALUE;
2422 new_data.value = value_copy (val);
2423 new_data.value->modifiable = 1;
2424
2425 /* Force the value to be fetched from the target now, to avoid problems
2426 later when this internalvar is referenced and the target is gone or
2427 has changed. */
2428 if (value_lazy (new_data.value))
2429 value_fetch_lazy (new_data.value);
2430
2431 /* Release the value from the value chain to prevent it from being
2432 deleted by free_all_values. From here on this function should not
2433 call error () until new_data is installed into the var->u to avoid
2434 leaking memory. */
2435 release_value (new_data.value);
2436
2437 /* Internal variables which are created from values with a dynamic
2438 location don't need the location property of the origin anymore.
2439 The resolved dynamic location is used prior then any other address
2440 when accessing the value.
2441 If we keep it, we would still refer to the origin value.
2442 Remove the location property in case it exist. */
2443 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2444
2445 break;
2446 }
2447
2448 /* Clean up old contents. */
2449 clear_internalvar (var);
2450
2451 /* Switch over. */
2452 var->kind = new_kind;
2453 var->u = new_data;
2454 /* End code which must not call error(). */
2455 }
2456
2457 void
2458 set_internalvar_integer (struct internalvar *var, LONGEST l)
2459 {
2460 /* Clean up old contents. */
2461 clear_internalvar (var);
2462
2463 var->kind = INTERNALVAR_INTEGER;
2464 var->u.integer.type = NULL;
2465 var->u.integer.val = l;
2466 }
2467
2468 void
2469 set_internalvar_string (struct internalvar *var, const char *string)
2470 {
2471 /* Clean up old contents. */
2472 clear_internalvar (var);
2473
2474 var->kind = INTERNALVAR_STRING;
2475 var->u.string = xstrdup (string);
2476 }
2477
2478 static void
2479 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2480 {
2481 /* Clean up old contents. */
2482 clear_internalvar (var);
2483
2484 var->kind = INTERNALVAR_FUNCTION;
2485 var->u.fn.function = f;
2486 var->u.fn.canonical = 1;
2487 /* Variables installed here are always the canonical version. */
2488 }
2489
2490 void
2491 clear_internalvar (struct internalvar *var)
2492 {
2493 /* Clean up old contents. */
2494 switch (var->kind)
2495 {
2496 case INTERNALVAR_VALUE:
2497 value_free (var->u.value);
2498 break;
2499
2500 case INTERNALVAR_STRING:
2501 xfree (var->u.string);
2502 break;
2503
2504 case INTERNALVAR_MAKE_VALUE:
2505 if (var->u.make_value.functions->destroy != NULL)
2506 var->u.make_value.functions->destroy (var->u.make_value.data);
2507 break;
2508
2509 default:
2510 break;
2511 }
2512
2513 /* Reset to void kind. */
2514 var->kind = INTERNALVAR_VOID;
2515 }
2516
2517 char *
2518 internalvar_name (const struct internalvar *var)
2519 {
2520 return var->name;
2521 }
2522
2523 static struct internal_function *
2524 create_internal_function (const char *name,
2525 internal_function_fn handler, void *cookie)
2526 {
2527 struct internal_function *ifn = XNEW (struct internal_function);
2528
2529 ifn->name = xstrdup (name);
2530 ifn->handler = handler;
2531 ifn->cookie = cookie;
2532 return ifn;
2533 }
2534
2535 char *
2536 value_internal_function_name (struct value *val)
2537 {
2538 struct internal_function *ifn;
2539 int result;
2540
2541 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2542 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2543 gdb_assert (result);
2544
2545 return ifn->name;
2546 }
2547
2548 struct value *
2549 call_internal_function (struct gdbarch *gdbarch,
2550 const struct language_defn *language,
2551 struct value *func, int argc, struct value **argv)
2552 {
2553 struct internal_function *ifn;
2554 int result;
2555
2556 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2557 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2558 gdb_assert (result);
2559
2560 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2561 }
2562
2563 /* The 'function' command. This does nothing -- it is just a
2564 placeholder to let "help function NAME" work. This is also used as
2565 the implementation of the sub-command that is created when
2566 registering an internal function. */
2567 static void
2568 function_command (char *command, int from_tty)
2569 {
2570 /* Do nothing. */
2571 }
2572
2573 /* Clean up if an internal function's command is destroyed. */
2574 static void
2575 function_destroyer (struct cmd_list_element *self, void *ignore)
2576 {
2577 xfree ((char *) self->name);
2578 xfree ((char *) self->doc);
2579 }
2580
2581 /* Add a new internal function. NAME is the name of the function; DOC
2582 is a documentation string describing the function. HANDLER is
2583 called when the function is invoked. COOKIE is an arbitrary
2584 pointer which is passed to HANDLER and is intended for "user
2585 data". */
2586 void
2587 add_internal_function (const char *name, const char *doc,
2588 internal_function_fn handler, void *cookie)
2589 {
2590 struct cmd_list_element *cmd;
2591 struct internal_function *ifn;
2592 struct internalvar *var = lookup_internalvar (name);
2593
2594 ifn = create_internal_function (name, handler, cookie);
2595 set_internalvar_function (var, ifn);
2596
2597 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2598 &functionlist);
2599 cmd->destroyer = function_destroyer;
2600 }
2601
2602 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2603 prevent cycles / duplicates. */
2604
2605 void
2606 preserve_one_value (struct value *value, struct objfile *objfile,
2607 htab_t copied_types)
2608 {
2609 if (TYPE_OBJFILE (value->type) == objfile)
2610 value->type = copy_type_recursive (objfile, value->type, copied_types);
2611
2612 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2613 value->enclosing_type = copy_type_recursive (objfile,
2614 value->enclosing_type,
2615 copied_types);
2616 }
2617
2618 /* Likewise for internal variable VAR. */
2619
2620 static void
2621 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2622 htab_t copied_types)
2623 {
2624 switch (var->kind)
2625 {
2626 case INTERNALVAR_INTEGER:
2627 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2628 var->u.integer.type
2629 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2630 break;
2631
2632 case INTERNALVAR_VALUE:
2633 preserve_one_value (var->u.value, objfile, copied_types);
2634 break;
2635 }
2636 }
2637
2638 /* Update the internal variables and value history when OBJFILE is
2639 discarded; we must copy the types out of the objfile. New global types
2640 will be created for every convenience variable which currently points to
2641 this objfile's types, and the convenience variables will be adjusted to
2642 use the new global types. */
2643
2644 void
2645 preserve_values (struct objfile *objfile)
2646 {
2647 htab_t copied_types;
2648 struct value_history_chunk *cur;
2649 struct internalvar *var;
2650 int i;
2651
2652 /* Create the hash table. We allocate on the objfile's obstack, since
2653 it is soon to be deleted. */
2654 copied_types = create_copied_types_hash (objfile);
2655
2656 for (cur = value_history_chain; cur; cur = cur->next)
2657 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2658 if (cur->values[i])
2659 preserve_one_value (cur->values[i], objfile, copied_types);
2660
2661 for (var = internalvars; var; var = var->next)
2662 preserve_one_internalvar (var, objfile, copied_types);
2663
2664 preserve_ext_lang_values (objfile, copied_types);
2665
2666 htab_delete (copied_types);
2667 }
2668
2669 static void
2670 show_convenience (char *ignore, int from_tty)
2671 {
2672 struct gdbarch *gdbarch = get_current_arch ();
2673 struct internalvar *var;
2674 int varseen = 0;
2675 struct value_print_options opts;
2676
2677 get_user_print_options (&opts);
2678 for (var = internalvars; var; var = var->next)
2679 {
2680
2681 if (!varseen)
2682 {
2683 varseen = 1;
2684 }
2685 printf_filtered (("$%s = "), var->name);
2686
2687 TRY
2688 {
2689 struct value *val;
2690
2691 val = value_of_internalvar (gdbarch, var);
2692 value_print (val, gdb_stdout, &opts);
2693 }
2694 CATCH (ex, RETURN_MASK_ERROR)
2695 {
2696 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2697 }
2698 END_CATCH
2699
2700 printf_filtered (("\n"));
2701 }
2702 if (!varseen)
2703 {
2704 /* This text does not mention convenience functions on purpose.
2705 The user can't create them except via Python, and if Python support
2706 is installed this message will never be printed ($_streq will
2707 exist). */
2708 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2709 "Convenience variables have "
2710 "names starting with \"$\";\n"
2711 "use \"set\" as in \"set "
2712 "$foo = 5\" to define them.\n"));
2713 }
2714 }
2715 \f
2716 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2717
2718 struct value *
2719 value_of_xmethod (struct xmethod_worker *worker)
2720 {
2721 if (worker->value == NULL)
2722 {
2723 struct value *v;
2724
2725 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2726 v->lval = lval_xcallable;
2727 v->location.xm_worker = worker;
2728 v->modifiable = 0;
2729 worker->value = v;
2730 }
2731
2732 return worker->value;
2733 }
2734
2735 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2736
2737 struct type *
2738 result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2739 {
2740 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2741 && method->lval == lval_xcallable && argc > 0);
2742
2743 return get_xmethod_result_type (method->location.xm_worker,
2744 argv[0], argv + 1, argc - 1);
2745 }
2746
2747 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2748
2749 struct value *
2750 call_xmethod (struct value *method, int argc, struct value **argv)
2751 {
2752 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2753 && method->lval == lval_xcallable && argc > 0);
2754
2755 return invoke_xmethod (method->location.xm_worker,
2756 argv[0], argv + 1, argc - 1);
2757 }
2758 \f
2759 /* Extract a value as a C number (either long or double).
2760 Knows how to convert fixed values to double, or
2761 floating values to long.
2762 Does not deallocate the value. */
2763
2764 LONGEST
2765 value_as_long (struct value *val)
2766 {
2767 /* This coerces arrays and functions, which is necessary (e.g.
2768 in disassemble_command). It also dereferences references, which
2769 I suspect is the most logical thing to do. */
2770 val = coerce_array (val);
2771 return unpack_long (value_type (val), value_contents (val));
2772 }
2773
2774 DOUBLEST
2775 value_as_double (struct value *val)
2776 {
2777 DOUBLEST foo;
2778 int inv;
2779
2780 foo = unpack_double (value_type (val), value_contents (val), &inv);
2781 if (inv)
2782 error (_("Invalid floating value found in program."));
2783 return foo;
2784 }
2785
2786 /* Extract a value as a C pointer. Does not deallocate the value.
2787 Note that val's type may not actually be a pointer; value_as_long
2788 handles all the cases. */
2789 CORE_ADDR
2790 value_as_address (struct value *val)
2791 {
2792 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2793
2794 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2795 whether we want this to be true eventually. */
2796 #if 0
2797 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2798 non-address (e.g. argument to "signal", "info break", etc.), or
2799 for pointers to char, in which the low bits *are* significant. */
2800 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2801 #else
2802
2803 /* There are several targets (IA-64, PowerPC, and others) which
2804 don't represent pointers to functions as simply the address of
2805 the function's entry point. For example, on the IA-64, a
2806 function pointer points to a two-word descriptor, generated by
2807 the linker, which contains the function's entry point, and the
2808 value the IA-64 "global pointer" register should have --- to
2809 support position-independent code. The linker generates
2810 descriptors only for those functions whose addresses are taken.
2811
2812 On such targets, it's difficult for GDB to convert an arbitrary
2813 function address into a function pointer; it has to either find
2814 an existing descriptor for that function, or call malloc and
2815 build its own. On some targets, it is impossible for GDB to
2816 build a descriptor at all: the descriptor must contain a jump
2817 instruction; data memory cannot be executed; and code memory
2818 cannot be modified.
2819
2820 Upon entry to this function, if VAL is a value of type `function'
2821 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2822 value_address (val) is the address of the function. This is what
2823 you'll get if you evaluate an expression like `main'. The call
2824 to COERCE_ARRAY below actually does all the usual unary
2825 conversions, which includes converting values of type `function'
2826 to `pointer to function'. This is the challenging conversion
2827 discussed above. Then, `unpack_long' will convert that pointer
2828 back into an address.
2829
2830 So, suppose the user types `disassemble foo' on an architecture
2831 with a strange function pointer representation, on which GDB
2832 cannot build its own descriptors, and suppose further that `foo'
2833 has no linker-built descriptor. The address->pointer conversion
2834 will signal an error and prevent the command from running, even
2835 though the next step would have been to convert the pointer
2836 directly back into the same address.
2837
2838 The following shortcut avoids this whole mess. If VAL is a
2839 function, just return its address directly. */
2840 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2841 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2842 return value_address (val);
2843
2844 val = coerce_array (val);
2845
2846 /* Some architectures (e.g. Harvard), map instruction and data
2847 addresses onto a single large unified address space. For
2848 instance: An architecture may consider a large integer in the
2849 range 0x10000000 .. 0x1000ffff to already represent a data
2850 addresses (hence not need a pointer to address conversion) while
2851 a small integer would still need to be converted integer to
2852 pointer to address. Just assume such architectures handle all
2853 integer conversions in a single function. */
2854
2855 /* JimB writes:
2856
2857 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2858 must admonish GDB hackers to make sure its behavior matches the
2859 compiler's, whenever possible.
2860
2861 In general, I think GDB should evaluate expressions the same way
2862 the compiler does. When the user copies an expression out of
2863 their source code and hands it to a `print' command, they should
2864 get the same value the compiler would have computed. Any
2865 deviation from this rule can cause major confusion and annoyance,
2866 and needs to be justified carefully. In other words, GDB doesn't
2867 really have the freedom to do these conversions in clever and
2868 useful ways.
2869
2870 AndrewC pointed out that users aren't complaining about how GDB
2871 casts integers to pointers; they are complaining that they can't
2872 take an address from a disassembly listing and give it to `x/i'.
2873 This is certainly important.
2874
2875 Adding an architecture method like integer_to_address() certainly
2876 makes it possible for GDB to "get it right" in all circumstances
2877 --- the target has complete control over how things get done, so
2878 people can Do The Right Thing for their target without breaking
2879 anyone else. The standard doesn't specify how integers get
2880 converted to pointers; usually, the ABI doesn't either, but
2881 ABI-specific code is a more reasonable place to handle it. */
2882
2883 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2884 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2885 && gdbarch_integer_to_address_p (gdbarch))
2886 return gdbarch_integer_to_address (gdbarch, value_type (val),
2887 value_contents (val));
2888
2889 return unpack_long (value_type (val), value_contents (val));
2890 #endif
2891 }
2892 \f
2893 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2894 as a long, or as a double, assuming the raw data is described
2895 by type TYPE. Knows how to convert different sizes of values
2896 and can convert between fixed and floating point. We don't assume
2897 any alignment for the raw data. Return value is in host byte order.
2898
2899 If you want functions and arrays to be coerced to pointers, and
2900 references to be dereferenced, call value_as_long() instead.
2901
2902 C++: It is assumed that the front-end has taken care of
2903 all matters concerning pointers to members. A pointer
2904 to member which reaches here is considered to be equivalent
2905 to an INT (or some size). After all, it is only an offset. */
2906
2907 LONGEST
2908 unpack_long (struct type *type, const gdb_byte *valaddr)
2909 {
2910 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2911 enum type_code code = TYPE_CODE (type);
2912 int len = TYPE_LENGTH (type);
2913 int nosign = TYPE_UNSIGNED (type);
2914
2915 switch (code)
2916 {
2917 case TYPE_CODE_TYPEDEF:
2918 return unpack_long (check_typedef (type), valaddr);
2919 case TYPE_CODE_ENUM:
2920 case TYPE_CODE_FLAGS:
2921 case TYPE_CODE_BOOL:
2922 case TYPE_CODE_INT:
2923 case TYPE_CODE_CHAR:
2924 case TYPE_CODE_RANGE:
2925 case TYPE_CODE_MEMBERPTR:
2926 if (nosign)
2927 return extract_unsigned_integer (valaddr, len, byte_order);
2928 else
2929 return extract_signed_integer (valaddr, len, byte_order);
2930
2931 case TYPE_CODE_FLT:
2932 return (LONGEST) extract_typed_floating (valaddr, type);
2933
2934 case TYPE_CODE_DECFLOAT:
2935 /* libdecnumber has a function to convert from decimal to integer, but
2936 it doesn't work when the decimal number has a fractional part. */
2937 return (LONGEST) decimal_to_doublest (valaddr, len, byte_order);
2938
2939 case TYPE_CODE_PTR:
2940 case TYPE_CODE_REF:
2941 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2942 whether we want this to be true eventually. */
2943 return extract_typed_address (valaddr, type);
2944
2945 default:
2946 error (_("Value can't be converted to integer."));
2947 }
2948 return 0; /* Placate lint. */
2949 }
2950
2951 /* Return a double value from the specified type and address.
2952 INVP points to an int which is set to 0 for valid value,
2953 1 for invalid value (bad float format). In either case,
2954 the returned double is OK to use. Argument is in target
2955 format, result is in host format. */
2956
2957 DOUBLEST
2958 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2959 {
2960 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2961 enum type_code code;
2962 int len;
2963 int nosign;
2964
2965 *invp = 0; /* Assume valid. */
2966 type = check_typedef (type);
2967 code = TYPE_CODE (type);
2968 len = TYPE_LENGTH (type);
2969 nosign = TYPE_UNSIGNED (type);
2970 if (code == TYPE_CODE_FLT)
2971 {
2972 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2973 floating-point value was valid (using the macro
2974 INVALID_FLOAT). That test/macro have been removed.
2975
2976 It turns out that only the VAX defined this macro and then
2977 only in a non-portable way. Fixing the portability problem
2978 wouldn't help since the VAX floating-point code is also badly
2979 bit-rotten. The target needs to add definitions for the
2980 methods gdbarch_float_format and gdbarch_double_format - these
2981 exactly describe the target floating-point format. The
2982 problem here is that the corresponding floatformat_vax_f and
2983 floatformat_vax_d values these methods should be set to are
2984 also not defined either. Oops!
2985
2986 Hopefully someone will add both the missing floatformat
2987 definitions and the new cases for floatformat_is_valid (). */
2988
2989 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2990 {
2991 *invp = 1;
2992 return 0.0;
2993 }
2994
2995 return extract_typed_floating (valaddr, type);
2996 }
2997 else if (code == TYPE_CODE_DECFLOAT)
2998 return decimal_to_doublest (valaddr, len, byte_order);
2999 else if (nosign)
3000 {
3001 /* Unsigned -- be sure we compensate for signed LONGEST. */
3002 return (ULONGEST) unpack_long (type, valaddr);
3003 }
3004 else
3005 {
3006 /* Signed -- we are OK with unpack_long. */
3007 return unpack_long (type, valaddr);
3008 }
3009 }
3010
3011 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
3012 as a CORE_ADDR, assuming the raw data is described by type TYPE.
3013 We don't assume any alignment for the raw data. Return value is in
3014 host byte order.
3015
3016 If you want functions and arrays to be coerced to pointers, and
3017 references to be dereferenced, call value_as_address() instead.
3018
3019 C++: It is assumed that the front-end has taken care of
3020 all matters concerning pointers to members. A pointer
3021 to member which reaches here is considered to be equivalent
3022 to an INT (or some size). After all, it is only an offset. */
3023
3024 CORE_ADDR
3025 unpack_pointer (struct type *type, const gdb_byte *valaddr)
3026 {
3027 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
3028 whether we want this to be true eventually. */
3029 return unpack_long (type, valaddr);
3030 }
3031
3032 \f
3033 /* Get the value of the FIELDNO'th field (which must be static) of
3034 TYPE. */
3035
3036 struct value *
3037 value_static_field (struct type *type, int fieldno)
3038 {
3039 struct value *retval;
3040
3041 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
3042 {
3043 case FIELD_LOC_KIND_PHYSADDR:
3044 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3045 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
3046 break;
3047 case FIELD_LOC_KIND_PHYSNAME:
3048 {
3049 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
3050 /* TYPE_FIELD_NAME (type, fieldno); */
3051 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
3052
3053 if (sym.symbol == NULL)
3054 {
3055 /* With some compilers, e.g. HP aCC, static data members are
3056 reported as non-debuggable symbols. */
3057 struct bound_minimal_symbol msym
3058 = lookup_minimal_symbol (phys_name, NULL, NULL);
3059
3060 if (!msym.minsym)
3061 return allocate_optimized_out_value (type);
3062 else
3063 {
3064 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3065 BMSYMBOL_VALUE_ADDRESS (msym));
3066 }
3067 }
3068 else
3069 retval = value_of_variable (sym.symbol, sym.block);
3070 break;
3071 }
3072 default:
3073 gdb_assert_not_reached ("unexpected field location kind");
3074 }
3075
3076 return retval;
3077 }
3078
3079 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3080 You have to be careful here, since the size of the data area for the value
3081 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3082 than the old enclosing type, you have to allocate more space for the
3083 data. */
3084
3085 void
3086 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
3087 {
3088 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3089 {
3090 check_type_length_before_alloc (new_encl_type);
3091 val->contents
3092 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3093 }
3094
3095 val->enclosing_type = new_encl_type;
3096 }
3097
3098 /* Given a value ARG1 (offset by OFFSET bytes)
3099 of a struct or union type ARG_TYPE,
3100 extract and return the value of one of its (non-static) fields.
3101 FIELDNO says which field. */
3102
3103 struct value *
3104 value_primitive_field (struct value *arg1, LONGEST offset,
3105 int fieldno, struct type *arg_type)
3106 {
3107 struct value *v;
3108 struct type *type;
3109 struct gdbarch *arch = get_value_arch (arg1);
3110 int unit_size = gdbarch_addressable_memory_unit_size (arch);
3111
3112 arg_type = check_typedef (arg_type);
3113 type = TYPE_FIELD_TYPE (arg_type, fieldno);
3114
3115 /* Call check_typedef on our type to make sure that, if TYPE
3116 is a TYPE_CODE_TYPEDEF, its length is set to the length
3117 of the target type instead of zero. However, we do not
3118 replace the typedef type by the target type, because we want
3119 to keep the typedef in order to be able to print the type
3120 description correctly. */
3121 check_typedef (type);
3122
3123 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
3124 {
3125 /* Handle packed fields.
3126
3127 Create a new value for the bitfield, with bitpos and bitsize
3128 set. If possible, arrange offset and bitpos so that we can
3129 do a single aligned read of the size of the containing type.
3130 Otherwise, adjust offset to the byte containing the first
3131 bit. Assume that the address, offset, and embedded offset
3132 are sufficiently aligned. */
3133
3134 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3135 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
3136
3137 v = allocate_value_lazy (type);
3138 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3139 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3140 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3141 v->bitpos = bitpos % container_bitsize;
3142 else
3143 v->bitpos = bitpos % 8;
3144 v->offset = (value_embedded_offset (arg1)
3145 + offset
3146 + (bitpos - v->bitpos) / 8);
3147 set_value_parent (v, arg1);
3148 if (!value_lazy (arg1))
3149 value_fetch_lazy (v);
3150 }
3151 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3152 {
3153 /* This field is actually a base subobject, so preserve the
3154 entire object's contents for later references to virtual
3155 bases, etc. */
3156 LONGEST boffset;
3157
3158 /* Lazy register values with offsets are not supported. */
3159 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3160 value_fetch_lazy (arg1);
3161
3162 /* We special case virtual inheritance here because this
3163 requires access to the contents, which we would rather avoid
3164 for references to ordinary fields of unavailable values. */
3165 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3166 boffset = baseclass_offset (arg_type, fieldno,
3167 value_contents (arg1),
3168 value_embedded_offset (arg1),
3169 value_address (arg1),
3170 arg1);
3171 else
3172 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3173
3174 if (value_lazy (arg1))
3175 v = allocate_value_lazy (value_enclosing_type (arg1));
3176 else
3177 {
3178 v = allocate_value (value_enclosing_type (arg1));
3179 value_contents_copy_raw (v, 0, arg1, 0,
3180 TYPE_LENGTH (value_enclosing_type (arg1)));
3181 }
3182 v->type = type;
3183 v->offset = value_offset (arg1);
3184 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3185 }
3186 else if (NULL != TYPE_DATA_LOCATION (type))
3187 {
3188 /* Field is a dynamic data member. */
3189
3190 gdb_assert (0 == offset);
3191 /* We expect an already resolved data location. */
3192 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3193 /* For dynamic data types defer memory allocation
3194 until we actual access the value. */
3195 v = allocate_value_lazy (type);
3196 }
3197 else
3198 {
3199 /* Plain old data member */
3200 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3201 / (HOST_CHAR_BIT * unit_size));
3202
3203 /* Lazy register values with offsets are not supported. */
3204 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3205 value_fetch_lazy (arg1);
3206
3207 if (value_lazy (arg1))
3208 v = allocate_value_lazy (type);
3209 else
3210 {
3211 v = allocate_value (type);
3212 value_contents_copy_raw (v, value_embedded_offset (v),
3213 arg1, value_embedded_offset (arg1) + offset,
3214 type_length_units (type));
3215 }
3216 v->offset = (value_offset (arg1) + offset
3217 + value_embedded_offset (arg1));
3218 }
3219 set_value_component_location (v, arg1);
3220 return v;
3221 }
3222
3223 /* Given a value ARG1 of a struct or union type,
3224 extract and return the value of one of its (non-static) fields.
3225 FIELDNO says which field. */
3226
3227 struct value *
3228 value_field (struct value *arg1, int fieldno)
3229 {
3230 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3231 }
3232
3233 /* Return a non-virtual function as a value.
3234 F is the list of member functions which contains the desired method.
3235 J is an index into F which provides the desired method.
3236
3237 We only use the symbol for its address, so be happy with either a
3238 full symbol or a minimal symbol. */
3239
3240 struct value *
3241 value_fn_field (struct value **arg1p, struct fn_field *f,
3242 int j, struct type *type,
3243 LONGEST offset)
3244 {
3245 struct value *v;
3246 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3247 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3248 struct symbol *sym;
3249 struct bound_minimal_symbol msym;
3250
3251 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3252 if (sym != NULL)
3253 {
3254 memset (&msym, 0, sizeof (msym));
3255 }
3256 else
3257 {
3258 gdb_assert (sym == NULL);
3259 msym = lookup_bound_minimal_symbol (physname);
3260 if (msym.minsym == NULL)
3261 return NULL;
3262 }
3263
3264 v = allocate_value (ftype);
3265 VALUE_LVAL (v) = lval_memory;
3266 if (sym)
3267 {
3268 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3269 }
3270 else
3271 {
3272 /* The minimal symbol might point to a function descriptor;
3273 resolve it to the actual code address instead. */
3274 struct objfile *objfile = msym.objfile;
3275 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3276
3277 set_value_address (v,
3278 gdbarch_convert_from_func_ptr_addr
3279 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
3280 }
3281
3282 if (arg1p)
3283 {
3284 if (type != value_type (*arg1p))
3285 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3286 value_addr (*arg1p)));
3287
3288 /* Move the `this' pointer according to the offset.
3289 VALUE_OFFSET (*arg1p) += offset; */
3290 }
3291
3292 return v;
3293 }
3294
3295 \f
3296
3297 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3298 VALADDR, and store the result in *RESULT.
3299 The bitfield starts at BITPOS bits and contains BITSIZE bits.
3300
3301 Extracting bits depends on endianness of the machine. Compute the
3302 number of least significant bits to discard. For big endian machines,
3303 we compute the total number of bits in the anonymous object, subtract
3304 off the bit count from the MSB of the object to the MSB of the
3305 bitfield, then the size of the bitfield, which leaves the LSB discard
3306 count. For little endian machines, the discard count is simply the
3307 number of bits from the LSB of the anonymous object to the LSB of the
3308 bitfield.
3309
3310 If the field is signed, we also do sign extension. */
3311
3312 static LONGEST
3313 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3314 LONGEST bitpos, LONGEST bitsize)
3315 {
3316 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3317 ULONGEST val;
3318 ULONGEST valmask;
3319 int lsbcount;
3320 LONGEST bytes_read;
3321 LONGEST read_offset;
3322
3323 /* Read the minimum number of bytes required; there may not be
3324 enough bytes to read an entire ULONGEST. */
3325 field_type = check_typedef (field_type);
3326 if (bitsize)
3327 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3328 else
3329 bytes_read = TYPE_LENGTH (field_type);
3330
3331 read_offset = bitpos / 8;
3332
3333 val = extract_unsigned_integer (valaddr + read_offset,
3334 bytes_read, byte_order);
3335
3336 /* Extract bits. See comment above. */
3337
3338 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3339 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3340 else
3341 lsbcount = (bitpos % 8);
3342 val >>= lsbcount;
3343
3344 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3345 If the field is signed, and is negative, then sign extend. */
3346
3347 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3348 {
3349 valmask = (((ULONGEST) 1) << bitsize) - 1;
3350 val &= valmask;
3351 if (!TYPE_UNSIGNED (field_type))
3352 {
3353 if (val & (valmask ^ (valmask >> 1)))
3354 {
3355 val |= ~valmask;
3356 }
3357 }
3358 }
3359
3360 return val;
3361 }
3362
3363 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3364 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3365 ORIGINAL_VALUE, which must not be NULL. See
3366 unpack_value_bits_as_long for more details. */
3367
3368 int
3369 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3370 LONGEST embedded_offset, int fieldno,
3371 const struct value *val, LONGEST *result)
3372 {
3373 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3374 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3375 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3376 int bit_offset;
3377
3378 gdb_assert (val != NULL);
3379
3380 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3381 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3382 || !value_bits_available (val, bit_offset, bitsize))
3383 return 0;
3384
3385 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3386 bitpos, bitsize);
3387 return 1;
3388 }
3389
3390 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3391 object at VALADDR. See unpack_bits_as_long for more details. */
3392
3393 LONGEST
3394 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3395 {
3396 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3397 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3398 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3399
3400 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3401 }
3402
3403 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3404 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3405 the contents in DEST_VAL, zero or sign extending if the type of
3406 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3407 VAL. If the VAL's contents required to extract the bitfield from
3408 are unavailable/optimized out, DEST_VAL is correspondingly
3409 marked unavailable/optimized out. */
3410
3411 void
3412 unpack_value_bitfield (struct value *dest_val,
3413 LONGEST bitpos, LONGEST bitsize,
3414 const gdb_byte *valaddr, LONGEST embedded_offset,
3415 const struct value *val)
3416 {
3417 enum bfd_endian byte_order;
3418 int src_bit_offset;
3419 int dst_bit_offset;
3420 struct type *field_type = value_type (dest_val);
3421
3422 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3423
3424 /* First, unpack and sign extend the bitfield as if it was wholly
3425 valid. Optimized out/unavailable bits are read as zero, but
3426 that's OK, as they'll end up marked below. If the VAL is
3427 wholly-invalid we may have skipped allocating its contents,
3428 though. See allocate_optimized_out_value. */
3429 if (valaddr != NULL)
3430 {
3431 LONGEST num;
3432
3433 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3434 bitpos, bitsize);
3435 store_signed_integer (value_contents_raw (dest_val),
3436 TYPE_LENGTH (field_type), byte_order, num);
3437 }
3438
3439 /* Now copy the optimized out / unavailability ranges to the right
3440 bits. */
3441 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3442 if (byte_order == BFD_ENDIAN_BIG)
3443 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3444 else
3445 dst_bit_offset = 0;
3446 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3447 val, src_bit_offset, bitsize);
3448 }
3449
3450 /* Return a new value with type TYPE, which is FIELDNO field of the
3451 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3452 of VAL. If the VAL's contents required to extract the bitfield
3453 from are unavailable/optimized out, the new value is
3454 correspondingly marked unavailable/optimized out. */
3455
3456 struct value *
3457 value_field_bitfield (struct type *type, int fieldno,
3458 const gdb_byte *valaddr,
3459 LONGEST embedded_offset, const struct value *val)
3460 {
3461 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3462 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3463 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3464
3465 unpack_value_bitfield (res_val, bitpos, bitsize,
3466 valaddr, embedded_offset, val);
3467
3468 return res_val;
3469 }
3470
3471 /* Modify the value of a bitfield. ADDR points to a block of memory in
3472 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3473 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3474 indicate which bits (in target bit order) comprise the bitfield.
3475 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3476 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3477
3478 void
3479 modify_field (struct type *type, gdb_byte *addr,
3480 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3481 {
3482 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3483 ULONGEST oword;
3484 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3485 LONGEST bytesize;
3486
3487 /* Normalize BITPOS. */
3488 addr += bitpos / 8;
3489 bitpos %= 8;
3490
3491 /* If a negative fieldval fits in the field in question, chop
3492 off the sign extension bits. */
3493 if ((~fieldval & ~(mask >> 1)) == 0)
3494 fieldval &= mask;
3495
3496 /* Warn if value is too big to fit in the field in question. */
3497 if (0 != (fieldval & ~mask))
3498 {
3499 /* FIXME: would like to include fieldval in the message, but
3500 we don't have a sprintf_longest. */
3501 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3502
3503 /* Truncate it, otherwise adjoining fields may be corrupted. */
3504 fieldval &= mask;
3505 }
3506
3507 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3508 false valgrind reports. */
3509
3510 bytesize = (bitpos + bitsize + 7) / 8;
3511 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3512
3513 /* Shifting for bit field depends on endianness of the target machine. */
3514 if (gdbarch_bits_big_endian (get_type_arch (type)))
3515 bitpos = bytesize * 8 - bitpos - bitsize;
3516
3517 oword &= ~(mask << bitpos);
3518 oword |= fieldval << bitpos;
3519
3520 store_unsigned_integer (addr, bytesize, byte_order, oword);
3521 }
3522 \f
3523 /* Pack NUM into BUF using a target format of TYPE. */
3524
3525 void
3526 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3527 {
3528 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3529 LONGEST len;
3530
3531 type = check_typedef (type);
3532 len = TYPE_LENGTH (type);
3533
3534 switch (TYPE_CODE (type))
3535 {
3536 case TYPE_CODE_INT:
3537 case TYPE_CODE_CHAR:
3538 case TYPE_CODE_ENUM:
3539 case TYPE_CODE_FLAGS:
3540 case TYPE_CODE_BOOL:
3541 case TYPE_CODE_RANGE:
3542 case TYPE_CODE_MEMBERPTR:
3543 store_signed_integer (buf, len, byte_order, num);
3544 break;
3545
3546 case TYPE_CODE_REF:
3547 case TYPE_CODE_PTR:
3548 store_typed_address (buf, type, (CORE_ADDR) num);
3549 break;
3550
3551 default:
3552 error (_("Unexpected type (%d) encountered for integer constant."),
3553 TYPE_CODE (type));
3554 }
3555 }
3556
3557
3558 /* Pack NUM into BUF using a target format of TYPE. */
3559
3560 static void
3561 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3562 {
3563 LONGEST len;
3564 enum bfd_endian byte_order;
3565
3566 type = check_typedef (type);
3567 len = TYPE_LENGTH (type);
3568 byte_order = gdbarch_byte_order (get_type_arch (type));
3569
3570 switch (TYPE_CODE (type))
3571 {
3572 case TYPE_CODE_INT:
3573 case TYPE_CODE_CHAR:
3574 case TYPE_CODE_ENUM:
3575 case TYPE_CODE_FLAGS:
3576 case TYPE_CODE_BOOL:
3577 case TYPE_CODE_RANGE:
3578 case TYPE_CODE_MEMBERPTR:
3579 store_unsigned_integer (buf, len, byte_order, num);
3580 break;
3581
3582 case TYPE_CODE_REF:
3583 case TYPE_CODE_PTR:
3584 store_typed_address (buf, type, (CORE_ADDR) num);
3585 break;
3586
3587 default:
3588 error (_("Unexpected type (%d) encountered "
3589 "for unsigned integer constant."),
3590 TYPE_CODE (type));
3591 }
3592 }
3593
3594
3595 /* Convert C numbers into newly allocated values. */
3596
3597 struct value *
3598 value_from_longest (struct type *type, LONGEST num)
3599 {
3600 struct value *val = allocate_value (type);
3601
3602 pack_long (value_contents_raw (val), type, num);
3603 return val;
3604 }
3605
3606
3607 /* Convert C unsigned numbers into newly allocated values. */
3608
3609 struct value *
3610 value_from_ulongest (struct type *type, ULONGEST num)
3611 {
3612 struct value *val = allocate_value (type);
3613
3614 pack_unsigned_long (value_contents_raw (val), type, num);
3615
3616 return val;
3617 }
3618
3619
3620 /* Create a value representing a pointer of type TYPE to the address
3621 ADDR. */
3622
3623 struct value *
3624 value_from_pointer (struct type *type, CORE_ADDR addr)
3625 {
3626 struct value *val = allocate_value (type);
3627
3628 store_typed_address (value_contents_raw (val),
3629 check_typedef (type), addr);
3630 return val;
3631 }
3632
3633
3634 /* Create a value of type TYPE whose contents come from VALADDR, if it
3635 is non-null, and whose memory address (in the inferior) is
3636 ADDRESS. The type of the created value may differ from the passed
3637 type TYPE. Make sure to retrieve values new type after this call.
3638 Note that TYPE is not passed through resolve_dynamic_type; this is
3639 a special API intended for use only by Ada. */
3640
3641 struct value *
3642 value_from_contents_and_address_unresolved (struct type *type,
3643 const gdb_byte *valaddr,
3644 CORE_ADDR address)
3645 {
3646 struct value *v;
3647
3648 if (valaddr == NULL)
3649 v = allocate_value_lazy (type);
3650 else
3651 v = value_from_contents (type, valaddr);
3652 VALUE_LVAL (v) = lval_memory;
3653 set_value_address (v, address);
3654 return v;
3655 }
3656
3657 /* Create a value of type TYPE whose contents come from VALADDR, if it
3658 is non-null, and whose memory address (in the inferior) is
3659 ADDRESS. The type of the created value may differ from the passed
3660 type TYPE. Make sure to retrieve values new type after this call. */
3661
3662 struct value *
3663 value_from_contents_and_address (struct type *type,
3664 const gdb_byte *valaddr,
3665 CORE_ADDR address)
3666 {
3667 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3668 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3669 struct value *v;
3670
3671 if (valaddr == NULL)
3672 v = allocate_value_lazy (resolved_type);
3673 else
3674 v = value_from_contents (resolved_type, valaddr);
3675 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3676 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3677 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3678 VALUE_LVAL (v) = lval_memory;
3679 set_value_address (v, address);
3680 return v;
3681 }
3682
3683 /* Create a value of type TYPE holding the contents CONTENTS.
3684 The new value is `not_lval'. */
3685
3686 struct value *
3687 value_from_contents (struct type *type, const gdb_byte *contents)
3688 {
3689 struct value *result;
3690
3691 result = allocate_value (type);
3692 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3693 return result;
3694 }
3695
3696 struct value *
3697 value_from_double (struct type *type, DOUBLEST num)
3698 {
3699 struct value *val = allocate_value (type);
3700 struct type *base_type = check_typedef (type);
3701 enum type_code code = TYPE_CODE (base_type);
3702
3703 if (code == TYPE_CODE_FLT)
3704 {
3705 store_typed_floating (value_contents_raw (val), base_type, num);
3706 }
3707 else
3708 error (_("Unexpected type encountered for floating constant."));
3709
3710 return val;
3711 }
3712
3713 struct value *
3714 value_from_decfloat (struct type *type, const gdb_byte *dec)
3715 {
3716 struct value *val = allocate_value (type);
3717
3718 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3719 return val;
3720 }
3721
3722 /* Extract a value from the history file. Input will be of the form
3723 $digits or $$digits. See block comment above 'write_dollar_variable'
3724 for details. */
3725
3726 struct value *
3727 value_from_history_ref (const char *h, const char **endp)
3728 {
3729 int index, len;
3730
3731 if (h[0] == '$')
3732 len = 1;
3733 else
3734 return NULL;
3735
3736 if (h[1] == '$')
3737 len = 2;
3738
3739 /* Find length of numeral string. */
3740 for (; isdigit (h[len]); len++)
3741 ;
3742
3743 /* Make sure numeral string is not part of an identifier. */
3744 if (h[len] == '_' || isalpha (h[len]))
3745 return NULL;
3746
3747 /* Now collect the index value. */
3748 if (h[1] == '$')
3749 {
3750 if (len == 2)
3751 {
3752 /* For some bizarre reason, "$$" is equivalent to "$$1",
3753 rather than to "$$0" as it ought to be! */
3754 index = -1;
3755 *endp += len;
3756 }
3757 else
3758 {
3759 char *local_end;
3760
3761 index = -strtol (&h[2], &local_end, 10);
3762 *endp = local_end;
3763 }
3764 }
3765 else
3766 {
3767 if (len == 1)
3768 {
3769 /* "$" is equivalent to "$0". */
3770 index = 0;
3771 *endp += len;
3772 }
3773 else
3774 {
3775 char *local_end;
3776
3777 index = strtol (&h[1], &local_end, 10);
3778 *endp = local_end;
3779 }
3780 }
3781
3782 return access_value_history (index);
3783 }
3784
3785 /* Get the component value (offset by OFFSET bytes) of a struct or
3786 union WHOLE. Component's type is TYPE. */
3787
3788 struct value *
3789 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3790 {
3791 struct value *v;
3792
3793 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3794 v = allocate_value_lazy (type);
3795 else
3796 {
3797 v = allocate_value (type);
3798 value_contents_copy (v, value_embedded_offset (v),
3799 whole, value_embedded_offset (whole) + offset,
3800 type_length_units (type));
3801 }
3802 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3803 set_value_component_location (v, whole);
3804
3805 return v;
3806 }
3807
3808 struct value *
3809 coerce_ref_if_computed (const struct value *arg)
3810 {
3811 const struct lval_funcs *funcs;
3812
3813 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3814 return NULL;
3815
3816 if (value_lval_const (arg) != lval_computed)
3817 return NULL;
3818
3819 funcs = value_computed_funcs (arg);
3820 if (funcs->coerce_ref == NULL)
3821 return NULL;
3822
3823 return funcs->coerce_ref (arg);
3824 }
3825
3826 /* Look at value.h for description. */
3827
3828 struct value *
3829 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3830 const struct type *original_type,
3831 const struct value *original_value)
3832 {
3833 /* Re-adjust type. */
3834 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3835
3836 /* Add embedding info. */
3837 set_value_enclosing_type (value, enc_type);
3838 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3839
3840 /* We may be pointing to an object of some derived type. */
3841 return value_full_object (value, NULL, 0, 0, 0);
3842 }
3843
3844 struct value *
3845 coerce_ref (struct value *arg)
3846 {
3847 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3848 struct value *retval;
3849 struct type *enc_type;
3850
3851 retval = coerce_ref_if_computed (arg);
3852 if (retval)
3853 return retval;
3854
3855 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3856 return arg;
3857
3858 enc_type = check_typedef (value_enclosing_type (arg));
3859 enc_type = TYPE_TARGET_TYPE (enc_type);
3860
3861 retval = value_at_lazy (enc_type,
3862 unpack_pointer (value_type (arg),
3863 value_contents (arg)));
3864 enc_type = value_type (retval);
3865 return readjust_indirect_value_type (retval, enc_type,
3866 value_type_arg_tmp, arg);
3867 }
3868
3869 struct value *
3870 coerce_array (struct value *arg)
3871 {
3872 struct type *type;
3873
3874 arg = coerce_ref (arg);
3875 type = check_typedef (value_type (arg));
3876
3877 switch (TYPE_CODE (type))
3878 {
3879 case TYPE_CODE_ARRAY:
3880 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3881 arg = value_coerce_array (arg);
3882 break;
3883 case TYPE_CODE_FUNC:
3884 arg = value_coerce_function (arg);
3885 break;
3886 }
3887 return arg;
3888 }
3889 \f
3890
3891 /* Return the return value convention that will be used for the
3892 specified type. */
3893
3894 enum return_value_convention
3895 struct_return_convention (struct gdbarch *gdbarch,
3896 struct value *function, struct type *value_type)
3897 {
3898 enum type_code code = TYPE_CODE (value_type);
3899
3900 if (code == TYPE_CODE_ERROR)
3901 error (_("Function return type unknown."));
3902
3903 /* Probe the architecture for the return-value convention. */
3904 return gdbarch_return_value (gdbarch, function, value_type,
3905 NULL, NULL, NULL);
3906 }
3907
3908 /* Return true if the function returning the specified type is using
3909 the convention of returning structures in memory (passing in the
3910 address as a hidden first parameter). */
3911
3912 int
3913 using_struct_return (struct gdbarch *gdbarch,
3914 struct value *function, struct type *value_type)
3915 {
3916 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3917 /* A void return value is never in memory. See also corresponding
3918 code in "print_return_value". */
3919 return 0;
3920
3921 return (struct_return_convention (gdbarch, function, value_type)
3922 != RETURN_VALUE_REGISTER_CONVENTION);
3923 }
3924
3925 /* Set the initialized field in a value struct. */
3926
3927 void
3928 set_value_initialized (struct value *val, int status)
3929 {
3930 val->initialized = status;
3931 }
3932
3933 /* Return the initialized field in a value struct. */
3934
3935 int
3936 value_initialized (const struct value *val)
3937 {
3938 return val->initialized;
3939 }
3940
3941 /* Load the actual content of a lazy value. Fetch the data from the
3942 user's process and clear the lazy flag to indicate that the data in
3943 the buffer is valid.
3944
3945 If the value is zero-length, we avoid calling read_memory, which
3946 would abort. We mark the value as fetched anyway -- all 0 bytes of
3947 it. */
3948
3949 void
3950 value_fetch_lazy (struct value *val)
3951 {
3952 gdb_assert (value_lazy (val));
3953 allocate_value_contents (val);
3954 /* A value is either lazy, or fully fetched. The
3955 availability/validity is only established as we try to fetch a
3956 value. */
3957 gdb_assert (VEC_empty (range_s, val->optimized_out));
3958 gdb_assert (VEC_empty (range_s, val->unavailable));
3959 if (value_bitsize (val))
3960 {
3961 /* To read a lazy bitfield, read the entire enclosing value. This
3962 prevents reading the same block of (possibly volatile) memory once
3963 per bitfield. It would be even better to read only the containing
3964 word, but we have no way to record that just specific bits of a
3965 value have been fetched. */
3966 struct type *type = check_typedef (value_type (val));
3967 struct value *parent = value_parent (val);
3968
3969 if (value_lazy (parent))
3970 value_fetch_lazy (parent);
3971
3972 unpack_value_bitfield (val,
3973 value_bitpos (val), value_bitsize (val),
3974 value_contents_for_printing (parent),
3975 value_offset (val), parent);
3976 }
3977 else if (VALUE_LVAL (val) == lval_memory)
3978 {
3979 CORE_ADDR addr = value_address (val);
3980 struct type *type = check_typedef (value_enclosing_type (val));
3981
3982 if (TYPE_LENGTH (type))
3983 read_value_memory (val, 0, value_stack (val),
3984 addr, value_contents_all_raw (val),
3985 type_length_units (type));
3986 }
3987 else if (VALUE_LVAL (val) == lval_register)
3988 {
3989 struct frame_info *next_frame;
3990 int regnum;
3991 struct type *type = check_typedef (value_type (val));
3992 struct value *new_val = val, *mark = value_mark ();
3993
3994 /* Offsets are not supported here; lazy register values must
3995 refer to the entire register. */
3996 gdb_assert (value_offset (val) == 0);
3997
3998 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3999 {
4000 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
4001
4002 next_frame = frame_find_by_id (next_frame_id);
4003 regnum = VALUE_REGNUM (new_val);
4004
4005 gdb_assert (next_frame != NULL);
4006
4007 /* Convertible register routines are used for multi-register
4008 values and for interpretation in different types
4009 (e.g. float or int from a double register). Lazy
4010 register values should have the register's natural type,
4011 so they do not apply. */
4012 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
4013 regnum, type));
4014
4015 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
4016 Since a "->next" operation was performed when setting
4017 this field, we do not need to perform a "next" operation
4018 again when unwinding the register. That's why
4019 frame_unwind_register_value() is called here instead of
4020 get_frame_register_value(). */
4021 new_val = frame_unwind_register_value (next_frame, regnum);
4022
4023 /* If we get another lazy lval_register value, it means the
4024 register is found by reading it from NEXT_FRAME's next frame.
4025 frame_unwind_register_value should never return a value with
4026 the frame id pointing to NEXT_FRAME. If it does, it means we
4027 either have two consecutive frames with the same frame id
4028 in the frame chain, or some code is trying to unwind
4029 behind get_prev_frame's back (e.g., a frame unwind
4030 sniffer trying to unwind), bypassing its validations. In
4031 any case, it should always be an internal error to end up
4032 in this situation. */
4033 if (VALUE_LVAL (new_val) == lval_register
4034 && value_lazy (new_val)
4035 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
4036 internal_error (__FILE__, __LINE__,
4037 _("infinite loop while fetching a register"));
4038 }
4039
4040 /* If it's still lazy (for instance, a saved register on the
4041 stack), fetch it. */
4042 if (value_lazy (new_val))
4043 value_fetch_lazy (new_val);
4044
4045 /* Copy the contents and the unavailability/optimized-out
4046 meta-data from NEW_VAL to VAL. */
4047 set_value_lazy (val, 0);
4048 value_contents_copy (val, value_embedded_offset (val),
4049 new_val, value_embedded_offset (new_val),
4050 type_length_units (type));
4051
4052 if (frame_debug)
4053 {
4054 struct gdbarch *gdbarch;
4055 struct frame_info *frame;
4056 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
4057 so that the frame level will be shown correctly. */
4058 frame = frame_find_by_id (VALUE_FRAME_ID (val));
4059 regnum = VALUE_REGNUM (val);
4060 gdbarch = get_frame_arch (frame);
4061
4062 fprintf_unfiltered (gdb_stdlog,
4063 "{ value_fetch_lazy "
4064 "(frame=%d,regnum=%d(%s),...) ",
4065 frame_relative_level (frame), regnum,
4066 user_reg_map_regnum_to_name (gdbarch, regnum));
4067
4068 fprintf_unfiltered (gdb_stdlog, "->");
4069 if (value_optimized_out (new_val))
4070 {
4071 fprintf_unfiltered (gdb_stdlog, " ");
4072 val_print_optimized_out (new_val, gdb_stdlog);
4073 }
4074 else
4075 {
4076 int i;
4077 const gdb_byte *buf = value_contents (new_val);
4078
4079 if (VALUE_LVAL (new_val) == lval_register)
4080 fprintf_unfiltered (gdb_stdlog, " register=%d",
4081 VALUE_REGNUM (new_val));
4082 else if (VALUE_LVAL (new_val) == lval_memory)
4083 fprintf_unfiltered (gdb_stdlog, " address=%s",
4084 paddress (gdbarch,
4085 value_address (new_val)));
4086 else
4087 fprintf_unfiltered (gdb_stdlog, " computed");
4088
4089 fprintf_unfiltered (gdb_stdlog, " bytes=");
4090 fprintf_unfiltered (gdb_stdlog, "[");
4091 for (i = 0; i < register_size (gdbarch, regnum); i++)
4092 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4093 fprintf_unfiltered (gdb_stdlog, "]");
4094 }
4095
4096 fprintf_unfiltered (gdb_stdlog, " }\n");
4097 }
4098
4099 /* Dispose of the intermediate values. This prevents
4100 watchpoints from trying to watch the saved frame pointer. */
4101 value_free_to_mark (mark);
4102 }
4103 else if (VALUE_LVAL (val) == lval_computed
4104 && value_computed_funcs (val)->read != NULL)
4105 value_computed_funcs (val)->read (val);
4106 else
4107 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4108
4109 set_value_lazy (val, 0);
4110 }
4111
4112 /* Implementation of the convenience function $_isvoid. */
4113
4114 static struct value *
4115 isvoid_internal_fn (struct gdbarch *gdbarch,
4116 const struct language_defn *language,
4117 void *cookie, int argc, struct value **argv)
4118 {
4119 int ret;
4120
4121 if (argc != 1)
4122 error (_("You must provide one argument for $_isvoid."));
4123
4124 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4125
4126 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4127 }
4128
4129 void
4130 _initialize_values (void)
4131 {
4132 add_cmd ("convenience", no_class, show_convenience, _("\
4133 Debugger convenience (\"$foo\") variables and functions.\n\
4134 Convenience variables are created when you assign them values;\n\
4135 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4136 \n\
4137 A few convenience variables are given values automatically:\n\
4138 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4139 \"$__\" holds the contents of the last address examined with \"x\"."
4140 #ifdef HAVE_PYTHON
4141 "\n\n\
4142 Convenience functions are defined via the Python API."
4143 #endif
4144 ), &showlist);
4145 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4146
4147 add_cmd ("values", no_set_class, show_values, _("\
4148 Elements of value history around item number IDX (or last ten)."),
4149 &showlist);
4150
4151 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4152 Initialize a convenience variable if necessary.\n\
4153 init-if-undefined VARIABLE = EXPRESSION\n\
4154 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4155 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4156 VARIABLE is already initialized."));
4157
4158 add_prefix_cmd ("function", no_class, function_command, _("\
4159 Placeholder command for showing help on convenience functions."),
4160 &functionlist, "function ", 0, &cmdlist);
4161
4162 add_internal_function ("_isvoid", _("\
4163 Check whether an expression is void.\n\
4164 Usage: $_isvoid (expression)\n\
4165 Return 1 if the expression is void, zero otherwise."),
4166 isvoid_internal_fn, NULL);
4167
4168 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4169 class_support, &max_value_size, _("\
4170 Set maximum sized value gdb will load from the inferior."), _("\
4171 Show maximum sized value gdb will load from the inferior."), _("\
4172 Use this to control the maximum size, in bytes, of a value that gdb\n\
4173 will load from the inferior. Setting this value to 'unlimited'\n\
4174 disables checking.\n\
4175 Setting this does not invalidate already allocated values, it only\n\
4176 prevents future values, larger than this size, from being allocated."),
4177 set_max_value_size,
4178 show_max_value_size,
4179 &setlist, &showlist);
4180 }
This page took 0.11846 seconds and 4 git commands to generate.