gdb
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42
43 #include "python/python.h"
44
45 /* Prototypes for exported functions. */
46
47 void _initialize_values (void);
48
49 /* Definition of a user function. */
50 struct internal_function
51 {
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62 };
63
64 static struct cmd_list_element *functionlist;
65
66 struct value
67 {
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
109 int bitpos;
110
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 int stack;
202
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
205 gdb_byte *contents;
206
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
212 int reference_count;
213 };
214
215 /* Prototypes for local functions. */
216
217 static void show_values (char *, int);
218
219 static void show_convenience (char *, int);
220
221
222 /* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
227
228 #define VALUE_HISTORY_CHUNK 60
229
230 struct value_history_chunk
231 {
232 struct value_history_chunk *next;
233 struct value *values[VALUE_HISTORY_CHUNK];
234 };
235
236 /* Chain of chunks now in use. */
237
238 static struct value_history_chunk *value_history_chain;
239
240 static int value_history_count; /* Abs number of last entry stored */
241
242 \f
243 /* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
246
247 static struct value *all_values;
248
249 /* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
252
253 struct value *
254 allocate_value_lazy (struct type *type)
255 {
256 struct value *val;
257
258 /* Call check_typedef on our type to make sure that, if TYPE
259 is a TYPE_CODE_TYPEDEF, its length is set to the length
260 of the target type instead of zero. However, we do not
261 replace the typedef type by the target type, because we want
262 to keep the typedef in order to be able to set the VAL's type
263 description correctly. */
264 check_typedef (type);
265
266 val = (struct value *) xzalloc (sizeof (struct value));
267 val->contents = NULL;
268 val->next = all_values;
269 all_values = val;
270 val->type = type;
271 val->enclosing_type = type;
272 VALUE_LVAL (val) = not_lval;
273 val->location.address = 0;
274 VALUE_FRAME_ID (val) = null_frame_id;
275 val->offset = 0;
276 val->bitpos = 0;
277 val->bitsize = 0;
278 VALUE_REGNUM (val) = -1;
279 val->lazy = 1;
280 val->optimized_out = 0;
281 val->embedded_offset = 0;
282 val->pointed_to_offset = 0;
283 val->modifiable = 1;
284 val->initialized = 1; /* Default to initialized. */
285
286 /* Values start out on the all_values chain. */
287 val->reference_count = 1;
288
289 return val;
290 }
291
292 /* Allocate the contents of VAL if it has not been allocated yet. */
293
294 void
295 allocate_value_contents (struct value *val)
296 {
297 if (!val->contents)
298 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
299 }
300
301 /* Allocate a value and its contents for type TYPE. */
302
303 struct value *
304 allocate_value (struct type *type)
305 {
306 struct value *val = allocate_value_lazy (type);
307
308 allocate_value_contents (val);
309 val->lazy = 0;
310 return val;
311 }
312
313 /* Allocate a value that has the correct length
314 for COUNT repetitions of type TYPE. */
315
316 struct value *
317 allocate_repeat_value (struct type *type, int count)
318 {
319 int low_bound = current_language->string_lower_bound; /* ??? */
320 /* FIXME-type-allocation: need a way to free this type when we are
321 done with it. */
322 struct type *array_type
323 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
324
325 return allocate_value (array_type);
326 }
327
328 struct value *
329 allocate_computed_value (struct type *type,
330 struct lval_funcs *funcs,
331 void *closure)
332 {
333 struct value *v = allocate_value (type);
334
335 VALUE_LVAL (v) = lval_computed;
336 v->location.computed.funcs = funcs;
337 v->location.computed.closure = closure;
338 set_value_lazy (v, 1);
339
340 return v;
341 }
342
343 /* Accessor methods. */
344
345 struct value *
346 value_next (struct value *value)
347 {
348 return value->next;
349 }
350
351 struct type *
352 value_type (const struct value *value)
353 {
354 return value->type;
355 }
356 void
357 deprecated_set_value_type (struct value *value, struct type *type)
358 {
359 value->type = type;
360 }
361
362 int
363 value_offset (const struct value *value)
364 {
365 return value->offset;
366 }
367 void
368 set_value_offset (struct value *value, int offset)
369 {
370 value->offset = offset;
371 }
372
373 int
374 value_bitpos (const struct value *value)
375 {
376 return value->bitpos;
377 }
378 void
379 set_value_bitpos (struct value *value, int bit)
380 {
381 value->bitpos = bit;
382 }
383
384 int
385 value_bitsize (const struct value *value)
386 {
387 return value->bitsize;
388 }
389 void
390 set_value_bitsize (struct value *value, int bit)
391 {
392 value->bitsize = bit;
393 }
394
395 struct value *
396 value_parent (struct value *value)
397 {
398 return value->parent;
399 }
400
401 gdb_byte *
402 value_contents_raw (struct value *value)
403 {
404 allocate_value_contents (value);
405 return value->contents + value->embedded_offset;
406 }
407
408 gdb_byte *
409 value_contents_all_raw (struct value *value)
410 {
411 allocate_value_contents (value);
412 return value->contents;
413 }
414
415 struct type *
416 value_enclosing_type (struct value *value)
417 {
418 return value->enclosing_type;
419 }
420
421 static void
422 require_not_optimized_out (struct value *value)
423 {
424 if (value->optimized_out)
425 error (_("value has been optimized out"));
426 }
427
428 const gdb_byte *
429 value_contents_for_printing (struct value *value)
430 {
431 if (value->lazy)
432 value_fetch_lazy (value);
433 return value->contents;
434 }
435
436 const gdb_byte *
437 value_contents_all (struct value *value)
438 {
439 const gdb_byte *result = value_contents_for_printing (value);
440 require_not_optimized_out (value);
441 return result;
442 }
443
444 int
445 value_lazy (struct value *value)
446 {
447 return value->lazy;
448 }
449
450 void
451 set_value_lazy (struct value *value, int val)
452 {
453 value->lazy = val;
454 }
455
456 int
457 value_stack (struct value *value)
458 {
459 return value->stack;
460 }
461
462 void
463 set_value_stack (struct value *value, int val)
464 {
465 value->stack = val;
466 }
467
468 const gdb_byte *
469 value_contents (struct value *value)
470 {
471 const gdb_byte *result = value_contents_writeable (value);
472 require_not_optimized_out (value);
473 return result;
474 }
475
476 gdb_byte *
477 value_contents_writeable (struct value *value)
478 {
479 if (value->lazy)
480 value_fetch_lazy (value);
481 return value_contents_raw (value);
482 }
483
484 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
485 this function is different from value_equal; in C the operator ==
486 can return 0 even if the two values being compared are equal. */
487
488 int
489 value_contents_equal (struct value *val1, struct value *val2)
490 {
491 struct type *type1;
492 struct type *type2;
493 int len;
494
495 type1 = check_typedef (value_type (val1));
496 type2 = check_typedef (value_type (val2));
497 len = TYPE_LENGTH (type1);
498 if (len != TYPE_LENGTH (type2))
499 return 0;
500
501 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
502 }
503
504 int
505 value_optimized_out (struct value *value)
506 {
507 return value->optimized_out;
508 }
509
510 void
511 set_value_optimized_out (struct value *value, int val)
512 {
513 value->optimized_out = val;
514 }
515
516 int
517 value_entirely_optimized_out (const struct value *value)
518 {
519 if (!value->optimized_out)
520 return 0;
521 if (value->lval != lval_computed
522 || !value->location.computed.funcs->check_validity)
523 return 1;
524 return !value->location.computed.funcs->check_any_valid (value);
525 }
526
527 int
528 value_bits_valid (const struct value *value, int offset, int length)
529 {
530 if (value == NULL || !value->optimized_out)
531 return 1;
532 if (value->lval != lval_computed
533 || !value->location.computed.funcs->check_validity)
534 return 0;
535 return value->location.computed.funcs->check_validity (value, offset,
536 length);
537 }
538
539 int
540 value_embedded_offset (struct value *value)
541 {
542 return value->embedded_offset;
543 }
544
545 void
546 set_value_embedded_offset (struct value *value, int val)
547 {
548 value->embedded_offset = val;
549 }
550
551 int
552 value_pointed_to_offset (struct value *value)
553 {
554 return value->pointed_to_offset;
555 }
556
557 void
558 set_value_pointed_to_offset (struct value *value, int val)
559 {
560 value->pointed_to_offset = val;
561 }
562
563 struct lval_funcs *
564 value_computed_funcs (struct value *v)
565 {
566 gdb_assert (VALUE_LVAL (v) == lval_computed);
567
568 return v->location.computed.funcs;
569 }
570
571 void *
572 value_computed_closure (const struct value *v)
573 {
574 gdb_assert (v->lval == lval_computed);
575
576 return v->location.computed.closure;
577 }
578
579 enum lval_type *
580 deprecated_value_lval_hack (struct value *value)
581 {
582 return &value->lval;
583 }
584
585 CORE_ADDR
586 value_address (struct value *value)
587 {
588 if (value->lval == lval_internalvar
589 || value->lval == lval_internalvar_component)
590 return 0;
591 return value->location.address + value->offset;
592 }
593
594 CORE_ADDR
595 value_raw_address (struct value *value)
596 {
597 if (value->lval == lval_internalvar
598 || value->lval == lval_internalvar_component)
599 return 0;
600 return value->location.address;
601 }
602
603 void
604 set_value_address (struct value *value, CORE_ADDR addr)
605 {
606 gdb_assert (value->lval != lval_internalvar
607 && value->lval != lval_internalvar_component);
608 value->location.address = addr;
609 }
610
611 struct internalvar **
612 deprecated_value_internalvar_hack (struct value *value)
613 {
614 return &value->location.internalvar;
615 }
616
617 struct frame_id *
618 deprecated_value_frame_id_hack (struct value *value)
619 {
620 return &value->frame_id;
621 }
622
623 short *
624 deprecated_value_regnum_hack (struct value *value)
625 {
626 return &value->regnum;
627 }
628
629 int
630 deprecated_value_modifiable (struct value *value)
631 {
632 return value->modifiable;
633 }
634 void
635 deprecated_set_value_modifiable (struct value *value, int modifiable)
636 {
637 value->modifiable = modifiable;
638 }
639 \f
640 /* Return a mark in the value chain. All values allocated after the
641 mark is obtained (except for those released) are subject to being freed
642 if a subsequent value_free_to_mark is passed the mark. */
643 struct value *
644 value_mark (void)
645 {
646 return all_values;
647 }
648
649 /* Take a reference to VAL. VAL will not be deallocated until all
650 references are released. */
651
652 void
653 value_incref (struct value *val)
654 {
655 val->reference_count++;
656 }
657
658 /* Release a reference to VAL, which was acquired with value_incref.
659 This function is also called to deallocate values from the value
660 chain. */
661
662 void
663 value_free (struct value *val)
664 {
665 if (val)
666 {
667 gdb_assert (val->reference_count > 0);
668 val->reference_count--;
669 if (val->reference_count > 0)
670 return;
671
672 /* If there's an associated parent value, drop our reference to
673 it. */
674 if (val->parent != NULL)
675 value_free (val->parent);
676
677 if (VALUE_LVAL (val) == lval_computed)
678 {
679 struct lval_funcs *funcs = val->location.computed.funcs;
680
681 if (funcs->free_closure)
682 funcs->free_closure (val);
683 }
684
685 xfree (val->contents);
686 }
687 xfree (val);
688 }
689
690 /* Free all values allocated since MARK was obtained by value_mark
691 (except for those released). */
692 void
693 value_free_to_mark (struct value *mark)
694 {
695 struct value *val;
696 struct value *next;
697
698 for (val = all_values; val && val != mark; val = next)
699 {
700 next = val->next;
701 value_free (val);
702 }
703 all_values = val;
704 }
705
706 /* Free all the values that have been allocated (except for those released).
707 Call after each command, successful or not.
708 In practice this is called before each command, which is sufficient. */
709
710 void
711 free_all_values (void)
712 {
713 struct value *val;
714 struct value *next;
715
716 for (val = all_values; val; val = next)
717 {
718 next = val->next;
719 value_free (val);
720 }
721
722 all_values = 0;
723 }
724
725 /* Frees all the elements in a chain of values. */
726
727 void
728 free_value_chain (struct value *v)
729 {
730 struct value *next;
731
732 for (; v; v = next)
733 {
734 next = value_next (v);
735 value_free (v);
736 }
737 }
738
739 /* Remove VAL from the chain all_values
740 so it will not be freed automatically. */
741
742 void
743 release_value (struct value *val)
744 {
745 struct value *v;
746
747 if (all_values == val)
748 {
749 all_values = val->next;
750 val->next = NULL;
751 return;
752 }
753
754 for (v = all_values; v; v = v->next)
755 {
756 if (v->next == val)
757 {
758 v->next = val->next;
759 val->next = NULL;
760 break;
761 }
762 }
763 }
764
765 /* Release all values up to mark */
766 struct value *
767 value_release_to_mark (struct value *mark)
768 {
769 struct value *val;
770 struct value *next;
771
772 for (val = next = all_values; next; next = next->next)
773 if (next->next == mark)
774 {
775 all_values = next->next;
776 next->next = NULL;
777 return val;
778 }
779 all_values = 0;
780 return val;
781 }
782
783 /* Return a copy of the value ARG.
784 It contains the same contents, for same memory address,
785 but it's a different block of storage. */
786
787 struct value *
788 value_copy (struct value *arg)
789 {
790 struct type *encl_type = value_enclosing_type (arg);
791 struct value *val;
792
793 if (value_lazy (arg))
794 val = allocate_value_lazy (encl_type);
795 else
796 val = allocate_value (encl_type);
797 val->type = arg->type;
798 VALUE_LVAL (val) = VALUE_LVAL (arg);
799 val->location = arg->location;
800 val->offset = arg->offset;
801 val->bitpos = arg->bitpos;
802 val->bitsize = arg->bitsize;
803 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
804 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
805 val->lazy = arg->lazy;
806 val->optimized_out = arg->optimized_out;
807 val->embedded_offset = value_embedded_offset (arg);
808 val->pointed_to_offset = arg->pointed_to_offset;
809 val->modifiable = arg->modifiable;
810 if (!value_lazy (val))
811 {
812 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
813 TYPE_LENGTH (value_enclosing_type (arg)));
814
815 }
816 val->parent = arg->parent;
817 if (val->parent)
818 value_incref (val->parent);
819 if (VALUE_LVAL (val) == lval_computed)
820 {
821 struct lval_funcs *funcs = val->location.computed.funcs;
822
823 if (funcs->copy_closure)
824 val->location.computed.closure = funcs->copy_closure (val);
825 }
826 return val;
827 }
828
829 void
830 set_value_component_location (struct value *component,
831 const struct value *whole)
832 {
833 if (whole->lval == lval_internalvar)
834 VALUE_LVAL (component) = lval_internalvar_component;
835 else
836 VALUE_LVAL (component) = whole->lval;
837
838 component->location = whole->location;
839 if (whole->lval == lval_computed)
840 {
841 struct lval_funcs *funcs = whole->location.computed.funcs;
842
843 if (funcs->copy_closure)
844 component->location.computed.closure = funcs->copy_closure (whole);
845 }
846 }
847
848 \f
849 /* Access to the value history. */
850
851 /* Record a new value in the value history.
852 Returns the absolute history index of the entry.
853 Result of -1 indicates the value was not saved; otherwise it is the
854 value history index of this new item. */
855
856 int
857 record_latest_value (struct value *val)
858 {
859 int i;
860
861 /* We don't want this value to have anything to do with the inferior anymore.
862 In particular, "set $1 = 50" should not affect the variable from which
863 the value was taken, and fast watchpoints should be able to assume that
864 a value on the value history never changes. */
865 if (value_lazy (val))
866 value_fetch_lazy (val);
867 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
868 from. This is a bit dubious, because then *&$1 does not just return $1
869 but the current contents of that location. c'est la vie... */
870 val->modifiable = 0;
871 release_value (val);
872
873 /* Here we treat value_history_count as origin-zero
874 and applying to the value being stored now. */
875
876 i = value_history_count % VALUE_HISTORY_CHUNK;
877 if (i == 0)
878 {
879 struct value_history_chunk *new
880 = (struct value_history_chunk *)
881
882 xmalloc (sizeof (struct value_history_chunk));
883 memset (new->values, 0, sizeof new->values);
884 new->next = value_history_chain;
885 value_history_chain = new;
886 }
887
888 value_history_chain->values[i] = val;
889
890 /* Now we regard value_history_count as origin-one
891 and applying to the value just stored. */
892
893 return ++value_history_count;
894 }
895
896 /* Return a copy of the value in the history with sequence number NUM. */
897
898 struct value *
899 access_value_history (int num)
900 {
901 struct value_history_chunk *chunk;
902 int i;
903 int absnum = num;
904
905 if (absnum <= 0)
906 absnum += value_history_count;
907
908 if (absnum <= 0)
909 {
910 if (num == 0)
911 error (_("The history is empty."));
912 else if (num == 1)
913 error (_("There is only one value in the history."));
914 else
915 error (_("History does not go back to $$%d."), -num);
916 }
917 if (absnum > value_history_count)
918 error (_("History has not yet reached $%d."), absnum);
919
920 absnum--;
921
922 /* Now absnum is always absolute and origin zero. */
923
924 chunk = value_history_chain;
925 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
926 i > 0; i--)
927 chunk = chunk->next;
928
929 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
930 }
931
932 static void
933 show_values (char *num_exp, int from_tty)
934 {
935 int i;
936 struct value *val;
937 static int num = 1;
938
939 if (num_exp)
940 {
941 /* "show values +" should print from the stored position.
942 "show values <exp>" should print around value number <exp>. */
943 if (num_exp[0] != '+' || num_exp[1] != '\0')
944 num = parse_and_eval_long (num_exp) - 5;
945 }
946 else
947 {
948 /* "show values" means print the last 10 values. */
949 num = value_history_count - 9;
950 }
951
952 if (num <= 0)
953 num = 1;
954
955 for (i = num; i < num + 10 && i <= value_history_count; i++)
956 {
957 struct value_print_options opts;
958
959 val = access_value_history (i);
960 printf_filtered (("$%d = "), i);
961 get_user_print_options (&opts);
962 value_print (val, gdb_stdout, &opts);
963 printf_filtered (("\n"));
964 }
965
966 /* The next "show values +" should start after what we just printed. */
967 num += 10;
968
969 /* Hitting just return after this command should do the same thing as
970 "show values +". If num_exp is null, this is unnecessary, since
971 "show values +" is not useful after "show values". */
972 if (from_tty && num_exp)
973 {
974 num_exp[0] = '+';
975 num_exp[1] = '\0';
976 }
977 }
978 \f
979 /* Internal variables. These are variables within the debugger
980 that hold values assigned by debugger commands.
981 The user refers to them with a '$' prefix
982 that does not appear in the variable names stored internally. */
983
984 struct internalvar
985 {
986 struct internalvar *next;
987 char *name;
988
989 /* We support various different kinds of content of an internal variable.
990 enum internalvar_kind specifies the kind, and union internalvar_data
991 provides the data associated with this particular kind. */
992
993 enum internalvar_kind
994 {
995 /* The internal variable is empty. */
996 INTERNALVAR_VOID,
997
998 /* The value of the internal variable is provided directly as
999 a GDB value object. */
1000 INTERNALVAR_VALUE,
1001
1002 /* A fresh value is computed via a call-back routine on every
1003 access to the internal variable. */
1004 INTERNALVAR_MAKE_VALUE,
1005
1006 /* The internal variable holds a GDB internal convenience function. */
1007 INTERNALVAR_FUNCTION,
1008
1009 /* The variable holds an integer value. */
1010 INTERNALVAR_INTEGER,
1011
1012 /* The variable holds a pointer value. */
1013 INTERNALVAR_POINTER,
1014
1015 /* The variable holds a GDB-provided string. */
1016 INTERNALVAR_STRING,
1017
1018 } kind;
1019
1020 union internalvar_data
1021 {
1022 /* A value object used with INTERNALVAR_VALUE. */
1023 struct value *value;
1024
1025 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1026 internalvar_make_value make_value;
1027
1028 /* The internal function used with INTERNALVAR_FUNCTION. */
1029 struct
1030 {
1031 struct internal_function *function;
1032 /* True if this is the canonical name for the function. */
1033 int canonical;
1034 } fn;
1035
1036 /* An integer value used with INTERNALVAR_INTEGER. */
1037 struct
1038 {
1039 /* If type is non-NULL, it will be used as the type to generate
1040 a value for this internal variable. If type is NULL, a default
1041 integer type for the architecture is used. */
1042 struct type *type;
1043 LONGEST val;
1044 } integer;
1045
1046 /* A pointer value used with INTERNALVAR_POINTER. */
1047 struct
1048 {
1049 struct type *type;
1050 CORE_ADDR val;
1051 } pointer;
1052
1053 /* A string value used with INTERNALVAR_STRING. */
1054 char *string;
1055 } u;
1056 };
1057
1058 static struct internalvar *internalvars;
1059
1060 /* If the variable does not already exist create it and give it the value given.
1061 If no value is given then the default is zero. */
1062 static void
1063 init_if_undefined_command (char* args, int from_tty)
1064 {
1065 struct internalvar* intvar;
1066
1067 /* Parse the expression - this is taken from set_command(). */
1068 struct expression *expr = parse_expression (args);
1069 register struct cleanup *old_chain =
1070 make_cleanup (free_current_contents, &expr);
1071
1072 /* Validate the expression.
1073 Was the expression an assignment?
1074 Or even an expression at all? */
1075 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1076 error (_("Init-if-undefined requires an assignment expression."));
1077
1078 /* Extract the variable from the parsed expression.
1079 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1080 if (expr->elts[1].opcode != OP_INTERNALVAR)
1081 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1082 intvar = expr->elts[2].internalvar;
1083
1084 /* Only evaluate the expression if the lvalue is void.
1085 This may still fail if the expresssion is invalid. */
1086 if (intvar->kind == INTERNALVAR_VOID)
1087 evaluate_expression (expr);
1088
1089 do_cleanups (old_chain);
1090 }
1091
1092
1093 /* Look up an internal variable with name NAME. NAME should not
1094 normally include a dollar sign.
1095
1096 If the specified internal variable does not exist,
1097 the return value is NULL. */
1098
1099 struct internalvar *
1100 lookup_only_internalvar (const char *name)
1101 {
1102 struct internalvar *var;
1103
1104 for (var = internalvars; var; var = var->next)
1105 if (strcmp (var->name, name) == 0)
1106 return var;
1107
1108 return NULL;
1109 }
1110
1111
1112 /* Create an internal variable with name NAME and with a void value.
1113 NAME should not normally include a dollar sign. */
1114
1115 struct internalvar *
1116 create_internalvar (const char *name)
1117 {
1118 struct internalvar *var;
1119
1120 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1121 var->name = concat (name, (char *)NULL);
1122 var->kind = INTERNALVAR_VOID;
1123 var->next = internalvars;
1124 internalvars = var;
1125 return var;
1126 }
1127
1128 /* Create an internal variable with name NAME and register FUN as the
1129 function that value_of_internalvar uses to create a value whenever
1130 this variable is referenced. NAME should not normally include a
1131 dollar sign. */
1132
1133 struct internalvar *
1134 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1135 {
1136 struct internalvar *var = create_internalvar (name);
1137
1138 var->kind = INTERNALVAR_MAKE_VALUE;
1139 var->u.make_value = fun;
1140 return var;
1141 }
1142
1143 /* Look up an internal variable with name NAME. NAME should not
1144 normally include a dollar sign.
1145
1146 If the specified internal variable does not exist,
1147 one is created, with a void value. */
1148
1149 struct internalvar *
1150 lookup_internalvar (const char *name)
1151 {
1152 struct internalvar *var;
1153
1154 var = lookup_only_internalvar (name);
1155 if (var)
1156 return var;
1157
1158 return create_internalvar (name);
1159 }
1160
1161 /* Return current value of internal variable VAR. For variables that
1162 are not inherently typed, use a value type appropriate for GDBARCH. */
1163
1164 struct value *
1165 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1166 {
1167 struct value *val;
1168
1169 switch (var->kind)
1170 {
1171 case INTERNALVAR_VOID:
1172 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1173 break;
1174
1175 case INTERNALVAR_FUNCTION:
1176 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1177 break;
1178
1179 case INTERNALVAR_INTEGER:
1180 if (!var->u.integer.type)
1181 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1182 var->u.integer.val);
1183 else
1184 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1185 break;
1186
1187 case INTERNALVAR_POINTER:
1188 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
1189 break;
1190
1191 case INTERNALVAR_STRING:
1192 val = value_cstring (var->u.string, strlen (var->u.string),
1193 builtin_type (gdbarch)->builtin_char);
1194 break;
1195
1196 case INTERNALVAR_VALUE:
1197 val = value_copy (var->u.value);
1198 if (value_lazy (val))
1199 value_fetch_lazy (val);
1200 break;
1201
1202 case INTERNALVAR_MAKE_VALUE:
1203 val = (*var->u.make_value) (gdbarch, var);
1204 break;
1205
1206 default:
1207 internal_error (__FILE__, __LINE__, "bad kind");
1208 }
1209
1210 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1211 on this value go back to affect the original internal variable.
1212
1213 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1214 no underlying modifyable state in the internal variable.
1215
1216 Likewise, if the variable's value is a computed lvalue, we want
1217 references to it to produce another computed lvalue, where
1218 references and assignments actually operate through the
1219 computed value's functions.
1220
1221 This means that internal variables with computed values
1222 behave a little differently from other internal variables:
1223 assignments to them don't just replace the previous value
1224 altogether. At the moment, this seems like the behavior we
1225 want. */
1226
1227 if (var->kind != INTERNALVAR_MAKE_VALUE
1228 && val->lval != lval_computed)
1229 {
1230 VALUE_LVAL (val) = lval_internalvar;
1231 VALUE_INTERNALVAR (val) = var;
1232 }
1233
1234 return val;
1235 }
1236
1237 int
1238 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1239 {
1240 switch (var->kind)
1241 {
1242 case INTERNALVAR_INTEGER:
1243 *result = var->u.integer.val;
1244 return 1;
1245
1246 default:
1247 return 0;
1248 }
1249 }
1250
1251 static int
1252 get_internalvar_function (struct internalvar *var,
1253 struct internal_function **result)
1254 {
1255 switch (var->kind)
1256 {
1257 case INTERNALVAR_FUNCTION:
1258 *result = var->u.fn.function;
1259 return 1;
1260
1261 default:
1262 return 0;
1263 }
1264 }
1265
1266 void
1267 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1268 int bitsize, struct value *newval)
1269 {
1270 gdb_byte *addr;
1271
1272 switch (var->kind)
1273 {
1274 case INTERNALVAR_VALUE:
1275 addr = value_contents_writeable (var->u.value);
1276
1277 if (bitsize)
1278 modify_field (value_type (var->u.value), addr + offset,
1279 value_as_long (newval), bitpos, bitsize);
1280 else
1281 memcpy (addr + offset, value_contents (newval),
1282 TYPE_LENGTH (value_type (newval)));
1283 break;
1284
1285 default:
1286 /* We can never get a component of any other kind. */
1287 internal_error (__FILE__, __LINE__, "set_internalvar_component");
1288 }
1289 }
1290
1291 void
1292 set_internalvar (struct internalvar *var, struct value *val)
1293 {
1294 enum internalvar_kind new_kind;
1295 union internalvar_data new_data = { 0 };
1296
1297 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1298 error (_("Cannot overwrite convenience function %s"), var->name);
1299
1300 /* Prepare new contents. */
1301 switch (TYPE_CODE (check_typedef (value_type (val))))
1302 {
1303 case TYPE_CODE_VOID:
1304 new_kind = INTERNALVAR_VOID;
1305 break;
1306
1307 case TYPE_CODE_INTERNAL_FUNCTION:
1308 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1309 new_kind = INTERNALVAR_FUNCTION;
1310 get_internalvar_function (VALUE_INTERNALVAR (val),
1311 &new_data.fn.function);
1312 /* Copies created here are never canonical. */
1313 break;
1314
1315 case TYPE_CODE_INT:
1316 new_kind = INTERNALVAR_INTEGER;
1317 new_data.integer.type = value_type (val);
1318 new_data.integer.val = value_as_long (val);
1319 break;
1320
1321 case TYPE_CODE_PTR:
1322 new_kind = INTERNALVAR_POINTER;
1323 new_data.pointer.type = value_type (val);
1324 new_data.pointer.val = value_as_address (val);
1325 break;
1326
1327 default:
1328 new_kind = INTERNALVAR_VALUE;
1329 new_data.value = value_copy (val);
1330 new_data.value->modifiable = 1;
1331
1332 /* Force the value to be fetched from the target now, to avoid problems
1333 later when this internalvar is referenced and the target is gone or
1334 has changed. */
1335 if (value_lazy (new_data.value))
1336 value_fetch_lazy (new_data.value);
1337
1338 /* Release the value from the value chain to prevent it from being
1339 deleted by free_all_values. From here on this function should not
1340 call error () until new_data is installed into the var->u to avoid
1341 leaking memory. */
1342 release_value (new_data.value);
1343 break;
1344 }
1345
1346 /* Clean up old contents. */
1347 clear_internalvar (var);
1348
1349 /* Switch over. */
1350 var->kind = new_kind;
1351 var->u = new_data;
1352 /* End code which must not call error(). */
1353 }
1354
1355 void
1356 set_internalvar_integer (struct internalvar *var, LONGEST l)
1357 {
1358 /* Clean up old contents. */
1359 clear_internalvar (var);
1360
1361 var->kind = INTERNALVAR_INTEGER;
1362 var->u.integer.type = NULL;
1363 var->u.integer.val = l;
1364 }
1365
1366 void
1367 set_internalvar_string (struct internalvar *var, const char *string)
1368 {
1369 /* Clean up old contents. */
1370 clear_internalvar (var);
1371
1372 var->kind = INTERNALVAR_STRING;
1373 var->u.string = xstrdup (string);
1374 }
1375
1376 static void
1377 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1378 {
1379 /* Clean up old contents. */
1380 clear_internalvar (var);
1381
1382 var->kind = INTERNALVAR_FUNCTION;
1383 var->u.fn.function = f;
1384 var->u.fn.canonical = 1;
1385 /* Variables installed here are always the canonical version. */
1386 }
1387
1388 void
1389 clear_internalvar (struct internalvar *var)
1390 {
1391 /* Clean up old contents. */
1392 switch (var->kind)
1393 {
1394 case INTERNALVAR_VALUE:
1395 value_free (var->u.value);
1396 break;
1397
1398 case INTERNALVAR_STRING:
1399 xfree (var->u.string);
1400 break;
1401
1402 default:
1403 break;
1404 }
1405
1406 /* Reset to void kind. */
1407 var->kind = INTERNALVAR_VOID;
1408 }
1409
1410 char *
1411 internalvar_name (struct internalvar *var)
1412 {
1413 return var->name;
1414 }
1415
1416 static struct internal_function *
1417 create_internal_function (const char *name,
1418 internal_function_fn handler, void *cookie)
1419 {
1420 struct internal_function *ifn = XNEW (struct internal_function);
1421
1422 ifn->name = xstrdup (name);
1423 ifn->handler = handler;
1424 ifn->cookie = cookie;
1425 return ifn;
1426 }
1427
1428 char *
1429 value_internal_function_name (struct value *val)
1430 {
1431 struct internal_function *ifn;
1432 int result;
1433
1434 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1435 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1436 gdb_assert (result);
1437
1438 return ifn->name;
1439 }
1440
1441 struct value *
1442 call_internal_function (struct gdbarch *gdbarch,
1443 const struct language_defn *language,
1444 struct value *func, int argc, struct value **argv)
1445 {
1446 struct internal_function *ifn;
1447 int result;
1448
1449 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1450 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1451 gdb_assert (result);
1452
1453 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1454 }
1455
1456 /* The 'function' command. This does nothing -- it is just a
1457 placeholder to let "help function NAME" work. This is also used as
1458 the implementation of the sub-command that is created when
1459 registering an internal function. */
1460 static void
1461 function_command (char *command, int from_tty)
1462 {
1463 /* Do nothing. */
1464 }
1465
1466 /* Clean up if an internal function's command is destroyed. */
1467 static void
1468 function_destroyer (struct cmd_list_element *self, void *ignore)
1469 {
1470 xfree (self->name);
1471 xfree (self->doc);
1472 }
1473
1474 /* Add a new internal function. NAME is the name of the function; DOC
1475 is a documentation string describing the function. HANDLER is
1476 called when the function is invoked. COOKIE is an arbitrary
1477 pointer which is passed to HANDLER and is intended for "user
1478 data". */
1479 void
1480 add_internal_function (const char *name, const char *doc,
1481 internal_function_fn handler, void *cookie)
1482 {
1483 struct cmd_list_element *cmd;
1484 struct internal_function *ifn;
1485 struct internalvar *var = lookup_internalvar (name);
1486
1487 ifn = create_internal_function (name, handler, cookie);
1488 set_internalvar_function (var, ifn);
1489
1490 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1491 &functionlist);
1492 cmd->destroyer = function_destroyer;
1493 }
1494
1495 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1496 prevent cycles / duplicates. */
1497
1498 void
1499 preserve_one_value (struct value *value, struct objfile *objfile,
1500 htab_t copied_types)
1501 {
1502 if (TYPE_OBJFILE (value->type) == objfile)
1503 value->type = copy_type_recursive (objfile, value->type, copied_types);
1504
1505 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1506 value->enclosing_type = copy_type_recursive (objfile,
1507 value->enclosing_type,
1508 copied_types);
1509 }
1510
1511 /* Likewise for internal variable VAR. */
1512
1513 static void
1514 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1515 htab_t copied_types)
1516 {
1517 switch (var->kind)
1518 {
1519 case INTERNALVAR_INTEGER:
1520 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1521 var->u.integer.type
1522 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1523 break;
1524
1525 case INTERNALVAR_POINTER:
1526 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1527 var->u.pointer.type
1528 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
1529 break;
1530
1531 case INTERNALVAR_VALUE:
1532 preserve_one_value (var->u.value, objfile, copied_types);
1533 break;
1534 }
1535 }
1536
1537 /* Update the internal variables and value history when OBJFILE is
1538 discarded; we must copy the types out of the objfile. New global types
1539 will be created for every convenience variable which currently points to
1540 this objfile's types, and the convenience variables will be adjusted to
1541 use the new global types. */
1542
1543 void
1544 preserve_values (struct objfile *objfile)
1545 {
1546 htab_t copied_types;
1547 struct value_history_chunk *cur;
1548 struct internalvar *var;
1549 int i;
1550
1551 /* Create the hash table. We allocate on the objfile's obstack, since
1552 it is soon to be deleted. */
1553 copied_types = create_copied_types_hash (objfile);
1554
1555 for (cur = value_history_chain; cur; cur = cur->next)
1556 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1557 if (cur->values[i])
1558 preserve_one_value (cur->values[i], objfile, copied_types);
1559
1560 for (var = internalvars; var; var = var->next)
1561 preserve_one_internalvar (var, objfile, copied_types);
1562
1563 preserve_python_values (objfile, copied_types);
1564
1565 htab_delete (copied_types);
1566 }
1567
1568 static void
1569 show_convenience (char *ignore, int from_tty)
1570 {
1571 struct gdbarch *gdbarch = get_current_arch ();
1572 struct internalvar *var;
1573 int varseen = 0;
1574 struct value_print_options opts;
1575
1576 get_user_print_options (&opts);
1577 for (var = internalvars; var; var = var->next)
1578 {
1579 if (!varseen)
1580 {
1581 varseen = 1;
1582 }
1583 printf_filtered (("$%s = "), var->name);
1584 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1585 &opts);
1586 printf_filtered (("\n"));
1587 }
1588 if (!varseen)
1589 printf_unfiltered (_("\
1590 No debugger convenience variables now defined.\n\
1591 Convenience variables have names starting with \"$\";\n\
1592 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1593 }
1594 \f
1595 /* Extract a value as a C number (either long or double).
1596 Knows how to convert fixed values to double, or
1597 floating values to long.
1598 Does not deallocate the value. */
1599
1600 LONGEST
1601 value_as_long (struct value *val)
1602 {
1603 /* This coerces arrays and functions, which is necessary (e.g.
1604 in disassemble_command). It also dereferences references, which
1605 I suspect is the most logical thing to do. */
1606 val = coerce_array (val);
1607 return unpack_long (value_type (val), value_contents (val));
1608 }
1609
1610 DOUBLEST
1611 value_as_double (struct value *val)
1612 {
1613 DOUBLEST foo;
1614 int inv;
1615
1616 foo = unpack_double (value_type (val), value_contents (val), &inv);
1617 if (inv)
1618 error (_("Invalid floating value found in program."));
1619 return foo;
1620 }
1621
1622 /* Extract a value as a C pointer. Does not deallocate the value.
1623 Note that val's type may not actually be a pointer; value_as_long
1624 handles all the cases. */
1625 CORE_ADDR
1626 value_as_address (struct value *val)
1627 {
1628 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1629
1630 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1631 whether we want this to be true eventually. */
1632 #if 0
1633 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1634 non-address (e.g. argument to "signal", "info break", etc.), or
1635 for pointers to char, in which the low bits *are* significant. */
1636 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1637 #else
1638
1639 /* There are several targets (IA-64, PowerPC, and others) which
1640 don't represent pointers to functions as simply the address of
1641 the function's entry point. For example, on the IA-64, a
1642 function pointer points to a two-word descriptor, generated by
1643 the linker, which contains the function's entry point, and the
1644 value the IA-64 "global pointer" register should have --- to
1645 support position-independent code. The linker generates
1646 descriptors only for those functions whose addresses are taken.
1647
1648 On such targets, it's difficult for GDB to convert an arbitrary
1649 function address into a function pointer; it has to either find
1650 an existing descriptor for that function, or call malloc and
1651 build its own. On some targets, it is impossible for GDB to
1652 build a descriptor at all: the descriptor must contain a jump
1653 instruction; data memory cannot be executed; and code memory
1654 cannot be modified.
1655
1656 Upon entry to this function, if VAL is a value of type `function'
1657 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1658 value_address (val) is the address of the function. This is what
1659 you'll get if you evaluate an expression like `main'. The call
1660 to COERCE_ARRAY below actually does all the usual unary
1661 conversions, which includes converting values of type `function'
1662 to `pointer to function'. This is the challenging conversion
1663 discussed above. Then, `unpack_long' will convert that pointer
1664 back into an address.
1665
1666 So, suppose the user types `disassemble foo' on an architecture
1667 with a strange function pointer representation, on which GDB
1668 cannot build its own descriptors, and suppose further that `foo'
1669 has no linker-built descriptor. The address->pointer conversion
1670 will signal an error and prevent the command from running, even
1671 though the next step would have been to convert the pointer
1672 directly back into the same address.
1673
1674 The following shortcut avoids this whole mess. If VAL is a
1675 function, just return its address directly. */
1676 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1677 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1678 return value_address (val);
1679
1680 val = coerce_array (val);
1681
1682 /* Some architectures (e.g. Harvard), map instruction and data
1683 addresses onto a single large unified address space. For
1684 instance: An architecture may consider a large integer in the
1685 range 0x10000000 .. 0x1000ffff to already represent a data
1686 addresses (hence not need a pointer to address conversion) while
1687 a small integer would still need to be converted integer to
1688 pointer to address. Just assume such architectures handle all
1689 integer conversions in a single function. */
1690
1691 /* JimB writes:
1692
1693 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1694 must admonish GDB hackers to make sure its behavior matches the
1695 compiler's, whenever possible.
1696
1697 In general, I think GDB should evaluate expressions the same way
1698 the compiler does. When the user copies an expression out of
1699 their source code and hands it to a `print' command, they should
1700 get the same value the compiler would have computed. Any
1701 deviation from this rule can cause major confusion and annoyance,
1702 and needs to be justified carefully. In other words, GDB doesn't
1703 really have the freedom to do these conversions in clever and
1704 useful ways.
1705
1706 AndrewC pointed out that users aren't complaining about how GDB
1707 casts integers to pointers; they are complaining that they can't
1708 take an address from a disassembly listing and give it to `x/i'.
1709 This is certainly important.
1710
1711 Adding an architecture method like integer_to_address() certainly
1712 makes it possible for GDB to "get it right" in all circumstances
1713 --- the target has complete control over how things get done, so
1714 people can Do The Right Thing for their target without breaking
1715 anyone else. The standard doesn't specify how integers get
1716 converted to pointers; usually, the ABI doesn't either, but
1717 ABI-specific code is a more reasonable place to handle it. */
1718
1719 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1720 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1721 && gdbarch_integer_to_address_p (gdbarch))
1722 return gdbarch_integer_to_address (gdbarch, value_type (val),
1723 value_contents (val));
1724
1725 return unpack_long (value_type (val), value_contents (val));
1726 #endif
1727 }
1728 \f
1729 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1730 as a long, or as a double, assuming the raw data is described
1731 by type TYPE. Knows how to convert different sizes of values
1732 and can convert between fixed and floating point. We don't assume
1733 any alignment for the raw data. Return value is in host byte order.
1734
1735 If you want functions and arrays to be coerced to pointers, and
1736 references to be dereferenced, call value_as_long() instead.
1737
1738 C++: It is assumed that the front-end has taken care of
1739 all matters concerning pointers to members. A pointer
1740 to member which reaches here is considered to be equivalent
1741 to an INT (or some size). After all, it is only an offset. */
1742
1743 LONGEST
1744 unpack_long (struct type *type, const gdb_byte *valaddr)
1745 {
1746 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1747 enum type_code code = TYPE_CODE (type);
1748 int len = TYPE_LENGTH (type);
1749 int nosign = TYPE_UNSIGNED (type);
1750
1751 switch (code)
1752 {
1753 case TYPE_CODE_TYPEDEF:
1754 return unpack_long (check_typedef (type), valaddr);
1755 case TYPE_CODE_ENUM:
1756 case TYPE_CODE_FLAGS:
1757 case TYPE_CODE_BOOL:
1758 case TYPE_CODE_INT:
1759 case TYPE_CODE_CHAR:
1760 case TYPE_CODE_RANGE:
1761 case TYPE_CODE_MEMBERPTR:
1762 if (nosign)
1763 return extract_unsigned_integer (valaddr, len, byte_order);
1764 else
1765 return extract_signed_integer (valaddr, len, byte_order);
1766
1767 case TYPE_CODE_FLT:
1768 return extract_typed_floating (valaddr, type);
1769
1770 case TYPE_CODE_DECFLOAT:
1771 /* libdecnumber has a function to convert from decimal to integer, but
1772 it doesn't work when the decimal number has a fractional part. */
1773 return decimal_to_doublest (valaddr, len, byte_order);
1774
1775 case TYPE_CODE_PTR:
1776 case TYPE_CODE_REF:
1777 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1778 whether we want this to be true eventually. */
1779 return extract_typed_address (valaddr, type);
1780
1781 default:
1782 error (_("Value can't be converted to integer."));
1783 }
1784 return 0; /* Placate lint. */
1785 }
1786
1787 /* Return a double value from the specified type and address.
1788 INVP points to an int which is set to 0 for valid value,
1789 1 for invalid value (bad float format). In either case,
1790 the returned double is OK to use. Argument is in target
1791 format, result is in host format. */
1792
1793 DOUBLEST
1794 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1795 {
1796 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1797 enum type_code code;
1798 int len;
1799 int nosign;
1800
1801 *invp = 0; /* Assume valid. */
1802 CHECK_TYPEDEF (type);
1803 code = TYPE_CODE (type);
1804 len = TYPE_LENGTH (type);
1805 nosign = TYPE_UNSIGNED (type);
1806 if (code == TYPE_CODE_FLT)
1807 {
1808 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1809 floating-point value was valid (using the macro
1810 INVALID_FLOAT). That test/macro have been removed.
1811
1812 It turns out that only the VAX defined this macro and then
1813 only in a non-portable way. Fixing the portability problem
1814 wouldn't help since the VAX floating-point code is also badly
1815 bit-rotten. The target needs to add definitions for the
1816 methods gdbarch_float_format and gdbarch_double_format - these
1817 exactly describe the target floating-point format. The
1818 problem here is that the corresponding floatformat_vax_f and
1819 floatformat_vax_d values these methods should be set to are
1820 also not defined either. Oops!
1821
1822 Hopefully someone will add both the missing floatformat
1823 definitions and the new cases for floatformat_is_valid (). */
1824
1825 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1826 {
1827 *invp = 1;
1828 return 0.0;
1829 }
1830
1831 return extract_typed_floating (valaddr, type);
1832 }
1833 else if (code == TYPE_CODE_DECFLOAT)
1834 return decimal_to_doublest (valaddr, len, byte_order);
1835 else if (nosign)
1836 {
1837 /* Unsigned -- be sure we compensate for signed LONGEST. */
1838 return (ULONGEST) unpack_long (type, valaddr);
1839 }
1840 else
1841 {
1842 /* Signed -- we are OK with unpack_long. */
1843 return unpack_long (type, valaddr);
1844 }
1845 }
1846
1847 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1848 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1849 We don't assume any alignment for the raw data. Return value is in
1850 host byte order.
1851
1852 If you want functions and arrays to be coerced to pointers, and
1853 references to be dereferenced, call value_as_address() instead.
1854
1855 C++: It is assumed that the front-end has taken care of
1856 all matters concerning pointers to members. A pointer
1857 to member which reaches here is considered to be equivalent
1858 to an INT (or some size). After all, it is only an offset. */
1859
1860 CORE_ADDR
1861 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1862 {
1863 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1864 whether we want this to be true eventually. */
1865 return unpack_long (type, valaddr);
1866 }
1867
1868 \f
1869 /* Get the value of the FIELDNO'th field (which must be static) of
1870 TYPE. Return NULL if the field doesn't exist or has been
1871 optimized out. */
1872
1873 struct value *
1874 value_static_field (struct type *type, int fieldno)
1875 {
1876 struct value *retval;
1877
1878 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
1879 {
1880 case FIELD_LOC_KIND_PHYSADDR:
1881 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1882 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1883 break;
1884 case FIELD_LOC_KIND_PHYSNAME:
1885 {
1886 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1887 /*TYPE_FIELD_NAME (type, fieldno);*/
1888 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1889
1890 if (sym == NULL)
1891 {
1892 /* With some compilers, e.g. HP aCC, static data members are
1893 reported as non-debuggable symbols */
1894 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
1895 NULL, NULL);
1896
1897 if (!msym)
1898 return NULL;
1899 else
1900 {
1901 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1902 SYMBOL_VALUE_ADDRESS (msym));
1903 }
1904 }
1905 else
1906 {
1907 /* SYM should never have a SYMBOL_CLASS which will require
1908 read_var_value to use the FRAME parameter. */
1909 if (symbol_read_needs_frame (sym))
1910 warning (_("static field's value depends on the current "
1911 "frame - bad debug info?"));
1912 retval = read_var_value (sym, NULL);
1913 }
1914 if (retval && VALUE_LVAL (retval) == lval_memory)
1915 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1916 value_address (retval));
1917 break;
1918 }
1919 default:
1920 gdb_assert (0);
1921 }
1922
1923 return retval;
1924 }
1925
1926 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1927 You have to be careful here, since the size of the data area for the value
1928 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1929 than the old enclosing type, you have to allocate more space for the data.
1930 The return value is a pointer to the new version of this value structure. */
1931
1932 struct value *
1933 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1934 {
1935 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1936 val->contents =
1937 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1938
1939 val->enclosing_type = new_encl_type;
1940 return val;
1941 }
1942
1943 /* Given a value ARG1 (offset by OFFSET bytes)
1944 of a struct or union type ARG_TYPE,
1945 extract and return the value of one of its (non-static) fields.
1946 FIELDNO says which field. */
1947
1948 struct value *
1949 value_primitive_field (struct value *arg1, int offset,
1950 int fieldno, struct type *arg_type)
1951 {
1952 struct value *v;
1953 struct type *type;
1954
1955 CHECK_TYPEDEF (arg_type);
1956 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1957
1958 /* Call check_typedef on our type to make sure that, if TYPE
1959 is a TYPE_CODE_TYPEDEF, its length is set to the length
1960 of the target type instead of zero. However, we do not
1961 replace the typedef type by the target type, because we want
1962 to keep the typedef in order to be able to print the type
1963 description correctly. */
1964 check_typedef (type);
1965
1966 /* Handle packed fields */
1967
1968 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1969 {
1970 /* Create a new value for the bitfield, with bitpos and bitsize
1971 set. If possible, arrange offset and bitpos so that we can
1972 do a single aligned read of the size of the containing type.
1973 Otherwise, adjust offset to the byte containing the first
1974 bit. Assume that the address, offset, and embedded offset
1975 are sufficiently aligned. */
1976 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1977 int container_bitsize = TYPE_LENGTH (type) * 8;
1978
1979 v = allocate_value_lazy (type);
1980 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1981 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1982 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1983 v->bitpos = bitpos % container_bitsize;
1984 else
1985 v->bitpos = bitpos % 8;
1986 v->offset = value_embedded_offset (arg1)
1987 + (bitpos - v->bitpos) / 8;
1988 v->parent = arg1;
1989 value_incref (v->parent);
1990 if (!value_lazy (arg1))
1991 value_fetch_lazy (v);
1992 }
1993 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1994 {
1995 /* This field is actually a base subobject, so preserve the
1996 entire object's contents for later references to virtual
1997 bases, etc. */
1998
1999 /* Lazy register values with offsets are not supported. */
2000 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2001 value_fetch_lazy (arg1);
2002
2003 if (value_lazy (arg1))
2004 v = allocate_value_lazy (value_enclosing_type (arg1));
2005 else
2006 {
2007 v = allocate_value (value_enclosing_type (arg1));
2008 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
2009 TYPE_LENGTH (value_enclosing_type (arg1)));
2010 }
2011 v->type = type;
2012 v->offset = value_offset (arg1);
2013 v->embedded_offset = (offset + value_embedded_offset (arg1)
2014 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
2015 }
2016 else
2017 {
2018 /* Plain old data member */
2019 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2020
2021 /* Lazy register values with offsets are not supported. */
2022 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2023 value_fetch_lazy (arg1);
2024
2025 if (value_lazy (arg1))
2026 v = allocate_value_lazy (type);
2027 else
2028 {
2029 v = allocate_value (type);
2030 memcpy (value_contents_raw (v),
2031 value_contents_raw (arg1) + offset,
2032 TYPE_LENGTH (type));
2033 }
2034 v->offset = (value_offset (arg1) + offset
2035 + value_embedded_offset (arg1));
2036 }
2037 set_value_component_location (v, arg1);
2038 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2039 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2040 return v;
2041 }
2042
2043 /* Given a value ARG1 of a struct or union type,
2044 extract and return the value of one of its (non-static) fields.
2045 FIELDNO says which field. */
2046
2047 struct value *
2048 value_field (struct value *arg1, int fieldno)
2049 {
2050 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2051 }
2052
2053 /* Return a non-virtual function as a value.
2054 F is the list of member functions which contains the desired method.
2055 J is an index into F which provides the desired method.
2056
2057 We only use the symbol for its address, so be happy with either a
2058 full symbol or a minimal symbol.
2059 */
2060
2061 struct value *
2062 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
2063 int offset)
2064 {
2065 struct value *v;
2066 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2067 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2068 struct symbol *sym;
2069 struct minimal_symbol *msym;
2070
2071 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2072 if (sym != NULL)
2073 {
2074 msym = NULL;
2075 }
2076 else
2077 {
2078 gdb_assert (sym == NULL);
2079 msym = lookup_minimal_symbol (physname, NULL, NULL);
2080 if (msym == NULL)
2081 return NULL;
2082 }
2083
2084 v = allocate_value (ftype);
2085 if (sym)
2086 {
2087 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2088 }
2089 else
2090 {
2091 /* The minimal symbol might point to a function descriptor;
2092 resolve it to the actual code address instead. */
2093 struct objfile *objfile = msymbol_objfile (msym);
2094 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2095
2096 set_value_address (v,
2097 gdbarch_convert_from_func_ptr_addr
2098 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2099 }
2100
2101 if (arg1p)
2102 {
2103 if (type != value_type (*arg1p))
2104 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2105 value_addr (*arg1p)));
2106
2107 /* Move the `this' pointer according to the offset.
2108 VALUE_OFFSET (*arg1p) += offset;
2109 */
2110 }
2111
2112 return v;
2113 }
2114
2115 \f
2116 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2117 object at VALADDR. The bitfield starts at BITPOS bits and contains
2118 BITSIZE bits.
2119
2120 Extracting bits depends on endianness of the machine. Compute the
2121 number of least significant bits to discard. For big endian machines,
2122 we compute the total number of bits in the anonymous object, subtract
2123 off the bit count from the MSB of the object to the MSB of the
2124 bitfield, then the size of the bitfield, which leaves the LSB discard
2125 count. For little endian machines, the discard count is simply the
2126 number of bits from the LSB of the anonymous object to the LSB of the
2127 bitfield.
2128
2129 If the field is signed, we also do sign extension. */
2130
2131 LONGEST
2132 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2133 int bitpos, int bitsize)
2134 {
2135 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2136 ULONGEST val;
2137 ULONGEST valmask;
2138 int lsbcount;
2139 int bytes_read;
2140
2141 /* Read the minimum number of bytes required; there may not be
2142 enough bytes to read an entire ULONGEST. */
2143 CHECK_TYPEDEF (field_type);
2144 if (bitsize)
2145 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2146 else
2147 bytes_read = TYPE_LENGTH (field_type);
2148
2149 val = extract_unsigned_integer (valaddr + bitpos / 8,
2150 bytes_read, byte_order);
2151
2152 /* Extract bits. See comment above. */
2153
2154 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2155 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2156 else
2157 lsbcount = (bitpos % 8);
2158 val >>= lsbcount;
2159
2160 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2161 If the field is signed, and is negative, then sign extend. */
2162
2163 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2164 {
2165 valmask = (((ULONGEST) 1) << bitsize) - 1;
2166 val &= valmask;
2167 if (!TYPE_UNSIGNED (field_type))
2168 {
2169 if (val & (valmask ^ (valmask >> 1)))
2170 {
2171 val |= ~valmask;
2172 }
2173 }
2174 }
2175 return (val);
2176 }
2177
2178 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2179 VALADDR. See unpack_bits_as_long for more details. */
2180
2181 LONGEST
2182 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2183 {
2184 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2185 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2186 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2187
2188 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2189 }
2190
2191 /* Modify the value of a bitfield. ADDR points to a block of memory in
2192 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2193 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2194 indicate which bits (in target bit order) comprise the bitfield.
2195 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2196 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2197
2198 void
2199 modify_field (struct type *type, gdb_byte *addr,
2200 LONGEST fieldval, int bitpos, int bitsize)
2201 {
2202 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2203 ULONGEST oword;
2204 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2205
2206 /* If a negative fieldval fits in the field in question, chop
2207 off the sign extension bits. */
2208 if ((~fieldval & ~(mask >> 1)) == 0)
2209 fieldval &= mask;
2210
2211 /* Warn if value is too big to fit in the field in question. */
2212 if (0 != (fieldval & ~mask))
2213 {
2214 /* FIXME: would like to include fieldval in the message, but
2215 we don't have a sprintf_longest. */
2216 warning (_("Value does not fit in %d bits."), bitsize);
2217
2218 /* Truncate it, otherwise adjoining fields may be corrupted. */
2219 fieldval &= mask;
2220 }
2221
2222 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
2223
2224 /* Shifting for bit field depends on endianness of the target machine. */
2225 if (gdbarch_bits_big_endian (get_type_arch (type)))
2226 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2227
2228 oword &= ~(mask << bitpos);
2229 oword |= fieldval << bitpos;
2230
2231 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
2232 }
2233 \f
2234 /* Pack NUM into BUF using a target format of TYPE. */
2235
2236 void
2237 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2238 {
2239 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2240 int len;
2241
2242 type = check_typedef (type);
2243 len = TYPE_LENGTH (type);
2244
2245 switch (TYPE_CODE (type))
2246 {
2247 case TYPE_CODE_INT:
2248 case TYPE_CODE_CHAR:
2249 case TYPE_CODE_ENUM:
2250 case TYPE_CODE_FLAGS:
2251 case TYPE_CODE_BOOL:
2252 case TYPE_CODE_RANGE:
2253 case TYPE_CODE_MEMBERPTR:
2254 store_signed_integer (buf, len, byte_order, num);
2255 break;
2256
2257 case TYPE_CODE_REF:
2258 case TYPE_CODE_PTR:
2259 store_typed_address (buf, type, (CORE_ADDR) num);
2260 break;
2261
2262 default:
2263 error (_("Unexpected type (%d) encountered for integer constant."),
2264 TYPE_CODE (type));
2265 }
2266 }
2267
2268
2269 /* Pack NUM into BUF using a target format of TYPE. */
2270
2271 void
2272 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2273 {
2274 int len;
2275 enum bfd_endian byte_order;
2276
2277 type = check_typedef (type);
2278 len = TYPE_LENGTH (type);
2279 byte_order = gdbarch_byte_order (get_type_arch (type));
2280
2281 switch (TYPE_CODE (type))
2282 {
2283 case TYPE_CODE_INT:
2284 case TYPE_CODE_CHAR:
2285 case TYPE_CODE_ENUM:
2286 case TYPE_CODE_FLAGS:
2287 case TYPE_CODE_BOOL:
2288 case TYPE_CODE_RANGE:
2289 case TYPE_CODE_MEMBERPTR:
2290 store_unsigned_integer (buf, len, byte_order, num);
2291 break;
2292
2293 case TYPE_CODE_REF:
2294 case TYPE_CODE_PTR:
2295 store_typed_address (buf, type, (CORE_ADDR) num);
2296 break;
2297
2298 default:
2299 error (_("\
2300 Unexpected type (%d) encountered for unsigned integer constant."),
2301 TYPE_CODE (type));
2302 }
2303 }
2304
2305
2306 /* Convert C numbers into newly allocated values. */
2307
2308 struct value *
2309 value_from_longest (struct type *type, LONGEST num)
2310 {
2311 struct value *val = allocate_value (type);
2312
2313 pack_long (value_contents_raw (val), type, num);
2314 return val;
2315 }
2316
2317
2318 /* Convert C unsigned numbers into newly allocated values. */
2319
2320 struct value *
2321 value_from_ulongest (struct type *type, ULONGEST num)
2322 {
2323 struct value *val = allocate_value (type);
2324
2325 pack_unsigned_long (value_contents_raw (val), type, num);
2326
2327 return val;
2328 }
2329
2330
2331 /* Create a value representing a pointer of type TYPE to the address
2332 ADDR. */
2333 struct value *
2334 value_from_pointer (struct type *type, CORE_ADDR addr)
2335 {
2336 struct value *val = allocate_value (type);
2337
2338 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2339 return val;
2340 }
2341
2342
2343 /* Create a value of type TYPE whose contents come from VALADDR, if it
2344 is non-null, and whose memory address (in the inferior) is
2345 ADDRESS. */
2346
2347 struct value *
2348 value_from_contents_and_address (struct type *type,
2349 const gdb_byte *valaddr,
2350 CORE_ADDR address)
2351 {
2352 struct value *v = allocate_value (type);
2353
2354 if (valaddr == NULL)
2355 set_value_lazy (v, 1);
2356 else
2357 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2358 set_value_address (v, address);
2359 VALUE_LVAL (v) = lval_memory;
2360 return v;
2361 }
2362
2363 struct value *
2364 value_from_double (struct type *type, DOUBLEST num)
2365 {
2366 struct value *val = allocate_value (type);
2367 struct type *base_type = check_typedef (type);
2368 enum type_code code = TYPE_CODE (base_type);
2369
2370 if (code == TYPE_CODE_FLT)
2371 {
2372 store_typed_floating (value_contents_raw (val), base_type, num);
2373 }
2374 else
2375 error (_("Unexpected type encountered for floating constant."));
2376
2377 return val;
2378 }
2379
2380 struct value *
2381 value_from_decfloat (struct type *type, const gdb_byte *dec)
2382 {
2383 struct value *val = allocate_value (type);
2384
2385 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2386 return val;
2387 }
2388
2389 struct value *
2390 coerce_ref (struct value *arg)
2391 {
2392 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2393
2394 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2395 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2396 unpack_pointer (value_type (arg),
2397 value_contents (arg)));
2398 return arg;
2399 }
2400
2401 struct value *
2402 coerce_array (struct value *arg)
2403 {
2404 struct type *type;
2405
2406 arg = coerce_ref (arg);
2407 type = check_typedef (value_type (arg));
2408
2409 switch (TYPE_CODE (type))
2410 {
2411 case TYPE_CODE_ARRAY:
2412 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
2413 arg = value_coerce_array (arg);
2414 break;
2415 case TYPE_CODE_FUNC:
2416 arg = value_coerce_function (arg);
2417 break;
2418 }
2419 return arg;
2420 }
2421 \f
2422
2423 /* Return true if the function returning the specified type is using
2424 the convention of returning structures in memory (passing in the
2425 address as a hidden first parameter). */
2426
2427 int
2428 using_struct_return (struct gdbarch *gdbarch,
2429 struct type *func_type, struct type *value_type)
2430 {
2431 enum type_code code = TYPE_CODE (value_type);
2432
2433 if (code == TYPE_CODE_ERROR)
2434 error (_("Function return type unknown."));
2435
2436 if (code == TYPE_CODE_VOID)
2437 /* A void return value is never in memory. See also corresponding
2438 code in "print_return_value". */
2439 return 0;
2440
2441 /* Probe the architecture for the return-value convention. */
2442 return (gdbarch_return_value (gdbarch, func_type, value_type,
2443 NULL, NULL, NULL)
2444 != RETURN_VALUE_REGISTER_CONVENTION);
2445 }
2446
2447 /* Set the initialized field in a value struct. */
2448
2449 void
2450 set_value_initialized (struct value *val, int status)
2451 {
2452 val->initialized = status;
2453 }
2454
2455 /* Return the initialized field in a value struct. */
2456
2457 int
2458 value_initialized (struct value *val)
2459 {
2460 return val->initialized;
2461 }
2462
2463 void
2464 _initialize_values (void)
2465 {
2466 add_cmd ("convenience", no_class, show_convenience, _("\
2467 Debugger convenience (\"$foo\") variables.\n\
2468 These variables are created when you assign them values;\n\
2469 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2470 \n\
2471 A few convenience variables are given values automatically:\n\
2472 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2473 \"$__\" holds the contents of the last address examined with \"x\"."),
2474 &showlist);
2475
2476 add_cmd ("values", no_class, show_values,
2477 _("Elements of value history around item number IDX (or last ten)."),
2478 &showlist);
2479
2480 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2481 Initialize a convenience variable if necessary.\n\
2482 init-if-undefined VARIABLE = EXPRESSION\n\
2483 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2484 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2485 VARIABLE is already initialized."));
2486
2487 add_prefix_cmd ("function", no_class, function_command, _("\
2488 Placeholder command for showing help on convenience functions."),
2489 &functionlist, "function ", 0, &cmdlist);
2490 }
This page took 0.083572 seconds and 4 git commands to generate.