gdb/
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42 #include "exceptions.h"
43 #include "python/python.h"
44 #include <ctype.h>
45 #include "tracepoint.h"
46
47 /* Prototypes for exported functions. */
48
49 void _initialize_values (void);
50
51 /* Definition of a user function. */
52 struct internal_function
53 {
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64 };
65
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68 struct range
69 {
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75 };
76
77 typedef struct range range_s;
78
79 DEF_VEC_O(range_s);
80
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84 static int
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87 {
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93 }
94
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100 static int
101 range_lessthan (const range_s *r1, const range_s *r2)
102 {
103 return r1->offset < r2->offset;
104 }
105
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109 static int
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
111 {
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168 }
169
170 static struct cmd_list_element *functionlist;
171
172 struct value
173 {
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
179 int modifiable;
180
181 /* Location of value (if lval). */
182 union
183 {
184 /* If lval == lval_memory, this is the address in the inferior.
185 If lval == lval_register, this is the byte offset into the
186 registers structure. */
187 CORE_ADDR address;
188
189 /* Pointer to internal variable. */
190 struct internalvar *internalvar;
191
192 /* If lval == lval_computed, this is a set of function pointers
193 to use to access and describe the value, and a closure pointer
194 for them to use. */
195 struct
196 {
197 /* Functions to call. */
198 const struct lval_funcs *funcs;
199
200 /* Closure for those functions to use. */
201 void *closure;
202 } computed;
203 } location;
204
205 /* Describes offset of a value within lval of a structure in bytes.
206 If lval == lval_memory, this is an offset to the address. If
207 lval == lval_register, this is a further offset from
208 location.address within the registers structure. Note also the
209 member embedded_offset below. */
210 int offset;
211
212 /* Only used for bitfields; number of bits contained in them. */
213 int bitsize;
214
215 /* Only used for bitfields; position of start of field. For
216 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
217 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
218 int bitpos;
219
220 /* Only used for bitfields; the containing value. This allows a
221 single read from the target when displaying multiple
222 bitfields. */
223 struct value *parent;
224
225 /* Frame register value is relative to. This will be described in
226 the lval enum above as "lval_register". */
227 struct frame_id frame_id;
228
229 /* Type of the value. */
230 struct type *type;
231
232 /* If a value represents a C++ object, then the `type' field gives
233 the object's compile-time type. If the object actually belongs
234 to some class derived from `type', perhaps with other base
235 classes and additional members, then `type' is just a subobject
236 of the real thing, and the full object is probably larger than
237 `type' would suggest.
238
239 If `type' is a dynamic class (i.e. one with a vtable), then GDB
240 can actually determine the object's run-time type by looking at
241 the run-time type information in the vtable. When this
242 information is available, we may elect to read in the entire
243 object, for several reasons:
244
245 - When printing the value, the user would probably rather see the
246 full object, not just the limited portion apparent from the
247 compile-time type.
248
249 - If `type' has virtual base classes, then even printing `type'
250 alone may require reaching outside the `type' portion of the
251 object to wherever the virtual base class has been stored.
252
253 When we store the entire object, `enclosing_type' is the run-time
254 type -- the complete object -- and `embedded_offset' is the
255 offset of `type' within that larger type, in bytes. The
256 value_contents() macro takes `embedded_offset' into account, so
257 most GDB code continues to see the `type' portion of the value,
258 just as the inferior would.
259
260 If `type' is a pointer to an object, then `enclosing_type' is a
261 pointer to the object's run-time type, and `pointed_to_offset' is
262 the offset in bytes from the full object to the pointed-to object
263 -- that is, the value `embedded_offset' would have if we followed
264 the pointer and fetched the complete object. (I don't really see
265 the point. Why not just determine the run-time type when you
266 indirect, and avoid the special case? The contents don't matter
267 until you indirect anyway.)
268
269 If we're not doing anything fancy, `enclosing_type' is equal to
270 `type', and `embedded_offset' is zero, so everything works
271 normally. */
272 struct type *enclosing_type;
273 int embedded_offset;
274 int pointed_to_offset;
275
276 /* Values are stored in a chain, so that they can be deleted easily
277 over calls to the inferior. Values assigned to internal
278 variables, put into the value history or exposed to Python are
279 taken off this list. */
280 struct value *next;
281
282 /* Register number if the value is from a register. */
283 short regnum;
284
285 /* If zero, contents of this value are in the contents field. If
286 nonzero, contents are in inferior. If the lval field is lval_memory,
287 the contents are in inferior memory at location.address plus offset.
288 The lval field may also be lval_register.
289
290 WARNING: This field is used by the code which handles watchpoints
291 (see breakpoint.c) to decide whether a particular value can be
292 watched by hardware watchpoints. If the lazy flag is set for
293 some member of a value chain, it is assumed that this member of
294 the chain doesn't need to be watched as part of watching the
295 value itself. This is how GDB avoids watching the entire struct
296 or array when the user wants to watch a single struct member or
297 array element. If you ever change the way lazy flag is set and
298 reset, be sure to consider this use as well! */
299 char lazy;
300
301 /* If nonzero, this is the value of a variable which does not
302 actually exist in the program. */
303 char optimized_out;
304
305 /* If value is a variable, is it initialized or not. */
306 int initialized;
307
308 /* If value is from the stack. If this is set, read_stack will be
309 used instead of read_memory to enable extra caching. */
310 int stack;
311
312 /* Actual contents of the value. Target byte-order. NULL or not
313 valid if lazy is nonzero. */
314 gdb_byte *contents;
315
316 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
317 rather than available, since the common and default case is for a
318 value to be available. This is filled in at value read time. */
319 VEC(range_s) *unavailable;
320
321 /* The number of references to this value. When a value is created,
322 the value chain holds a reference, so REFERENCE_COUNT is 1. If
323 release_value is called, this value is removed from the chain but
324 the caller of release_value now has a reference to this value.
325 The caller must arrange for a call to value_free later. */
326 int reference_count;
327 };
328
329 int
330 value_bytes_available (const struct value *value, int offset, int length)
331 {
332 gdb_assert (!value->lazy);
333
334 return !ranges_contain (value->unavailable, offset, length);
335 }
336
337 int
338 value_entirely_available (struct value *value)
339 {
340 /* We can only tell whether the whole value is available when we try
341 to read it. */
342 if (value->lazy)
343 value_fetch_lazy (value);
344
345 if (VEC_empty (range_s, value->unavailable))
346 return 1;
347 return 0;
348 }
349
350 void
351 mark_value_bytes_unavailable (struct value *value, int offset, int length)
352 {
353 range_s newr;
354 int i;
355
356 /* Insert the range sorted. If there's overlap or the new range
357 would be contiguous with an existing range, merge. */
358
359 newr.offset = offset;
360 newr.length = length;
361
362 /* Do a binary search for the position the given range would be
363 inserted if we only considered the starting OFFSET of ranges.
364 Call that position I. Since we also have LENGTH to care for
365 (this is a range afterall), we need to check if the _previous_
366 range overlaps the I range. E.g., calling R the new range:
367
368 #1 - overlaps with previous
369
370 R
371 |-...-|
372 |---| |---| |------| ... |--|
373 0 1 2 N
374
375 I=1
376
377 In the case #1 above, the binary search would return `I=1',
378 meaning, this OFFSET should be inserted at position 1, and the
379 current position 1 should be pushed further (and become 2). But,
380 note that `0' overlaps with R, so we want to merge them.
381
382 A similar consideration needs to be taken if the new range would
383 be contiguous with the previous range:
384
385 #2 - contiguous with previous
386
387 R
388 |-...-|
389 |--| |---| |------| ... |--|
390 0 1 2 N
391
392 I=1
393
394 If there's no overlap with the previous range, as in:
395
396 #3 - not overlapping and not contiguous
397
398 R
399 |-...-|
400 |--| |---| |------| ... |--|
401 0 1 2 N
402
403 I=1
404
405 or if I is 0:
406
407 #4 - R is the range with lowest offset
408
409 R
410 |-...-|
411 |--| |---| |------| ... |--|
412 0 1 2 N
413
414 I=0
415
416 ... we just push the new range to I.
417
418 All the 4 cases above need to consider that the new range may
419 also overlap several of the ranges that follow, or that R may be
420 contiguous with the following range, and merge. E.g.,
421
422 #5 - overlapping following ranges
423
424 R
425 |------------------------|
426 |--| |---| |------| ... |--|
427 0 1 2 N
428
429 I=0
430
431 or:
432
433 R
434 |-------|
435 |--| |---| |------| ... |--|
436 0 1 2 N
437
438 I=1
439
440 */
441
442 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
443 if (i > 0)
444 {
445 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
446
447 if (ranges_overlap (bef->offset, bef->length, offset, length))
448 {
449 /* #1 */
450 ULONGEST l = min (bef->offset, offset);
451 ULONGEST h = max (bef->offset + bef->length, offset + length);
452
453 bef->offset = l;
454 bef->length = h - l;
455 i--;
456 }
457 else if (offset == bef->offset + bef->length)
458 {
459 /* #2 */
460 bef->length += length;
461 i--;
462 }
463 else
464 {
465 /* #3 */
466 VEC_safe_insert (range_s, value->unavailable, i, &newr);
467 }
468 }
469 else
470 {
471 /* #4 */
472 VEC_safe_insert (range_s, value->unavailable, i, &newr);
473 }
474
475 /* Check whether the ranges following the one we've just added or
476 touched can be folded in (#5 above). */
477 if (i + 1 < VEC_length (range_s, value->unavailable))
478 {
479 struct range *t;
480 struct range *r;
481 int removed = 0;
482 int next = i + 1;
483
484 /* Get the range we just touched. */
485 t = VEC_index (range_s, value->unavailable, i);
486 removed = 0;
487
488 i = next;
489 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
490 if (r->offset <= t->offset + t->length)
491 {
492 ULONGEST l, h;
493
494 l = min (t->offset, r->offset);
495 h = max (t->offset + t->length, r->offset + r->length);
496
497 t->offset = l;
498 t->length = h - l;
499
500 removed++;
501 }
502 else
503 {
504 /* If we couldn't merge this one, we won't be able to
505 merge following ones either, since the ranges are
506 always sorted by OFFSET. */
507 break;
508 }
509
510 if (removed != 0)
511 VEC_block_remove (range_s, value->unavailable, next, removed);
512 }
513 }
514
515 /* Find the first range in RANGES that overlaps the range defined by
516 OFFSET and LENGTH, starting at element POS in the RANGES vector,
517 Returns the index into RANGES where such overlapping range was
518 found, or -1 if none was found. */
519
520 static int
521 find_first_range_overlap (VEC(range_s) *ranges, int pos,
522 int offset, int length)
523 {
524 range_s *r;
525 int i;
526
527 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
528 if (ranges_overlap (r->offset, r->length, offset, length))
529 return i;
530
531 return -1;
532 }
533
534 int
535 value_available_contents_eq (const struct value *val1, int offset1,
536 const struct value *val2, int offset2,
537 int length)
538 {
539 int idx1 = 0, idx2 = 0;
540
541 /* This routine is used by printing routines, where we should
542 already have read the value. Note that we only know whether a
543 value chunk is available if we've tried to read it. */
544 gdb_assert (!val1->lazy && !val2->lazy);
545
546 while (length > 0)
547 {
548 range_s *r1, *r2;
549 ULONGEST l1, h1;
550 ULONGEST l2, h2;
551
552 idx1 = find_first_range_overlap (val1->unavailable, idx1,
553 offset1, length);
554 idx2 = find_first_range_overlap (val2->unavailable, idx2,
555 offset2, length);
556
557 /* The usual case is for both values to be completely available. */
558 if (idx1 == -1 && idx2 == -1)
559 return (memcmp (val1->contents + offset1,
560 val2->contents + offset2,
561 length) == 0);
562 /* The contents only match equal if the available set matches as
563 well. */
564 else if (idx1 == -1 || idx2 == -1)
565 return 0;
566
567 gdb_assert (idx1 != -1 && idx2 != -1);
568
569 r1 = VEC_index (range_s, val1->unavailable, idx1);
570 r2 = VEC_index (range_s, val2->unavailable, idx2);
571
572 /* Get the unavailable windows intersected by the incoming
573 ranges. The first and last ranges that overlap the argument
574 range may be wider than said incoming arguments ranges. */
575 l1 = max (offset1, r1->offset);
576 h1 = min (offset1 + length, r1->offset + r1->length);
577
578 l2 = max (offset2, r2->offset);
579 h2 = min (offset2 + length, r2->offset + r2->length);
580
581 /* Make them relative to the respective start offsets, so we can
582 compare them for equality. */
583 l1 -= offset1;
584 h1 -= offset1;
585
586 l2 -= offset2;
587 h2 -= offset2;
588
589 /* Different availability, no match. */
590 if (l1 != l2 || h1 != h2)
591 return 0;
592
593 /* Compare the _available_ contents. */
594 if (memcmp (val1->contents + offset1,
595 val2->contents + offset2,
596 l1) != 0)
597 return 0;
598
599 length -= h1;
600 offset1 += h1;
601 offset2 += h1;
602 }
603
604 return 1;
605 }
606
607 /* Prototypes for local functions. */
608
609 static void show_values (char *, int);
610
611 static void show_convenience (char *, int);
612
613
614 /* The value-history records all the values printed
615 by print commands during this session. Each chunk
616 records 60 consecutive values. The first chunk on
617 the chain records the most recent values.
618 The total number of values is in value_history_count. */
619
620 #define VALUE_HISTORY_CHUNK 60
621
622 struct value_history_chunk
623 {
624 struct value_history_chunk *next;
625 struct value *values[VALUE_HISTORY_CHUNK];
626 };
627
628 /* Chain of chunks now in use. */
629
630 static struct value_history_chunk *value_history_chain;
631
632 static int value_history_count; /* Abs number of last entry stored. */
633
634 \f
635 /* List of all value objects currently allocated
636 (except for those released by calls to release_value)
637 This is so they can be freed after each command. */
638
639 static struct value *all_values;
640
641 /* Allocate a lazy value for type TYPE. Its actual content is
642 "lazily" allocated too: the content field of the return value is
643 NULL; it will be allocated when it is fetched from the target. */
644
645 struct value *
646 allocate_value_lazy (struct type *type)
647 {
648 struct value *val;
649
650 /* Call check_typedef on our type to make sure that, if TYPE
651 is a TYPE_CODE_TYPEDEF, its length is set to the length
652 of the target type instead of zero. However, we do not
653 replace the typedef type by the target type, because we want
654 to keep the typedef in order to be able to set the VAL's type
655 description correctly. */
656 check_typedef (type);
657
658 val = (struct value *) xzalloc (sizeof (struct value));
659 val->contents = NULL;
660 val->next = all_values;
661 all_values = val;
662 val->type = type;
663 val->enclosing_type = type;
664 VALUE_LVAL (val) = not_lval;
665 val->location.address = 0;
666 VALUE_FRAME_ID (val) = null_frame_id;
667 val->offset = 0;
668 val->bitpos = 0;
669 val->bitsize = 0;
670 VALUE_REGNUM (val) = -1;
671 val->lazy = 1;
672 val->optimized_out = 0;
673 val->embedded_offset = 0;
674 val->pointed_to_offset = 0;
675 val->modifiable = 1;
676 val->initialized = 1; /* Default to initialized. */
677
678 /* Values start out on the all_values chain. */
679 val->reference_count = 1;
680
681 return val;
682 }
683
684 /* Allocate the contents of VAL if it has not been allocated yet. */
685
686 void
687 allocate_value_contents (struct value *val)
688 {
689 if (!val->contents)
690 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
691 }
692
693 /* Allocate a value and its contents for type TYPE. */
694
695 struct value *
696 allocate_value (struct type *type)
697 {
698 struct value *val = allocate_value_lazy (type);
699
700 allocate_value_contents (val);
701 val->lazy = 0;
702 return val;
703 }
704
705 /* Allocate a value that has the correct length
706 for COUNT repetitions of type TYPE. */
707
708 struct value *
709 allocate_repeat_value (struct type *type, int count)
710 {
711 int low_bound = current_language->string_lower_bound; /* ??? */
712 /* FIXME-type-allocation: need a way to free this type when we are
713 done with it. */
714 struct type *array_type
715 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
716
717 return allocate_value (array_type);
718 }
719
720 struct value *
721 allocate_computed_value (struct type *type,
722 const struct lval_funcs *funcs,
723 void *closure)
724 {
725 struct value *v = allocate_value_lazy (type);
726
727 VALUE_LVAL (v) = lval_computed;
728 v->location.computed.funcs = funcs;
729 v->location.computed.closure = closure;
730
731 return v;
732 }
733
734 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
735
736 struct value *
737 allocate_optimized_out_value (struct type *type)
738 {
739 struct value *retval = allocate_value_lazy (type);
740
741 set_value_optimized_out (retval, 1);
742
743 return retval;
744 }
745
746 /* Accessor methods. */
747
748 struct value *
749 value_next (struct value *value)
750 {
751 return value->next;
752 }
753
754 struct type *
755 value_type (const struct value *value)
756 {
757 return value->type;
758 }
759 void
760 deprecated_set_value_type (struct value *value, struct type *type)
761 {
762 value->type = type;
763 }
764
765 int
766 value_offset (const struct value *value)
767 {
768 return value->offset;
769 }
770 void
771 set_value_offset (struct value *value, int offset)
772 {
773 value->offset = offset;
774 }
775
776 int
777 value_bitpos (const struct value *value)
778 {
779 return value->bitpos;
780 }
781 void
782 set_value_bitpos (struct value *value, int bit)
783 {
784 value->bitpos = bit;
785 }
786
787 int
788 value_bitsize (const struct value *value)
789 {
790 return value->bitsize;
791 }
792 void
793 set_value_bitsize (struct value *value, int bit)
794 {
795 value->bitsize = bit;
796 }
797
798 struct value *
799 value_parent (struct value *value)
800 {
801 return value->parent;
802 }
803
804 gdb_byte *
805 value_contents_raw (struct value *value)
806 {
807 allocate_value_contents (value);
808 return value->contents + value->embedded_offset;
809 }
810
811 gdb_byte *
812 value_contents_all_raw (struct value *value)
813 {
814 allocate_value_contents (value);
815 return value->contents;
816 }
817
818 struct type *
819 value_enclosing_type (struct value *value)
820 {
821 return value->enclosing_type;
822 }
823
824 static void
825 require_not_optimized_out (const struct value *value)
826 {
827 if (value->optimized_out)
828 error (_("value has been optimized out"));
829 }
830
831 static void
832 require_available (const struct value *value)
833 {
834 if (!VEC_empty (range_s, value->unavailable))
835 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
836 }
837
838 const gdb_byte *
839 value_contents_for_printing (struct value *value)
840 {
841 if (value->lazy)
842 value_fetch_lazy (value);
843 return value->contents;
844 }
845
846 const gdb_byte *
847 value_contents_for_printing_const (const struct value *value)
848 {
849 gdb_assert (!value->lazy);
850 return value->contents;
851 }
852
853 const gdb_byte *
854 value_contents_all (struct value *value)
855 {
856 const gdb_byte *result = value_contents_for_printing (value);
857 require_not_optimized_out (value);
858 require_available (value);
859 return result;
860 }
861
862 /* Copy LENGTH bytes of SRC value's (all) contents
863 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
864 contents, starting at DST_OFFSET. If unavailable contents are
865 being copied from SRC, the corresponding DST contents are marked
866 unavailable accordingly. Neither DST nor SRC may be lazy
867 values.
868
869 It is assumed the contents of DST in the [DST_OFFSET,
870 DST_OFFSET+LENGTH) range are wholly available. */
871
872 void
873 value_contents_copy_raw (struct value *dst, int dst_offset,
874 struct value *src, int src_offset, int length)
875 {
876 range_s *r;
877 int i;
878
879 /* A lazy DST would make that this copy operation useless, since as
880 soon as DST's contents were un-lazied (by a later value_contents
881 call, say), the contents would be overwritten. A lazy SRC would
882 mean we'd be copying garbage. */
883 gdb_assert (!dst->lazy && !src->lazy);
884
885 /* The overwritten DST range gets unavailability ORed in, not
886 replaced. Make sure to remember to implement replacing if it
887 turns out actually necessary. */
888 gdb_assert (value_bytes_available (dst, dst_offset, length));
889
890 /* Copy the data. */
891 memcpy (value_contents_all_raw (dst) + dst_offset,
892 value_contents_all_raw (src) + src_offset,
893 length);
894
895 /* Copy the meta-data, adjusted. */
896 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
897 {
898 ULONGEST h, l;
899
900 l = max (r->offset, src_offset);
901 h = min (r->offset + r->length, src_offset + length);
902
903 if (l < h)
904 mark_value_bytes_unavailable (dst,
905 dst_offset + (l - src_offset),
906 h - l);
907 }
908 }
909
910 /* Copy LENGTH bytes of SRC value's (all) contents
911 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
912 (all) contents, starting at DST_OFFSET. If unavailable contents
913 are being copied from SRC, the corresponding DST contents are
914 marked unavailable accordingly. DST must not be lazy. If SRC is
915 lazy, it will be fetched now. If SRC is not valid (is optimized
916 out), an error is thrown.
917
918 It is assumed the contents of DST in the [DST_OFFSET,
919 DST_OFFSET+LENGTH) range are wholly available. */
920
921 void
922 value_contents_copy (struct value *dst, int dst_offset,
923 struct value *src, int src_offset, int length)
924 {
925 require_not_optimized_out (src);
926
927 if (src->lazy)
928 value_fetch_lazy (src);
929
930 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
931 }
932
933 int
934 value_lazy (struct value *value)
935 {
936 return value->lazy;
937 }
938
939 void
940 set_value_lazy (struct value *value, int val)
941 {
942 value->lazy = val;
943 }
944
945 int
946 value_stack (struct value *value)
947 {
948 return value->stack;
949 }
950
951 void
952 set_value_stack (struct value *value, int val)
953 {
954 value->stack = val;
955 }
956
957 const gdb_byte *
958 value_contents (struct value *value)
959 {
960 const gdb_byte *result = value_contents_writeable (value);
961 require_not_optimized_out (value);
962 require_available (value);
963 return result;
964 }
965
966 gdb_byte *
967 value_contents_writeable (struct value *value)
968 {
969 if (value->lazy)
970 value_fetch_lazy (value);
971 return value_contents_raw (value);
972 }
973
974 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
975 this function is different from value_equal; in C the operator ==
976 can return 0 even if the two values being compared are equal. */
977
978 int
979 value_contents_equal (struct value *val1, struct value *val2)
980 {
981 struct type *type1;
982 struct type *type2;
983 int len;
984
985 type1 = check_typedef (value_type (val1));
986 type2 = check_typedef (value_type (val2));
987 len = TYPE_LENGTH (type1);
988 if (len != TYPE_LENGTH (type2))
989 return 0;
990
991 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
992 }
993
994 int
995 value_optimized_out (struct value *value)
996 {
997 return value->optimized_out;
998 }
999
1000 void
1001 set_value_optimized_out (struct value *value, int val)
1002 {
1003 value->optimized_out = val;
1004 }
1005
1006 int
1007 value_entirely_optimized_out (const struct value *value)
1008 {
1009 if (!value->optimized_out)
1010 return 0;
1011 if (value->lval != lval_computed
1012 || !value->location.computed.funcs->check_any_valid)
1013 return 1;
1014 return !value->location.computed.funcs->check_any_valid (value);
1015 }
1016
1017 int
1018 value_bits_valid (const struct value *value, int offset, int length)
1019 {
1020 if (!value->optimized_out)
1021 return 1;
1022 if (value->lval != lval_computed
1023 || !value->location.computed.funcs->check_validity)
1024 return 0;
1025 return value->location.computed.funcs->check_validity (value, offset,
1026 length);
1027 }
1028
1029 int
1030 value_bits_synthetic_pointer (const struct value *value,
1031 int offset, int length)
1032 {
1033 if (value->lval != lval_computed
1034 || !value->location.computed.funcs->check_synthetic_pointer)
1035 return 0;
1036 return value->location.computed.funcs->check_synthetic_pointer (value,
1037 offset,
1038 length);
1039 }
1040
1041 int
1042 value_embedded_offset (struct value *value)
1043 {
1044 return value->embedded_offset;
1045 }
1046
1047 void
1048 set_value_embedded_offset (struct value *value, int val)
1049 {
1050 value->embedded_offset = val;
1051 }
1052
1053 int
1054 value_pointed_to_offset (struct value *value)
1055 {
1056 return value->pointed_to_offset;
1057 }
1058
1059 void
1060 set_value_pointed_to_offset (struct value *value, int val)
1061 {
1062 value->pointed_to_offset = val;
1063 }
1064
1065 const struct lval_funcs *
1066 value_computed_funcs (const struct value *v)
1067 {
1068 gdb_assert (value_lval_const (v) == lval_computed);
1069
1070 return v->location.computed.funcs;
1071 }
1072
1073 void *
1074 value_computed_closure (const struct value *v)
1075 {
1076 gdb_assert (v->lval == lval_computed);
1077
1078 return v->location.computed.closure;
1079 }
1080
1081 enum lval_type *
1082 deprecated_value_lval_hack (struct value *value)
1083 {
1084 return &value->lval;
1085 }
1086
1087 enum lval_type
1088 value_lval_const (const struct value *value)
1089 {
1090 return value->lval;
1091 }
1092
1093 CORE_ADDR
1094 value_address (const struct value *value)
1095 {
1096 if (value->lval == lval_internalvar
1097 || value->lval == lval_internalvar_component)
1098 return 0;
1099 return value->location.address + value->offset;
1100 }
1101
1102 CORE_ADDR
1103 value_raw_address (struct value *value)
1104 {
1105 if (value->lval == lval_internalvar
1106 || value->lval == lval_internalvar_component)
1107 return 0;
1108 return value->location.address;
1109 }
1110
1111 void
1112 set_value_address (struct value *value, CORE_ADDR addr)
1113 {
1114 gdb_assert (value->lval != lval_internalvar
1115 && value->lval != lval_internalvar_component);
1116 value->location.address = addr;
1117 }
1118
1119 struct internalvar **
1120 deprecated_value_internalvar_hack (struct value *value)
1121 {
1122 return &value->location.internalvar;
1123 }
1124
1125 struct frame_id *
1126 deprecated_value_frame_id_hack (struct value *value)
1127 {
1128 return &value->frame_id;
1129 }
1130
1131 short *
1132 deprecated_value_regnum_hack (struct value *value)
1133 {
1134 return &value->regnum;
1135 }
1136
1137 int
1138 deprecated_value_modifiable (struct value *value)
1139 {
1140 return value->modifiable;
1141 }
1142 void
1143 deprecated_set_value_modifiable (struct value *value, int modifiable)
1144 {
1145 value->modifiable = modifiable;
1146 }
1147 \f
1148 /* Return a mark in the value chain. All values allocated after the
1149 mark is obtained (except for those released) are subject to being freed
1150 if a subsequent value_free_to_mark is passed the mark. */
1151 struct value *
1152 value_mark (void)
1153 {
1154 return all_values;
1155 }
1156
1157 /* Take a reference to VAL. VAL will not be deallocated until all
1158 references are released. */
1159
1160 void
1161 value_incref (struct value *val)
1162 {
1163 val->reference_count++;
1164 }
1165
1166 /* Release a reference to VAL, which was acquired with value_incref.
1167 This function is also called to deallocate values from the value
1168 chain. */
1169
1170 void
1171 value_free (struct value *val)
1172 {
1173 if (val)
1174 {
1175 gdb_assert (val->reference_count > 0);
1176 val->reference_count--;
1177 if (val->reference_count > 0)
1178 return;
1179
1180 /* If there's an associated parent value, drop our reference to
1181 it. */
1182 if (val->parent != NULL)
1183 value_free (val->parent);
1184
1185 if (VALUE_LVAL (val) == lval_computed)
1186 {
1187 const struct lval_funcs *funcs = val->location.computed.funcs;
1188
1189 if (funcs->free_closure)
1190 funcs->free_closure (val);
1191 }
1192
1193 xfree (val->contents);
1194 VEC_free (range_s, val->unavailable);
1195 }
1196 xfree (val);
1197 }
1198
1199 /* Free all values allocated since MARK was obtained by value_mark
1200 (except for those released). */
1201 void
1202 value_free_to_mark (struct value *mark)
1203 {
1204 struct value *val;
1205 struct value *next;
1206
1207 for (val = all_values; val && val != mark; val = next)
1208 {
1209 next = val->next;
1210 value_free (val);
1211 }
1212 all_values = val;
1213 }
1214
1215 /* Free all the values that have been allocated (except for those released).
1216 Call after each command, successful or not.
1217 In practice this is called before each command, which is sufficient. */
1218
1219 void
1220 free_all_values (void)
1221 {
1222 struct value *val;
1223 struct value *next;
1224
1225 for (val = all_values; val; val = next)
1226 {
1227 next = val->next;
1228 value_free (val);
1229 }
1230
1231 all_values = 0;
1232 }
1233
1234 /* Frees all the elements in a chain of values. */
1235
1236 void
1237 free_value_chain (struct value *v)
1238 {
1239 struct value *next;
1240
1241 for (; v; v = next)
1242 {
1243 next = value_next (v);
1244 value_free (v);
1245 }
1246 }
1247
1248 /* Remove VAL from the chain all_values
1249 so it will not be freed automatically. */
1250
1251 void
1252 release_value (struct value *val)
1253 {
1254 struct value *v;
1255
1256 if (all_values == val)
1257 {
1258 all_values = val->next;
1259 val->next = NULL;
1260 return;
1261 }
1262
1263 for (v = all_values; v; v = v->next)
1264 {
1265 if (v->next == val)
1266 {
1267 v->next = val->next;
1268 val->next = NULL;
1269 break;
1270 }
1271 }
1272 }
1273
1274 /* Release all values up to mark */
1275 struct value *
1276 value_release_to_mark (struct value *mark)
1277 {
1278 struct value *val;
1279 struct value *next;
1280
1281 for (val = next = all_values; next; next = next->next)
1282 if (next->next == mark)
1283 {
1284 all_values = next->next;
1285 next->next = NULL;
1286 return val;
1287 }
1288 all_values = 0;
1289 return val;
1290 }
1291
1292 /* Return a copy of the value ARG.
1293 It contains the same contents, for same memory address,
1294 but it's a different block of storage. */
1295
1296 struct value *
1297 value_copy (struct value *arg)
1298 {
1299 struct type *encl_type = value_enclosing_type (arg);
1300 struct value *val;
1301
1302 if (value_lazy (arg))
1303 val = allocate_value_lazy (encl_type);
1304 else
1305 val = allocate_value (encl_type);
1306 val->type = arg->type;
1307 VALUE_LVAL (val) = VALUE_LVAL (arg);
1308 val->location = arg->location;
1309 val->offset = arg->offset;
1310 val->bitpos = arg->bitpos;
1311 val->bitsize = arg->bitsize;
1312 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1313 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1314 val->lazy = arg->lazy;
1315 val->optimized_out = arg->optimized_out;
1316 val->embedded_offset = value_embedded_offset (arg);
1317 val->pointed_to_offset = arg->pointed_to_offset;
1318 val->modifiable = arg->modifiable;
1319 if (!value_lazy (val))
1320 {
1321 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1322 TYPE_LENGTH (value_enclosing_type (arg)));
1323
1324 }
1325 val->unavailable = VEC_copy (range_s, arg->unavailable);
1326 val->parent = arg->parent;
1327 if (val->parent)
1328 value_incref (val->parent);
1329 if (VALUE_LVAL (val) == lval_computed)
1330 {
1331 const struct lval_funcs *funcs = val->location.computed.funcs;
1332
1333 if (funcs->copy_closure)
1334 val->location.computed.closure = funcs->copy_closure (val);
1335 }
1336 return val;
1337 }
1338
1339 /* Return a version of ARG that is non-lvalue. */
1340
1341 struct value *
1342 value_non_lval (struct value *arg)
1343 {
1344 if (VALUE_LVAL (arg) != not_lval)
1345 {
1346 struct type *enc_type = value_enclosing_type (arg);
1347 struct value *val = allocate_value (enc_type);
1348
1349 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1350 TYPE_LENGTH (enc_type));
1351 val->type = arg->type;
1352 set_value_embedded_offset (val, value_embedded_offset (arg));
1353 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1354 return val;
1355 }
1356 return arg;
1357 }
1358
1359 void
1360 set_value_component_location (struct value *component,
1361 const struct value *whole)
1362 {
1363 if (whole->lval == lval_internalvar)
1364 VALUE_LVAL (component) = lval_internalvar_component;
1365 else
1366 VALUE_LVAL (component) = whole->lval;
1367
1368 component->location = whole->location;
1369 if (whole->lval == lval_computed)
1370 {
1371 const struct lval_funcs *funcs = whole->location.computed.funcs;
1372
1373 if (funcs->copy_closure)
1374 component->location.computed.closure = funcs->copy_closure (whole);
1375 }
1376 }
1377
1378 \f
1379 /* Access to the value history. */
1380
1381 /* Record a new value in the value history.
1382 Returns the absolute history index of the entry.
1383 Result of -1 indicates the value was not saved; otherwise it is the
1384 value history index of this new item. */
1385
1386 int
1387 record_latest_value (struct value *val)
1388 {
1389 int i;
1390
1391 /* We don't want this value to have anything to do with the inferior anymore.
1392 In particular, "set $1 = 50" should not affect the variable from which
1393 the value was taken, and fast watchpoints should be able to assume that
1394 a value on the value history never changes. */
1395 if (value_lazy (val))
1396 value_fetch_lazy (val);
1397 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1398 from. This is a bit dubious, because then *&$1 does not just return $1
1399 but the current contents of that location. c'est la vie... */
1400 val->modifiable = 0;
1401 release_value (val);
1402
1403 /* Here we treat value_history_count as origin-zero
1404 and applying to the value being stored now. */
1405
1406 i = value_history_count % VALUE_HISTORY_CHUNK;
1407 if (i == 0)
1408 {
1409 struct value_history_chunk *new
1410 = (struct value_history_chunk *)
1411
1412 xmalloc (sizeof (struct value_history_chunk));
1413 memset (new->values, 0, sizeof new->values);
1414 new->next = value_history_chain;
1415 value_history_chain = new;
1416 }
1417
1418 value_history_chain->values[i] = val;
1419
1420 /* Now we regard value_history_count as origin-one
1421 and applying to the value just stored. */
1422
1423 return ++value_history_count;
1424 }
1425
1426 /* Return a copy of the value in the history with sequence number NUM. */
1427
1428 struct value *
1429 access_value_history (int num)
1430 {
1431 struct value_history_chunk *chunk;
1432 int i;
1433 int absnum = num;
1434
1435 if (absnum <= 0)
1436 absnum += value_history_count;
1437
1438 if (absnum <= 0)
1439 {
1440 if (num == 0)
1441 error (_("The history is empty."));
1442 else if (num == 1)
1443 error (_("There is only one value in the history."));
1444 else
1445 error (_("History does not go back to $$%d."), -num);
1446 }
1447 if (absnum > value_history_count)
1448 error (_("History has not yet reached $%d."), absnum);
1449
1450 absnum--;
1451
1452 /* Now absnum is always absolute and origin zero. */
1453
1454 chunk = value_history_chain;
1455 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1456 - absnum / VALUE_HISTORY_CHUNK;
1457 i > 0; i--)
1458 chunk = chunk->next;
1459
1460 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1461 }
1462
1463 static void
1464 show_values (char *num_exp, int from_tty)
1465 {
1466 int i;
1467 struct value *val;
1468 static int num = 1;
1469
1470 if (num_exp)
1471 {
1472 /* "show values +" should print from the stored position.
1473 "show values <exp>" should print around value number <exp>. */
1474 if (num_exp[0] != '+' || num_exp[1] != '\0')
1475 num = parse_and_eval_long (num_exp) - 5;
1476 }
1477 else
1478 {
1479 /* "show values" means print the last 10 values. */
1480 num = value_history_count - 9;
1481 }
1482
1483 if (num <= 0)
1484 num = 1;
1485
1486 for (i = num; i < num + 10 && i <= value_history_count; i++)
1487 {
1488 struct value_print_options opts;
1489
1490 val = access_value_history (i);
1491 printf_filtered (("$%d = "), i);
1492 get_user_print_options (&opts);
1493 value_print (val, gdb_stdout, &opts);
1494 printf_filtered (("\n"));
1495 }
1496
1497 /* The next "show values +" should start after what we just printed. */
1498 num += 10;
1499
1500 /* Hitting just return after this command should do the same thing as
1501 "show values +". If num_exp is null, this is unnecessary, since
1502 "show values +" is not useful after "show values". */
1503 if (from_tty && num_exp)
1504 {
1505 num_exp[0] = '+';
1506 num_exp[1] = '\0';
1507 }
1508 }
1509 \f
1510 /* Internal variables. These are variables within the debugger
1511 that hold values assigned by debugger commands.
1512 The user refers to them with a '$' prefix
1513 that does not appear in the variable names stored internally. */
1514
1515 struct internalvar
1516 {
1517 struct internalvar *next;
1518 char *name;
1519
1520 /* We support various different kinds of content of an internal variable.
1521 enum internalvar_kind specifies the kind, and union internalvar_data
1522 provides the data associated with this particular kind. */
1523
1524 enum internalvar_kind
1525 {
1526 /* The internal variable is empty. */
1527 INTERNALVAR_VOID,
1528
1529 /* The value of the internal variable is provided directly as
1530 a GDB value object. */
1531 INTERNALVAR_VALUE,
1532
1533 /* A fresh value is computed via a call-back routine on every
1534 access to the internal variable. */
1535 INTERNALVAR_MAKE_VALUE,
1536
1537 /* The internal variable holds a GDB internal convenience function. */
1538 INTERNALVAR_FUNCTION,
1539
1540 /* The variable holds an integer value. */
1541 INTERNALVAR_INTEGER,
1542
1543 /* The variable holds a GDB-provided string. */
1544 INTERNALVAR_STRING,
1545
1546 } kind;
1547
1548 union internalvar_data
1549 {
1550 /* A value object used with INTERNALVAR_VALUE. */
1551 struct value *value;
1552
1553 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1554 internalvar_make_value make_value;
1555
1556 /* The internal function used with INTERNALVAR_FUNCTION. */
1557 struct
1558 {
1559 struct internal_function *function;
1560 /* True if this is the canonical name for the function. */
1561 int canonical;
1562 } fn;
1563
1564 /* An integer value used with INTERNALVAR_INTEGER. */
1565 struct
1566 {
1567 /* If type is non-NULL, it will be used as the type to generate
1568 a value for this internal variable. If type is NULL, a default
1569 integer type for the architecture is used. */
1570 struct type *type;
1571 LONGEST val;
1572 } integer;
1573
1574 /* A string value used with INTERNALVAR_STRING. */
1575 char *string;
1576 } u;
1577 };
1578
1579 static struct internalvar *internalvars;
1580
1581 /* If the variable does not already exist create it and give it the
1582 value given. If no value is given then the default is zero. */
1583 static void
1584 init_if_undefined_command (char* args, int from_tty)
1585 {
1586 struct internalvar* intvar;
1587
1588 /* Parse the expression - this is taken from set_command(). */
1589 struct expression *expr = parse_expression (args);
1590 register struct cleanup *old_chain =
1591 make_cleanup (free_current_contents, &expr);
1592
1593 /* Validate the expression.
1594 Was the expression an assignment?
1595 Or even an expression at all? */
1596 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1597 error (_("Init-if-undefined requires an assignment expression."));
1598
1599 /* Extract the variable from the parsed expression.
1600 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1601 if (expr->elts[1].opcode != OP_INTERNALVAR)
1602 error (_("The first parameter to init-if-undefined "
1603 "should be a GDB variable."));
1604 intvar = expr->elts[2].internalvar;
1605
1606 /* Only evaluate the expression if the lvalue is void.
1607 This may still fail if the expresssion is invalid. */
1608 if (intvar->kind == INTERNALVAR_VOID)
1609 evaluate_expression (expr);
1610
1611 do_cleanups (old_chain);
1612 }
1613
1614
1615 /* Look up an internal variable with name NAME. NAME should not
1616 normally include a dollar sign.
1617
1618 If the specified internal variable does not exist,
1619 the return value is NULL. */
1620
1621 struct internalvar *
1622 lookup_only_internalvar (const char *name)
1623 {
1624 struct internalvar *var;
1625
1626 for (var = internalvars; var; var = var->next)
1627 if (strcmp (var->name, name) == 0)
1628 return var;
1629
1630 return NULL;
1631 }
1632
1633
1634 /* Create an internal variable with name NAME and with a void value.
1635 NAME should not normally include a dollar sign. */
1636
1637 struct internalvar *
1638 create_internalvar (const char *name)
1639 {
1640 struct internalvar *var;
1641
1642 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1643 var->name = concat (name, (char *)NULL);
1644 var->kind = INTERNALVAR_VOID;
1645 var->next = internalvars;
1646 internalvars = var;
1647 return var;
1648 }
1649
1650 /* Create an internal variable with name NAME and register FUN as the
1651 function that value_of_internalvar uses to create a value whenever
1652 this variable is referenced. NAME should not normally include a
1653 dollar sign. */
1654
1655 struct internalvar *
1656 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1657 {
1658 struct internalvar *var = create_internalvar (name);
1659
1660 var->kind = INTERNALVAR_MAKE_VALUE;
1661 var->u.make_value = fun;
1662 return var;
1663 }
1664
1665 /* Look up an internal variable with name NAME. NAME should not
1666 normally include a dollar sign.
1667
1668 If the specified internal variable does not exist,
1669 one is created, with a void value. */
1670
1671 struct internalvar *
1672 lookup_internalvar (const char *name)
1673 {
1674 struct internalvar *var;
1675
1676 var = lookup_only_internalvar (name);
1677 if (var)
1678 return var;
1679
1680 return create_internalvar (name);
1681 }
1682
1683 /* Return current value of internal variable VAR. For variables that
1684 are not inherently typed, use a value type appropriate for GDBARCH. */
1685
1686 struct value *
1687 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1688 {
1689 struct value *val;
1690 struct trace_state_variable *tsv;
1691
1692 /* If there is a trace state variable of the same name, assume that
1693 is what we really want to see. */
1694 tsv = find_trace_state_variable (var->name);
1695 if (tsv)
1696 {
1697 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1698 &(tsv->value));
1699 if (tsv->value_known)
1700 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1701 tsv->value);
1702 else
1703 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1704 return val;
1705 }
1706
1707 switch (var->kind)
1708 {
1709 case INTERNALVAR_VOID:
1710 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1711 break;
1712
1713 case INTERNALVAR_FUNCTION:
1714 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1715 break;
1716
1717 case INTERNALVAR_INTEGER:
1718 if (!var->u.integer.type)
1719 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1720 var->u.integer.val);
1721 else
1722 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1723 break;
1724
1725 case INTERNALVAR_STRING:
1726 val = value_cstring (var->u.string, strlen (var->u.string),
1727 builtin_type (gdbarch)->builtin_char);
1728 break;
1729
1730 case INTERNALVAR_VALUE:
1731 val = value_copy (var->u.value);
1732 if (value_lazy (val))
1733 value_fetch_lazy (val);
1734 break;
1735
1736 case INTERNALVAR_MAKE_VALUE:
1737 val = (*var->u.make_value) (gdbarch, var);
1738 break;
1739
1740 default:
1741 internal_error (__FILE__, __LINE__, _("bad kind"));
1742 }
1743
1744 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1745 on this value go back to affect the original internal variable.
1746
1747 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1748 no underlying modifyable state in the internal variable.
1749
1750 Likewise, if the variable's value is a computed lvalue, we want
1751 references to it to produce another computed lvalue, where
1752 references and assignments actually operate through the
1753 computed value's functions.
1754
1755 This means that internal variables with computed values
1756 behave a little differently from other internal variables:
1757 assignments to them don't just replace the previous value
1758 altogether. At the moment, this seems like the behavior we
1759 want. */
1760
1761 if (var->kind != INTERNALVAR_MAKE_VALUE
1762 && val->lval != lval_computed)
1763 {
1764 VALUE_LVAL (val) = lval_internalvar;
1765 VALUE_INTERNALVAR (val) = var;
1766 }
1767
1768 return val;
1769 }
1770
1771 int
1772 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1773 {
1774 if (var->kind == INTERNALVAR_INTEGER)
1775 {
1776 *result = var->u.integer.val;
1777 return 1;
1778 }
1779
1780 if (var->kind == INTERNALVAR_VALUE)
1781 {
1782 struct type *type = check_typedef (value_type (var->u.value));
1783
1784 if (TYPE_CODE (type) == TYPE_CODE_INT)
1785 {
1786 *result = value_as_long (var->u.value);
1787 return 1;
1788 }
1789 }
1790
1791 return 0;
1792 }
1793
1794 static int
1795 get_internalvar_function (struct internalvar *var,
1796 struct internal_function **result)
1797 {
1798 switch (var->kind)
1799 {
1800 case INTERNALVAR_FUNCTION:
1801 *result = var->u.fn.function;
1802 return 1;
1803
1804 default:
1805 return 0;
1806 }
1807 }
1808
1809 void
1810 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1811 int bitsize, struct value *newval)
1812 {
1813 gdb_byte *addr;
1814
1815 switch (var->kind)
1816 {
1817 case INTERNALVAR_VALUE:
1818 addr = value_contents_writeable (var->u.value);
1819
1820 if (bitsize)
1821 modify_field (value_type (var->u.value), addr + offset,
1822 value_as_long (newval), bitpos, bitsize);
1823 else
1824 memcpy (addr + offset, value_contents (newval),
1825 TYPE_LENGTH (value_type (newval)));
1826 break;
1827
1828 default:
1829 /* We can never get a component of any other kind. */
1830 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1831 }
1832 }
1833
1834 void
1835 set_internalvar (struct internalvar *var, struct value *val)
1836 {
1837 enum internalvar_kind new_kind;
1838 union internalvar_data new_data = { 0 };
1839
1840 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1841 error (_("Cannot overwrite convenience function %s"), var->name);
1842
1843 /* Prepare new contents. */
1844 switch (TYPE_CODE (check_typedef (value_type (val))))
1845 {
1846 case TYPE_CODE_VOID:
1847 new_kind = INTERNALVAR_VOID;
1848 break;
1849
1850 case TYPE_CODE_INTERNAL_FUNCTION:
1851 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1852 new_kind = INTERNALVAR_FUNCTION;
1853 get_internalvar_function (VALUE_INTERNALVAR (val),
1854 &new_data.fn.function);
1855 /* Copies created here are never canonical. */
1856 break;
1857
1858 default:
1859 new_kind = INTERNALVAR_VALUE;
1860 new_data.value = value_copy (val);
1861 new_data.value->modifiable = 1;
1862
1863 /* Force the value to be fetched from the target now, to avoid problems
1864 later when this internalvar is referenced and the target is gone or
1865 has changed. */
1866 if (value_lazy (new_data.value))
1867 value_fetch_lazy (new_data.value);
1868
1869 /* Release the value from the value chain to prevent it from being
1870 deleted by free_all_values. From here on this function should not
1871 call error () until new_data is installed into the var->u to avoid
1872 leaking memory. */
1873 release_value (new_data.value);
1874 break;
1875 }
1876
1877 /* Clean up old contents. */
1878 clear_internalvar (var);
1879
1880 /* Switch over. */
1881 var->kind = new_kind;
1882 var->u = new_data;
1883 /* End code which must not call error(). */
1884 }
1885
1886 void
1887 set_internalvar_integer (struct internalvar *var, LONGEST l)
1888 {
1889 /* Clean up old contents. */
1890 clear_internalvar (var);
1891
1892 var->kind = INTERNALVAR_INTEGER;
1893 var->u.integer.type = NULL;
1894 var->u.integer.val = l;
1895 }
1896
1897 void
1898 set_internalvar_string (struct internalvar *var, const char *string)
1899 {
1900 /* Clean up old contents. */
1901 clear_internalvar (var);
1902
1903 var->kind = INTERNALVAR_STRING;
1904 var->u.string = xstrdup (string);
1905 }
1906
1907 static void
1908 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1909 {
1910 /* Clean up old contents. */
1911 clear_internalvar (var);
1912
1913 var->kind = INTERNALVAR_FUNCTION;
1914 var->u.fn.function = f;
1915 var->u.fn.canonical = 1;
1916 /* Variables installed here are always the canonical version. */
1917 }
1918
1919 void
1920 clear_internalvar (struct internalvar *var)
1921 {
1922 /* Clean up old contents. */
1923 switch (var->kind)
1924 {
1925 case INTERNALVAR_VALUE:
1926 value_free (var->u.value);
1927 break;
1928
1929 case INTERNALVAR_STRING:
1930 xfree (var->u.string);
1931 break;
1932
1933 default:
1934 break;
1935 }
1936
1937 /* Reset to void kind. */
1938 var->kind = INTERNALVAR_VOID;
1939 }
1940
1941 char *
1942 internalvar_name (struct internalvar *var)
1943 {
1944 return var->name;
1945 }
1946
1947 static struct internal_function *
1948 create_internal_function (const char *name,
1949 internal_function_fn handler, void *cookie)
1950 {
1951 struct internal_function *ifn = XNEW (struct internal_function);
1952
1953 ifn->name = xstrdup (name);
1954 ifn->handler = handler;
1955 ifn->cookie = cookie;
1956 return ifn;
1957 }
1958
1959 char *
1960 value_internal_function_name (struct value *val)
1961 {
1962 struct internal_function *ifn;
1963 int result;
1964
1965 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1966 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1967 gdb_assert (result);
1968
1969 return ifn->name;
1970 }
1971
1972 struct value *
1973 call_internal_function (struct gdbarch *gdbarch,
1974 const struct language_defn *language,
1975 struct value *func, int argc, struct value **argv)
1976 {
1977 struct internal_function *ifn;
1978 int result;
1979
1980 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1981 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1982 gdb_assert (result);
1983
1984 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1985 }
1986
1987 /* The 'function' command. This does nothing -- it is just a
1988 placeholder to let "help function NAME" work. This is also used as
1989 the implementation of the sub-command that is created when
1990 registering an internal function. */
1991 static void
1992 function_command (char *command, int from_tty)
1993 {
1994 /* Do nothing. */
1995 }
1996
1997 /* Clean up if an internal function's command is destroyed. */
1998 static void
1999 function_destroyer (struct cmd_list_element *self, void *ignore)
2000 {
2001 xfree (self->name);
2002 xfree (self->doc);
2003 }
2004
2005 /* Add a new internal function. NAME is the name of the function; DOC
2006 is a documentation string describing the function. HANDLER is
2007 called when the function is invoked. COOKIE is an arbitrary
2008 pointer which is passed to HANDLER and is intended for "user
2009 data". */
2010 void
2011 add_internal_function (const char *name, const char *doc,
2012 internal_function_fn handler, void *cookie)
2013 {
2014 struct cmd_list_element *cmd;
2015 struct internal_function *ifn;
2016 struct internalvar *var = lookup_internalvar (name);
2017
2018 ifn = create_internal_function (name, handler, cookie);
2019 set_internalvar_function (var, ifn);
2020
2021 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2022 &functionlist);
2023 cmd->destroyer = function_destroyer;
2024 }
2025
2026 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2027 prevent cycles / duplicates. */
2028
2029 void
2030 preserve_one_value (struct value *value, struct objfile *objfile,
2031 htab_t copied_types)
2032 {
2033 if (TYPE_OBJFILE (value->type) == objfile)
2034 value->type = copy_type_recursive (objfile, value->type, copied_types);
2035
2036 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2037 value->enclosing_type = copy_type_recursive (objfile,
2038 value->enclosing_type,
2039 copied_types);
2040 }
2041
2042 /* Likewise for internal variable VAR. */
2043
2044 static void
2045 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2046 htab_t copied_types)
2047 {
2048 switch (var->kind)
2049 {
2050 case INTERNALVAR_INTEGER:
2051 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2052 var->u.integer.type
2053 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2054 break;
2055
2056 case INTERNALVAR_VALUE:
2057 preserve_one_value (var->u.value, objfile, copied_types);
2058 break;
2059 }
2060 }
2061
2062 /* Update the internal variables and value history when OBJFILE is
2063 discarded; we must copy the types out of the objfile. New global types
2064 will be created for every convenience variable which currently points to
2065 this objfile's types, and the convenience variables will be adjusted to
2066 use the new global types. */
2067
2068 void
2069 preserve_values (struct objfile *objfile)
2070 {
2071 htab_t copied_types;
2072 struct value_history_chunk *cur;
2073 struct internalvar *var;
2074 int i;
2075
2076 /* Create the hash table. We allocate on the objfile's obstack, since
2077 it is soon to be deleted. */
2078 copied_types = create_copied_types_hash (objfile);
2079
2080 for (cur = value_history_chain; cur; cur = cur->next)
2081 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2082 if (cur->values[i])
2083 preserve_one_value (cur->values[i], objfile, copied_types);
2084
2085 for (var = internalvars; var; var = var->next)
2086 preserve_one_internalvar (var, objfile, copied_types);
2087
2088 preserve_python_values (objfile, copied_types);
2089
2090 htab_delete (copied_types);
2091 }
2092
2093 static void
2094 show_convenience (char *ignore, int from_tty)
2095 {
2096 struct gdbarch *gdbarch = get_current_arch ();
2097 struct internalvar *var;
2098 int varseen = 0;
2099 struct value_print_options opts;
2100
2101 get_user_print_options (&opts);
2102 for (var = internalvars; var; var = var->next)
2103 {
2104 volatile struct gdb_exception ex;
2105
2106 if (!varseen)
2107 {
2108 varseen = 1;
2109 }
2110 printf_filtered (("$%s = "), var->name);
2111
2112 TRY_CATCH (ex, RETURN_MASK_ERROR)
2113 {
2114 struct value *val;
2115
2116 val = value_of_internalvar (gdbarch, var);
2117 value_print (val, gdb_stdout, &opts);
2118 }
2119 if (ex.reason < 0)
2120 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2121 printf_filtered (("\n"));
2122 }
2123 if (!varseen)
2124 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2125 "Convenience variables have "
2126 "names starting with \"$\";\n"
2127 "use \"set\" as in \"set "
2128 "$foo = 5\" to define them.\n"));
2129 }
2130 \f
2131 /* Extract a value as a C number (either long or double).
2132 Knows how to convert fixed values to double, or
2133 floating values to long.
2134 Does not deallocate the value. */
2135
2136 LONGEST
2137 value_as_long (struct value *val)
2138 {
2139 /* This coerces arrays and functions, which is necessary (e.g.
2140 in disassemble_command). It also dereferences references, which
2141 I suspect is the most logical thing to do. */
2142 val = coerce_array (val);
2143 return unpack_long (value_type (val), value_contents (val));
2144 }
2145
2146 DOUBLEST
2147 value_as_double (struct value *val)
2148 {
2149 DOUBLEST foo;
2150 int inv;
2151
2152 foo = unpack_double (value_type (val), value_contents (val), &inv);
2153 if (inv)
2154 error (_("Invalid floating value found in program."));
2155 return foo;
2156 }
2157
2158 /* Extract a value as a C pointer. Does not deallocate the value.
2159 Note that val's type may not actually be a pointer; value_as_long
2160 handles all the cases. */
2161 CORE_ADDR
2162 value_as_address (struct value *val)
2163 {
2164 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2165
2166 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2167 whether we want this to be true eventually. */
2168 #if 0
2169 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2170 non-address (e.g. argument to "signal", "info break", etc.), or
2171 for pointers to char, in which the low bits *are* significant. */
2172 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2173 #else
2174
2175 /* There are several targets (IA-64, PowerPC, and others) which
2176 don't represent pointers to functions as simply the address of
2177 the function's entry point. For example, on the IA-64, a
2178 function pointer points to a two-word descriptor, generated by
2179 the linker, which contains the function's entry point, and the
2180 value the IA-64 "global pointer" register should have --- to
2181 support position-independent code. The linker generates
2182 descriptors only for those functions whose addresses are taken.
2183
2184 On such targets, it's difficult for GDB to convert an arbitrary
2185 function address into a function pointer; it has to either find
2186 an existing descriptor for that function, or call malloc and
2187 build its own. On some targets, it is impossible for GDB to
2188 build a descriptor at all: the descriptor must contain a jump
2189 instruction; data memory cannot be executed; and code memory
2190 cannot be modified.
2191
2192 Upon entry to this function, if VAL is a value of type `function'
2193 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2194 value_address (val) is the address of the function. This is what
2195 you'll get if you evaluate an expression like `main'. The call
2196 to COERCE_ARRAY below actually does all the usual unary
2197 conversions, which includes converting values of type `function'
2198 to `pointer to function'. This is the challenging conversion
2199 discussed above. Then, `unpack_long' will convert that pointer
2200 back into an address.
2201
2202 So, suppose the user types `disassemble foo' on an architecture
2203 with a strange function pointer representation, on which GDB
2204 cannot build its own descriptors, and suppose further that `foo'
2205 has no linker-built descriptor. The address->pointer conversion
2206 will signal an error and prevent the command from running, even
2207 though the next step would have been to convert the pointer
2208 directly back into the same address.
2209
2210 The following shortcut avoids this whole mess. If VAL is a
2211 function, just return its address directly. */
2212 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2213 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2214 return value_address (val);
2215
2216 val = coerce_array (val);
2217
2218 /* Some architectures (e.g. Harvard), map instruction and data
2219 addresses onto a single large unified address space. For
2220 instance: An architecture may consider a large integer in the
2221 range 0x10000000 .. 0x1000ffff to already represent a data
2222 addresses (hence not need a pointer to address conversion) while
2223 a small integer would still need to be converted integer to
2224 pointer to address. Just assume such architectures handle all
2225 integer conversions in a single function. */
2226
2227 /* JimB writes:
2228
2229 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2230 must admonish GDB hackers to make sure its behavior matches the
2231 compiler's, whenever possible.
2232
2233 In general, I think GDB should evaluate expressions the same way
2234 the compiler does. When the user copies an expression out of
2235 their source code and hands it to a `print' command, they should
2236 get the same value the compiler would have computed. Any
2237 deviation from this rule can cause major confusion and annoyance,
2238 and needs to be justified carefully. In other words, GDB doesn't
2239 really have the freedom to do these conversions in clever and
2240 useful ways.
2241
2242 AndrewC pointed out that users aren't complaining about how GDB
2243 casts integers to pointers; they are complaining that they can't
2244 take an address from a disassembly listing and give it to `x/i'.
2245 This is certainly important.
2246
2247 Adding an architecture method like integer_to_address() certainly
2248 makes it possible for GDB to "get it right" in all circumstances
2249 --- the target has complete control over how things get done, so
2250 people can Do The Right Thing for their target without breaking
2251 anyone else. The standard doesn't specify how integers get
2252 converted to pointers; usually, the ABI doesn't either, but
2253 ABI-specific code is a more reasonable place to handle it. */
2254
2255 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2256 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2257 && gdbarch_integer_to_address_p (gdbarch))
2258 return gdbarch_integer_to_address (gdbarch, value_type (val),
2259 value_contents (val));
2260
2261 return unpack_long (value_type (val), value_contents (val));
2262 #endif
2263 }
2264 \f
2265 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2266 as a long, or as a double, assuming the raw data is described
2267 by type TYPE. Knows how to convert different sizes of values
2268 and can convert between fixed and floating point. We don't assume
2269 any alignment for the raw data. Return value is in host byte order.
2270
2271 If you want functions and arrays to be coerced to pointers, and
2272 references to be dereferenced, call value_as_long() instead.
2273
2274 C++: It is assumed that the front-end has taken care of
2275 all matters concerning pointers to members. A pointer
2276 to member which reaches here is considered to be equivalent
2277 to an INT (or some size). After all, it is only an offset. */
2278
2279 LONGEST
2280 unpack_long (struct type *type, const gdb_byte *valaddr)
2281 {
2282 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2283 enum type_code code = TYPE_CODE (type);
2284 int len = TYPE_LENGTH (type);
2285 int nosign = TYPE_UNSIGNED (type);
2286
2287 switch (code)
2288 {
2289 case TYPE_CODE_TYPEDEF:
2290 return unpack_long (check_typedef (type), valaddr);
2291 case TYPE_CODE_ENUM:
2292 case TYPE_CODE_FLAGS:
2293 case TYPE_CODE_BOOL:
2294 case TYPE_CODE_INT:
2295 case TYPE_CODE_CHAR:
2296 case TYPE_CODE_RANGE:
2297 case TYPE_CODE_MEMBERPTR:
2298 if (nosign)
2299 return extract_unsigned_integer (valaddr, len, byte_order);
2300 else
2301 return extract_signed_integer (valaddr, len, byte_order);
2302
2303 case TYPE_CODE_FLT:
2304 return extract_typed_floating (valaddr, type);
2305
2306 case TYPE_CODE_DECFLOAT:
2307 /* libdecnumber has a function to convert from decimal to integer, but
2308 it doesn't work when the decimal number has a fractional part. */
2309 return decimal_to_doublest (valaddr, len, byte_order);
2310
2311 case TYPE_CODE_PTR:
2312 case TYPE_CODE_REF:
2313 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2314 whether we want this to be true eventually. */
2315 return extract_typed_address (valaddr, type);
2316
2317 default:
2318 error (_("Value can't be converted to integer."));
2319 }
2320 return 0; /* Placate lint. */
2321 }
2322
2323 /* Return a double value from the specified type and address.
2324 INVP points to an int which is set to 0 for valid value,
2325 1 for invalid value (bad float format). In either case,
2326 the returned double is OK to use. Argument is in target
2327 format, result is in host format. */
2328
2329 DOUBLEST
2330 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2331 {
2332 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2333 enum type_code code;
2334 int len;
2335 int nosign;
2336
2337 *invp = 0; /* Assume valid. */
2338 CHECK_TYPEDEF (type);
2339 code = TYPE_CODE (type);
2340 len = TYPE_LENGTH (type);
2341 nosign = TYPE_UNSIGNED (type);
2342 if (code == TYPE_CODE_FLT)
2343 {
2344 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2345 floating-point value was valid (using the macro
2346 INVALID_FLOAT). That test/macro have been removed.
2347
2348 It turns out that only the VAX defined this macro and then
2349 only in a non-portable way. Fixing the portability problem
2350 wouldn't help since the VAX floating-point code is also badly
2351 bit-rotten. The target needs to add definitions for the
2352 methods gdbarch_float_format and gdbarch_double_format - these
2353 exactly describe the target floating-point format. The
2354 problem here is that the corresponding floatformat_vax_f and
2355 floatformat_vax_d values these methods should be set to are
2356 also not defined either. Oops!
2357
2358 Hopefully someone will add both the missing floatformat
2359 definitions and the new cases for floatformat_is_valid (). */
2360
2361 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2362 {
2363 *invp = 1;
2364 return 0.0;
2365 }
2366
2367 return extract_typed_floating (valaddr, type);
2368 }
2369 else if (code == TYPE_CODE_DECFLOAT)
2370 return decimal_to_doublest (valaddr, len, byte_order);
2371 else if (nosign)
2372 {
2373 /* Unsigned -- be sure we compensate for signed LONGEST. */
2374 return (ULONGEST) unpack_long (type, valaddr);
2375 }
2376 else
2377 {
2378 /* Signed -- we are OK with unpack_long. */
2379 return unpack_long (type, valaddr);
2380 }
2381 }
2382
2383 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2384 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2385 We don't assume any alignment for the raw data. Return value is in
2386 host byte order.
2387
2388 If you want functions and arrays to be coerced to pointers, and
2389 references to be dereferenced, call value_as_address() instead.
2390
2391 C++: It is assumed that the front-end has taken care of
2392 all matters concerning pointers to members. A pointer
2393 to member which reaches here is considered to be equivalent
2394 to an INT (or some size). After all, it is only an offset. */
2395
2396 CORE_ADDR
2397 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2398 {
2399 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2400 whether we want this to be true eventually. */
2401 return unpack_long (type, valaddr);
2402 }
2403
2404 \f
2405 /* Get the value of the FIELDNO'th field (which must be static) of
2406 TYPE. Return NULL if the field doesn't exist or has been
2407 optimized out. */
2408
2409 struct value *
2410 value_static_field (struct type *type, int fieldno)
2411 {
2412 struct value *retval;
2413
2414 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2415 {
2416 case FIELD_LOC_KIND_PHYSADDR:
2417 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2418 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2419 break;
2420 case FIELD_LOC_KIND_PHYSNAME:
2421 {
2422 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2423 /* TYPE_FIELD_NAME (type, fieldno); */
2424 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2425
2426 if (sym == NULL)
2427 {
2428 /* With some compilers, e.g. HP aCC, static data members are
2429 reported as non-debuggable symbols. */
2430 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2431 NULL, NULL);
2432
2433 if (!msym)
2434 return NULL;
2435 else
2436 {
2437 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2438 SYMBOL_VALUE_ADDRESS (msym));
2439 }
2440 }
2441 else
2442 retval = value_of_variable (sym, NULL);
2443 break;
2444 }
2445 default:
2446 gdb_assert_not_reached ("unexpected field location kind");
2447 }
2448
2449 return retval;
2450 }
2451
2452 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2453 You have to be careful here, since the size of the data area for the value
2454 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2455 than the old enclosing type, you have to allocate more space for the
2456 data. */
2457
2458 void
2459 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2460 {
2461 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2462 val->contents =
2463 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2464
2465 val->enclosing_type = new_encl_type;
2466 }
2467
2468 /* Given a value ARG1 (offset by OFFSET bytes)
2469 of a struct or union type ARG_TYPE,
2470 extract and return the value of one of its (non-static) fields.
2471 FIELDNO says which field. */
2472
2473 struct value *
2474 value_primitive_field (struct value *arg1, int offset,
2475 int fieldno, struct type *arg_type)
2476 {
2477 struct value *v;
2478 struct type *type;
2479
2480 CHECK_TYPEDEF (arg_type);
2481 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2482
2483 /* Call check_typedef on our type to make sure that, if TYPE
2484 is a TYPE_CODE_TYPEDEF, its length is set to the length
2485 of the target type instead of zero. However, we do not
2486 replace the typedef type by the target type, because we want
2487 to keep the typedef in order to be able to print the type
2488 description correctly. */
2489 check_typedef (type);
2490
2491 if (value_optimized_out (arg1))
2492 v = allocate_optimized_out_value (type);
2493 else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2494 {
2495 /* Handle packed fields.
2496
2497 Create a new value for the bitfield, with bitpos and bitsize
2498 set. If possible, arrange offset and bitpos so that we can
2499 do a single aligned read of the size of the containing type.
2500 Otherwise, adjust offset to the byte containing the first
2501 bit. Assume that the address, offset, and embedded offset
2502 are sufficiently aligned. */
2503
2504 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2505 int container_bitsize = TYPE_LENGTH (type) * 8;
2506
2507 v = allocate_value_lazy (type);
2508 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2509 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2510 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2511 v->bitpos = bitpos % container_bitsize;
2512 else
2513 v->bitpos = bitpos % 8;
2514 v->offset = (value_embedded_offset (arg1)
2515 + offset
2516 + (bitpos - v->bitpos) / 8);
2517 v->parent = arg1;
2518 value_incref (v->parent);
2519 if (!value_lazy (arg1))
2520 value_fetch_lazy (v);
2521 }
2522 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2523 {
2524 /* This field is actually a base subobject, so preserve the
2525 entire object's contents for later references to virtual
2526 bases, etc. */
2527
2528 /* Lazy register values with offsets are not supported. */
2529 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2530 value_fetch_lazy (arg1);
2531
2532 if (value_lazy (arg1))
2533 v = allocate_value_lazy (value_enclosing_type (arg1));
2534 else
2535 {
2536 v = allocate_value (value_enclosing_type (arg1));
2537 value_contents_copy_raw (v, 0, arg1, 0,
2538 TYPE_LENGTH (value_enclosing_type (arg1)));
2539 }
2540 v->type = type;
2541 v->offset = value_offset (arg1);
2542 v->embedded_offset = (offset + value_embedded_offset (arg1)
2543 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
2544 }
2545 else
2546 {
2547 /* Plain old data member */
2548 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2549
2550 /* Lazy register values with offsets are not supported. */
2551 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2552 value_fetch_lazy (arg1);
2553
2554 if (value_lazy (arg1))
2555 v = allocate_value_lazy (type);
2556 else
2557 {
2558 v = allocate_value (type);
2559 value_contents_copy_raw (v, value_embedded_offset (v),
2560 arg1, value_embedded_offset (arg1) + offset,
2561 TYPE_LENGTH (type));
2562 }
2563 v->offset = (value_offset (arg1) + offset
2564 + value_embedded_offset (arg1));
2565 }
2566 set_value_component_location (v, arg1);
2567 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2568 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2569 return v;
2570 }
2571
2572 /* Given a value ARG1 of a struct or union type,
2573 extract and return the value of one of its (non-static) fields.
2574 FIELDNO says which field. */
2575
2576 struct value *
2577 value_field (struct value *arg1, int fieldno)
2578 {
2579 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2580 }
2581
2582 /* Return a non-virtual function as a value.
2583 F is the list of member functions which contains the desired method.
2584 J is an index into F which provides the desired method.
2585
2586 We only use the symbol for its address, so be happy with either a
2587 full symbol or a minimal symbol. */
2588
2589 struct value *
2590 value_fn_field (struct value **arg1p, struct fn_field *f,
2591 int j, struct type *type,
2592 int offset)
2593 {
2594 struct value *v;
2595 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2596 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2597 struct symbol *sym;
2598 struct minimal_symbol *msym;
2599
2600 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2601 if (sym != NULL)
2602 {
2603 msym = NULL;
2604 }
2605 else
2606 {
2607 gdb_assert (sym == NULL);
2608 msym = lookup_minimal_symbol (physname, NULL, NULL);
2609 if (msym == NULL)
2610 return NULL;
2611 }
2612
2613 v = allocate_value (ftype);
2614 if (sym)
2615 {
2616 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2617 }
2618 else
2619 {
2620 /* The minimal symbol might point to a function descriptor;
2621 resolve it to the actual code address instead. */
2622 struct objfile *objfile = msymbol_objfile (msym);
2623 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2624
2625 set_value_address (v,
2626 gdbarch_convert_from_func_ptr_addr
2627 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2628 }
2629
2630 if (arg1p)
2631 {
2632 if (type != value_type (*arg1p))
2633 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2634 value_addr (*arg1p)));
2635
2636 /* Move the `this' pointer according to the offset.
2637 VALUE_OFFSET (*arg1p) += offset; */
2638 }
2639
2640 return v;
2641 }
2642
2643 \f
2644
2645 /* Helper function for both unpack_value_bits_as_long and
2646 unpack_bits_as_long. See those functions for more details on the
2647 interface; the only difference is that this function accepts either
2648 a NULL or a non-NULL ORIGINAL_VALUE. */
2649
2650 static int
2651 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2652 int embedded_offset, int bitpos, int bitsize,
2653 const struct value *original_value,
2654 LONGEST *result)
2655 {
2656 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2657 ULONGEST val;
2658 ULONGEST valmask;
2659 int lsbcount;
2660 int bytes_read;
2661 int read_offset;
2662
2663 /* Read the minimum number of bytes required; there may not be
2664 enough bytes to read an entire ULONGEST. */
2665 CHECK_TYPEDEF (field_type);
2666 if (bitsize)
2667 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2668 else
2669 bytes_read = TYPE_LENGTH (field_type);
2670
2671 read_offset = bitpos / 8;
2672
2673 if (original_value != NULL
2674 && !value_bytes_available (original_value, embedded_offset + read_offset,
2675 bytes_read))
2676 return 0;
2677
2678 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2679 bytes_read, byte_order);
2680
2681 /* Extract bits. See comment above. */
2682
2683 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2684 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2685 else
2686 lsbcount = (bitpos % 8);
2687 val >>= lsbcount;
2688
2689 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2690 If the field is signed, and is negative, then sign extend. */
2691
2692 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2693 {
2694 valmask = (((ULONGEST) 1) << bitsize) - 1;
2695 val &= valmask;
2696 if (!TYPE_UNSIGNED (field_type))
2697 {
2698 if (val & (valmask ^ (valmask >> 1)))
2699 {
2700 val |= ~valmask;
2701 }
2702 }
2703 }
2704
2705 *result = val;
2706 return 1;
2707 }
2708
2709 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2710 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2711 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2712 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2713 bits.
2714
2715 Returns false if the value contents are unavailable, otherwise
2716 returns true, indicating a valid value has been stored in *RESULT.
2717
2718 Extracting bits depends on endianness of the machine. Compute the
2719 number of least significant bits to discard. For big endian machines,
2720 we compute the total number of bits in the anonymous object, subtract
2721 off the bit count from the MSB of the object to the MSB of the
2722 bitfield, then the size of the bitfield, which leaves the LSB discard
2723 count. For little endian machines, the discard count is simply the
2724 number of bits from the LSB of the anonymous object to the LSB of the
2725 bitfield.
2726
2727 If the field is signed, we also do sign extension. */
2728
2729 int
2730 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2731 int embedded_offset, int bitpos, int bitsize,
2732 const struct value *original_value,
2733 LONGEST *result)
2734 {
2735 gdb_assert (original_value != NULL);
2736
2737 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2738 bitpos, bitsize, original_value, result);
2739
2740 }
2741
2742 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2743 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2744 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2745 details. */
2746
2747 static int
2748 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2749 int embedded_offset, int fieldno,
2750 const struct value *val, LONGEST *result)
2751 {
2752 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2753 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2754 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2755
2756 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2757 bitpos, bitsize, val,
2758 result);
2759 }
2760
2761 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2762 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2763 ORIGINAL_VALUE, which must not be NULL. See
2764 unpack_value_bits_as_long for more details. */
2765
2766 int
2767 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2768 int embedded_offset, int fieldno,
2769 const struct value *val, LONGEST *result)
2770 {
2771 gdb_assert (val != NULL);
2772
2773 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2774 fieldno, val, result);
2775 }
2776
2777 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2778 object at VALADDR. See unpack_value_bits_as_long for more details.
2779 This function differs from unpack_value_field_as_long in that it
2780 operates without a struct value object. */
2781
2782 LONGEST
2783 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2784 {
2785 LONGEST result;
2786
2787 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2788 return result;
2789 }
2790
2791 /* Return a new value with type TYPE, which is FIELDNO field of the
2792 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2793 of VAL. If the VAL's contents required to extract the bitfield
2794 from are unavailable, the new value is correspondingly marked as
2795 unavailable. */
2796
2797 struct value *
2798 value_field_bitfield (struct type *type, int fieldno,
2799 const gdb_byte *valaddr,
2800 int embedded_offset, const struct value *val)
2801 {
2802 LONGEST l;
2803
2804 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2805 val, &l))
2806 {
2807 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2808 struct value *retval = allocate_value (field_type);
2809 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2810 return retval;
2811 }
2812 else
2813 {
2814 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2815 }
2816 }
2817
2818 /* Modify the value of a bitfield. ADDR points to a block of memory in
2819 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2820 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2821 indicate which bits (in target bit order) comprise the bitfield.
2822 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2823 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2824
2825 void
2826 modify_field (struct type *type, gdb_byte *addr,
2827 LONGEST fieldval, int bitpos, int bitsize)
2828 {
2829 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2830 ULONGEST oword;
2831 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2832 int bytesize;
2833
2834 /* Normalize BITPOS. */
2835 addr += bitpos / 8;
2836 bitpos %= 8;
2837
2838 /* If a negative fieldval fits in the field in question, chop
2839 off the sign extension bits. */
2840 if ((~fieldval & ~(mask >> 1)) == 0)
2841 fieldval &= mask;
2842
2843 /* Warn if value is too big to fit in the field in question. */
2844 if (0 != (fieldval & ~mask))
2845 {
2846 /* FIXME: would like to include fieldval in the message, but
2847 we don't have a sprintf_longest. */
2848 warning (_("Value does not fit in %d bits."), bitsize);
2849
2850 /* Truncate it, otherwise adjoining fields may be corrupted. */
2851 fieldval &= mask;
2852 }
2853
2854 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2855 false valgrind reports. */
2856
2857 bytesize = (bitpos + bitsize + 7) / 8;
2858 oword = extract_unsigned_integer (addr, bytesize, byte_order);
2859
2860 /* Shifting for bit field depends on endianness of the target machine. */
2861 if (gdbarch_bits_big_endian (get_type_arch (type)))
2862 bitpos = bytesize * 8 - bitpos - bitsize;
2863
2864 oword &= ~(mask << bitpos);
2865 oword |= fieldval << bitpos;
2866
2867 store_unsigned_integer (addr, bytesize, byte_order, oword);
2868 }
2869 \f
2870 /* Pack NUM into BUF using a target format of TYPE. */
2871
2872 void
2873 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2874 {
2875 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2876 int len;
2877
2878 type = check_typedef (type);
2879 len = TYPE_LENGTH (type);
2880
2881 switch (TYPE_CODE (type))
2882 {
2883 case TYPE_CODE_INT:
2884 case TYPE_CODE_CHAR:
2885 case TYPE_CODE_ENUM:
2886 case TYPE_CODE_FLAGS:
2887 case TYPE_CODE_BOOL:
2888 case TYPE_CODE_RANGE:
2889 case TYPE_CODE_MEMBERPTR:
2890 store_signed_integer (buf, len, byte_order, num);
2891 break;
2892
2893 case TYPE_CODE_REF:
2894 case TYPE_CODE_PTR:
2895 store_typed_address (buf, type, (CORE_ADDR) num);
2896 break;
2897
2898 default:
2899 error (_("Unexpected type (%d) encountered for integer constant."),
2900 TYPE_CODE (type));
2901 }
2902 }
2903
2904
2905 /* Pack NUM into BUF using a target format of TYPE. */
2906
2907 void
2908 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2909 {
2910 int len;
2911 enum bfd_endian byte_order;
2912
2913 type = check_typedef (type);
2914 len = TYPE_LENGTH (type);
2915 byte_order = gdbarch_byte_order (get_type_arch (type));
2916
2917 switch (TYPE_CODE (type))
2918 {
2919 case TYPE_CODE_INT:
2920 case TYPE_CODE_CHAR:
2921 case TYPE_CODE_ENUM:
2922 case TYPE_CODE_FLAGS:
2923 case TYPE_CODE_BOOL:
2924 case TYPE_CODE_RANGE:
2925 case TYPE_CODE_MEMBERPTR:
2926 store_unsigned_integer (buf, len, byte_order, num);
2927 break;
2928
2929 case TYPE_CODE_REF:
2930 case TYPE_CODE_PTR:
2931 store_typed_address (buf, type, (CORE_ADDR) num);
2932 break;
2933
2934 default:
2935 error (_("Unexpected type (%d) encountered "
2936 "for unsigned integer constant."),
2937 TYPE_CODE (type));
2938 }
2939 }
2940
2941
2942 /* Convert C numbers into newly allocated values. */
2943
2944 struct value *
2945 value_from_longest (struct type *type, LONGEST num)
2946 {
2947 struct value *val = allocate_value (type);
2948
2949 pack_long (value_contents_raw (val), type, num);
2950 return val;
2951 }
2952
2953
2954 /* Convert C unsigned numbers into newly allocated values. */
2955
2956 struct value *
2957 value_from_ulongest (struct type *type, ULONGEST num)
2958 {
2959 struct value *val = allocate_value (type);
2960
2961 pack_unsigned_long (value_contents_raw (val), type, num);
2962
2963 return val;
2964 }
2965
2966
2967 /* Create a value representing a pointer of type TYPE to the address
2968 ADDR. */
2969 struct value *
2970 value_from_pointer (struct type *type, CORE_ADDR addr)
2971 {
2972 struct value *val = allocate_value (type);
2973
2974 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2975 return val;
2976 }
2977
2978
2979 /* Create a value of type TYPE whose contents come from VALADDR, if it
2980 is non-null, and whose memory address (in the inferior) is
2981 ADDRESS. */
2982
2983 struct value *
2984 value_from_contents_and_address (struct type *type,
2985 const gdb_byte *valaddr,
2986 CORE_ADDR address)
2987 {
2988 struct value *v;
2989
2990 if (valaddr == NULL)
2991 v = allocate_value_lazy (type);
2992 else
2993 {
2994 v = allocate_value (type);
2995 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2996 }
2997 set_value_address (v, address);
2998 VALUE_LVAL (v) = lval_memory;
2999 return v;
3000 }
3001
3002 /* Create a value of type TYPE holding the contents CONTENTS.
3003 The new value is `not_lval'. */
3004
3005 struct value *
3006 value_from_contents (struct type *type, const gdb_byte *contents)
3007 {
3008 struct value *result;
3009
3010 result = allocate_value (type);
3011 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3012 return result;
3013 }
3014
3015 struct value *
3016 value_from_double (struct type *type, DOUBLEST num)
3017 {
3018 struct value *val = allocate_value (type);
3019 struct type *base_type = check_typedef (type);
3020 enum type_code code = TYPE_CODE (base_type);
3021
3022 if (code == TYPE_CODE_FLT)
3023 {
3024 store_typed_floating (value_contents_raw (val), base_type, num);
3025 }
3026 else
3027 error (_("Unexpected type encountered for floating constant."));
3028
3029 return val;
3030 }
3031
3032 struct value *
3033 value_from_decfloat (struct type *type, const gdb_byte *dec)
3034 {
3035 struct value *val = allocate_value (type);
3036
3037 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3038 return val;
3039 }
3040
3041 /* Extract a value from the history file. Input will be of the form
3042 $digits or $$digits. See block comment above 'write_dollar_variable'
3043 for details. */
3044
3045 struct value *
3046 value_from_history_ref (char *h, char **endp)
3047 {
3048 int index, len;
3049
3050 if (h[0] == '$')
3051 len = 1;
3052 else
3053 return NULL;
3054
3055 if (h[1] == '$')
3056 len = 2;
3057
3058 /* Find length of numeral string. */
3059 for (; isdigit (h[len]); len++)
3060 ;
3061
3062 /* Make sure numeral string is not part of an identifier. */
3063 if (h[len] == '_' || isalpha (h[len]))
3064 return NULL;
3065
3066 /* Now collect the index value. */
3067 if (h[1] == '$')
3068 {
3069 if (len == 2)
3070 {
3071 /* For some bizarre reason, "$$" is equivalent to "$$1",
3072 rather than to "$$0" as it ought to be! */
3073 index = -1;
3074 *endp += len;
3075 }
3076 else
3077 index = -strtol (&h[2], endp, 10);
3078 }
3079 else
3080 {
3081 if (len == 1)
3082 {
3083 /* "$" is equivalent to "$0". */
3084 index = 0;
3085 *endp += len;
3086 }
3087 else
3088 index = strtol (&h[1], endp, 10);
3089 }
3090
3091 return access_value_history (index);
3092 }
3093
3094 struct value *
3095 coerce_ref_if_computed (const struct value *arg)
3096 {
3097 const struct lval_funcs *funcs;
3098
3099 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3100 return NULL;
3101
3102 if (value_lval_const (arg) != lval_computed)
3103 return NULL;
3104
3105 funcs = value_computed_funcs (arg);
3106 if (funcs->coerce_ref == NULL)
3107 return NULL;
3108
3109 return funcs->coerce_ref (arg);
3110 }
3111
3112 struct value *
3113 coerce_ref (struct value *arg)
3114 {
3115 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3116 struct value *retval;
3117
3118 retval = coerce_ref_if_computed (arg);
3119 if (retval)
3120 return retval;
3121
3122 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3123 return arg;
3124
3125 return value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
3126 unpack_pointer (value_type (arg),
3127 value_contents (arg)));
3128 }
3129
3130 struct value *
3131 coerce_array (struct value *arg)
3132 {
3133 struct type *type;
3134
3135 arg = coerce_ref (arg);
3136 type = check_typedef (value_type (arg));
3137
3138 switch (TYPE_CODE (type))
3139 {
3140 case TYPE_CODE_ARRAY:
3141 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3142 arg = value_coerce_array (arg);
3143 break;
3144 case TYPE_CODE_FUNC:
3145 arg = value_coerce_function (arg);
3146 break;
3147 }
3148 return arg;
3149 }
3150 \f
3151
3152 /* Return true if the function returning the specified type is using
3153 the convention of returning structures in memory (passing in the
3154 address as a hidden first parameter). */
3155
3156 int
3157 using_struct_return (struct gdbarch *gdbarch,
3158 struct type *func_type, struct type *value_type)
3159 {
3160 enum type_code code = TYPE_CODE (value_type);
3161
3162 if (code == TYPE_CODE_ERROR)
3163 error (_("Function return type unknown."));
3164
3165 if (code == TYPE_CODE_VOID)
3166 /* A void return value is never in memory. See also corresponding
3167 code in "print_return_value". */
3168 return 0;
3169
3170 /* Probe the architecture for the return-value convention. */
3171 return (gdbarch_return_value (gdbarch, func_type, value_type,
3172 NULL, NULL, NULL)
3173 != RETURN_VALUE_REGISTER_CONVENTION);
3174 }
3175
3176 /* Set the initialized field in a value struct. */
3177
3178 void
3179 set_value_initialized (struct value *val, int status)
3180 {
3181 val->initialized = status;
3182 }
3183
3184 /* Return the initialized field in a value struct. */
3185
3186 int
3187 value_initialized (struct value *val)
3188 {
3189 return val->initialized;
3190 }
3191
3192 void
3193 _initialize_values (void)
3194 {
3195 add_cmd ("convenience", no_class, show_convenience, _("\
3196 Debugger convenience (\"$foo\") variables.\n\
3197 These variables are created when you assign them values;\n\
3198 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3199 \n\
3200 A few convenience variables are given values automatically:\n\
3201 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3202 \"$__\" holds the contents of the last address examined with \"x\"."),
3203 &showlist);
3204
3205 add_cmd ("values", no_set_class, show_values, _("\
3206 Elements of value history around item number IDX (or last ten)."),
3207 &showlist);
3208
3209 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3210 Initialize a convenience variable if necessary.\n\
3211 init-if-undefined VARIABLE = EXPRESSION\n\
3212 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3213 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3214 VARIABLE is already initialized."));
3215
3216 add_prefix_cmd ("function", no_class, function_command, _("\
3217 Placeholder command for showing help on convenience functions."),
3218 &functionlist, "function ", 0, &cmdlist);
3219 }
This page took 0.105424 seconds and 4 git commands to generate.