*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42
43 #include "python/python.h"
44
45 /* Prototypes for exported functions. */
46
47 void _initialize_values (void);
48
49 /* Definition of a user function. */
50 struct internal_function
51 {
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62 };
63
64 static struct cmd_list_element *functionlist;
65
66 struct value
67 {
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
109 int bitpos;
110
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 int stack;
202
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
205 gdb_byte *contents;
206
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
212 int reference_count;
213 };
214
215 /* Prototypes for local functions. */
216
217 static void show_values (char *, int);
218
219 static void show_convenience (char *, int);
220
221
222 /* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
227
228 #define VALUE_HISTORY_CHUNK 60
229
230 struct value_history_chunk
231 {
232 struct value_history_chunk *next;
233 struct value *values[VALUE_HISTORY_CHUNK];
234 };
235
236 /* Chain of chunks now in use. */
237
238 static struct value_history_chunk *value_history_chain;
239
240 static int value_history_count; /* Abs number of last entry stored */
241
242 \f
243 /* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
246
247 static struct value *all_values;
248
249 /* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
252
253 struct value *
254 allocate_value_lazy (struct type *type)
255 {
256 struct value *val;
257
258 /* Call check_typedef on our type to make sure that, if TYPE
259 is a TYPE_CODE_TYPEDEF, its length is set to the length
260 of the target type instead of zero. However, we do not
261 replace the typedef type by the target type, because we want
262 to keep the typedef in order to be able to set the VAL's type
263 description correctly. */
264 check_typedef (type);
265
266 val = (struct value *) xzalloc (sizeof (struct value));
267 val->contents = NULL;
268 val->next = all_values;
269 all_values = val;
270 val->type = type;
271 val->enclosing_type = type;
272 VALUE_LVAL (val) = not_lval;
273 val->location.address = 0;
274 VALUE_FRAME_ID (val) = null_frame_id;
275 val->offset = 0;
276 val->bitpos = 0;
277 val->bitsize = 0;
278 VALUE_REGNUM (val) = -1;
279 val->lazy = 1;
280 val->optimized_out = 0;
281 val->embedded_offset = 0;
282 val->pointed_to_offset = 0;
283 val->modifiable = 1;
284 val->initialized = 1; /* Default to initialized. */
285
286 /* Values start out on the all_values chain. */
287 val->reference_count = 1;
288
289 return val;
290 }
291
292 /* Allocate the contents of VAL if it has not been allocated yet. */
293
294 void
295 allocate_value_contents (struct value *val)
296 {
297 if (!val->contents)
298 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
299 }
300
301 /* Allocate a value and its contents for type TYPE. */
302
303 struct value *
304 allocate_value (struct type *type)
305 {
306 struct value *val = allocate_value_lazy (type);
307
308 allocate_value_contents (val);
309 val->lazy = 0;
310 return val;
311 }
312
313 /* Allocate a value that has the correct length
314 for COUNT repetitions of type TYPE. */
315
316 struct value *
317 allocate_repeat_value (struct type *type, int count)
318 {
319 int low_bound = current_language->string_lower_bound; /* ??? */
320 /* FIXME-type-allocation: need a way to free this type when we are
321 done with it. */
322 struct type *array_type
323 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
324
325 return allocate_value (array_type);
326 }
327
328 struct value *
329 allocate_computed_value (struct type *type,
330 struct lval_funcs *funcs,
331 void *closure)
332 {
333 struct value *v = allocate_value (type);
334
335 VALUE_LVAL (v) = lval_computed;
336 v->location.computed.funcs = funcs;
337 v->location.computed.closure = closure;
338 set_value_lazy (v, 1);
339
340 return v;
341 }
342
343 /* Accessor methods. */
344
345 struct value *
346 value_next (struct value *value)
347 {
348 return value->next;
349 }
350
351 struct type *
352 value_type (const struct value *value)
353 {
354 return value->type;
355 }
356 void
357 deprecated_set_value_type (struct value *value, struct type *type)
358 {
359 value->type = type;
360 }
361
362 int
363 value_offset (const struct value *value)
364 {
365 return value->offset;
366 }
367 void
368 set_value_offset (struct value *value, int offset)
369 {
370 value->offset = offset;
371 }
372
373 int
374 value_bitpos (const struct value *value)
375 {
376 return value->bitpos;
377 }
378 void
379 set_value_bitpos (struct value *value, int bit)
380 {
381 value->bitpos = bit;
382 }
383
384 int
385 value_bitsize (const struct value *value)
386 {
387 return value->bitsize;
388 }
389 void
390 set_value_bitsize (struct value *value, int bit)
391 {
392 value->bitsize = bit;
393 }
394
395 struct value *
396 value_parent (struct value *value)
397 {
398 return value->parent;
399 }
400
401 gdb_byte *
402 value_contents_raw (struct value *value)
403 {
404 allocate_value_contents (value);
405 return value->contents + value->embedded_offset;
406 }
407
408 gdb_byte *
409 value_contents_all_raw (struct value *value)
410 {
411 allocate_value_contents (value);
412 return value->contents;
413 }
414
415 struct type *
416 value_enclosing_type (struct value *value)
417 {
418 return value->enclosing_type;
419 }
420
421 static void
422 require_not_optimized_out (struct value *value)
423 {
424 if (value->optimized_out)
425 error (_("value has been optimized out"));
426 }
427
428 const gdb_byte *
429 value_contents_for_printing (struct value *value)
430 {
431 if (value->lazy)
432 value_fetch_lazy (value);
433 return value->contents;
434 }
435
436 const gdb_byte *
437 value_contents_all (struct value *value)
438 {
439 const gdb_byte *result = value_contents_for_printing (value);
440 require_not_optimized_out (value);
441 return result;
442 }
443
444 int
445 value_lazy (struct value *value)
446 {
447 return value->lazy;
448 }
449
450 void
451 set_value_lazy (struct value *value, int val)
452 {
453 value->lazy = val;
454 }
455
456 int
457 value_stack (struct value *value)
458 {
459 return value->stack;
460 }
461
462 void
463 set_value_stack (struct value *value, int val)
464 {
465 value->stack = val;
466 }
467
468 const gdb_byte *
469 value_contents (struct value *value)
470 {
471 const gdb_byte *result = value_contents_writeable (value);
472 require_not_optimized_out (value);
473 return result;
474 }
475
476 gdb_byte *
477 value_contents_writeable (struct value *value)
478 {
479 if (value->lazy)
480 value_fetch_lazy (value);
481 return value_contents_raw (value);
482 }
483
484 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
485 this function is different from value_equal; in C the operator ==
486 can return 0 even if the two values being compared are equal. */
487
488 int
489 value_contents_equal (struct value *val1, struct value *val2)
490 {
491 struct type *type1;
492 struct type *type2;
493 int len;
494
495 type1 = check_typedef (value_type (val1));
496 type2 = check_typedef (value_type (val2));
497 len = TYPE_LENGTH (type1);
498 if (len != TYPE_LENGTH (type2))
499 return 0;
500
501 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
502 }
503
504 int
505 value_optimized_out (struct value *value)
506 {
507 return value->optimized_out;
508 }
509
510 void
511 set_value_optimized_out (struct value *value, int val)
512 {
513 value->optimized_out = val;
514 }
515
516 int
517 value_entirely_optimized_out (const struct value *value)
518 {
519 if (!value->optimized_out)
520 return 0;
521 if (value->lval != lval_computed
522 || !value->location.computed.funcs->check_validity)
523 return 1;
524 return !value->location.computed.funcs->check_any_valid (value);
525 }
526
527 int
528 value_bits_valid (const struct value *value, int offset, int length)
529 {
530 if (value == NULL || !value->optimized_out)
531 return 1;
532 if (value->lval != lval_computed
533 || !value->location.computed.funcs->check_validity)
534 return 0;
535 return value->location.computed.funcs->check_validity (value, offset,
536 length);
537 }
538
539 int
540 value_embedded_offset (struct value *value)
541 {
542 return value->embedded_offset;
543 }
544
545 void
546 set_value_embedded_offset (struct value *value, int val)
547 {
548 value->embedded_offset = val;
549 }
550
551 int
552 value_pointed_to_offset (struct value *value)
553 {
554 return value->pointed_to_offset;
555 }
556
557 void
558 set_value_pointed_to_offset (struct value *value, int val)
559 {
560 value->pointed_to_offset = val;
561 }
562
563 struct lval_funcs *
564 value_computed_funcs (struct value *v)
565 {
566 gdb_assert (VALUE_LVAL (v) == lval_computed);
567
568 return v->location.computed.funcs;
569 }
570
571 void *
572 value_computed_closure (const struct value *v)
573 {
574 gdb_assert (v->lval == lval_computed);
575
576 return v->location.computed.closure;
577 }
578
579 enum lval_type *
580 deprecated_value_lval_hack (struct value *value)
581 {
582 return &value->lval;
583 }
584
585 CORE_ADDR
586 value_address (struct value *value)
587 {
588 if (value->lval == lval_internalvar
589 || value->lval == lval_internalvar_component)
590 return 0;
591 return value->location.address + value->offset;
592 }
593
594 CORE_ADDR
595 value_raw_address (struct value *value)
596 {
597 if (value->lval == lval_internalvar
598 || value->lval == lval_internalvar_component)
599 return 0;
600 return value->location.address;
601 }
602
603 void
604 set_value_address (struct value *value, CORE_ADDR addr)
605 {
606 gdb_assert (value->lval != lval_internalvar
607 && value->lval != lval_internalvar_component);
608 value->location.address = addr;
609 }
610
611 struct internalvar **
612 deprecated_value_internalvar_hack (struct value *value)
613 {
614 return &value->location.internalvar;
615 }
616
617 struct frame_id *
618 deprecated_value_frame_id_hack (struct value *value)
619 {
620 return &value->frame_id;
621 }
622
623 short *
624 deprecated_value_regnum_hack (struct value *value)
625 {
626 return &value->regnum;
627 }
628
629 int
630 deprecated_value_modifiable (struct value *value)
631 {
632 return value->modifiable;
633 }
634 void
635 deprecated_set_value_modifiable (struct value *value, int modifiable)
636 {
637 value->modifiable = modifiable;
638 }
639 \f
640 /* Return a mark in the value chain. All values allocated after the
641 mark is obtained (except for those released) are subject to being freed
642 if a subsequent value_free_to_mark is passed the mark. */
643 struct value *
644 value_mark (void)
645 {
646 return all_values;
647 }
648
649 /* Take a reference to VAL. VAL will not be deallocated until all
650 references are released. */
651
652 void
653 value_incref (struct value *val)
654 {
655 val->reference_count++;
656 }
657
658 /* Release a reference to VAL, which was acquired with value_incref.
659 This function is also called to deallocate values from the value
660 chain. */
661
662 void
663 value_free (struct value *val)
664 {
665 if (val)
666 {
667 gdb_assert (val->reference_count > 0);
668 val->reference_count--;
669 if (val->reference_count > 0)
670 return;
671
672 /* If there's an associated parent value, drop our reference to
673 it. */
674 if (val->parent != NULL)
675 value_free (val->parent);
676
677 if (VALUE_LVAL (val) == lval_computed)
678 {
679 struct lval_funcs *funcs = val->location.computed.funcs;
680
681 if (funcs->free_closure)
682 funcs->free_closure (val);
683 }
684
685 xfree (val->contents);
686 }
687 xfree (val);
688 }
689
690 /* Free all values allocated since MARK was obtained by value_mark
691 (except for those released). */
692 void
693 value_free_to_mark (struct value *mark)
694 {
695 struct value *val;
696 struct value *next;
697
698 for (val = all_values; val && val != mark; val = next)
699 {
700 next = val->next;
701 value_free (val);
702 }
703 all_values = val;
704 }
705
706 /* Free all the values that have been allocated (except for those released).
707 Call after each command, successful or not.
708 In practice this is called before each command, which is sufficient. */
709
710 void
711 free_all_values (void)
712 {
713 struct value *val;
714 struct value *next;
715
716 for (val = all_values; val; val = next)
717 {
718 next = val->next;
719 value_free (val);
720 }
721
722 all_values = 0;
723 }
724
725 /* Frees all the elements in a chain of values. */
726
727 void
728 free_value_chain (struct value *v)
729 {
730 struct value *next;
731
732 for (; v; v = next)
733 {
734 next = value_next (v);
735 value_free (v);
736 }
737 }
738
739 /* Remove VAL from the chain all_values
740 so it will not be freed automatically. */
741
742 void
743 release_value (struct value *val)
744 {
745 struct value *v;
746
747 if (all_values == val)
748 {
749 all_values = val->next;
750 return;
751 }
752
753 for (v = all_values; v; v = v->next)
754 {
755 if (v->next == val)
756 {
757 v->next = val->next;
758 break;
759 }
760 }
761 }
762
763 /* Release all values up to mark */
764 struct value *
765 value_release_to_mark (struct value *mark)
766 {
767 struct value *val;
768 struct value *next;
769
770 for (val = next = all_values; next; next = next->next)
771 if (next->next == mark)
772 {
773 all_values = next->next;
774 next->next = NULL;
775 return val;
776 }
777 all_values = 0;
778 return val;
779 }
780
781 /* Return a copy of the value ARG.
782 It contains the same contents, for same memory address,
783 but it's a different block of storage. */
784
785 struct value *
786 value_copy (struct value *arg)
787 {
788 struct type *encl_type = value_enclosing_type (arg);
789 struct value *val;
790
791 if (value_lazy (arg))
792 val = allocate_value_lazy (encl_type);
793 else
794 val = allocate_value (encl_type);
795 val->type = arg->type;
796 VALUE_LVAL (val) = VALUE_LVAL (arg);
797 val->location = arg->location;
798 val->offset = arg->offset;
799 val->bitpos = arg->bitpos;
800 val->bitsize = arg->bitsize;
801 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
802 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
803 val->lazy = arg->lazy;
804 val->optimized_out = arg->optimized_out;
805 val->embedded_offset = value_embedded_offset (arg);
806 val->pointed_to_offset = arg->pointed_to_offset;
807 val->modifiable = arg->modifiable;
808 if (!value_lazy (val))
809 {
810 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
811 TYPE_LENGTH (value_enclosing_type (arg)));
812
813 }
814 val->parent = arg->parent;
815 if (val->parent)
816 value_incref (val->parent);
817 if (VALUE_LVAL (val) == lval_computed)
818 {
819 struct lval_funcs *funcs = val->location.computed.funcs;
820
821 if (funcs->copy_closure)
822 val->location.computed.closure = funcs->copy_closure (val);
823 }
824 return val;
825 }
826
827 void
828 set_value_component_location (struct value *component,
829 const struct value *whole)
830 {
831 if (whole->lval == lval_internalvar)
832 VALUE_LVAL (component) = lval_internalvar_component;
833 else
834 VALUE_LVAL (component) = whole->lval;
835
836 component->location = whole->location;
837 if (whole->lval == lval_computed)
838 {
839 struct lval_funcs *funcs = whole->location.computed.funcs;
840
841 if (funcs->copy_closure)
842 component->location.computed.closure = funcs->copy_closure (whole);
843 }
844 }
845
846 \f
847 /* Access to the value history. */
848
849 /* Record a new value in the value history.
850 Returns the absolute history index of the entry.
851 Result of -1 indicates the value was not saved; otherwise it is the
852 value history index of this new item. */
853
854 int
855 record_latest_value (struct value *val)
856 {
857 int i;
858
859 /* We don't want this value to have anything to do with the inferior anymore.
860 In particular, "set $1 = 50" should not affect the variable from which
861 the value was taken, and fast watchpoints should be able to assume that
862 a value on the value history never changes. */
863 if (value_lazy (val))
864 value_fetch_lazy (val);
865 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
866 from. This is a bit dubious, because then *&$1 does not just return $1
867 but the current contents of that location. c'est la vie... */
868 val->modifiable = 0;
869 release_value (val);
870
871 /* Here we treat value_history_count as origin-zero
872 and applying to the value being stored now. */
873
874 i = value_history_count % VALUE_HISTORY_CHUNK;
875 if (i == 0)
876 {
877 struct value_history_chunk *new
878 = (struct value_history_chunk *)
879
880 xmalloc (sizeof (struct value_history_chunk));
881 memset (new->values, 0, sizeof new->values);
882 new->next = value_history_chain;
883 value_history_chain = new;
884 }
885
886 value_history_chain->values[i] = val;
887
888 /* Now we regard value_history_count as origin-one
889 and applying to the value just stored. */
890
891 return ++value_history_count;
892 }
893
894 /* Return a copy of the value in the history with sequence number NUM. */
895
896 struct value *
897 access_value_history (int num)
898 {
899 struct value_history_chunk *chunk;
900 int i;
901 int absnum = num;
902
903 if (absnum <= 0)
904 absnum += value_history_count;
905
906 if (absnum <= 0)
907 {
908 if (num == 0)
909 error (_("The history is empty."));
910 else if (num == 1)
911 error (_("There is only one value in the history."));
912 else
913 error (_("History does not go back to $$%d."), -num);
914 }
915 if (absnum > value_history_count)
916 error (_("History has not yet reached $%d."), absnum);
917
918 absnum--;
919
920 /* Now absnum is always absolute and origin zero. */
921
922 chunk = value_history_chain;
923 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
924 i > 0; i--)
925 chunk = chunk->next;
926
927 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
928 }
929
930 static void
931 show_values (char *num_exp, int from_tty)
932 {
933 int i;
934 struct value *val;
935 static int num = 1;
936
937 if (num_exp)
938 {
939 /* "show values +" should print from the stored position.
940 "show values <exp>" should print around value number <exp>. */
941 if (num_exp[0] != '+' || num_exp[1] != '\0')
942 num = parse_and_eval_long (num_exp) - 5;
943 }
944 else
945 {
946 /* "show values" means print the last 10 values. */
947 num = value_history_count - 9;
948 }
949
950 if (num <= 0)
951 num = 1;
952
953 for (i = num; i < num + 10 && i <= value_history_count; i++)
954 {
955 struct value_print_options opts;
956
957 val = access_value_history (i);
958 printf_filtered (("$%d = "), i);
959 get_user_print_options (&opts);
960 value_print (val, gdb_stdout, &opts);
961 printf_filtered (("\n"));
962 }
963
964 /* The next "show values +" should start after what we just printed. */
965 num += 10;
966
967 /* Hitting just return after this command should do the same thing as
968 "show values +". If num_exp is null, this is unnecessary, since
969 "show values +" is not useful after "show values". */
970 if (from_tty && num_exp)
971 {
972 num_exp[0] = '+';
973 num_exp[1] = '\0';
974 }
975 }
976 \f
977 /* Internal variables. These are variables within the debugger
978 that hold values assigned by debugger commands.
979 The user refers to them with a '$' prefix
980 that does not appear in the variable names stored internally. */
981
982 struct internalvar
983 {
984 struct internalvar *next;
985 char *name;
986
987 /* We support various different kinds of content of an internal variable.
988 enum internalvar_kind specifies the kind, and union internalvar_data
989 provides the data associated with this particular kind. */
990
991 enum internalvar_kind
992 {
993 /* The internal variable is empty. */
994 INTERNALVAR_VOID,
995
996 /* The value of the internal variable is provided directly as
997 a GDB value object. */
998 INTERNALVAR_VALUE,
999
1000 /* A fresh value is computed via a call-back routine on every
1001 access to the internal variable. */
1002 INTERNALVAR_MAKE_VALUE,
1003
1004 /* The internal variable holds a GDB internal convenience function. */
1005 INTERNALVAR_FUNCTION,
1006
1007 /* The variable holds an integer value. */
1008 INTERNALVAR_INTEGER,
1009
1010 /* The variable holds a pointer value. */
1011 INTERNALVAR_POINTER,
1012
1013 /* The variable holds a GDB-provided string. */
1014 INTERNALVAR_STRING,
1015
1016 } kind;
1017
1018 union internalvar_data
1019 {
1020 /* A value object used with INTERNALVAR_VALUE. */
1021 struct value *value;
1022
1023 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1024 internalvar_make_value make_value;
1025
1026 /* The internal function used with INTERNALVAR_FUNCTION. */
1027 struct
1028 {
1029 struct internal_function *function;
1030 /* True if this is the canonical name for the function. */
1031 int canonical;
1032 } fn;
1033
1034 /* An integer value used with INTERNALVAR_INTEGER. */
1035 struct
1036 {
1037 /* If type is non-NULL, it will be used as the type to generate
1038 a value for this internal variable. If type is NULL, a default
1039 integer type for the architecture is used. */
1040 struct type *type;
1041 LONGEST val;
1042 } integer;
1043
1044 /* A pointer value used with INTERNALVAR_POINTER. */
1045 struct
1046 {
1047 struct type *type;
1048 CORE_ADDR val;
1049 } pointer;
1050
1051 /* A string value used with INTERNALVAR_STRING. */
1052 char *string;
1053 } u;
1054 };
1055
1056 static struct internalvar *internalvars;
1057
1058 /* If the variable does not already exist create it and give it the value given.
1059 If no value is given then the default is zero. */
1060 static void
1061 init_if_undefined_command (char* args, int from_tty)
1062 {
1063 struct internalvar* intvar;
1064
1065 /* Parse the expression - this is taken from set_command(). */
1066 struct expression *expr = parse_expression (args);
1067 register struct cleanup *old_chain =
1068 make_cleanup (free_current_contents, &expr);
1069
1070 /* Validate the expression.
1071 Was the expression an assignment?
1072 Or even an expression at all? */
1073 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1074 error (_("Init-if-undefined requires an assignment expression."));
1075
1076 /* Extract the variable from the parsed expression.
1077 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1078 if (expr->elts[1].opcode != OP_INTERNALVAR)
1079 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1080 intvar = expr->elts[2].internalvar;
1081
1082 /* Only evaluate the expression if the lvalue is void.
1083 This may still fail if the expresssion is invalid. */
1084 if (intvar->kind == INTERNALVAR_VOID)
1085 evaluate_expression (expr);
1086
1087 do_cleanups (old_chain);
1088 }
1089
1090
1091 /* Look up an internal variable with name NAME. NAME should not
1092 normally include a dollar sign.
1093
1094 If the specified internal variable does not exist,
1095 the return value is NULL. */
1096
1097 struct internalvar *
1098 lookup_only_internalvar (const char *name)
1099 {
1100 struct internalvar *var;
1101
1102 for (var = internalvars; var; var = var->next)
1103 if (strcmp (var->name, name) == 0)
1104 return var;
1105
1106 return NULL;
1107 }
1108
1109
1110 /* Create an internal variable with name NAME and with a void value.
1111 NAME should not normally include a dollar sign. */
1112
1113 struct internalvar *
1114 create_internalvar (const char *name)
1115 {
1116 struct internalvar *var;
1117
1118 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1119 var->name = concat (name, (char *)NULL);
1120 var->kind = INTERNALVAR_VOID;
1121 var->next = internalvars;
1122 internalvars = var;
1123 return var;
1124 }
1125
1126 /* Create an internal variable with name NAME and register FUN as the
1127 function that value_of_internalvar uses to create a value whenever
1128 this variable is referenced. NAME should not normally include a
1129 dollar sign. */
1130
1131 struct internalvar *
1132 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1133 {
1134 struct internalvar *var = create_internalvar (name);
1135
1136 var->kind = INTERNALVAR_MAKE_VALUE;
1137 var->u.make_value = fun;
1138 return var;
1139 }
1140
1141 /* Look up an internal variable with name NAME. NAME should not
1142 normally include a dollar sign.
1143
1144 If the specified internal variable does not exist,
1145 one is created, with a void value. */
1146
1147 struct internalvar *
1148 lookup_internalvar (const char *name)
1149 {
1150 struct internalvar *var;
1151
1152 var = lookup_only_internalvar (name);
1153 if (var)
1154 return var;
1155
1156 return create_internalvar (name);
1157 }
1158
1159 /* Return current value of internal variable VAR. For variables that
1160 are not inherently typed, use a value type appropriate for GDBARCH. */
1161
1162 struct value *
1163 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1164 {
1165 struct value *val;
1166
1167 switch (var->kind)
1168 {
1169 case INTERNALVAR_VOID:
1170 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1171 break;
1172
1173 case INTERNALVAR_FUNCTION:
1174 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1175 break;
1176
1177 case INTERNALVAR_INTEGER:
1178 if (!var->u.integer.type)
1179 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1180 var->u.integer.val);
1181 else
1182 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1183 break;
1184
1185 case INTERNALVAR_POINTER:
1186 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
1187 break;
1188
1189 case INTERNALVAR_STRING:
1190 val = value_cstring (var->u.string, strlen (var->u.string),
1191 builtin_type (gdbarch)->builtin_char);
1192 break;
1193
1194 case INTERNALVAR_VALUE:
1195 val = value_copy (var->u.value);
1196 if (value_lazy (val))
1197 value_fetch_lazy (val);
1198 break;
1199
1200 case INTERNALVAR_MAKE_VALUE:
1201 val = (*var->u.make_value) (gdbarch, var);
1202 break;
1203
1204 default:
1205 internal_error (__FILE__, __LINE__, "bad kind");
1206 }
1207
1208 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1209 on this value go back to affect the original internal variable.
1210
1211 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1212 no underlying modifyable state in the internal variable.
1213
1214 Likewise, if the variable's value is a computed lvalue, we want
1215 references to it to produce another computed lvalue, where
1216 references and assignments actually operate through the
1217 computed value's functions.
1218
1219 This means that internal variables with computed values
1220 behave a little differently from other internal variables:
1221 assignments to them don't just replace the previous value
1222 altogether. At the moment, this seems like the behavior we
1223 want. */
1224
1225 if (var->kind != INTERNALVAR_MAKE_VALUE
1226 && val->lval != lval_computed)
1227 {
1228 VALUE_LVAL (val) = lval_internalvar;
1229 VALUE_INTERNALVAR (val) = var;
1230 }
1231
1232 return val;
1233 }
1234
1235 int
1236 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1237 {
1238 switch (var->kind)
1239 {
1240 case INTERNALVAR_INTEGER:
1241 *result = var->u.integer.val;
1242 return 1;
1243
1244 default:
1245 return 0;
1246 }
1247 }
1248
1249 static int
1250 get_internalvar_function (struct internalvar *var,
1251 struct internal_function **result)
1252 {
1253 switch (var->kind)
1254 {
1255 case INTERNALVAR_FUNCTION:
1256 *result = var->u.fn.function;
1257 return 1;
1258
1259 default:
1260 return 0;
1261 }
1262 }
1263
1264 void
1265 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1266 int bitsize, struct value *newval)
1267 {
1268 gdb_byte *addr;
1269
1270 switch (var->kind)
1271 {
1272 case INTERNALVAR_VALUE:
1273 addr = value_contents_writeable (var->u.value);
1274
1275 if (bitsize)
1276 modify_field (value_type (var->u.value), addr + offset,
1277 value_as_long (newval), bitpos, bitsize);
1278 else
1279 memcpy (addr + offset, value_contents (newval),
1280 TYPE_LENGTH (value_type (newval)));
1281 break;
1282
1283 default:
1284 /* We can never get a component of any other kind. */
1285 internal_error (__FILE__, __LINE__, "set_internalvar_component");
1286 }
1287 }
1288
1289 void
1290 set_internalvar (struct internalvar *var, struct value *val)
1291 {
1292 enum internalvar_kind new_kind;
1293 union internalvar_data new_data = { 0 };
1294
1295 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1296 error (_("Cannot overwrite convenience function %s"), var->name);
1297
1298 /* Prepare new contents. */
1299 switch (TYPE_CODE (check_typedef (value_type (val))))
1300 {
1301 case TYPE_CODE_VOID:
1302 new_kind = INTERNALVAR_VOID;
1303 break;
1304
1305 case TYPE_CODE_INTERNAL_FUNCTION:
1306 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1307 new_kind = INTERNALVAR_FUNCTION;
1308 get_internalvar_function (VALUE_INTERNALVAR (val),
1309 &new_data.fn.function);
1310 /* Copies created here are never canonical. */
1311 break;
1312
1313 case TYPE_CODE_INT:
1314 new_kind = INTERNALVAR_INTEGER;
1315 new_data.integer.type = value_type (val);
1316 new_data.integer.val = value_as_long (val);
1317 break;
1318
1319 case TYPE_CODE_PTR:
1320 new_kind = INTERNALVAR_POINTER;
1321 new_data.pointer.type = value_type (val);
1322 new_data.pointer.val = value_as_address (val);
1323 break;
1324
1325 default:
1326 new_kind = INTERNALVAR_VALUE;
1327 new_data.value = value_copy (val);
1328 new_data.value->modifiable = 1;
1329
1330 /* Force the value to be fetched from the target now, to avoid problems
1331 later when this internalvar is referenced and the target is gone or
1332 has changed. */
1333 if (value_lazy (new_data.value))
1334 value_fetch_lazy (new_data.value);
1335
1336 /* Release the value from the value chain to prevent it from being
1337 deleted by free_all_values. From here on this function should not
1338 call error () until new_data is installed into the var->u to avoid
1339 leaking memory. */
1340 release_value (new_data.value);
1341 break;
1342 }
1343
1344 /* Clean up old contents. */
1345 clear_internalvar (var);
1346
1347 /* Switch over. */
1348 var->kind = new_kind;
1349 var->u = new_data;
1350 /* End code which must not call error(). */
1351 }
1352
1353 void
1354 set_internalvar_integer (struct internalvar *var, LONGEST l)
1355 {
1356 /* Clean up old contents. */
1357 clear_internalvar (var);
1358
1359 var->kind = INTERNALVAR_INTEGER;
1360 var->u.integer.type = NULL;
1361 var->u.integer.val = l;
1362 }
1363
1364 void
1365 set_internalvar_string (struct internalvar *var, const char *string)
1366 {
1367 /* Clean up old contents. */
1368 clear_internalvar (var);
1369
1370 var->kind = INTERNALVAR_STRING;
1371 var->u.string = xstrdup (string);
1372 }
1373
1374 static void
1375 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1376 {
1377 /* Clean up old contents. */
1378 clear_internalvar (var);
1379
1380 var->kind = INTERNALVAR_FUNCTION;
1381 var->u.fn.function = f;
1382 var->u.fn.canonical = 1;
1383 /* Variables installed here are always the canonical version. */
1384 }
1385
1386 void
1387 clear_internalvar (struct internalvar *var)
1388 {
1389 /* Clean up old contents. */
1390 switch (var->kind)
1391 {
1392 case INTERNALVAR_VALUE:
1393 value_free (var->u.value);
1394 break;
1395
1396 case INTERNALVAR_STRING:
1397 xfree (var->u.string);
1398 break;
1399
1400 default:
1401 break;
1402 }
1403
1404 /* Reset to void kind. */
1405 var->kind = INTERNALVAR_VOID;
1406 }
1407
1408 char *
1409 internalvar_name (struct internalvar *var)
1410 {
1411 return var->name;
1412 }
1413
1414 static struct internal_function *
1415 create_internal_function (const char *name,
1416 internal_function_fn handler, void *cookie)
1417 {
1418 struct internal_function *ifn = XNEW (struct internal_function);
1419
1420 ifn->name = xstrdup (name);
1421 ifn->handler = handler;
1422 ifn->cookie = cookie;
1423 return ifn;
1424 }
1425
1426 char *
1427 value_internal_function_name (struct value *val)
1428 {
1429 struct internal_function *ifn;
1430 int result;
1431
1432 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1433 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1434 gdb_assert (result);
1435
1436 return ifn->name;
1437 }
1438
1439 struct value *
1440 call_internal_function (struct gdbarch *gdbarch,
1441 const struct language_defn *language,
1442 struct value *func, int argc, struct value **argv)
1443 {
1444 struct internal_function *ifn;
1445 int result;
1446
1447 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1448 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1449 gdb_assert (result);
1450
1451 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1452 }
1453
1454 /* The 'function' command. This does nothing -- it is just a
1455 placeholder to let "help function NAME" work. This is also used as
1456 the implementation of the sub-command that is created when
1457 registering an internal function. */
1458 static void
1459 function_command (char *command, int from_tty)
1460 {
1461 /* Do nothing. */
1462 }
1463
1464 /* Clean up if an internal function's command is destroyed. */
1465 static void
1466 function_destroyer (struct cmd_list_element *self, void *ignore)
1467 {
1468 xfree (self->name);
1469 xfree (self->doc);
1470 }
1471
1472 /* Add a new internal function. NAME is the name of the function; DOC
1473 is a documentation string describing the function. HANDLER is
1474 called when the function is invoked. COOKIE is an arbitrary
1475 pointer which is passed to HANDLER and is intended for "user
1476 data". */
1477 void
1478 add_internal_function (const char *name, const char *doc,
1479 internal_function_fn handler, void *cookie)
1480 {
1481 struct cmd_list_element *cmd;
1482 struct internal_function *ifn;
1483 struct internalvar *var = lookup_internalvar (name);
1484
1485 ifn = create_internal_function (name, handler, cookie);
1486 set_internalvar_function (var, ifn);
1487
1488 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1489 &functionlist);
1490 cmd->destroyer = function_destroyer;
1491 }
1492
1493 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1494 prevent cycles / duplicates. */
1495
1496 void
1497 preserve_one_value (struct value *value, struct objfile *objfile,
1498 htab_t copied_types)
1499 {
1500 if (TYPE_OBJFILE (value->type) == objfile)
1501 value->type = copy_type_recursive (objfile, value->type, copied_types);
1502
1503 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1504 value->enclosing_type = copy_type_recursive (objfile,
1505 value->enclosing_type,
1506 copied_types);
1507 }
1508
1509 /* Likewise for internal variable VAR. */
1510
1511 static void
1512 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1513 htab_t copied_types)
1514 {
1515 switch (var->kind)
1516 {
1517 case INTERNALVAR_INTEGER:
1518 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1519 var->u.integer.type
1520 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1521 break;
1522
1523 case INTERNALVAR_POINTER:
1524 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1525 var->u.pointer.type
1526 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
1527 break;
1528
1529 case INTERNALVAR_VALUE:
1530 preserve_one_value (var->u.value, objfile, copied_types);
1531 break;
1532 }
1533 }
1534
1535 /* Update the internal variables and value history when OBJFILE is
1536 discarded; we must copy the types out of the objfile. New global types
1537 will be created for every convenience variable which currently points to
1538 this objfile's types, and the convenience variables will be adjusted to
1539 use the new global types. */
1540
1541 void
1542 preserve_values (struct objfile *objfile)
1543 {
1544 htab_t copied_types;
1545 struct value_history_chunk *cur;
1546 struct internalvar *var;
1547 int i;
1548
1549 /* Create the hash table. We allocate on the objfile's obstack, since
1550 it is soon to be deleted. */
1551 copied_types = create_copied_types_hash (objfile);
1552
1553 for (cur = value_history_chain; cur; cur = cur->next)
1554 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1555 if (cur->values[i])
1556 preserve_one_value (cur->values[i], objfile, copied_types);
1557
1558 for (var = internalvars; var; var = var->next)
1559 preserve_one_internalvar (var, objfile, copied_types);
1560
1561 preserve_python_values (objfile, copied_types);
1562
1563 htab_delete (copied_types);
1564 }
1565
1566 static void
1567 show_convenience (char *ignore, int from_tty)
1568 {
1569 struct gdbarch *gdbarch = get_current_arch ();
1570 struct internalvar *var;
1571 int varseen = 0;
1572 struct value_print_options opts;
1573
1574 get_user_print_options (&opts);
1575 for (var = internalvars; var; var = var->next)
1576 {
1577 if (!varseen)
1578 {
1579 varseen = 1;
1580 }
1581 printf_filtered (("$%s = "), var->name);
1582 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1583 &opts);
1584 printf_filtered (("\n"));
1585 }
1586 if (!varseen)
1587 printf_unfiltered (_("\
1588 No debugger convenience variables now defined.\n\
1589 Convenience variables have names starting with \"$\";\n\
1590 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1591 }
1592 \f
1593 /* Extract a value as a C number (either long or double).
1594 Knows how to convert fixed values to double, or
1595 floating values to long.
1596 Does not deallocate the value. */
1597
1598 LONGEST
1599 value_as_long (struct value *val)
1600 {
1601 /* This coerces arrays and functions, which is necessary (e.g.
1602 in disassemble_command). It also dereferences references, which
1603 I suspect is the most logical thing to do. */
1604 val = coerce_array (val);
1605 return unpack_long (value_type (val), value_contents (val));
1606 }
1607
1608 DOUBLEST
1609 value_as_double (struct value *val)
1610 {
1611 DOUBLEST foo;
1612 int inv;
1613
1614 foo = unpack_double (value_type (val), value_contents (val), &inv);
1615 if (inv)
1616 error (_("Invalid floating value found in program."));
1617 return foo;
1618 }
1619
1620 /* Extract a value as a C pointer. Does not deallocate the value.
1621 Note that val's type may not actually be a pointer; value_as_long
1622 handles all the cases. */
1623 CORE_ADDR
1624 value_as_address (struct value *val)
1625 {
1626 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1627
1628 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1629 whether we want this to be true eventually. */
1630 #if 0
1631 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1632 non-address (e.g. argument to "signal", "info break", etc.), or
1633 for pointers to char, in which the low bits *are* significant. */
1634 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1635 #else
1636
1637 /* There are several targets (IA-64, PowerPC, and others) which
1638 don't represent pointers to functions as simply the address of
1639 the function's entry point. For example, on the IA-64, a
1640 function pointer points to a two-word descriptor, generated by
1641 the linker, which contains the function's entry point, and the
1642 value the IA-64 "global pointer" register should have --- to
1643 support position-independent code. The linker generates
1644 descriptors only for those functions whose addresses are taken.
1645
1646 On such targets, it's difficult for GDB to convert an arbitrary
1647 function address into a function pointer; it has to either find
1648 an existing descriptor for that function, or call malloc and
1649 build its own. On some targets, it is impossible for GDB to
1650 build a descriptor at all: the descriptor must contain a jump
1651 instruction; data memory cannot be executed; and code memory
1652 cannot be modified.
1653
1654 Upon entry to this function, if VAL is a value of type `function'
1655 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1656 value_address (val) is the address of the function. This is what
1657 you'll get if you evaluate an expression like `main'. The call
1658 to COERCE_ARRAY below actually does all the usual unary
1659 conversions, which includes converting values of type `function'
1660 to `pointer to function'. This is the challenging conversion
1661 discussed above. Then, `unpack_long' will convert that pointer
1662 back into an address.
1663
1664 So, suppose the user types `disassemble foo' on an architecture
1665 with a strange function pointer representation, on which GDB
1666 cannot build its own descriptors, and suppose further that `foo'
1667 has no linker-built descriptor. The address->pointer conversion
1668 will signal an error and prevent the command from running, even
1669 though the next step would have been to convert the pointer
1670 directly back into the same address.
1671
1672 The following shortcut avoids this whole mess. If VAL is a
1673 function, just return its address directly. */
1674 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1675 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1676 return value_address (val);
1677
1678 val = coerce_array (val);
1679
1680 /* Some architectures (e.g. Harvard), map instruction and data
1681 addresses onto a single large unified address space. For
1682 instance: An architecture may consider a large integer in the
1683 range 0x10000000 .. 0x1000ffff to already represent a data
1684 addresses (hence not need a pointer to address conversion) while
1685 a small integer would still need to be converted integer to
1686 pointer to address. Just assume such architectures handle all
1687 integer conversions in a single function. */
1688
1689 /* JimB writes:
1690
1691 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1692 must admonish GDB hackers to make sure its behavior matches the
1693 compiler's, whenever possible.
1694
1695 In general, I think GDB should evaluate expressions the same way
1696 the compiler does. When the user copies an expression out of
1697 their source code and hands it to a `print' command, they should
1698 get the same value the compiler would have computed. Any
1699 deviation from this rule can cause major confusion and annoyance,
1700 and needs to be justified carefully. In other words, GDB doesn't
1701 really have the freedom to do these conversions in clever and
1702 useful ways.
1703
1704 AndrewC pointed out that users aren't complaining about how GDB
1705 casts integers to pointers; they are complaining that they can't
1706 take an address from a disassembly listing and give it to `x/i'.
1707 This is certainly important.
1708
1709 Adding an architecture method like integer_to_address() certainly
1710 makes it possible for GDB to "get it right" in all circumstances
1711 --- the target has complete control over how things get done, so
1712 people can Do The Right Thing for their target without breaking
1713 anyone else. The standard doesn't specify how integers get
1714 converted to pointers; usually, the ABI doesn't either, but
1715 ABI-specific code is a more reasonable place to handle it. */
1716
1717 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1718 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1719 && gdbarch_integer_to_address_p (gdbarch))
1720 return gdbarch_integer_to_address (gdbarch, value_type (val),
1721 value_contents (val));
1722
1723 return unpack_long (value_type (val), value_contents (val));
1724 #endif
1725 }
1726 \f
1727 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1728 as a long, or as a double, assuming the raw data is described
1729 by type TYPE. Knows how to convert different sizes of values
1730 and can convert between fixed and floating point. We don't assume
1731 any alignment for the raw data. Return value is in host byte order.
1732
1733 If you want functions and arrays to be coerced to pointers, and
1734 references to be dereferenced, call value_as_long() instead.
1735
1736 C++: It is assumed that the front-end has taken care of
1737 all matters concerning pointers to members. A pointer
1738 to member which reaches here is considered to be equivalent
1739 to an INT (or some size). After all, it is only an offset. */
1740
1741 LONGEST
1742 unpack_long (struct type *type, const gdb_byte *valaddr)
1743 {
1744 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1745 enum type_code code = TYPE_CODE (type);
1746 int len = TYPE_LENGTH (type);
1747 int nosign = TYPE_UNSIGNED (type);
1748
1749 switch (code)
1750 {
1751 case TYPE_CODE_TYPEDEF:
1752 return unpack_long (check_typedef (type), valaddr);
1753 case TYPE_CODE_ENUM:
1754 case TYPE_CODE_FLAGS:
1755 case TYPE_CODE_BOOL:
1756 case TYPE_CODE_INT:
1757 case TYPE_CODE_CHAR:
1758 case TYPE_CODE_RANGE:
1759 case TYPE_CODE_MEMBERPTR:
1760 if (nosign)
1761 return extract_unsigned_integer (valaddr, len, byte_order);
1762 else
1763 return extract_signed_integer (valaddr, len, byte_order);
1764
1765 case TYPE_CODE_FLT:
1766 return extract_typed_floating (valaddr, type);
1767
1768 case TYPE_CODE_DECFLOAT:
1769 /* libdecnumber has a function to convert from decimal to integer, but
1770 it doesn't work when the decimal number has a fractional part. */
1771 return decimal_to_doublest (valaddr, len, byte_order);
1772
1773 case TYPE_CODE_PTR:
1774 case TYPE_CODE_REF:
1775 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1776 whether we want this to be true eventually. */
1777 return extract_typed_address (valaddr, type);
1778
1779 default:
1780 error (_("Value can't be converted to integer."));
1781 }
1782 return 0; /* Placate lint. */
1783 }
1784
1785 /* Return a double value from the specified type and address.
1786 INVP points to an int which is set to 0 for valid value,
1787 1 for invalid value (bad float format). In either case,
1788 the returned double is OK to use. Argument is in target
1789 format, result is in host format. */
1790
1791 DOUBLEST
1792 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1793 {
1794 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1795 enum type_code code;
1796 int len;
1797 int nosign;
1798
1799 *invp = 0; /* Assume valid. */
1800 CHECK_TYPEDEF (type);
1801 code = TYPE_CODE (type);
1802 len = TYPE_LENGTH (type);
1803 nosign = TYPE_UNSIGNED (type);
1804 if (code == TYPE_CODE_FLT)
1805 {
1806 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1807 floating-point value was valid (using the macro
1808 INVALID_FLOAT). That test/macro have been removed.
1809
1810 It turns out that only the VAX defined this macro and then
1811 only in a non-portable way. Fixing the portability problem
1812 wouldn't help since the VAX floating-point code is also badly
1813 bit-rotten. The target needs to add definitions for the
1814 methods gdbarch_float_format and gdbarch_double_format - these
1815 exactly describe the target floating-point format. The
1816 problem here is that the corresponding floatformat_vax_f and
1817 floatformat_vax_d values these methods should be set to are
1818 also not defined either. Oops!
1819
1820 Hopefully someone will add both the missing floatformat
1821 definitions and the new cases for floatformat_is_valid (). */
1822
1823 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1824 {
1825 *invp = 1;
1826 return 0.0;
1827 }
1828
1829 return extract_typed_floating (valaddr, type);
1830 }
1831 else if (code == TYPE_CODE_DECFLOAT)
1832 return decimal_to_doublest (valaddr, len, byte_order);
1833 else if (nosign)
1834 {
1835 /* Unsigned -- be sure we compensate for signed LONGEST. */
1836 return (ULONGEST) unpack_long (type, valaddr);
1837 }
1838 else
1839 {
1840 /* Signed -- we are OK with unpack_long. */
1841 return unpack_long (type, valaddr);
1842 }
1843 }
1844
1845 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1846 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1847 We don't assume any alignment for the raw data. Return value is in
1848 host byte order.
1849
1850 If you want functions and arrays to be coerced to pointers, and
1851 references to be dereferenced, call value_as_address() instead.
1852
1853 C++: It is assumed that the front-end has taken care of
1854 all matters concerning pointers to members. A pointer
1855 to member which reaches here is considered to be equivalent
1856 to an INT (or some size). After all, it is only an offset. */
1857
1858 CORE_ADDR
1859 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1860 {
1861 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1862 whether we want this to be true eventually. */
1863 return unpack_long (type, valaddr);
1864 }
1865
1866 \f
1867 /* Get the value of the FIELDNO'th field (which must be static) of
1868 TYPE. Return NULL if the field doesn't exist or has been
1869 optimized out. */
1870
1871 struct value *
1872 value_static_field (struct type *type, int fieldno)
1873 {
1874 struct value *retval;
1875
1876 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
1877 {
1878 case FIELD_LOC_KIND_PHYSADDR:
1879 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1880 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1881 break;
1882 case FIELD_LOC_KIND_PHYSNAME:
1883 {
1884 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1885 /*TYPE_FIELD_NAME (type, fieldno);*/
1886 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1887
1888 if (sym == NULL)
1889 {
1890 /* With some compilers, e.g. HP aCC, static data members are
1891 reported as non-debuggable symbols */
1892 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
1893 NULL, NULL);
1894
1895 if (!msym)
1896 return NULL;
1897 else
1898 {
1899 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1900 SYMBOL_VALUE_ADDRESS (msym));
1901 }
1902 }
1903 else
1904 {
1905 /* SYM should never have a SYMBOL_CLASS which will require
1906 read_var_value to use the FRAME parameter. */
1907 if (symbol_read_needs_frame (sym))
1908 warning (_("static field's value depends on the current "
1909 "frame - bad debug info?"));
1910 retval = read_var_value (sym, NULL);
1911 }
1912 if (retval && VALUE_LVAL (retval) == lval_memory)
1913 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1914 value_address (retval));
1915 break;
1916 }
1917 default:
1918 gdb_assert (0);
1919 }
1920
1921 return retval;
1922 }
1923
1924 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1925 You have to be careful here, since the size of the data area for the value
1926 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1927 than the old enclosing type, you have to allocate more space for the data.
1928 The return value is a pointer to the new version of this value structure. */
1929
1930 struct value *
1931 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1932 {
1933 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1934 val->contents =
1935 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1936
1937 val->enclosing_type = new_encl_type;
1938 return val;
1939 }
1940
1941 /* Given a value ARG1 (offset by OFFSET bytes)
1942 of a struct or union type ARG_TYPE,
1943 extract and return the value of one of its (non-static) fields.
1944 FIELDNO says which field. */
1945
1946 struct value *
1947 value_primitive_field (struct value *arg1, int offset,
1948 int fieldno, struct type *arg_type)
1949 {
1950 struct value *v;
1951 struct type *type;
1952
1953 CHECK_TYPEDEF (arg_type);
1954 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1955
1956 /* Call check_typedef on our type to make sure that, if TYPE
1957 is a TYPE_CODE_TYPEDEF, its length is set to the length
1958 of the target type instead of zero. However, we do not
1959 replace the typedef type by the target type, because we want
1960 to keep the typedef in order to be able to print the type
1961 description correctly. */
1962 check_typedef (type);
1963
1964 /* Handle packed fields */
1965
1966 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1967 {
1968 /* Create a new value for the bitfield, with bitpos and bitsize
1969 set. If possible, arrange offset and bitpos so that we can
1970 do a single aligned read of the size of the containing type.
1971 Otherwise, adjust offset to the byte containing the first
1972 bit. Assume that the address, offset, and embedded offset
1973 are sufficiently aligned. */
1974 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1975 int container_bitsize = TYPE_LENGTH (type) * 8;
1976
1977 v = allocate_value_lazy (type);
1978 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1979 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1980 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1981 v->bitpos = bitpos % container_bitsize;
1982 else
1983 v->bitpos = bitpos % 8;
1984 v->offset = value_embedded_offset (arg1)
1985 + (bitpos - v->bitpos) / 8;
1986 v->parent = arg1;
1987 value_incref (v->parent);
1988 if (!value_lazy (arg1))
1989 value_fetch_lazy (v);
1990 }
1991 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1992 {
1993 /* This field is actually a base subobject, so preserve the
1994 entire object's contents for later references to virtual
1995 bases, etc. */
1996
1997 /* Lazy register values with offsets are not supported. */
1998 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1999 value_fetch_lazy (arg1);
2000
2001 if (value_lazy (arg1))
2002 v = allocate_value_lazy (value_enclosing_type (arg1));
2003 else
2004 {
2005 v = allocate_value (value_enclosing_type (arg1));
2006 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
2007 TYPE_LENGTH (value_enclosing_type (arg1)));
2008 }
2009 v->type = type;
2010 v->offset = value_offset (arg1);
2011 v->embedded_offset = (offset + value_embedded_offset (arg1)
2012 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
2013 }
2014 else
2015 {
2016 /* Plain old data member */
2017 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2018
2019 /* Lazy register values with offsets are not supported. */
2020 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2021 value_fetch_lazy (arg1);
2022
2023 if (value_lazy (arg1))
2024 v = allocate_value_lazy (type);
2025 else
2026 {
2027 v = allocate_value (type);
2028 memcpy (value_contents_raw (v),
2029 value_contents_raw (arg1) + offset,
2030 TYPE_LENGTH (type));
2031 }
2032 v->offset = (value_offset (arg1) + offset
2033 + value_embedded_offset (arg1));
2034 }
2035 set_value_component_location (v, arg1);
2036 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2037 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2038 return v;
2039 }
2040
2041 /* Given a value ARG1 of a struct or union type,
2042 extract and return the value of one of its (non-static) fields.
2043 FIELDNO says which field. */
2044
2045 struct value *
2046 value_field (struct value *arg1, int fieldno)
2047 {
2048 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2049 }
2050
2051 /* Return a non-virtual function as a value.
2052 F is the list of member functions which contains the desired method.
2053 J is an index into F which provides the desired method.
2054
2055 We only use the symbol for its address, so be happy with either a
2056 full symbol or a minimal symbol.
2057 */
2058
2059 struct value *
2060 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
2061 int offset)
2062 {
2063 struct value *v;
2064 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2065 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2066 struct symbol *sym;
2067 struct minimal_symbol *msym;
2068
2069 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2070 if (sym != NULL)
2071 {
2072 msym = NULL;
2073 }
2074 else
2075 {
2076 gdb_assert (sym == NULL);
2077 msym = lookup_minimal_symbol (physname, NULL, NULL);
2078 if (msym == NULL)
2079 return NULL;
2080 }
2081
2082 v = allocate_value (ftype);
2083 if (sym)
2084 {
2085 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2086 }
2087 else
2088 {
2089 /* The minimal symbol might point to a function descriptor;
2090 resolve it to the actual code address instead. */
2091 struct objfile *objfile = msymbol_objfile (msym);
2092 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2093
2094 set_value_address (v,
2095 gdbarch_convert_from_func_ptr_addr
2096 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2097 }
2098
2099 if (arg1p)
2100 {
2101 if (type != value_type (*arg1p))
2102 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2103 value_addr (*arg1p)));
2104
2105 /* Move the `this' pointer according to the offset.
2106 VALUE_OFFSET (*arg1p) += offset;
2107 */
2108 }
2109
2110 return v;
2111 }
2112
2113 \f
2114 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2115 object at VALADDR. The bitfield starts at BITPOS bits and contains
2116 BITSIZE bits.
2117
2118 Extracting bits depends on endianness of the machine. Compute the
2119 number of least significant bits to discard. For big endian machines,
2120 we compute the total number of bits in the anonymous object, subtract
2121 off the bit count from the MSB of the object to the MSB of the
2122 bitfield, then the size of the bitfield, which leaves the LSB discard
2123 count. For little endian machines, the discard count is simply the
2124 number of bits from the LSB of the anonymous object to the LSB of the
2125 bitfield.
2126
2127 If the field is signed, we also do sign extension. */
2128
2129 LONGEST
2130 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2131 int bitpos, int bitsize)
2132 {
2133 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2134 ULONGEST val;
2135 ULONGEST valmask;
2136 int lsbcount;
2137 int bytes_read;
2138
2139 /* Read the minimum number of bytes required; there may not be
2140 enough bytes to read an entire ULONGEST. */
2141 CHECK_TYPEDEF (field_type);
2142 if (bitsize)
2143 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2144 else
2145 bytes_read = TYPE_LENGTH (field_type);
2146
2147 val = extract_unsigned_integer (valaddr + bitpos / 8,
2148 bytes_read, byte_order);
2149
2150 /* Extract bits. See comment above. */
2151
2152 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2153 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2154 else
2155 lsbcount = (bitpos % 8);
2156 val >>= lsbcount;
2157
2158 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2159 If the field is signed, and is negative, then sign extend. */
2160
2161 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2162 {
2163 valmask = (((ULONGEST) 1) << bitsize) - 1;
2164 val &= valmask;
2165 if (!TYPE_UNSIGNED (field_type))
2166 {
2167 if (val & (valmask ^ (valmask >> 1)))
2168 {
2169 val |= ~valmask;
2170 }
2171 }
2172 }
2173 return (val);
2174 }
2175
2176 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2177 VALADDR. See unpack_bits_as_long for more details. */
2178
2179 LONGEST
2180 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2181 {
2182 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2183 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2184 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2185
2186 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2187 }
2188
2189 /* Modify the value of a bitfield. ADDR points to a block of memory in
2190 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2191 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2192 indicate which bits (in target bit order) comprise the bitfield.
2193 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2194 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2195
2196 void
2197 modify_field (struct type *type, gdb_byte *addr,
2198 LONGEST fieldval, int bitpos, int bitsize)
2199 {
2200 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2201 ULONGEST oword;
2202 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2203
2204 /* If a negative fieldval fits in the field in question, chop
2205 off the sign extension bits. */
2206 if ((~fieldval & ~(mask >> 1)) == 0)
2207 fieldval &= mask;
2208
2209 /* Warn if value is too big to fit in the field in question. */
2210 if (0 != (fieldval & ~mask))
2211 {
2212 /* FIXME: would like to include fieldval in the message, but
2213 we don't have a sprintf_longest. */
2214 warning (_("Value does not fit in %d bits."), bitsize);
2215
2216 /* Truncate it, otherwise adjoining fields may be corrupted. */
2217 fieldval &= mask;
2218 }
2219
2220 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
2221
2222 /* Shifting for bit field depends on endianness of the target machine. */
2223 if (gdbarch_bits_big_endian (get_type_arch (type)))
2224 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2225
2226 oword &= ~(mask << bitpos);
2227 oword |= fieldval << bitpos;
2228
2229 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
2230 }
2231 \f
2232 /* Pack NUM into BUF using a target format of TYPE. */
2233
2234 void
2235 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2236 {
2237 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2238 int len;
2239
2240 type = check_typedef (type);
2241 len = TYPE_LENGTH (type);
2242
2243 switch (TYPE_CODE (type))
2244 {
2245 case TYPE_CODE_INT:
2246 case TYPE_CODE_CHAR:
2247 case TYPE_CODE_ENUM:
2248 case TYPE_CODE_FLAGS:
2249 case TYPE_CODE_BOOL:
2250 case TYPE_CODE_RANGE:
2251 case TYPE_CODE_MEMBERPTR:
2252 store_signed_integer (buf, len, byte_order, num);
2253 break;
2254
2255 case TYPE_CODE_REF:
2256 case TYPE_CODE_PTR:
2257 store_typed_address (buf, type, (CORE_ADDR) num);
2258 break;
2259
2260 default:
2261 error (_("Unexpected type (%d) encountered for integer constant."),
2262 TYPE_CODE (type));
2263 }
2264 }
2265
2266
2267 /* Pack NUM into BUF using a target format of TYPE. */
2268
2269 void
2270 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2271 {
2272 int len;
2273 enum bfd_endian byte_order;
2274
2275 type = check_typedef (type);
2276 len = TYPE_LENGTH (type);
2277 byte_order = gdbarch_byte_order (get_type_arch (type));
2278
2279 switch (TYPE_CODE (type))
2280 {
2281 case TYPE_CODE_INT:
2282 case TYPE_CODE_CHAR:
2283 case TYPE_CODE_ENUM:
2284 case TYPE_CODE_FLAGS:
2285 case TYPE_CODE_BOOL:
2286 case TYPE_CODE_RANGE:
2287 case TYPE_CODE_MEMBERPTR:
2288 store_unsigned_integer (buf, len, byte_order, num);
2289 break;
2290
2291 case TYPE_CODE_REF:
2292 case TYPE_CODE_PTR:
2293 store_typed_address (buf, type, (CORE_ADDR) num);
2294 break;
2295
2296 default:
2297 error (_("\
2298 Unexpected type (%d) encountered for unsigned integer constant."),
2299 TYPE_CODE (type));
2300 }
2301 }
2302
2303
2304 /* Convert C numbers into newly allocated values. */
2305
2306 struct value *
2307 value_from_longest (struct type *type, LONGEST num)
2308 {
2309 struct value *val = allocate_value (type);
2310
2311 pack_long (value_contents_raw (val), type, num);
2312 return val;
2313 }
2314
2315
2316 /* Convert C unsigned numbers into newly allocated values. */
2317
2318 struct value *
2319 value_from_ulongest (struct type *type, ULONGEST num)
2320 {
2321 struct value *val = allocate_value (type);
2322
2323 pack_unsigned_long (value_contents_raw (val), type, num);
2324
2325 return val;
2326 }
2327
2328
2329 /* Create a value representing a pointer of type TYPE to the address
2330 ADDR. */
2331 struct value *
2332 value_from_pointer (struct type *type, CORE_ADDR addr)
2333 {
2334 struct value *val = allocate_value (type);
2335
2336 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2337 return val;
2338 }
2339
2340
2341 /* Create a value of type TYPE whose contents come from VALADDR, if it
2342 is non-null, and whose memory address (in the inferior) is
2343 ADDRESS. */
2344
2345 struct value *
2346 value_from_contents_and_address (struct type *type,
2347 const gdb_byte *valaddr,
2348 CORE_ADDR address)
2349 {
2350 struct value *v = allocate_value (type);
2351
2352 if (valaddr == NULL)
2353 set_value_lazy (v, 1);
2354 else
2355 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2356 set_value_address (v, address);
2357 VALUE_LVAL (v) = lval_memory;
2358 return v;
2359 }
2360
2361 struct value *
2362 value_from_double (struct type *type, DOUBLEST num)
2363 {
2364 struct value *val = allocate_value (type);
2365 struct type *base_type = check_typedef (type);
2366 enum type_code code = TYPE_CODE (base_type);
2367
2368 if (code == TYPE_CODE_FLT)
2369 {
2370 store_typed_floating (value_contents_raw (val), base_type, num);
2371 }
2372 else
2373 error (_("Unexpected type encountered for floating constant."));
2374
2375 return val;
2376 }
2377
2378 struct value *
2379 value_from_decfloat (struct type *type, const gdb_byte *dec)
2380 {
2381 struct value *val = allocate_value (type);
2382
2383 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2384 return val;
2385 }
2386
2387 struct value *
2388 coerce_ref (struct value *arg)
2389 {
2390 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2391
2392 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2393 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2394 unpack_pointer (value_type (arg),
2395 value_contents (arg)));
2396 return arg;
2397 }
2398
2399 struct value *
2400 coerce_array (struct value *arg)
2401 {
2402 struct type *type;
2403
2404 arg = coerce_ref (arg);
2405 type = check_typedef (value_type (arg));
2406
2407 switch (TYPE_CODE (type))
2408 {
2409 case TYPE_CODE_ARRAY:
2410 if (current_language->c_style_arrays)
2411 arg = value_coerce_array (arg);
2412 break;
2413 case TYPE_CODE_FUNC:
2414 arg = value_coerce_function (arg);
2415 break;
2416 }
2417 return arg;
2418 }
2419 \f
2420
2421 /* Return true if the function returning the specified type is using
2422 the convention of returning structures in memory (passing in the
2423 address as a hidden first parameter). */
2424
2425 int
2426 using_struct_return (struct gdbarch *gdbarch,
2427 struct type *func_type, struct type *value_type)
2428 {
2429 enum type_code code = TYPE_CODE (value_type);
2430
2431 if (code == TYPE_CODE_ERROR)
2432 error (_("Function return type unknown."));
2433
2434 if (code == TYPE_CODE_VOID)
2435 /* A void return value is never in memory. See also corresponding
2436 code in "print_return_value". */
2437 return 0;
2438
2439 /* Probe the architecture for the return-value convention. */
2440 return (gdbarch_return_value (gdbarch, func_type, value_type,
2441 NULL, NULL, NULL)
2442 != RETURN_VALUE_REGISTER_CONVENTION);
2443 }
2444
2445 /* Set the initialized field in a value struct. */
2446
2447 void
2448 set_value_initialized (struct value *val, int status)
2449 {
2450 val->initialized = status;
2451 }
2452
2453 /* Return the initialized field in a value struct. */
2454
2455 int
2456 value_initialized (struct value *val)
2457 {
2458 return val->initialized;
2459 }
2460
2461 void
2462 _initialize_values (void)
2463 {
2464 add_cmd ("convenience", no_class, show_convenience, _("\
2465 Debugger convenience (\"$foo\") variables.\n\
2466 These variables are created when you assign them values;\n\
2467 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2468 \n\
2469 A few convenience variables are given values automatically:\n\
2470 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2471 \"$__\" holds the contents of the last address examined with \"x\"."),
2472 &showlist);
2473
2474 add_cmd ("values", no_class, show_values,
2475 _("Elements of value history around item number IDX (or last ten)."),
2476 &showlist);
2477
2478 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2479 Initialize a convenience variable if necessary.\n\
2480 init-if-undefined VARIABLE = EXPRESSION\n\
2481 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2482 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2483 VARIABLE is already initialized."));
2484
2485 add_prefix_cmd ("function", no_class, function_command, _("\
2486 Placeholder command for showing help on convenience functions."),
2487 &functionlist, "function ", 0, &cmdlist);
2488 }
This page took 0.079388 seconds and 4 git commands to generate.