*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42
43 #include "python/python.h"
44
45 #include "tracepoint.h"
46
47 /* Prototypes for exported functions. */
48
49 void _initialize_values (void);
50
51 /* Definition of a user function. */
52 struct internal_function
53 {
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64 };
65
66 static struct cmd_list_element *functionlist;
67
68 struct value
69 {
70 /* Type of value; either not an lval, or one of the various
71 different possible kinds of lval. */
72 enum lval_type lval;
73
74 /* Is it modifiable? Only relevant if lval != not_lval. */
75 int modifiable;
76
77 /* Location of value (if lval). */
78 union
79 {
80 /* If lval == lval_memory, this is the address in the inferior.
81 If lval == lval_register, this is the byte offset into the
82 registers structure. */
83 CORE_ADDR address;
84
85 /* Pointer to internal variable. */
86 struct internalvar *internalvar;
87
88 /* If lval == lval_computed, this is a set of function pointers
89 to use to access and describe the value, and a closure pointer
90 for them to use. */
91 struct
92 {
93 struct lval_funcs *funcs; /* Functions to call. */
94 void *closure; /* Closure for those functions to use. */
95 } computed;
96 } location;
97
98 /* Describes offset of a value within lval of a structure in bytes.
99 If lval == lval_memory, this is an offset to the address. If
100 lval == lval_register, this is a further offset from
101 location.address within the registers structure. Note also the
102 member embedded_offset below. */
103 int offset;
104
105 /* Only used for bitfields; number of bits contained in them. */
106 int bitsize;
107
108 /* Only used for bitfields; position of start of field. For
109 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
110 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
111 int bitpos;
112
113 /* Only used for bitfields; the containing value. This allows a
114 single read from the target when displaying multiple
115 bitfields. */
116 struct value *parent;
117
118 /* Frame register value is relative to. This will be described in
119 the lval enum above as "lval_register". */
120 struct frame_id frame_id;
121
122 /* Type of the value. */
123 struct type *type;
124
125 /* If a value represents a C++ object, then the `type' field gives
126 the object's compile-time type. If the object actually belongs
127 to some class derived from `type', perhaps with other base
128 classes and additional members, then `type' is just a subobject
129 of the real thing, and the full object is probably larger than
130 `type' would suggest.
131
132 If `type' is a dynamic class (i.e. one with a vtable), then GDB
133 can actually determine the object's run-time type by looking at
134 the run-time type information in the vtable. When this
135 information is available, we may elect to read in the entire
136 object, for several reasons:
137
138 - When printing the value, the user would probably rather see the
139 full object, not just the limited portion apparent from the
140 compile-time type.
141
142 - If `type' has virtual base classes, then even printing `type'
143 alone may require reaching outside the `type' portion of the
144 object to wherever the virtual base class has been stored.
145
146 When we store the entire object, `enclosing_type' is the run-time
147 type -- the complete object -- and `embedded_offset' is the
148 offset of `type' within that larger type, in bytes. The
149 value_contents() macro takes `embedded_offset' into account, so
150 most GDB code continues to see the `type' portion of the value,
151 just as the inferior would.
152
153 If `type' is a pointer to an object, then `enclosing_type' is a
154 pointer to the object's run-time type, and `pointed_to_offset' is
155 the offset in bytes from the full object to the pointed-to object
156 -- that is, the value `embedded_offset' would have if we followed
157 the pointer and fetched the complete object. (I don't really see
158 the point. Why not just determine the run-time type when you
159 indirect, and avoid the special case? The contents don't matter
160 until you indirect anyway.)
161
162 If we're not doing anything fancy, `enclosing_type' is equal to
163 `type', and `embedded_offset' is zero, so everything works
164 normally. */
165 struct type *enclosing_type;
166 int embedded_offset;
167 int pointed_to_offset;
168
169 /* Values are stored in a chain, so that they can be deleted easily
170 over calls to the inferior. Values assigned to internal
171 variables, put into the value history or exposed to Python are
172 taken off this list. */
173 struct value *next;
174
175 /* Register number if the value is from a register. */
176 short regnum;
177
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
182
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 char lazy;
193
194 /* If nonzero, this is the value of a variable which does not
195 actually exist in the program. */
196 char optimized_out;
197
198 /* If value is a variable, is it initialized or not. */
199 int initialized;
200
201 /* If value is from the stack. If this is set, read_stack will be
202 used instead of read_memory to enable extra caching. */
203 int stack;
204
205 /* Actual contents of the value. Target byte-order. NULL or not
206 valid if lazy is nonzero. */
207 gdb_byte *contents;
208
209 /* The number of references to this value. When a value is created,
210 the value chain holds a reference, so REFERENCE_COUNT is 1. If
211 release_value is called, this value is removed from the chain but
212 the caller of release_value now has a reference to this value.
213 The caller must arrange for a call to value_free later. */
214 int reference_count;
215 };
216
217 /* Prototypes for local functions. */
218
219 static void show_values (char *, int);
220
221 static void show_convenience (char *, int);
222
223
224 /* The value-history records all the values printed
225 by print commands during this session. Each chunk
226 records 60 consecutive values. The first chunk on
227 the chain records the most recent values.
228 The total number of values is in value_history_count. */
229
230 #define VALUE_HISTORY_CHUNK 60
231
232 struct value_history_chunk
233 {
234 struct value_history_chunk *next;
235 struct value *values[VALUE_HISTORY_CHUNK];
236 };
237
238 /* Chain of chunks now in use. */
239
240 static struct value_history_chunk *value_history_chain;
241
242 static int value_history_count; /* Abs number of last entry stored. */
243
244 \f
245 /* List of all value objects currently allocated
246 (except for those released by calls to release_value)
247 This is so they can be freed after each command. */
248
249 static struct value *all_values;
250
251 /* Allocate a lazy value for type TYPE. Its actual content is
252 "lazily" allocated too: the content field of the return value is
253 NULL; it will be allocated when it is fetched from the target. */
254
255 struct value *
256 allocate_value_lazy (struct type *type)
257 {
258 struct value *val;
259
260 /* Call check_typedef on our type to make sure that, if TYPE
261 is a TYPE_CODE_TYPEDEF, its length is set to the length
262 of the target type instead of zero. However, we do not
263 replace the typedef type by the target type, because we want
264 to keep the typedef in order to be able to set the VAL's type
265 description correctly. */
266 check_typedef (type);
267
268 val = (struct value *) xzalloc (sizeof (struct value));
269 val->contents = NULL;
270 val->next = all_values;
271 all_values = val;
272 val->type = type;
273 val->enclosing_type = type;
274 VALUE_LVAL (val) = not_lval;
275 val->location.address = 0;
276 VALUE_FRAME_ID (val) = null_frame_id;
277 val->offset = 0;
278 val->bitpos = 0;
279 val->bitsize = 0;
280 VALUE_REGNUM (val) = -1;
281 val->lazy = 1;
282 val->optimized_out = 0;
283 val->embedded_offset = 0;
284 val->pointed_to_offset = 0;
285 val->modifiable = 1;
286 val->initialized = 1; /* Default to initialized. */
287
288 /* Values start out on the all_values chain. */
289 val->reference_count = 1;
290
291 return val;
292 }
293
294 /* Allocate the contents of VAL if it has not been allocated yet. */
295
296 void
297 allocate_value_contents (struct value *val)
298 {
299 if (!val->contents)
300 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
301 }
302
303 /* Allocate a value and its contents for type TYPE. */
304
305 struct value *
306 allocate_value (struct type *type)
307 {
308 struct value *val = allocate_value_lazy (type);
309
310 allocate_value_contents (val);
311 val->lazy = 0;
312 return val;
313 }
314
315 /* Allocate a value that has the correct length
316 for COUNT repetitions of type TYPE. */
317
318 struct value *
319 allocate_repeat_value (struct type *type, int count)
320 {
321 int low_bound = current_language->string_lower_bound; /* ??? */
322 /* FIXME-type-allocation: need a way to free this type when we are
323 done with it. */
324 struct type *array_type
325 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
326
327 return allocate_value (array_type);
328 }
329
330 struct value *
331 allocate_computed_value (struct type *type,
332 struct lval_funcs *funcs,
333 void *closure)
334 {
335 struct value *v = allocate_value_lazy (type);
336
337 VALUE_LVAL (v) = lval_computed;
338 v->location.computed.funcs = funcs;
339 v->location.computed.closure = closure;
340
341 return v;
342 }
343
344 /* Accessor methods. */
345
346 struct value *
347 value_next (struct value *value)
348 {
349 return value->next;
350 }
351
352 struct type *
353 value_type (const struct value *value)
354 {
355 return value->type;
356 }
357 void
358 deprecated_set_value_type (struct value *value, struct type *type)
359 {
360 value->type = type;
361 }
362
363 int
364 value_offset (const struct value *value)
365 {
366 return value->offset;
367 }
368 void
369 set_value_offset (struct value *value, int offset)
370 {
371 value->offset = offset;
372 }
373
374 int
375 value_bitpos (const struct value *value)
376 {
377 return value->bitpos;
378 }
379 void
380 set_value_bitpos (struct value *value, int bit)
381 {
382 value->bitpos = bit;
383 }
384
385 int
386 value_bitsize (const struct value *value)
387 {
388 return value->bitsize;
389 }
390 void
391 set_value_bitsize (struct value *value, int bit)
392 {
393 value->bitsize = bit;
394 }
395
396 struct value *
397 value_parent (struct value *value)
398 {
399 return value->parent;
400 }
401
402 gdb_byte *
403 value_contents_raw (struct value *value)
404 {
405 allocate_value_contents (value);
406 return value->contents + value->embedded_offset;
407 }
408
409 gdb_byte *
410 value_contents_all_raw (struct value *value)
411 {
412 allocate_value_contents (value);
413 return value->contents;
414 }
415
416 struct type *
417 value_enclosing_type (struct value *value)
418 {
419 return value->enclosing_type;
420 }
421
422 static void
423 require_not_optimized_out (struct value *value)
424 {
425 if (value->optimized_out)
426 error (_("value has been optimized out"));
427 }
428
429 const gdb_byte *
430 value_contents_for_printing (struct value *value)
431 {
432 if (value->lazy)
433 value_fetch_lazy (value);
434 return value->contents;
435 }
436
437 const gdb_byte *
438 value_contents_all (struct value *value)
439 {
440 const gdb_byte *result = value_contents_for_printing (value);
441 require_not_optimized_out (value);
442 return result;
443 }
444
445 int
446 value_lazy (struct value *value)
447 {
448 return value->lazy;
449 }
450
451 void
452 set_value_lazy (struct value *value, int val)
453 {
454 value->lazy = val;
455 }
456
457 int
458 value_stack (struct value *value)
459 {
460 return value->stack;
461 }
462
463 void
464 set_value_stack (struct value *value, int val)
465 {
466 value->stack = val;
467 }
468
469 const gdb_byte *
470 value_contents (struct value *value)
471 {
472 const gdb_byte *result = value_contents_writeable (value);
473 require_not_optimized_out (value);
474 return result;
475 }
476
477 gdb_byte *
478 value_contents_writeable (struct value *value)
479 {
480 if (value->lazy)
481 value_fetch_lazy (value);
482 return value_contents_raw (value);
483 }
484
485 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
486 this function is different from value_equal; in C the operator ==
487 can return 0 even if the two values being compared are equal. */
488
489 int
490 value_contents_equal (struct value *val1, struct value *val2)
491 {
492 struct type *type1;
493 struct type *type2;
494 int len;
495
496 type1 = check_typedef (value_type (val1));
497 type2 = check_typedef (value_type (val2));
498 len = TYPE_LENGTH (type1);
499 if (len != TYPE_LENGTH (type2))
500 return 0;
501
502 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
503 }
504
505 int
506 value_optimized_out (struct value *value)
507 {
508 return value->optimized_out;
509 }
510
511 void
512 set_value_optimized_out (struct value *value, int val)
513 {
514 value->optimized_out = val;
515 }
516
517 int
518 value_entirely_optimized_out (const struct value *value)
519 {
520 if (!value->optimized_out)
521 return 0;
522 if (value->lval != lval_computed
523 || !value->location.computed.funcs->check_any_valid)
524 return 1;
525 return !value->location.computed.funcs->check_any_valid (value);
526 }
527
528 int
529 value_bits_valid (const struct value *value, int offset, int length)
530 {
531 if (value == NULL || !value->optimized_out)
532 return 1;
533 if (value->lval != lval_computed
534 || !value->location.computed.funcs->check_validity)
535 return 0;
536 return value->location.computed.funcs->check_validity (value, offset,
537 length);
538 }
539
540 int
541 value_bits_synthetic_pointer (const struct value *value,
542 int offset, int length)
543 {
544 if (value == NULL || value->lval != lval_computed
545 || !value->location.computed.funcs->check_synthetic_pointer)
546 return 0;
547 return value->location.computed.funcs->check_synthetic_pointer (value,
548 offset,
549 length);
550 }
551
552 int
553 value_embedded_offset (struct value *value)
554 {
555 return value->embedded_offset;
556 }
557
558 void
559 set_value_embedded_offset (struct value *value, int val)
560 {
561 value->embedded_offset = val;
562 }
563
564 int
565 value_pointed_to_offset (struct value *value)
566 {
567 return value->pointed_to_offset;
568 }
569
570 void
571 set_value_pointed_to_offset (struct value *value, int val)
572 {
573 value->pointed_to_offset = val;
574 }
575
576 struct lval_funcs *
577 value_computed_funcs (struct value *v)
578 {
579 gdb_assert (VALUE_LVAL (v) == lval_computed);
580
581 return v->location.computed.funcs;
582 }
583
584 void *
585 value_computed_closure (const struct value *v)
586 {
587 gdb_assert (v->lval == lval_computed);
588
589 return v->location.computed.closure;
590 }
591
592 enum lval_type *
593 deprecated_value_lval_hack (struct value *value)
594 {
595 return &value->lval;
596 }
597
598 CORE_ADDR
599 value_address (struct value *value)
600 {
601 if (value->lval == lval_internalvar
602 || value->lval == lval_internalvar_component)
603 return 0;
604 return value->location.address + value->offset;
605 }
606
607 CORE_ADDR
608 value_raw_address (struct value *value)
609 {
610 if (value->lval == lval_internalvar
611 || value->lval == lval_internalvar_component)
612 return 0;
613 return value->location.address;
614 }
615
616 void
617 set_value_address (struct value *value, CORE_ADDR addr)
618 {
619 gdb_assert (value->lval != lval_internalvar
620 && value->lval != lval_internalvar_component);
621 value->location.address = addr;
622 }
623
624 struct internalvar **
625 deprecated_value_internalvar_hack (struct value *value)
626 {
627 return &value->location.internalvar;
628 }
629
630 struct frame_id *
631 deprecated_value_frame_id_hack (struct value *value)
632 {
633 return &value->frame_id;
634 }
635
636 short *
637 deprecated_value_regnum_hack (struct value *value)
638 {
639 return &value->regnum;
640 }
641
642 int
643 deprecated_value_modifiable (struct value *value)
644 {
645 return value->modifiable;
646 }
647 void
648 deprecated_set_value_modifiable (struct value *value, int modifiable)
649 {
650 value->modifiable = modifiable;
651 }
652 \f
653 /* Return a mark in the value chain. All values allocated after the
654 mark is obtained (except for those released) are subject to being freed
655 if a subsequent value_free_to_mark is passed the mark. */
656 struct value *
657 value_mark (void)
658 {
659 return all_values;
660 }
661
662 /* Take a reference to VAL. VAL will not be deallocated until all
663 references are released. */
664
665 void
666 value_incref (struct value *val)
667 {
668 val->reference_count++;
669 }
670
671 /* Release a reference to VAL, which was acquired with value_incref.
672 This function is also called to deallocate values from the value
673 chain. */
674
675 void
676 value_free (struct value *val)
677 {
678 if (val)
679 {
680 gdb_assert (val->reference_count > 0);
681 val->reference_count--;
682 if (val->reference_count > 0)
683 return;
684
685 /* If there's an associated parent value, drop our reference to
686 it. */
687 if (val->parent != NULL)
688 value_free (val->parent);
689
690 if (VALUE_LVAL (val) == lval_computed)
691 {
692 struct lval_funcs *funcs = val->location.computed.funcs;
693
694 if (funcs->free_closure)
695 funcs->free_closure (val);
696 }
697
698 xfree (val->contents);
699 }
700 xfree (val);
701 }
702
703 /* Free all values allocated since MARK was obtained by value_mark
704 (except for those released). */
705 void
706 value_free_to_mark (struct value *mark)
707 {
708 struct value *val;
709 struct value *next;
710
711 for (val = all_values; val && val != mark; val = next)
712 {
713 next = val->next;
714 value_free (val);
715 }
716 all_values = val;
717 }
718
719 /* Free all the values that have been allocated (except for those released).
720 Call after each command, successful or not.
721 In practice this is called before each command, which is sufficient. */
722
723 void
724 free_all_values (void)
725 {
726 struct value *val;
727 struct value *next;
728
729 for (val = all_values; val; val = next)
730 {
731 next = val->next;
732 value_free (val);
733 }
734
735 all_values = 0;
736 }
737
738 /* Frees all the elements in a chain of values. */
739
740 void
741 free_value_chain (struct value *v)
742 {
743 struct value *next;
744
745 for (; v; v = next)
746 {
747 next = value_next (v);
748 value_free (v);
749 }
750 }
751
752 /* Remove VAL from the chain all_values
753 so it will not be freed automatically. */
754
755 void
756 release_value (struct value *val)
757 {
758 struct value *v;
759
760 if (all_values == val)
761 {
762 all_values = val->next;
763 val->next = NULL;
764 return;
765 }
766
767 for (v = all_values; v; v = v->next)
768 {
769 if (v->next == val)
770 {
771 v->next = val->next;
772 val->next = NULL;
773 break;
774 }
775 }
776 }
777
778 /* Release all values up to mark */
779 struct value *
780 value_release_to_mark (struct value *mark)
781 {
782 struct value *val;
783 struct value *next;
784
785 for (val = next = all_values; next; next = next->next)
786 if (next->next == mark)
787 {
788 all_values = next->next;
789 next->next = NULL;
790 return val;
791 }
792 all_values = 0;
793 return val;
794 }
795
796 /* Return a copy of the value ARG.
797 It contains the same contents, for same memory address,
798 but it's a different block of storage. */
799
800 struct value *
801 value_copy (struct value *arg)
802 {
803 struct type *encl_type = value_enclosing_type (arg);
804 struct value *val;
805
806 if (value_lazy (arg))
807 val = allocate_value_lazy (encl_type);
808 else
809 val = allocate_value (encl_type);
810 val->type = arg->type;
811 VALUE_LVAL (val) = VALUE_LVAL (arg);
812 val->location = arg->location;
813 val->offset = arg->offset;
814 val->bitpos = arg->bitpos;
815 val->bitsize = arg->bitsize;
816 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
817 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
818 val->lazy = arg->lazy;
819 val->optimized_out = arg->optimized_out;
820 val->embedded_offset = value_embedded_offset (arg);
821 val->pointed_to_offset = arg->pointed_to_offset;
822 val->modifiable = arg->modifiable;
823 if (!value_lazy (val))
824 {
825 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
826 TYPE_LENGTH (value_enclosing_type (arg)));
827
828 }
829 val->parent = arg->parent;
830 if (val->parent)
831 value_incref (val->parent);
832 if (VALUE_LVAL (val) == lval_computed)
833 {
834 struct lval_funcs *funcs = val->location.computed.funcs;
835
836 if (funcs->copy_closure)
837 val->location.computed.closure = funcs->copy_closure (val);
838 }
839 return val;
840 }
841
842 /* Return a version of ARG that is non-lvalue. */
843
844 struct value *
845 value_non_lval (struct value *arg)
846 {
847 if (VALUE_LVAL (arg) != not_lval)
848 {
849 struct type *enc_type = value_enclosing_type (arg);
850 struct value *val = allocate_value (enc_type);
851
852 memcpy (value_contents_all_raw (val), value_contents_all (arg),
853 TYPE_LENGTH (enc_type));
854 val->type = arg->type;
855 set_value_embedded_offset (val, value_embedded_offset (arg));
856 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
857 return val;
858 }
859 return arg;
860 }
861
862 void
863 set_value_component_location (struct value *component,
864 const struct value *whole)
865 {
866 if (whole->lval == lval_internalvar)
867 VALUE_LVAL (component) = lval_internalvar_component;
868 else
869 VALUE_LVAL (component) = whole->lval;
870
871 component->location = whole->location;
872 if (whole->lval == lval_computed)
873 {
874 struct lval_funcs *funcs = whole->location.computed.funcs;
875
876 if (funcs->copy_closure)
877 component->location.computed.closure = funcs->copy_closure (whole);
878 }
879 }
880
881 \f
882 /* Access to the value history. */
883
884 /* Record a new value in the value history.
885 Returns the absolute history index of the entry.
886 Result of -1 indicates the value was not saved; otherwise it is the
887 value history index of this new item. */
888
889 int
890 record_latest_value (struct value *val)
891 {
892 int i;
893
894 /* We don't want this value to have anything to do with the inferior anymore.
895 In particular, "set $1 = 50" should not affect the variable from which
896 the value was taken, and fast watchpoints should be able to assume that
897 a value on the value history never changes. */
898 if (value_lazy (val))
899 value_fetch_lazy (val);
900 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
901 from. This is a bit dubious, because then *&$1 does not just return $1
902 but the current contents of that location. c'est la vie... */
903 val->modifiable = 0;
904 release_value (val);
905
906 /* Here we treat value_history_count as origin-zero
907 and applying to the value being stored now. */
908
909 i = value_history_count % VALUE_HISTORY_CHUNK;
910 if (i == 0)
911 {
912 struct value_history_chunk *new
913 = (struct value_history_chunk *)
914
915 xmalloc (sizeof (struct value_history_chunk));
916 memset (new->values, 0, sizeof new->values);
917 new->next = value_history_chain;
918 value_history_chain = new;
919 }
920
921 value_history_chain->values[i] = val;
922
923 /* Now we regard value_history_count as origin-one
924 and applying to the value just stored. */
925
926 return ++value_history_count;
927 }
928
929 /* Return a copy of the value in the history with sequence number NUM. */
930
931 struct value *
932 access_value_history (int num)
933 {
934 struct value_history_chunk *chunk;
935 int i;
936 int absnum = num;
937
938 if (absnum <= 0)
939 absnum += value_history_count;
940
941 if (absnum <= 0)
942 {
943 if (num == 0)
944 error (_("The history is empty."));
945 else if (num == 1)
946 error (_("There is only one value in the history."));
947 else
948 error (_("History does not go back to $$%d."), -num);
949 }
950 if (absnum > value_history_count)
951 error (_("History has not yet reached $%d."), absnum);
952
953 absnum--;
954
955 /* Now absnum is always absolute and origin zero. */
956
957 chunk = value_history_chain;
958 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
959 - absnum / VALUE_HISTORY_CHUNK;
960 i > 0; i--)
961 chunk = chunk->next;
962
963 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
964 }
965
966 static void
967 show_values (char *num_exp, int from_tty)
968 {
969 int i;
970 struct value *val;
971 static int num = 1;
972
973 if (num_exp)
974 {
975 /* "show values +" should print from the stored position.
976 "show values <exp>" should print around value number <exp>. */
977 if (num_exp[0] != '+' || num_exp[1] != '\0')
978 num = parse_and_eval_long (num_exp) - 5;
979 }
980 else
981 {
982 /* "show values" means print the last 10 values. */
983 num = value_history_count - 9;
984 }
985
986 if (num <= 0)
987 num = 1;
988
989 for (i = num; i < num + 10 && i <= value_history_count; i++)
990 {
991 struct value_print_options opts;
992
993 val = access_value_history (i);
994 printf_filtered (("$%d = "), i);
995 get_user_print_options (&opts);
996 value_print (val, gdb_stdout, &opts);
997 printf_filtered (("\n"));
998 }
999
1000 /* The next "show values +" should start after what we just printed. */
1001 num += 10;
1002
1003 /* Hitting just return after this command should do the same thing as
1004 "show values +". If num_exp is null, this is unnecessary, since
1005 "show values +" is not useful after "show values". */
1006 if (from_tty && num_exp)
1007 {
1008 num_exp[0] = '+';
1009 num_exp[1] = '\0';
1010 }
1011 }
1012 \f
1013 /* Internal variables. These are variables within the debugger
1014 that hold values assigned by debugger commands.
1015 The user refers to them with a '$' prefix
1016 that does not appear in the variable names stored internally. */
1017
1018 struct internalvar
1019 {
1020 struct internalvar *next;
1021 char *name;
1022
1023 /* We support various different kinds of content of an internal variable.
1024 enum internalvar_kind specifies the kind, and union internalvar_data
1025 provides the data associated with this particular kind. */
1026
1027 enum internalvar_kind
1028 {
1029 /* The internal variable is empty. */
1030 INTERNALVAR_VOID,
1031
1032 /* The value of the internal variable is provided directly as
1033 a GDB value object. */
1034 INTERNALVAR_VALUE,
1035
1036 /* A fresh value is computed via a call-back routine on every
1037 access to the internal variable. */
1038 INTERNALVAR_MAKE_VALUE,
1039
1040 /* The internal variable holds a GDB internal convenience function. */
1041 INTERNALVAR_FUNCTION,
1042
1043 /* The variable holds an integer value. */
1044 INTERNALVAR_INTEGER,
1045
1046 /* The variable holds a pointer value. */
1047 INTERNALVAR_POINTER,
1048
1049 /* The variable holds a GDB-provided string. */
1050 INTERNALVAR_STRING,
1051
1052 } kind;
1053
1054 union internalvar_data
1055 {
1056 /* A value object used with INTERNALVAR_VALUE. */
1057 struct value *value;
1058
1059 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1060 internalvar_make_value make_value;
1061
1062 /* The internal function used with INTERNALVAR_FUNCTION. */
1063 struct
1064 {
1065 struct internal_function *function;
1066 /* True if this is the canonical name for the function. */
1067 int canonical;
1068 } fn;
1069
1070 /* An integer value used with INTERNALVAR_INTEGER. */
1071 struct
1072 {
1073 /* If type is non-NULL, it will be used as the type to generate
1074 a value for this internal variable. If type is NULL, a default
1075 integer type for the architecture is used. */
1076 struct type *type;
1077 LONGEST val;
1078 } integer;
1079
1080 /* A pointer value used with INTERNALVAR_POINTER. */
1081 struct
1082 {
1083 struct type *type;
1084 CORE_ADDR val;
1085 } pointer;
1086
1087 /* A string value used with INTERNALVAR_STRING. */
1088 char *string;
1089 } u;
1090 };
1091
1092 static struct internalvar *internalvars;
1093
1094 /* If the variable does not already exist create it and give it the
1095 value given. If no value is given then the default is zero. */
1096 static void
1097 init_if_undefined_command (char* args, int from_tty)
1098 {
1099 struct internalvar* intvar;
1100
1101 /* Parse the expression - this is taken from set_command(). */
1102 struct expression *expr = parse_expression (args);
1103 register struct cleanup *old_chain =
1104 make_cleanup (free_current_contents, &expr);
1105
1106 /* Validate the expression.
1107 Was the expression an assignment?
1108 Or even an expression at all? */
1109 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1110 error (_("Init-if-undefined requires an assignment expression."));
1111
1112 /* Extract the variable from the parsed expression.
1113 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1114 if (expr->elts[1].opcode != OP_INTERNALVAR)
1115 error (_("The first parameter to init-if-undefined "
1116 "should be a GDB variable."));
1117 intvar = expr->elts[2].internalvar;
1118
1119 /* Only evaluate the expression if the lvalue is void.
1120 This may still fail if the expresssion is invalid. */
1121 if (intvar->kind == INTERNALVAR_VOID)
1122 evaluate_expression (expr);
1123
1124 do_cleanups (old_chain);
1125 }
1126
1127
1128 /* Look up an internal variable with name NAME. NAME should not
1129 normally include a dollar sign.
1130
1131 If the specified internal variable does not exist,
1132 the return value is NULL. */
1133
1134 struct internalvar *
1135 lookup_only_internalvar (const char *name)
1136 {
1137 struct internalvar *var;
1138
1139 for (var = internalvars; var; var = var->next)
1140 if (strcmp (var->name, name) == 0)
1141 return var;
1142
1143 return NULL;
1144 }
1145
1146
1147 /* Create an internal variable with name NAME and with a void value.
1148 NAME should not normally include a dollar sign. */
1149
1150 struct internalvar *
1151 create_internalvar (const char *name)
1152 {
1153 struct internalvar *var;
1154
1155 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1156 var->name = concat (name, (char *)NULL);
1157 var->kind = INTERNALVAR_VOID;
1158 var->next = internalvars;
1159 internalvars = var;
1160 return var;
1161 }
1162
1163 /* Create an internal variable with name NAME and register FUN as the
1164 function that value_of_internalvar uses to create a value whenever
1165 this variable is referenced. NAME should not normally include a
1166 dollar sign. */
1167
1168 struct internalvar *
1169 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1170 {
1171 struct internalvar *var = create_internalvar (name);
1172
1173 var->kind = INTERNALVAR_MAKE_VALUE;
1174 var->u.make_value = fun;
1175 return var;
1176 }
1177
1178 /* Look up an internal variable with name NAME. NAME should not
1179 normally include a dollar sign.
1180
1181 If the specified internal variable does not exist,
1182 one is created, with a void value. */
1183
1184 struct internalvar *
1185 lookup_internalvar (const char *name)
1186 {
1187 struct internalvar *var;
1188
1189 var = lookup_only_internalvar (name);
1190 if (var)
1191 return var;
1192
1193 return create_internalvar (name);
1194 }
1195
1196 /* Return current value of internal variable VAR. For variables that
1197 are not inherently typed, use a value type appropriate for GDBARCH. */
1198
1199 struct value *
1200 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1201 {
1202 struct value *val;
1203 struct trace_state_variable *tsv;
1204
1205 /* If there is a trace state variable of the same name, assume that
1206 is what we really want to see. */
1207 tsv = find_trace_state_variable (var->name);
1208 if (tsv)
1209 {
1210 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1211 &(tsv->value));
1212 if (tsv->value_known)
1213 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1214 tsv->value);
1215 else
1216 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1217 return val;
1218 }
1219
1220 switch (var->kind)
1221 {
1222 case INTERNALVAR_VOID:
1223 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1224 break;
1225
1226 case INTERNALVAR_FUNCTION:
1227 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1228 break;
1229
1230 case INTERNALVAR_INTEGER:
1231 if (!var->u.integer.type)
1232 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1233 var->u.integer.val);
1234 else
1235 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1236 break;
1237
1238 case INTERNALVAR_POINTER:
1239 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
1240 break;
1241
1242 case INTERNALVAR_STRING:
1243 val = value_cstring (var->u.string, strlen (var->u.string),
1244 builtin_type (gdbarch)->builtin_char);
1245 break;
1246
1247 case INTERNALVAR_VALUE:
1248 val = value_copy (var->u.value);
1249 if (value_lazy (val))
1250 value_fetch_lazy (val);
1251 break;
1252
1253 case INTERNALVAR_MAKE_VALUE:
1254 val = (*var->u.make_value) (gdbarch, var);
1255 break;
1256
1257 default:
1258 internal_error (__FILE__, __LINE__, _("bad kind"));
1259 }
1260
1261 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1262 on this value go back to affect the original internal variable.
1263
1264 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1265 no underlying modifyable state in the internal variable.
1266
1267 Likewise, if the variable's value is a computed lvalue, we want
1268 references to it to produce another computed lvalue, where
1269 references and assignments actually operate through the
1270 computed value's functions.
1271
1272 This means that internal variables with computed values
1273 behave a little differently from other internal variables:
1274 assignments to them don't just replace the previous value
1275 altogether. At the moment, this seems like the behavior we
1276 want. */
1277
1278 if (var->kind != INTERNALVAR_MAKE_VALUE
1279 && val->lval != lval_computed)
1280 {
1281 VALUE_LVAL (val) = lval_internalvar;
1282 VALUE_INTERNALVAR (val) = var;
1283 }
1284
1285 return val;
1286 }
1287
1288 int
1289 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1290 {
1291 switch (var->kind)
1292 {
1293 case INTERNALVAR_INTEGER:
1294 *result = var->u.integer.val;
1295 return 1;
1296
1297 default:
1298 return 0;
1299 }
1300 }
1301
1302 static int
1303 get_internalvar_function (struct internalvar *var,
1304 struct internal_function **result)
1305 {
1306 switch (var->kind)
1307 {
1308 case INTERNALVAR_FUNCTION:
1309 *result = var->u.fn.function;
1310 return 1;
1311
1312 default:
1313 return 0;
1314 }
1315 }
1316
1317 void
1318 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1319 int bitsize, struct value *newval)
1320 {
1321 gdb_byte *addr;
1322
1323 switch (var->kind)
1324 {
1325 case INTERNALVAR_VALUE:
1326 addr = value_contents_writeable (var->u.value);
1327
1328 if (bitsize)
1329 modify_field (value_type (var->u.value), addr + offset,
1330 value_as_long (newval), bitpos, bitsize);
1331 else
1332 memcpy (addr + offset, value_contents (newval),
1333 TYPE_LENGTH (value_type (newval)));
1334 break;
1335
1336 default:
1337 /* We can never get a component of any other kind. */
1338 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1339 }
1340 }
1341
1342 void
1343 set_internalvar (struct internalvar *var, struct value *val)
1344 {
1345 enum internalvar_kind new_kind;
1346 union internalvar_data new_data = { 0 };
1347
1348 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1349 error (_("Cannot overwrite convenience function %s"), var->name);
1350
1351 /* Prepare new contents. */
1352 switch (TYPE_CODE (check_typedef (value_type (val))))
1353 {
1354 case TYPE_CODE_VOID:
1355 new_kind = INTERNALVAR_VOID;
1356 break;
1357
1358 case TYPE_CODE_INTERNAL_FUNCTION:
1359 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1360 new_kind = INTERNALVAR_FUNCTION;
1361 get_internalvar_function (VALUE_INTERNALVAR (val),
1362 &new_data.fn.function);
1363 /* Copies created here are never canonical. */
1364 break;
1365
1366 case TYPE_CODE_INT:
1367 new_kind = INTERNALVAR_INTEGER;
1368 new_data.integer.type = value_type (val);
1369 new_data.integer.val = value_as_long (val);
1370 break;
1371
1372 case TYPE_CODE_PTR:
1373 new_kind = INTERNALVAR_POINTER;
1374 new_data.pointer.type = value_type (val);
1375 new_data.pointer.val = value_as_address (val);
1376 break;
1377
1378 default:
1379 new_kind = INTERNALVAR_VALUE;
1380 new_data.value = value_copy (val);
1381 new_data.value->modifiable = 1;
1382
1383 /* Force the value to be fetched from the target now, to avoid problems
1384 later when this internalvar is referenced and the target is gone or
1385 has changed. */
1386 if (value_lazy (new_data.value))
1387 value_fetch_lazy (new_data.value);
1388
1389 /* Release the value from the value chain to prevent it from being
1390 deleted by free_all_values. From here on this function should not
1391 call error () until new_data is installed into the var->u to avoid
1392 leaking memory. */
1393 release_value (new_data.value);
1394 break;
1395 }
1396
1397 /* Clean up old contents. */
1398 clear_internalvar (var);
1399
1400 /* Switch over. */
1401 var->kind = new_kind;
1402 var->u = new_data;
1403 /* End code which must not call error(). */
1404 }
1405
1406 void
1407 set_internalvar_integer (struct internalvar *var, LONGEST l)
1408 {
1409 /* Clean up old contents. */
1410 clear_internalvar (var);
1411
1412 var->kind = INTERNALVAR_INTEGER;
1413 var->u.integer.type = NULL;
1414 var->u.integer.val = l;
1415 }
1416
1417 void
1418 set_internalvar_string (struct internalvar *var, const char *string)
1419 {
1420 /* Clean up old contents. */
1421 clear_internalvar (var);
1422
1423 var->kind = INTERNALVAR_STRING;
1424 var->u.string = xstrdup (string);
1425 }
1426
1427 static void
1428 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1429 {
1430 /* Clean up old contents. */
1431 clear_internalvar (var);
1432
1433 var->kind = INTERNALVAR_FUNCTION;
1434 var->u.fn.function = f;
1435 var->u.fn.canonical = 1;
1436 /* Variables installed here are always the canonical version. */
1437 }
1438
1439 void
1440 clear_internalvar (struct internalvar *var)
1441 {
1442 /* Clean up old contents. */
1443 switch (var->kind)
1444 {
1445 case INTERNALVAR_VALUE:
1446 value_free (var->u.value);
1447 break;
1448
1449 case INTERNALVAR_STRING:
1450 xfree (var->u.string);
1451 break;
1452
1453 default:
1454 break;
1455 }
1456
1457 /* Reset to void kind. */
1458 var->kind = INTERNALVAR_VOID;
1459 }
1460
1461 char *
1462 internalvar_name (struct internalvar *var)
1463 {
1464 return var->name;
1465 }
1466
1467 static struct internal_function *
1468 create_internal_function (const char *name,
1469 internal_function_fn handler, void *cookie)
1470 {
1471 struct internal_function *ifn = XNEW (struct internal_function);
1472
1473 ifn->name = xstrdup (name);
1474 ifn->handler = handler;
1475 ifn->cookie = cookie;
1476 return ifn;
1477 }
1478
1479 char *
1480 value_internal_function_name (struct value *val)
1481 {
1482 struct internal_function *ifn;
1483 int result;
1484
1485 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1486 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1487 gdb_assert (result);
1488
1489 return ifn->name;
1490 }
1491
1492 struct value *
1493 call_internal_function (struct gdbarch *gdbarch,
1494 const struct language_defn *language,
1495 struct value *func, int argc, struct value **argv)
1496 {
1497 struct internal_function *ifn;
1498 int result;
1499
1500 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1501 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1502 gdb_assert (result);
1503
1504 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1505 }
1506
1507 /* The 'function' command. This does nothing -- it is just a
1508 placeholder to let "help function NAME" work. This is also used as
1509 the implementation of the sub-command that is created when
1510 registering an internal function. */
1511 static void
1512 function_command (char *command, int from_tty)
1513 {
1514 /* Do nothing. */
1515 }
1516
1517 /* Clean up if an internal function's command is destroyed. */
1518 static void
1519 function_destroyer (struct cmd_list_element *self, void *ignore)
1520 {
1521 xfree (self->name);
1522 xfree (self->doc);
1523 }
1524
1525 /* Add a new internal function. NAME is the name of the function; DOC
1526 is a documentation string describing the function. HANDLER is
1527 called when the function is invoked. COOKIE is an arbitrary
1528 pointer which is passed to HANDLER and is intended for "user
1529 data". */
1530 void
1531 add_internal_function (const char *name, const char *doc,
1532 internal_function_fn handler, void *cookie)
1533 {
1534 struct cmd_list_element *cmd;
1535 struct internal_function *ifn;
1536 struct internalvar *var = lookup_internalvar (name);
1537
1538 ifn = create_internal_function (name, handler, cookie);
1539 set_internalvar_function (var, ifn);
1540
1541 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1542 &functionlist);
1543 cmd->destroyer = function_destroyer;
1544 }
1545
1546 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1547 prevent cycles / duplicates. */
1548
1549 void
1550 preserve_one_value (struct value *value, struct objfile *objfile,
1551 htab_t copied_types)
1552 {
1553 if (TYPE_OBJFILE (value->type) == objfile)
1554 value->type = copy_type_recursive (objfile, value->type, copied_types);
1555
1556 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1557 value->enclosing_type = copy_type_recursive (objfile,
1558 value->enclosing_type,
1559 copied_types);
1560 }
1561
1562 /* Likewise for internal variable VAR. */
1563
1564 static void
1565 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1566 htab_t copied_types)
1567 {
1568 switch (var->kind)
1569 {
1570 case INTERNALVAR_INTEGER:
1571 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1572 var->u.integer.type
1573 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1574 break;
1575
1576 case INTERNALVAR_POINTER:
1577 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1578 var->u.pointer.type
1579 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
1580 break;
1581
1582 case INTERNALVAR_VALUE:
1583 preserve_one_value (var->u.value, objfile, copied_types);
1584 break;
1585 }
1586 }
1587
1588 /* Update the internal variables and value history when OBJFILE is
1589 discarded; we must copy the types out of the objfile. New global types
1590 will be created for every convenience variable which currently points to
1591 this objfile's types, and the convenience variables will be adjusted to
1592 use the new global types. */
1593
1594 void
1595 preserve_values (struct objfile *objfile)
1596 {
1597 htab_t copied_types;
1598 struct value_history_chunk *cur;
1599 struct internalvar *var;
1600 int i;
1601
1602 /* Create the hash table. We allocate on the objfile's obstack, since
1603 it is soon to be deleted. */
1604 copied_types = create_copied_types_hash (objfile);
1605
1606 for (cur = value_history_chain; cur; cur = cur->next)
1607 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1608 if (cur->values[i])
1609 preserve_one_value (cur->values[i], objfile, copied_types);
1610
1611 for (var = internalvars; var; var = var->next)
1612 preserve_one_internalvar (var, objfile, copied_types);
1613
1614 preserve_python_values (objfile, copied_types);
1615
1616 htab_delete (copied_types);
1617 }
1618
1619 static void
1620 show_convenience (char *ignore, int from_tty)
1621 {
1622 struct gdbarch *gdbarch = get_current_arch ();
1623 struct internalvar *var;
1624 int varseen = 0;
1625 struct value_print_options opts;
1626
1627 get_user_print_options (&opts);
1628 for (var = internalvars; var; var = var->next)
1629 {
1630 if (!varseen)
1631 {
1632 varseen = 1;
1633 }
1634 printf_filtered (("$%s = "), var->name);
1635 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1636 &opts);
1637 printf_filtered (("\n"));
1638 }
1639 if (!varseen)
1640 printf_unfiltered (_("No debugger convenience variables now defined.\n"
1641 "Convenience variables have "
1642 "names starting with \"$\";\n"
1643 "use \"set\" as in \"set "
1644 "$foo = 5\" to define them.\n"));
1645 }
1646 \f
1647 /* Extract a value as a C number (either long or double).
1648 Knows how to convert fixed values to double, or
1649 floating values to long.
1650 Does not deallocate the value. */
1651
1652 LONGEST
1653 value_as_long (struct value *val)
1654 {
1655 /* This coerces arrays and functions, which is necessary (e.g.
1656 in disassemble_command). It also dereferences references, which
1657 I suspect is the most logical thing to do. */
1658 val = coerce_array (val);
1659 return unpack_long (value_type (val), value_contents (val));
1660 }
1661
1662 DOUBLEST
1663 value_as_double (struct value *val)
1664 {
1665 DOUBLEST foo;
1666 int inv;
1667
1668 foo = unpack_double (value_type (val), value_contents (val), &inv);
1669 if (inv)
1670 error (_("Invalid floating value found in program."));
1671 return foo;
1672 }
1673
1674 /* Extract a value as a C pointer. Does not deallocate the value.
1675 Note that val's type may not actually be a pointer; value_as_long
1676 handles all the cases. */
1677 CORE_ADDR
1678 value_as_address (struct value *val)
1679 {
1680 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1681
1682 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1683 whether we want this to be true eventually. */
1684 #if 0
1685 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1686 non-address (e.g. argument to "signal", "info break", etc.), or
1687 for pointers to char, in which the low bits *are* significant. */
1688 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1689 #else
1690
1691 /* There are several targets (IA-64, PowerPC, and others) which
1692 don't represent pointers to functions as simply the address of
1693 the function's entry point. For example, on the IA-64, a
1694 function pointer points to a two-word descriptor, generated by
1695 the linker, which contains the function's entry point, and the
1696 value the IA-64 "global pointer" register should have --- to
1697 support position-independent code. The linker generates
1698 descriptors only for those functions whose addresses are taken.
1699
1700 On such targets, it's difficult for GDB to convert an arbitrary
1701 function address into a function pointer; it has to either find
1702 an existing descriptor for that function, or call malloc and
1703 build its own. On some targets, it is impossible for GDB to
1704 build a descriptor at all: the descriptor must contain a jump
1705 instruction; data memory cannot be executed; and code memory
1706 cannot be modified.
1707
1708 Upon entry to this function, if VAL is a value of type `function'
1709 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1710 value_address (val) is the address of the function. This is what
1711 you'll get if you evaluate an expression like `main'. The call
1712 to COERCE_ARRAY below actually does all the usual unary
1713 conversions, which includes converting values of type `function'
1714 to `pointer to function'. This is the challenging conversion
1715 discussed above. Then, `unpack_long' will convert that pointer
1716 back into an address.
1717
1718 So, suppose the user types `disassemble foo' on an architecture
1719 with a strange function pointer representation, on which GDB
1720 cannot build its own descriptors, and suppose further that `foo'
1721 has no linker-built descriptor. The address->pointer conversion
1722 will signal an error and prevent the command from running, even
1723 though the next step would have been to convert the pointer
1724 directly back into the same address.
1725
1726 The following shortcut avoids this whole mess. If VAL is a
1727 function, just return its address directly. */
1728 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1729 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1730 return value_address (val);
1731
1732 val = coerce_array (val);
1733
1734 /* Some architectures (e.g. Harvard), map instruction and data
1735 addresses onto a single large unified address space. For
1736 instance: An architecture may consider a large integer in the
1737 range 0x10000000 .. 0x1000ffff to already represent a data
1738 addresses (hence not need a pointer to address conversion) while
1739 a small integer would still need to be converted integer to
1740 pointer to address. Just assume such architectures handle all
1741 integer conversions in a single function. */
1742
1743 /* JimB writes:
1744
1745 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1746 must admonish GDB hackers to make sure its behavior matches the
1747 compiler's, whenever possible.
1748
1749 In general, I think GDB should evaluate expressions the same way
1750 the compiler does. When the user copies an expression out of
1751 their source code and hands it to a `print' command, they should
1752 get the same value the compiler would have computed. Any
1753 deviation from this rule can cause major confusion and annoyance,
1754 and needs to be justified carefully. In other words, GDB doesn't
1755 really have the freedom to do these conversions in clever and
1756 useful ways.
1757
1758 AndrewC pointed out that users aren't complaining about how GDB
1759 casts integers to pointers; they are complaining that they can't
1760 take an address from a disassembly listing and give it to `x/i'.
1761 This is certainly important.
1762
1763 Adding an architecture method like integer_to_address() certainly
1764 makes it possible for GDB to "get it right" in all circumstances
1765 --- the target has complete control over how things get done, so
1766 people can Do The Right Thing for their target without breaking
1767 anyone else. The standard doesn't specify how integers get
1768 converted to pointers; usually, the ABI doesn't either, but
1769 ABI-specific code is a more reasonable place to handle it. */
1770
1771 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1772 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1773 && gdbarch_integer_to_address_p (gdbarch))
1774 return gdbarch_integer_to_address (gdbarch, value_type (val),
1775 value_contents (val));
1776
1777 return unpack_long (value_type (val), value_contents (val));
1778 #endif
1779 }
1780 \f
1781 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1782 as a long, or as a double, assuming the raw data is described
1783 by type TYPE. Knows how to convert different sizes of values
1784 and can convert between fixed and floating point. We don't assume
1785 any alignment for the raw data. Return value is in host byte order.
1786
1787 If you want functions and arrays to be coerced to pointers, and
1788 references to be dereferenced, call value_as_long() instead.
1789
1790 C++: It is assumed that the front-end has taken care of
1791 all matters concerning pointers to members. A pointer
1792 to member which reaches here is considered to be equivalent
1793 to an INT (or some size). After all, it is only an offset. */
1794
1795 LONGEST
1796 unpack_long (struct type *type, const gdb_byte *valaddr)
1797 {
1798 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1799 enum type_code code = TYPE_CODE (type);
1800 int len = TYPE_LENGTH (type);
1801 int nosign = TYPE_UNSIGNED (type);
1802
1803 switch (code)
1804 {
1805 case TYPE_CODE_TYPEDEF:
1806 return unpack_long (check_typedef (type), valaddr);
1807 case TYPE_CODE_ENUM:
1808 case TYPE_CODE_FLAGS:
1809 case TYPE_CODE_BOOL:
1810 case TYPE_CODE_INT:
1811 case TYPE_CODE_CHAR:
1812 case TYPE_CODE_RANGE:
1813 case TYPE_CODE_MEMBERPTR:
1814 if (nosign)
1815 return extract_unsigned_integer (valaddr, len, byte_order);
1816 else
1817 return extract_signed_integer (valaddr, len, byte_order);
1818
1819 case TYPE_CODE_FLT:
1820 return extract_typed_floating (valaddr, type);
1821
1822 case TYPE_CODE_DECFLOAT:
1823 /* libdecnumber has a function to convert from decimal to integer, but
1824 it doesn't work when the decimal number has a fractional part. */
1825 return decimal_to_doublest (valaddr, len, byte_order);
1826
1827 case TYPE_CODE_PTR:
1828 case TYPE_CODE_REF:
1829 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1830 whether we want this to be true eventually. */
1831 return extract_typed_address (valaddr, type);
1832
1833 default:
1834 error (_("Value can't be converted to integer."));
1835 }
1836 return 0; /* Placate lint. */
1837 }
1838
1839 /* Return a double value from the specified type and address.
1840 INVP points to an int which is set to 0 for valid value,
1841 1 for invalid value (bad float format). In either case,
1842 the returned double is OK to use. Argument is in target
1843 format, result is in host format. */
1844
1845 DOUBLEST
1846 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1847 {
1848 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1849 enum type_code code;
1850 int len;
1851 int nosign;
1852
1853 *invp = 0; /* Assume valid. */
1854 CHECK_TYPEDEF (type);
1855 code = TYPE_CODE (type);
1856 len = TYPE_LENGTH (type);
1857 nosign = TYPE_UNSIGNED (type);
1858 if (code == TYPE_CODE_FLT)
1859 {
1860 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1861 floating-point value was valid (using the macro
1862 INVALID_FLOAT). That test/macro have been removed.
1863
1864 It turns out that only the VAX defined this macro and then
1865 only in a non-portable way. Fixing the portability problem
1866 wouldn't help since the VAX floating-point code is also badly
1867 bit-rotten. The target needs to add definitions for the
1868 methods gdbarch_float_format and gdbarch_double_format - these
1869 exactly describe the target floating-point format. The
1870 problem here is that the corresponding floatformat_vax_f and
1871 floatformat_vax_d values these methods should be set to are
1872 also not defined either. Oops!
1873
1874 Hopefully someone will add both the missing floatformat
1875 definitions and the new cases for floatformat_is_valid (). */
1876
1877 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1878 {
1879 *invp = 1;
1880 return 0.0;
1881 }
1882
1883 return extract_typed_floating (valaddr, type);
1884 }
1885 else if (code == TYPE_CODE_DECFLOAT)
1886 return decimal_to_doublest (valaddr, len, byte_order);
1887 else if (nosign)
1888 {
1889 /* Unsigned -- be sure we compensate for signed LONGEST. */
1890 return (ULONGEST) unpack_long (type, valaddr);
1891 }
1892 else
1893 {
1894 /* Signed -- we are OK with unpack_long. */
1895 return unpack_long (type, valaddr);
1896 }
1897 }
1898
1899 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1900 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1901 We don't assume any alignment for the raw data. Return value is in
1902 host byte order.
1903
1904 If you want functions and arrays to be coerced to pointers, and
1905 references to be dereferenced, call value_as_address() instead.
1906
1907 C++: It is assumed that the front-end has taken care of
1908 all matters concerning pointers to members. A pointer
1909 to member which reaches here is considered to be equivalent
1910 to an INT (or some size). After all, it is only an offset. */
1911
1912 CORE_ADDR
1913 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1914 {
1915 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1916 whether we want this to be true eventually. */
1917 return unpack_long (type, valaddr);
1918 }
1919
1920 \f
1921 /* Get the value of the FIELDNO'th field (which must be static) of
1922 TYPE. Return NULL if the field doesn't exist or has been
1923 optimized out. */
1924
1925 struct value *
1926 value_static_field (struct type *type, int fieldno)
1927 {
1928 struct value *retval;
1929
1930 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
1931 {
1932 case FIELD_LOC_KIND_PHYSADDR:
1933 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1934 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1935 break;
1936 case FIELD_LOC_KIND_PHYSNAME:
1937 {
1938 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1939 /* TYPE_FIELD_NAME (type, fieldno); */
1940 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1941
1942 if (sym == NULL)
1943 {
1944 /* With some compilers, e.g. HP aCC, static data members are
1945 reported as non-debuggable symbols. */
1946 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
1947 NULL, NULL);
1948
1949 if (!msym)
1950 return NULL;
1951 else
1952 {
1953 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1954 SYMBOL_VALUE_ADDRESS (msym));
1955 }
1956 }
1957 else
1958 retval = value_of_variable (sym, NULL);
1959 break;
1960 }
1961 default:
1962 gdb_assert_not_reached ("unexpected field location kind");
1963 }
1964
1965 return retval;
1966 }
1967
1968 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1969 You have to be careful here, since the size of the data area for the value
1970 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1971 than the old enclosing type, you have to allocate more space for the
1972 data. */
1973
1974 void
1975 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
1976 {
1977 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1978 val->contents =
1979 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1980
1981 val->enclosing_type = new_encl_type;
1982 }
1983
1984 /* Given a value ARG1 (offset by OFFSET bytes)
1985 of a struct or union type ARG_TYPE,
1986 extract and return the value of one of its (non-static) fields.
1987 FIELDNO says which field. */
1988
1989 struct value *
1990 value_primitive_field (struct value *arg1, int offset,
1991 int fieldno, struct type *arg_type)
1992 {
1993 struct value *v;
1994 struct type *type;
1995
1996 CHECK_TYPEDEF (arg_type);
1997 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1998
1999 /* Call check_typedef on our type to make sure that, if TYPE
2000 is a TYPE_CODE_TYPEDEF, its length is set to the length
2001 of the target type instead of zero. However, we do not
2002 replace the typedef type by the target type, because we want
2003 to keep the typedef in order to be able to print the type
2004 description correctly. */
2005 check_typedef (type);
2006
2007 /* Handle packed fields */
2008
2009 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2010 {
2011 /* Create a new value for the bitfield, with bitpos and bitsize
2012 set. If possible, arrange offset and bitpos so that we can
2013 do a single aligned read of the size of the containing type.
2014 Otherwise, adjust offset to the byte containing the first
2015 bit. Assume that the address, offset, and embedded offset
2016 are sufficiently aligned. */
2017 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2018 int container_bitsize = TYPE_LENGTH (type) * 8;
2019
2020 v = allocate_value_lazy (type);
2021 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2022 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2023 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2024 v->bitpos = bitpos % container_bitsize;
2025 else
2026 v->bitpos = bitpos % 8;
2027 v->offset = (value_embedded_offset (arg1)
2028 + offset
2029 + (bitpos - v->bitpos) / 8);
2030 v->parent = arg1;
2031 value_incref (v->parent);
2032 if (!value_lazy (arg1))
2033 value_fetch_lazy (v);
2034 }
2035 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2036 {
2037 /* This field is actually a base subobject, so preserve the
2038 entire object's contents for later references to virtual
2039 bases, etc. */
2040
2041 /* Lazy register values with offsets are not supported. */
2042 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2043 value_fetch_lazy (arg1);
2044
2045 if (value_lazy (arg1))
2046 v = allocate_value_lazy (value_enclosing_type (arg1));
2047 else
2048 {
2049 v = allocate_value (value_enclosing_type (arg1));
2050 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
2051 TYPE_LENGTH (value_enclosing_type (arg1)));
2052 }
2053 v->type = type;
2054 v->offset = value_offset (arg1);
2055 v->embedded_offset = (offset + value_embedded_offset (arg1)
2056 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
2057 }
2058 else
2059 {
2060 /* Plain old data member */
2061 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2062
2063 /* Lazy register values with offsets are not supported. */
2064 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2065 value_fetch_lazy (arg1);
2066
2067 if (value_lazy (arg1))
2068 v = allocate_value_lazy (type);
2069 else
2070 {
2071 v = allocate_value (type);
2072 memcpy (value_contents_raw (v),
2073 value_contents_raw (arg1) + offset,
2074 TYPE_LENGTH (type));
2075 }
2076 v->offset = (value_offset (arg1) + offset
2077 + value_embedded_offset (arg1));
2078 }
2079 set_value_component_location (v, arg1);
2080 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2081 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2082 return v;
2083 }
2084
2085 /* Given a value ARG1 of a struct or union type,
2086 extract and return the value of one of its (non-static) fields.
2087 FIELDNO says which field. */
2088
2089 struct value *
2090 value_field (struct value *arg1, int fieldno)
2091 {
2092 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2093 }
2094
2095 /* Return a non-virtual function as a value.
2096 F is the list of member functions which contains the desired method.
2097 J is an index into F which provides the desired method.
2098
2099 We only use the symbol for its address, so be happy with either a
2100 full symbol or a minimal symbol. */
2101
2102 struct value *
2103 value_fn_field (struct value **arg1p, struct fn_field *f,
2104 int j, struct type *type,
2105 int offset)
2106 {
2107 struct value *v;
2108 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2109 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2110 struct symbol *sym;
2111 struct minimal_symbol *msym;
2112
2113 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2114 if (sym != NULL)
2115 {
2116 msym = NULL;
2117 }
2118 else
2119 {
2120 gdb_assert (sym == NULL);
2121 msym = lookup_minimal_symbol (physname, NULL, NULL);
2122 if (msym == NULL)
2123 return NULL;
2124 }
2125
2126 v = allocate_value (ftype);
2127 if (sym)
2128 {
2129 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2130 }
2131 else
2132 {
2133 /* The minimal symbol might point to a function descriptor;
2134 resolve it to the actual code address instead. */
2135 struct objfile *objfile = msymbol_objfile (msym);
2136 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2137
2138 set_value_address (v,
2139 gdbarch_convert_from_func_ptr_addr
2140 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2141 }
2142
2143 if (arg1p)
2144 {
2145 if (type != value_type (*arg1p))
2146 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2147 value_addr (*arg1p)));
2148
2149 /* Move the `this' pointer according to the offset.
2150 VALUE_OFFSET (*arg1p) += offset; */
2151 }
2152
2153 return v;
2154 }
2155
2156 \f
2157 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2158 object at VALADDR. The bitfield starts at BITPOS bits and contains
2159 BITSIZE bits.
2160
2161 Extracting bits depends on endianness of the machine. Compute the
2162 number of least significant bits to discard. For big endian machines,
2163 we compute the total number of bits in the anonymous object, subtract
2164 off the bit count from the MSB of the object to the MSB of the
2165 bitfield, then the size of the bitfield, which leaves the LSB discard
2166 count. For little endian machines, the discard count is simply the
2167 number of bits from the LSB of the anonymous object to the LSB of the
2168 bitfield.
2169
2170 If the field is signed, we also do sign extension. */
2171
2172 LONGEST
2173 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2174 int bitpos, int bitsize)
2175 {
2176 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2177 ULONGEST val;
2178 ULONGEST valmask;
2179 int lsbcount;
2180 int bytes_read;
2181
2182 /* Read the minimum number of bytes required; there may not be
2183 enough bytes to read an entire ULONGEST. */
2184 CHECK_TYPEDEF (field_type);
2185 if (bitsize)
2186 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2187 else
2188 bytes_read = TYPE_LENGTH (field_type);
2189
2190 val = extract_unsigned_integer (valaddr + bitpos / 8,
2191 bytes_read, byte_order);
2192
2193 /* Extract bits. See comment above. */
2194
2195 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2196 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2197 else
2198 lsbcount = (bitpos % 8);
2199 val >>= lsbcount;
2200
2201 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2202 If the field is signed, and is negative, then sign extend. */
2203
2204 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2205 {
2206 valmask = (((ULONGEST) 1) << bitsize) - 1;
2207 val &= valmask;
2208 if (!TYPE_UNSIGNED (field_type))
2209 {
2210 if (val & (valmask ^ (valmask >> 1)))
2211 {
2212 val |= ~valmask;
2213 }
2214 }
2215 }
2216 return (val);
2217 }
2218
2219 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2220 VALADDR. See unpack_bits_as_long for more details. */
2221
2222 LONGEST
2223 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2224 {
2225 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2226 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2227 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2228
2229 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2230 }
2231
2232 /* Modify the value of a bitfield. ADDR points to a block of memory in
2233 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2234 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2235 indicate which bits (in target bit order) comprise the bitfield.
2236 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2237 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2238
2239 void
2240 modify_field (struct type *type, gdb_byte *addr,
2241 LONGEST fieldval, int bitpos, int bitsize)
2242 {
2243 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2244 ULONGEST oword;
2245 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2246 int bytesize;
2247
2248 /* Normalize BITPOS. */
2249 addr += bitpos / 8;
2250 bitpos %= 8;
2251
2252 /* If a negative fieldval fits in the field in question, chop
2253 off the sign extension bits. */
2254 if ((~fieldval & ~(mask >> 1)) == 0)
2255 fieldval &= mask;
2256
2257 /* Warn if value is too big to fit in the field in question. */
2258 if (0 != (fieldval & ~mask))
2259 {
2260 /* FIXME: would like to include fieldval in the message, but
2261 we don't have a sprintf_longest. */
2262 warning (_("Value does not fit in %d bits."), bitsize);
2263
2264 /* Truncate it, otherwise adjoining fields may be corrupted. */
2265 fieldval &= mask;
2266 }
2267
2268 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2269 false valgrind reports. */
2270
2271 bytesize = (bitpos + bitsize + 7) / 8;
2272 oword = extract_unsigned_integer (addr, bytesize, byte_order);
2273
2274 /* Shifting for bit field depends on endianness of the target machine. */
2275 if (gdbarch_bits_big_endian (get_type_arch (type)))
2276 bitpos = bytesize * 8 - bitpos - bitsize;
2277
2278 oword &= ~(mask << bitpos);
2279 oword |= fieldval << bitpos;
2280
2281 store_unsigned_integer (addr, bytesize, byte_order, oword);
2282 }
2283 \f
2284 /* Pack NUM into BUF using a target format of TYPE. */
2285
2286 void
2287 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2288 {
2289 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2290 int len;
2291
2292 type = check_typedef (type);
2293 len = TYPE_LENGTH (type);
2294
2295 switch (TYPE_CODE (type))
2296 {
2297 case TYPE_CODE_INT:
2298 case TYPE_CODE_CHAR:
2299 case TYPE_CODE_ENUM:
2300 case TYPE_CODE_FLAGS:
2301 case TYPE_CODE_BOOL:
2302 case TYPE_CODE_RANGE:
2303 case TYPE_CODE_MEMBERPTR:
2304 store_signed_integer (buf, len, byte_order, num);
2305 break;
2306
2307 case TYPE_CODE_REF:
2308 case TYPE_CODE_PTR:
2309 store_typed_address (buf, type, (CORE_ADDR) num);
2310 break;
2311
2312 default:
2313 error (_("Unexpected type (%d) encountered for integer constant."),
2314 TYPE_CODE (type));
2315 }
2316 }
2317
2318
2319 /* Pack NUM into BUF using a target format of TYPE. */
2320
2321 void
2322 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2323 {
2324 int len;
2325 enum bfd_endian byte_order;
2326
2327 type = check_typedef (type);
2328 len = TYPE_LENGTH (type);
2329 byte_order = gdbarch_byte_order (get_type_arch (type));
2330
2331 switch (TYPE_CODE (type))
2332 {
2333 case TYPE_CODE_INT:
2334 case TYPE_CODE_CHAR:
2335 case TYPE_CODE_ENUM:
2336 case TYPE_CODE_FLAGS:
2337 case TYPE_CODE_BOOL:
2338 case TYPE_CODE_RANGE:
2339 case TYPE_CODE_MEMBERPTR:
2340 store_unsigned_integer (buf, len, byte_order, num);
2341 break;
2342
2343 case TYPE_CODE_REF:
2344 case TYPE_CODE_PTR:
2345 store_typed_address (buf, type, (CORE_ADDR) num);
2346 break;
2347
2348 default:
2349 error (_("Unexpected type (%d) encountered "
2350 "for unsigned integer constant."),
2351 TYPE_CODE (type));
2352 }
2353 }
2354
2355
2356 /* Convert C numbers into newly allocated values. */
2357
2358 struct value *
2359 value_from_longest (struct type *type, LONGEST num)
2360 {
2361 struct value *val = allocate_value (type);
2362
2363 pack_long (value_contents_raw (val), type, num);
2364 return val;
2365 }
2366
2367
2368 /* Convert C unsigned numbers into newly allocated values. */
2369
2370 struct value *
2371 value_from_ulongest (struct type *type, ULONGEST num)
2372 {
2373 struct value *val = allocate_value (type);
2374
2375 pack_unsigned_long (value_contents_raw (val), type, num);
2376
2377 return val;
2378 }
2379
2380
2381 /* Create a value representing a pointer of type TYPE to the address
2382 ADDR. */
2383 struct value *
2384 value_from_pointer (struct type *type, CORE_ADDR addr)
2385 {
2386 struct value *val = allocate_value (type);
2387
2388 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2389 return val;
2390 }
2391
2392
2393 /* Create a value of type TYPE whose contents come from VALADDR, if it
2394 is non-null, and whose memory address (in the inferior) is
2395 ADDRESS. */
2396
2397 struct value *
2398 value_from_contents_and_address (struct type *type,
2399 const gdb_byte *valaddr,
2400 CORE_ADDR address)
2401 {
2402 struct value *v;
2403
2404 if (valaddr == NULL)
2405 v = allocate_value_lazy (type);
2406 else
2407 {
2408 v = allocate_value (type);
2409 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2410 }
2411 set_value_address (v, address);
2412 VALUE_LVAL (v) = lval_memory;
2413 return v;
2414 }
2415
2416 struct value *
2417 value_from_double (struct type *type, DOUBLEST num)
2418 {
2419 struct value *val = allocate_value (type);
2420 struct type *base_type = check_typedef (type);
2421 enum type_code code = TYPE_CODE (base_type);
2422
2423 if (code == TYPE_CODE_FLT)
2424 {
2425 store_typed_floating (value_contents_raw (val), base_type, num);
2426 }
2427 else
2428 error (_("Unexpected type encountered for floating constant."));
2429
2430 return val;
2431 }
2432
2433 struct value *
2434 value_from_decfloat (struct type *type, const gdb_byte *dec)
2435 {
2436 struct value *val = allocate_value (type);
2437
2438 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2439 return val;
2440 }
2441
2442 struct value *
2443 coerce_ref (struct value *arg)
2444 {
2445 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2446
2447 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2448 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2449 unpack_pointer (value_type (arg),
2450 value_contents (arg)));
2451 return arg;
2452 }
2453
2454 struct value *
2455 coerce_array (struct value *arg)
2456 {
2457 struct type *type;
2458
2459 arg = coerce_ref (arg);
2460 type = check_typedef (value_type (arg));
2461
2462 switch (TYPE_CODE (type))
2463 {
2464 case TYPE_CODE_ARRAY:
2465 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
2466 arg = value_coerce_array (arg);
2467 break;
2468 case TYPE_CODE_FUNC:
2469 arg = value_coerce_function (arg);
2470 break;
2471 }
2472 return arg;
2473 }
2474 \f
2475
2476 /* Return true if the function returning the specified type is using
2477 the convention of returning structures in memory (passing in the
2478 address as a hidden first parameter). */
2479
2480 int
2481 using_struct_return (struct gdbarch *gdbarch,
2482 struct type *func_type, struct type *value_type)
2483 {
2484 enum type_code code = TYPE_CODE (value_type);
2485
2486 if (code == TYPE_CODE_ERROR)
2487 error (_("Function return type unknown."));
2488
2489 if (code == TYPE_CODE_VOID)
2490 /* A void return value is never in memory. See also corresponding
2491 code in "print_return_value". */
2492 return 0;
2493
2494 /* Probe the architecture for the return-value convention. */
2495 return (gdbarch_return_value (gdbarch, func_type, value_type,
2496 NULL, NULL, NULL)
2497 != RETURN_VALUE_REGISTER_CONVENTION);
2498 }
2499
2500 /* Set the initialized field in a value struct. */
2501
2502 void
2503 set_value_initialized (struct value *val, int status)
2504 {
2505 val->initialized = status;
2506 }
2507
2508 /* Return the initialized field in a value struct. */
2509
2510 int
2511 value_initialized (struct value *val)
2512 {
2513 return val->initialized;
2514 }
2515
2516 void
2517 _initialize_values (void)
2518 {
2519 add_cmd ("convenience", no_class, show_convenience, _("\
2520 Debugger convenience (\"$foo\") variables.\n\
2521 These variables are created when you assign them values;\n\
2522 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2523 \n\
2524 A few convenience variables are given values automatically:\n\
2525 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2526 \"$__\" holds the contents of the last address examined with \"x\"."),
2527 &showlist);
2528
2529 add_cmd ("values", no_class, show_values, _("\
2530 Elements of value history around item number IDX (or last ten)."),
2531 &showlist);
2532
2533 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2534 Initialize a convenience variable if necessary.\n\
2535 init-if-undefined VARIABLE = EXPRESSION\n\
2536 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2537 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2538 VARIABLE is already initialized."));
2539
2540 add_prefix_cmd ("function", no_class, function_command, _("\
2541 Placeholder command for showing help on convenience functions."),
2542 &functionlist, "function ", 0, &cmdlist);
2543 }
This page took 0.086895 seconds and 4 git commands to generate.