1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
24 #include "gdb_string.h"
35 #include "gdb_assert.h"
41 #include "cli/cli-decode.h"
43 #include "python/python.h"
45 #include "tracepoint.h"
47 /* Prototypes for exported functions. */
49 void _initialize_values (void);
51 /* Definition of a user function. */
52 struct internal_function
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
60 internal_function_fn handler
;
62 /* User data for the handler. */
66 static struct cmd_list_element
*functionlist
;
70 /* Type of value; either not an lval, or one of the various
71 different possible kinds of lval. */
74 /* Is it modifiable? Only relevant if lval != not_lval. */
77 /* Location of value (if lval). */
80 /* If lval == lval_memory, this is the address in the inferior.
81 If lval == lval_register, this is the byte offset into the
82 registers structure. */
85 /* Pointer to internal variable. */
86 struct internalvar
*internalvar
;
88 /* If lval == lval_computed, this is a set of function pointers
89 to use to access and describe the value, and a closure pointer
93 struct lval_funcs
*funcs
; /* Functions to call. */
94 void *closure
; /* Closure for those functions to use. */
98 /* Describes offset of a value within lval of a structure in bytes.
99 If lval == lval_memory, this is an offset to the address. If
100 lval == lval_register, this is a further offset from
101 location.address within the registers structure. Note also the
102 member embedded_offset below. */
105 /* Only used for bitfields; number of bits contained in them. */
108 /* Only used for bitfields; position of start of field. For
109 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
110 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
113 /* Only used for bitfields; the containing value. This allows a
114 single read from the target when displaying multiple
116 struct value
*parent
;
118 /* Frame register value is relative to. This will be described in
119 the lval enum above as "lval_register". */
120 struct frame_id frame_id
;
122 /* Type of the value. */
125 /* If a value represents a C++ object, then the `type' field gives
126 the object's compile-time type. If the object actually belongs
127 to some class derived from `type', perhaps with other base
128 classes and additional members, then `type' is just a subobject
129 of the real thing, and the full object is probably larger than
130 `type' would suggest.
132 If `type' is a dynamic class (i.e. one with a vtable), then GDB
133 can actually determine the object's run-time type by looking at
134 the run-time type information in the vtable. When this
135 information is available, we may elect to read in the entire
136 object, for several reasons:
138 - When printing the value, the user would probably rather see the
139 full object, not just the limited portion apparent from the
142 - If `type' has virtual base classes, then even printing `type'
143 alone may require reaching outside the `type' portion of the
144 object to wherever the virtual base class has been stored.
146 When we store the entire object, `enclosing_type' is the run-time
147 type -- the complete object -- and `embedded_offset' is the
148 offset of `type' within that larger type, in bytes. The
149 value_contents() macro takes `embedded_offset' into account, so
150 most GDB code continues to see the `type' portion of the value,
151 just as the inferior would.
153 If `type' is a pointer to an object, then `enclosing_type' is a
154 pointer to the object's run-time type, and `pointed_to_offset' is
155 the offset in bytes from the full object to the pointed-to object
156 -- that is, the value `embedded_offset' would have if we followed
157 the pointer and fetched the complete object. (I don't really see
158 the point. Why not just determine the run-time type when you
159 indirect, and avoid the special case? The contents don't matter
160 until you indirect anyway.)
162 If we're not doing anything fancy, `enclosing_type' is equal to
163 `type', and `embedded_offset' is zero, so everything works
165 struct type
*enclosing_type
;
167 int pointed_to_offset
;
169 /* Values are stored in a chain, so that they can be deleted easily
170 over calls to the inferior. Values assigned to internal
171 variables, put into the value history or exposed to Python are
172 taken off this list. */
175 /* Register number if the value is from a register. */
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
194 /* If nonzero, this is the value of a variable which does not
195 actually exist in the program. */
198 /* If value is a variable, is it initialized or not. */
201 /* If value is from the stack. If this is set, read_stack will be
202 used instead of read_memory to enable extra caching. */
205 /* Actual contents of the value. Target byte-order. NULL or not
206 valid if lazy is nonzero. */
209 /* The number of references to this value. When a value is created,
210 the value chain holds a reference, so REFERENCE_COUNT is 1. If
211 release_value is called, this value is removed from the chain but
212 the caller of release_value now has a reference to this value.
213 The caller must arrange for a call to value_free later. */
217 /* Prototypes for local functions. */
219 static void show_values (char *, int);
221 static void show_convenience (char *, int);
224 /* The value-history records all the values printed
225 by print commands during this session. Each chunk
226 records 60 consecutive values. The first chunk on
227 the chain records the most recent values.
228 The total number of values is in value_history_count. */
230 #define VALUE_HISTORY_CHUNK 60
232 struct value_history_chunk
234 struct value_history_chunk
*next
;
235 struct value
*values
[VALUE_HISTORY_CHUNK
];
238 /* Chain of chunks now in use. */
240 static struct value_history_chunk
*value_history_chain
;
242 static int value_history_count
; /* Abs number of last entry stored. */
245 /* List of all value objects currently allocated
246 (except for those released by calls to release_value)
247 This is so they can be freed after each command. */
249 static struct value
*all_values
;
251 /* Allocate a lazy value for type TYPE. Its actual content is
252 "lazily" allocated too: the content field of the return value is
253 NULL; it will be allocated when it is fetched from the target. */
256 allocate_value_lazy (struct type
*type
)
260 /* Call check_typedef on our type to make sure that, if TYPE
261 is a TYPE_CODE_TYPEDEF, its length is set to the length
262 of the target type instead of zero. However, we do not
263 replace the typedef type by the target type, because we want
264 to keep the typedef in order to be able to set the VAL's type
265 description correctly. */
266 check_typedef (type
);
268 val
= (struct value
*) xzalloc (sizeof (struct value
));
269 val
->contents
= NULL
;
270 val
->next
= all_values
;
273 val
->enclosing_type
= type
;
274 VALUE_LVAL (val
) = not_lval
;
275 val
->location
.address
= 0;
276 VALUE_FRAME_ID (val
) = null_frame_id
;
280 VALUE_REGNUM (val
) = -1;
282 val
->optimized_out
= 0;
283 val
->embedded_offset
= 0;
284 val
->pointed_to_offset
= 0;
286 val
->initialized
= 1; /* Default to initialized. */
288 /* Values start out on the all_values chain. */
289 val
->reference_count
= 1;
294 /* Allocate the contents of VAL if it has not been allocated yet. */
297 allocate_value_contents (struct value
*val
)
300 val
->contents
= (gdb_byte
*) xzalloc (TYPE_LENGTH (val
->enclosing_type
));
303 /* Allocate a value and its contents for type TYPE. */
306 allocate_value (struct type
*type
)
308 struct value
*val
= allocate_value_lazy (type
);
310 allocate_value_contents (val
);
315 /* Allocate a value that has the correct length
316 for COUNT repetitions of type TYPE. */
319 allocate_repeat_value (struct type
*type
, int count
)
321 int low_bound
= current_language
->string_lower_bound
; /* ??? */
322 /* FIXME-type-allocation: need a way to free this type when we are
324 struct type
*array_type
325 = lookup_array_range_type (type
, low_bound
, count
+ low_bound
- 1);
327 return allocate_value (array_type
);
331 allocate_computed_value (struct type
*type
,
332 struct lval_funcs
*funcs
,
335 struct value
*v
= allocate_value_lazy (type
);
337 VALUE_LVAL (v
) = lval_computed
;
338 v
->location
.computed
.funcs
= funcs
;
339 v
->location
.computed
.closure
= closure
;
344 /* Accessor methods. */
347 value_next (struct value
*value
)
353 value_type (const struct value
*value
)
358 deprecated_set_value_type (struct value
*value
, struct type
*type
)
364 value_offset (const struct value
*value
)
366 return value
->offset
;
369 set_value_offset (struct value
*value
, int offset
)
371 value
->offset
= offset
;
375 value_bitpos (const struct value
*value
)
377 return value
->bitpos
;
380 set_value_bitpos (struct value
*value
, int bit
)
386 value_bitsize (const struct value
*value
)
388 return value
->bitsize
;
391 set_value_bitsize (struct value
*value
, int bit
)
393 value
->bitsize
= bit
;
397 value_parent (struct value
*value
)
399 return value
->parent
;
403 value_contents_raw (struct value
*value
)
405 allocate_value_contents (value
);
406 return value
->contents
+ value
->embedded_offset
;
410 value_contents_all_raw (struct value
*value
)
412 allocate_value_contents (value
);
413 return value
->contents
;
417 value_enclosing_type (struct value
*value
)
419 return value
->enclosing_type
;
423 require_not_optimized_out (struct value
*value
)
425 if (value
->optimized_out
)
426 error (_("value has been optimized out"));
430 value_contents_for_printing (struct value
*value
)
433 value_fetch_lazy (value
);
434 return value
->contents
;
438 value_contents_all (struct value
*value
)
440 const gdb_byte
*result
= value_contents_for_printing (value
);
441 require_not_optimized_out (value
);
446 value_lazy (struct value
*value
)
452 set_value_lazy (struct value
*value
, int val
)
458 value_stack (struct value
*value
)
464 set_value_stack (struct value
*value
, int val
)
470 value_contents (struct value
*value
)
472 const gdb_byte
*result
= value_contents_writeable (value
);
473 require_not_optimized_out (value
);
478 value_contents_writeable (struct value
*value
)
481 value_fetch_lazy (value
);
482 return value_contents_raw (value
);
485 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
486 this function is different from value_equal; in C the operator ==
487 can return 0 even if the two values being compared are equal. */
490 value_contents_equal (struct value
*val1
, struct value
*val2
)
496 type1
= check_typedef (value_type (val1
));
497 type2
= check_typedef (value_type (val2
));
498 len
= TYPE_LENGTH (type1
);
499 if (len
!= TYPE_LENGTH (type2
))
502 return (memcmp (value_contents (val1
), value_contents (val2
), len
) == 0);
506 value_optimized_out (struct value
*value
)
508 return value
->optimized_out
;
512 set_value_optimized_out (struct value
*value
, int val
)
514 value
->optimized_out
= val
;
518 value_entirely_optimized_out (const struct value
*value
)
520 if (!value
->optimized_out
)
522 if (value
->lval
!= lval_computed
523 || !value
->location
.computed
.funcs
->check_any_valid
)
525 return !value
->location
.computed
.funcs
->check_any_valid (value
);
529 value_bits_valid (const struct value
*value
, int offset
, int length
)
531 if (value
== NULL
|| !value
->optimized_out
)
533 if (value
->lval
!= lval_computed
534 || !value
->location
.computed
.funcs
->check_validity
)
536 return value
->location
.computed
.funcs
->check_validity (value
, offset
,
541 value_bits_synthetic_pointer (const struct value
*value
,
542 int offset
, int length
)
544 if (value
== NULL
|| value
->lval
!= lval_computed
545 || !value
->location
.computed
.funcs
->check_synthetic_pointer
)
547 return value
->location
.computed
.funcs
->check_synthetic_pointer (value
,
553 value_embedded_offset (struct value
*value
)
555 return value
->embedded_offset
;
559 set_value_embedded_offset (struct value
*value
, int val
)
561 value
->embedded_offset
= val
;
565 value_pointed_to_offset (struct value
*value
)
567 return value
->pointed_to_offset
;
571 set_value_pointed_to_offset (struct value
*value
, int val
)
573 value
->pointed_to_offset
= val
;
577 value_computed_funcs (struct value
*v
)
579 gdb_assert (VALUE_LVAL (v
) == lval_computed
);
581 return v
->location
.computed
.funcs
;
585 value_computed_closure (const struct value
*v
)
587 gdb_assert (v
->lval
== lval_computed
);
589 return v
->location
.computed
.closure
;
593 deprecated_value_lval_hack (struct value
*value
)
599 value_address (struct value
*value
)
601 if (value
->lval
== lval_internalvar
602 || value
->lval
== lval_internalvar_component
)
604 return value
->location
.address
+ value
->offset
;
608 value_raw_address (struct value
*value
)
610 if (value
->lval
== lval_internalvar
611 || value
->lval
== lval_internalvar_component
)
613 return value
->location
.address
;
617 set_value_address (struct value
*value
, CORE_ADDR addr
)
619 gdb_assert (value
->lval
!= lval_internalvar
620 && value
->lval
!= lval_internalvar_component
);
621 value
->location
.address
= addr
;
624 struct internalvar
**
625 deprecated_value_internalvar_hack (struct value
*value
)
627 return &value
->location
.internalvar
;
631 deprecated_value_frame_id_hack (struct value
*value
)
633 return &value
->frame_id
;
637 deprecated_value_regnum_hack (struct value
*value
)
639 return &value
->regnum
;
643 deprecated_value_modifiable (struct value
*value
)
645 return value
->modifiable
;
648 deprecated_set_value_modifiable (struct value
*value
, int modifiable
)
650 value
->modifiable
= modifiable
;
653 /* Return a mark in the value chain. All values allocated after the
654 mark is obtained (except for those released) are subject to being freed
655 if a subsequent value_free_to_mark is passed the mark. */
662 /* Take a reference to VAL. VAL will not be deallocated until all
663 references are released. */
666 value_incref (struct value
*val
)
668 val
->reference_count
++;
671 /* Release a reference to VAL, which was acquired with value_incref.
672 This function is also called to deallocate values from the value
676 value_free (struct value
*val
)
680 gdb_assert (val
->reference_count
> 0);
681 val
->reference_count
--;
682 if (val
->reference_count
> 0)
685 /* If there's an associated parent value, drop our reference to
687 if (val
->parent
!= NULL
)
688 value_free (val
->parent
);
690 if (VALUE_LVAL (val
) == lval_computed
)
692 struct lval_funcs
*funcs
= val
->location
.computed
.funcs
;
694 if (funcs
->free_closure
)
695 funcs
->free_closure (val
);
698 xfree (val
->contents
);
703 /* Free all values allocated since MARK was obtained by value_mark
704 (except for those released). */
706 value_free_to_mark (struct value
*mark
)
711 for (val
= all_values
; val
&& val
!= mark
; val
= next
)
719 /* Free all the values that have been allocated (except for those released).
720 Call after each command, successful or not.
721 In practice this is called before each command, which is sufficient. */
724 free_all_values (void)
729 for (val
= all_values
; val
; val
= next
)
738 /* Frees all the elements in a chain of values. */
741 free_value_chain (struct value
*v
)
747 next
= value_next (v
);
752 /* Remove VAL from the chain all_values
753 so it will not be freed automatically. */
756 release_value (struct value
*val
)
760 if (all_values
== val
)
762 all_values
= val
->next
;
767 for (v
= all_values
; v
; v
= v
->next
)
778 /* Release all values up to mark */
780 value_release_to_mark (struct value
*mark
)
785 for (val
= next
= all_values
; next
; next
= next
->next
)
786 if (next
->next
== mark
)
788 all_values
= next
->next
;
796 /* Return a copy of the value ARG.
797 It contains the same contents, for same memory address,
798 but it's a different block of storage. */
801 value_copy (struct value
*arg
)
803 struct type
*encl_type
= value_enclosing_type (arg
);
806 if (value_lazy (arg
))
807 val
= allocate_value_lazy (encl_type
);
809 val
= allocate_value (encl_type
);
810 val
->type
= arg
->type
;
811 VALUE_LVAL (val
) = VALUE_LVAL (arg
);
812 val
->location
= arg
->location
;
813 val
->offset
= arg
->offset
;
814 val
->bitpos
= arg
->bitpos
;
815 val
->bitsize
= arg
->bitsize
;
816 VALUE_FRAME_ID (val
) = VALUE_FRAME_ID (arg
);
817 VALUE_REGNUM (val
) = VALUE_REGNUM (arg
);
818 val
->lazy
= arg
->lazy
;
819 val
->optimized_out
= arg
->optimized_out
;
820 val
->embedded_offset
= value_embedded_offset (arg
);
821 val
->pointed_to_offset
= arg
->pointed_to_offset
;
822 val
->modifiable
= arg
->modifiable
;
823 if (!value_lazy (val
))
825 memcpy (value_contents_all_raw (val
), value_contents_all_raw (arg
),
826 TYPE_LENGTH (value_enclosing_type (arg
)));
829 val
->parent
= arg
->parent
;
831 value_incref (val
->parent
);
832 if (VALUE_LVAL (val
) == lval_computed
)
834 struct lval_funcs
*funcs
= val
->location
.computed
.funcs
;
836 if (funcs
->copy_closure
)
837 val
->location
.computed
.closure
= funcs
->copy_closure (val
);
842 /* Return a version of ARG that is non-lvalue. */
845 value_non_lval (struct value
*arg
)
847 if (VALUE_LVAL (arg
) != not_lval
)
849 struct type
*enc_type
= value_enclosing_type (arg
);
850 struct value
*val
= allocate_value (enc_type
);
852 memcpy (value_contents_all_raw (val
), value_contents_all (arg
),
853 TYPE_LENGTH (enc_type
));
854 val
->type
= arg
->type
;
855 set_value_embedded_offset (val
, value_embedded_offset (arg
));
856 set_value_pointed_to_offset (val
, value_pointed_to_offset (arg
));
863 set_value_component_location (struct value
*component
,
864 const struct value
*whole
)
866 if (whole
->lval
== lval_internalvar
)
867 VALUE_LVAL (component
) = lval_internalvar_component
;
869 VALUE_LVAL (component
) = whole
->lval
;
871 component
->location
= whole
->location
;
872 if (whole
->lval
== lval_computed
)
874 struct lval_funcs
*funcs
= whole
->location
.computed
.funcs
;
876 if (funcs
->copy_closure
)
877 component
->location
.computed
.closure
= funcs
->copy_closure (whole
);
882 /* Access to the value history. */
884 /* Record a new value in the value history.
885 Returns the absolute history index of the entry.
886 Result of -1 indicates the value was not saved; otherwise it is the
887 value history index of this new item. */
890 record_latest_value (struct value
*val
)
894 /* We don't want this value to have anything to do with the inferior anymore.
895 In particular, "set $1 = 50" should not affect the variable from which
896 the value was taken, and fast watchpoints should be able to assume that
897 a value on the value history never changes. */
898 if (value_lazy (val
))
899 value_fetch_lazy (val
);
900 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
901 from. This is a bit dubious, because then *&$1 does not just return $1
902 but the current contents of that location. c'est la vie... */
906 /* Here we treat value_history_count as origin-zero
907 and applying to the value being stored now. */
909 i
= value_history_count
% VALUE_HISTORY_CHUNK
;
912 struct value_history_chunk
*new
913 = (struct value_history_chunk
*)
915 xmalloc (sizeof (struct value_history_chunk
));
916 memset (new->values
, 0, sizeof new->values
);
917 new->next
= value_history_chain
;
918 value_history_chain
= new;
921 value_history_chain
->values
[i
] = val
;
923 /* Now we regard value_history_count as origin-one
924 and applying to the value just stored. */
926 return ++value_history_count
;
929 /* Return a copy of the value in the history with sequence number NUM. */
932 access_value_history (int num
)
934 struct value_history_chunk
*chunk
;
939 absnum
+= value_history_count
;
944 error (_("The history is empty."));
946 error (_("There is only one value in the history."));
948 error (_("History does not go back to $$%d."), -num
);
950 if (absnum
> value_history_count
)
951 error (_("History has not yet reached $%d."), absnum
);
955 /* Now absnum is always absolute and origin zero. */
957 chunk
= value_history_chain
;
958 for (i
= (value_history_count
- 1) / VALUE_HISTORY_CHUNK
959 - absnum
/ VALUE_HISTORY_CHUNK
;
963 return value_copy (chunk
->values
[absnum
% VALUE_HISTORY_CHUNK
]);
967 show_values (char *num_exp
, int from_tty
)
975 /* "show values +" should print from the stored position.
976 "show values <exp>" should print around value number <exp>. */
977 if (num_exp
[0] != '+' || num_exp
[1] != '\0')
978 num
= parse_and_eval_long (num_exp
) - 5;
982 /* "show values" means print the last 10 values. */
983 num
= value_history_count
- 9;
989 for (i
= num
; i
< num
+ 10 && i
<= value_history_count
; i
++)
991 struct value_print_options opts
;
993 val
= access_value_history (i
);
994 printf_filtered (("$%d = "), i
);
995 get_user_print_options (&opts
);
996 value_print (val
, gdb_stdout
, &opts
);
997 printf_filtered (("\n"));
1000 /* The next "show values +" should start after what we just printed. */
1003 /* Hitting just return after this command should do the same thing as
1004 "show values +". If num_exp is null, this is unnecessary, since
1005 "show values +" is not useful after "show values". */
1006 if (from_tty
&& num_exp
)
1013 /* Internal variables. These are variables within the debugger
1014 that hold values assigned by debugger commands.
1015 The user refers to them with a '$' prefix
1016 that does not appear in the variable names stored internally. */
1020 struct internalvar
*next
;
1023 /* We support various different kinds of content of an internal variable.
1024 enum internalvar_kind specifies the kind, and union internalvar_data
1025 provides the data associated with this particular kind. */
1027 enum internalvar_kind
1029 /* The internal variable is empty. */
1032 /* The value of the internal variable is provided directly as
1033 a GDB value object. */
1036 /* A fresh value is computed via a call-back routine on every
1037 access to the internal variable. */
1038 INTERNALVAR_MAKE_VALUE
,
1040 /* The internal variable holds a GDB internal convenience function. */
1041 INTERNALVAR_FUNCTION
,
1043 /* The variable holds an integer value. */
1044 INTERNALVAR_INTEGER
,
1046 /* The variable holds a pointer value. */
1047 INTERNALVAR_POINTER
,
1049 /* The variable holds a GDB-provided string. */
1054 union internalvar_data
1056 /* A value object used with INTERNALVAR_VALUE. */
1057 struct value
*value
;
1059 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1060 internalvar_make_value make_value
;
1062 /* The internal function used with INTERNALVAR_FUNCTION. */
1065 struct internal_function
*function
;
1066 /* True if this is the canonical name for the function. */
1070 /* An integer value used with INTERNALVAR_INTEGER. */
1073 /* If type is non-NULL, it will be used as the type to generate
1074 a value for this internal variable. If type is NULL, a default
1075 integer type for the architecture is used. */
1080 /* A pointer value used with INTERNALVAR_POINTER. */
1087 /* A string value used with INTERNALVAR_STRING. */
1092 static struct internalvar
*internalvars
;
1094 /* If the variable does not already exist create it and give it the
1095 value given. If no value is given then the default is zero. */
1097 init_if_undefined_command (char* args
, int from_tty
)
1099 struct internalvar
* intvar
;
1101 /* Parse the expression - this is taken from set_command(). */
1102 struct expression
*expr
= parse_expression (args
);
1103 register struct cleanup
*old_chain
=
1104 make_cleanup (free_current_contents
, &expr
);
1106 /* Validate the expression.
1107 Was the expression an assignment?
1108 Or even an expression at all? */
1109 if (expr
->nelts
== 0 || expr
->elts
[0].opcode
!= BINOP_ASSIGN
)
1110 error (_("Init-if-undefined requires an assignment expression."));
1112 /* Extract the variable from the parsed expression.
1113 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1114 if (expr
->elts
[1].opcode
!= OP_INTERNALVAR
)
1115 error (_("The first parameter to init-if-undefined "
1116 "should be a GDB variable."));
1117 intvar
= expr
->elts
[2].internalvar
;
1119 /* Only evaluate the expression if the lvalue is void.
1120 This may still fail if the expresssion is invalid. */
1121 if (intvar
->kind
== INTERNALVAR_VOID
)
1122 evaluate_expression (expr
);
1124 do_cleanups (old_chain
);
1128 /* Look up an internal variable with name NAME. NAME should not
1129 normally include a dollar sign.
1131 If the specified internal variable does not exist,
1132 the return value is NULL. */
1134 struct internalvar
*
1135 lookup_only_internalvar (const char *name
)
1137 struct internalvar
*var
;
1139 for (var
= internalvars
; var
; var
= var
->next
)
1140 if (strcmp (var
->name
, name
) == 0)
1147 /* Create an internal variable with name NAME and with a void value.
1148 NAME should not normally include a dollar sign. */
1150 struct internalvar
*
1151 create_internalvar (const char *name
)
1153 struct internalvar
*var
;
1155 var
= (struct internalvar
*) xmalloc (sizeof (struct internalvar
));
1156 var
->name
= concat (name
, (char *)NULL
);
1157 var
->kind
= INTERNALVAR_VOID
;
1158 var
->next
= internalvars
;
1163 /* Create an internal variable with name NAME and register FUN as the
1164 function that value_of_internalvar uses to create a value whenever
1165 this variable is referenced. NAME should not normally include a
1168 struct internalvar
*
1169 create_internalvar_type_lazy (char *name
, internalvar_make_value fun
)
1171 struct internalvar
*var
= create_internalvar (name
);
1173 var
->kind
= INTERNALVAR_MAKE_VALUE
;
1174 var
->u
.make_value
= fun
;
1178 /* Look up an internal variable with name NAME. NAME should not
1179 normally include a dollar sign.
1181 If the specified internal variable does not exist,
1182 one is created, with a void value. */
1184 struct internalvar
*
1185 lookup_internalvar (const char *name
)
1187 struct internalvar
*var
;
1189 var
= lookup_only_internalvar (name
);
1193 return create_internalvar (name
);
1196 /* Return current value of internal variable VAR. For variables that
1197 are not inherently typed, use a value type appropriate for GDBARCH. */
1200 value_of_internalvar (struct gdbarch
*gdbarch
, struct internalvar
*var
)
1203 struct trace_state_variable
*tsv
;
1205 /* If there is a trace state variable of the same name, assume that
1206 is what we really want to see. */
1207 tsv
= find_trace_state_variable (var
->name
);
1210 tsv
->value_known
= target_get_trace_state_variable_value (tsv
->number
,
1212 if (tsv
->value_known
)
1213 val
= value_from_longest (builtin_type (gdbarch
)->builtin_int64
,
1216 val
= allocate_value (builtin_type (gdbarch
)->builtin_void
);
1222 case INTERNALVAR_VOID
:
1223 val
= allocate_value (builtin_type (gdbarch
)->builtin_void
);
1226 case INTERNALVAR_FUNCTION
:
1227 val
= allocate_value (builtin_type (gdbarch
)->internal_fn
);
1230 case INTERNALVAR_INTEGER
:
1231 if (!var
->u
.integer
.type
)
1232 val
= value_from_longest (builtin_type (gdbarch
)->builtin_int
,
1233 var
->u
.integer
.val
);
1235 val
= value_from_longest (var
->u
.integer
.type
, var
->u
.integer
.val
);
1238 case INTERNALVAR_POINTER
:
1239 val
= value_from_pointer (var
->u
.pointer
.type
, var
->u
.pointer
.val
);
1242 case INTERNALVAR_STRING
:
1243 val
= value_cstring (var
->u
.string
, strlen (var
->u
.string
),
1244 builtin_type (gdbarch
)->builtin_char
);
1247 case INTERNALVAR_VALUE
:
1248 val
= value_copy (var
->u
.value
);
1249 if (value_lazy (val
))
1250 value_fetch_lazy (val
);
1253 case INTERNALVAR_MAKE_VALUE
:
1254 val
= (*var
->u
.make_value
) (gdbarch
, var
);
1258 internal_error (__FILE__
, __LINE__
, _("bad kind"));
1261 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1262 on this value go back to affect the original internal variable.
1264 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1265 no underlying modifyable state in the internal variable.
1267 Likewise, if the variable's value is a computed lvalue, we want
1268 references to it to produce another computed lvalue, where
1269 references and assignments actually operate through the
1270 computed value's functions.
1272 This means that internal variables with computed values
1273 behave a little differently from other internal variables:
1274 assignments to them don't just replace the previous value
1275 altogether. At the moment, this seems like the behavior we
1278 if (var
->kind
!= INTERNALVAR_MAKE_VALUE
1279 && val
->lval
!= lval_computed
)
1281 VALUE_LVAL (val
) = lval_internalvar
;
1282 VALUE_INTERNALVAR (val
) = var
;
1289 get_internalvar_integer (struct internalvar
*var
, LONGEST
*result
)
1293 case INTERNALVAR_INTEGER
:
1294 *result
= var
->u
.integer
.val
;
1303 get_internalvar_function (struct internalvar
*var
,
1304 struct internal_function
**result
)
1308 case INTERNALVAR_FUNCTION
:
1309 *result
= var
->u
.fn
.function
;
1318 set_internalvar_component (struct internalvar
*var
, int offset
, int bitpos
,
1319 int bitsize
, struct value
*newval
)
1325 case INTERNALVAR_VALUE
:
1326 addr
= value_contents_writeable (var
->u
.value
);
1329 modify_field (value_type (var
->u
.value
), addr
+ offset
,
1330 value_as_long (newval
), bitpos
, bitsize
);
1332 memcpy (addr
+ offset
, value_contents (newval
),
1333 TYPE_LENGTH (value_type (newval
)));
1337 /* We can never get a component of any other kind. */
1338 internal_error (__FILE__
, __LINE__
, _("set_internalvar_component"));
1343 set_internalvar (struct internalvar
*var
, struct value
*val
)
1345 enum internalvar_kind new_kind
;
1346 union internalvar_data new_data
= { 0 };
1348 if (var
->kind
== INTERNALVAR_FUNCTION
&& var
->u
.fn
.canonical
)
1349 error (_("Cannot overwrite convenience function %s"), var
->name
);
1351 /* Prepare new contents. */
1352 switch (TYPE_CODE (check_typedef (value_type (val
))))
1354 case TYPE_CODE_VOID
:
1355 new_kind
= INTERNALVAR_VOID
;
1358 case TYPE_CODE_INTERNAL_FUNCTION
:
1359 gdb_assert (VALUE_LVAL (val
) == lval_internalvar
);
1360 new_kind
= INTERNALVAR_FUNCTION
;
1361 get_internalvar_function (VALUE_INTERNALVAR (val
),
1362 &new_data
.fn
.function
);
1363 /* Copies created here are never canonical. */
1367 new_kind
= INTERNALVAR_INTEGER
;
1368 new_data
.integer
.type
= value_type (val
);
1369 new_data
.integer
.val
= value_as_long (val
);
1373 new_kind
= INTERNALVAR_POINTER
;
1374 new_data
.pointer
.type
= value_type (val
);
1375 new_data
.pointer
.val
= value_as_address (val
);
1379 new_kind
= INTERNALVAR_VALUE
;
1380 new_data
.value
= value_copy (val
);
1381 new_data
.value
->modifiable
= 1;
1383 /* Force the value to be fetched from the target now, to avoid problems
1384 later when this internalvar is referenced and the target is gone or
1386 if (value_lazy (new_data
.value
))
1387 value_fetch_lazy (new_data
.value
);
1389 /* Release the value from the value chain to prevent it from being
1390 deleted by free_all_values. From here on this function should not
1391 call error () until new_data is installed into the var->u to avoid
1393 release_value (new_data
.value
);
1397 /* Clean up old contents. */
1398 clear_internalvar (var
);
1401 var
->kind
= new_kind
;
1403 /* End code which must not call error(). */
1407 set_internalvar_integer (struct internalvar
*var
, LONGEST l
)
1409 /* Clean up old contents. */
1410 clear_internalvar (var
);
1412 var
->kind
= INTERNALVAR_INTEGER
;
1413 var
->u
.integer
.type
= NULL
;
1414 var
->u
.integer
.val
= l
;
1418 set_internalvar_string (struct internalvar
*var
, const char *string
)
1420 /* Clean up old contents. */
1421 clear_internalvar (var
);
1423 var
->kind
= INTERNALVAR_STRING
;
1424 var
->u
.string
= xstrdup (string
);
1428 set_internalvar_function (struct internalvar
*var
, struct internal_function
*f
)
1430 /* Clean up old contents. */
1431 clear_internalvar (var
);
1433 var
->kind
= INTERNALVAR_FUNCTION
;
1434 var
->u
.fn
.function
= f
;
1435 var
->u
.fn
.canonical
= 1;
1436 /* Variables installed here are always the canonical version. */
1440 clear_internalvar (struct internalvar
*var
)
1442 /* Clean up old contents. */
1445 case INTERNALVAR_VALUE
:
1446 value_free (var
->u
.value
);
1449 case INTERNALVAR_STRING
:
1450 xfree (var
->u
.string
);
1457 /* Reset to void kind. */
1458 var
->kind
= INTERNALVAR_VOID
;
1462 internalvar_name (struct internalvar
*var
)
1467 static struct internal_function
*
1468 create_internal_function (const char *name
,
1469 internal_function_fn handler
, void *cookie
)
1471 struct internal_function
*ifn
= XNEW (struct internal_function
);
1473 ifn
->name
= xstrdup (name
);
1474 ifn
->handler
= handler
;
1475 ifn
->cookie
= cookie
;
1480 value_internal_function_name (struct value
*val
)
1482 struct internal_function
*ifn
;
1485 gdb_assert (VALUE_LVAL (val
) == lval_internalvar
);
1486 result
= get_internalvar_function (VALUE_INTERNALVAR (val
), &ifn
);
1487 gdb_assert (result
);
1493 call_internal_function (struct gdbarch
*gdbarch
,
1494 const struct language_defn
*language
,
1495 struct value
*func
, int argc
, struct value
**argv
)
1497 struct internal_function
*ifn
;
1500 gdb_assert (VALUE_LVAL (func
) == lval_internalvar
);
1501 result
= get_internalvar_function (VALUE_INTERNALVAR (func
), &ifn
);
1502 gdb_assert (result
);
1504 return (*ifn
->handler
) (gdbarch
, language
, ifn
->cookie
, argc
, argv
);
1507 /* The 'function' command. This does nothing -- it is just a
1508 placeholder to let "help function NAME" work. This is also used as
1509 the implementation of the sub-command that is created when
1510 registering an internal function. */
1512 function_command (char *command
, int from_tty
)
1517 /* Clean up if an internal function's command is destroyed. */
1519 function_destroyer (struct cmd_list_element
*self
, void *ignore
)
1525 /* Add a new internal function. NAME is the name of the function; DOC
1526 is a documentation string describing the function. HANDLER is
1527 called when the function is invoked. COOKIE is an arbitrary
1528 pointer which is passed to HANDLER and is intended for "user
1531 add_internal_function (const char *name
, const char *doc
,
1532 internal_function_fn handler
, void *cookie
)
1534 struct cmd_list_element
*cmd
;
1535 struct internal_function
*ifn
;
1536 struct internalvar
*var
= lookup_internalvar (name
);
1538 ifn
= create_internal_function (name
, handler
, cookie
);
1539 set_internalvar_function (var
, ifn
);
1541 cmd
= add_cmd (xstrdup (name
), no_class
, function_command
, (char *) doc
,
1543 cmd
->destroyer
= function_destroyer
;
1546 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1547 prevent cycles / duplicates. */
1550 preserve_one_value (struct value
*value
, struct objfile
*objfile
,
1551 htab_t copied_types
)
1553 if (TYPE_OBJFILE (value
->type
) == objfile
)
1554 value
->type
= copy_type_recursive (objfile
, value
->type
, copied_types
);
1556 if (TYPE_OBJFILE (value
->enclosing_type
) == objfile
)
1557 value
->enclosing_type
= copy_type_recursive (objfile
,
1558 value
->enclosing_type
,
1562 /* Likewise for internal variable VAR. */
1565 preserve_one_internalvar (struct internalvar
*var
, struct objfile
*objfile
,
1566 htab_t copied_types
)
1570 case INTERNALVAR_INTEGER
:
1571 if (var
->u
.integer
.type
&& TYPE_OBJFILE (var
->u
.integer
.type
) == objfile
)
1573 = copy_type_recursive (objfile
, var
->u
.integer
.type
, copied_types
);
1576 case INTERNALVAR_POINTER
:
1577 if (TYPE_OBJFILE (var
->u
.pointer
.type
) == objfile
)
1579 = copy_type_recursive (objfile
, var
->u
.pointer
.type
, copied_types
);
1582 case INTERNALVAR_VALUE
:
1583 preserve_one_value (var
->u
.value
, objfile
, copied_types
);
1588 /* Update the internal variables and value history when OBJFILE is
1589 discarded; we must copy the types out of the objfile. New global types
1590 will be created for every convenience variable which currently points to
1591 this objfile's types, and the convenience variables will be adjusted to
1592 use the new global types. */
1595 preserve_values (struct objfile
*objfile
)
1597 htab_t copied_types
;
1598 struct value_history_chunk
*cur
;
1599 struct internalvar
*var
;
1602 /* Create the hash table. We allocate on the objfile's obstack, since
1603 it is soon to be deleted. */
1604 copied_types
= create_copied_types_hash (objfile
);
1606 for (cur
= value_history_chain
; cur
; cur
= cur
->next
)
1607 for (i
= 0; i
< VALUE_HISTORY_CHUNK
; i
++)
1609 preserve_one_value (cur
->values
[i
], objfile
, copied_types
);
1611 for (var
= internalvars
; var
; var
= var
->next
)
1612 preserve_one_internalvar (var
, objfile
, copied_types
);
1614 preserve_python_values (objfile
, copied_types
);
1616 htab_delete (copied_types
);
1620 show_convenience (char *ignore
, int from_tty
)
1622 struct gdbarch
*gdbarch
= get_current_arch ();
1623 struct internalvar
*var
;
1625 struct value_print_options opts
;
1627 get_user_print_options (&opts
);
1628 for (var
= internalvars
; var
; var
= var
->next
)
1634 printf_filtered (("$%s = "), var
->name
);
1635 value_print (value_of_internalvar (gdbarch
, var
), gdb_stdout
,
1637 printf_filtered (("\n"));
1640 printf_unfiltered (_("No debugger convenience variables now defined.\n"
1641 "Convenience variables have "
1642 "names starting with \"$\";\n"
1643 "use \"set\" as in \"set "
1644 "$foo = 5\" to define them.\n"));
1647 /* Extract a value as a C number (either long or double).
1648 Knows how to convert fixed values to double, or
1649 floating values to long.
1650 Does not deallocate the value. */
1653 value_as_long (struct value
*val
)
1655 /* This coerces arrays and functions, which is necessary (e.g.
1656 in disassemble_command). It also dereferences references, which
1657 I suspect is the most logical thing to do. */
1658 val
= coerce_array (val
);
1659 return unpack_long (value_type (val
), value_contents (val
));
1663 value_as_double (struct value
*val
)
1668 foo
= unpack_double (value_type (val
), value_contents (val
), &inv
);
1670 error (_("Invalid floating value found in program."));
1674 /* Extract a value as a C pointer. Does not deallocate the value.
1675 Note that val's type may not actually be a pointer; value_as_long
1676 handles all the cases. */
1678 value_as_address (struct value
*val
)
1680 struct gdbarch
*gdbarch
= get_type_arch (value_type (val
));
1682 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1683 whether we want this to be true eventually. */
1685 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1686 non-address (e.g. argument to "signal", "info break", etc.), or
1687 for pointers to char, in which the low bits *are* significant. */
1688 return gdbarch_addr_bits_remove (gdbarch
, value_as_long (val
));
1691 /* There are several targets (IA-64, PowerPC, and others) which
1692 don't represent pointers to functions as simply the address of
1693 the function's entry point. For example, on the IA-64, a
1694 function pointer points to a two-word descriptor, generated by
1695 the linker, which contains the function's entry point, and the
1696 value the IA-64 "global pointer" register should have --- to
1697 support position-independent code. The linker generates
1698 descriptors only for those functions whose addresses are taken.
1700 On such targets, it's difficult for GDB to convert an arbitrary
1701 function address into a function pointer; it has to either find
1702 an existing descriptor for that function, or call malloc and
1703 build its own. On some targets, it is impossible for GDB to
1704 build a descriptor at all: the descriptor must contain a jump
1705 instruction; data memory cannot be executed; and code memory
1708 Upon entry to this function, if VAL is a value of type `function'
1709 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1710 value_address (val) is the address of the function. This is what
1711 you'll get if you evaluate an expression like `main'. The call
1712 to COERCE_ARRAY below actually does all the usual unary
1713 conversions, which includes converting values of type `function'
1714 to `pointer to function'. This is the challenging conversion
1715 discussed above. Then, `unpack_long' will convert that pointer
1716 back into an address.
1718 So, suppose the user types `disassemble foo' on an architecture
1719 with a strange function pointer representation, on which GDB
1720 cannot build its own descriptors, and suppose further that `foo'
1721 has no linker-built descriptor. The address->pointer conversion
1722 will signal an error and prevent the command from running, even
1723 though the next step would have been to convert the pointer
1724 directly back into the same address.
1726 The following shortcut avoids this whole mess. If VAL is a
1727 function, just return its address directly. */
1728 if (TYPE_CODE (value_type (val
)) == TYPE_CODE_FUNC
1729 || TYPE_CODE (value_type (val
)) == TYPE_CODE_METHOD
)
1730 return value_address (val
);
1732 val
= coerce_array (val
);
1734 /* Some architectures (e.g. Harvard), map instruction and data
1735 addresses onto a single large unified address space. For
1736 instance: An architecture may consider a large integer in the
1737 range 0x10000000 .. 0x1000ffff to already represent a data
1738 addresses (hence not need a pointer to address conversion) while
1739 a small integer would still need to be converted integer to
1740 pointer to address. Just assume such architectures handle all
1741 integer conversions in a single function. */
1745 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1746 must admonish GDB hackers to make sure its behavior matches the
1747 compiler's, whenever possible.
1749 In general, I think GDB should evaluate expressions the same way
1750 the compiler does. When the user copies an expression out of
1751 their source code and hands it to a `print' command, they should
1752 get the same value the compiler would have computed. Any
1753 deviation from this rule can cause major confusion and annoyance,
1754 and needs to be justified carefully. In other words, GDB doesn't
1755 really have the freedom to do these conversions in clever and
1758 AndrewC pointed out that users aren't complaining about how GDB
1759 casts integers to pointers; they are complaining that they can't
1760 take an address from a disassembly listing and give it to `x/i'.
1761 This is certainly important.
1763 Adding an architecture method like integer_to_address() certainly
1764 makes it possible for GDB to "get it right" in all circumstances
1765 --- the target has complete control over how things get done, so
1766 people can Do The Right Thing for their target without breaking
1767 anyone else. The standard doesn't specify how integers get
1768 converted to pointers; usually, the ABI doesn't either, but
1769 ABI-specific code is a more reasonable place to handle it. */
1771 if (TYPE_CODE (value_type (val
)) != TYPE_CODE_PTR
1772 && TYPE_CODE (value_type (val
)) != TYPE_CODE_REF
1773 && gdbarch_integer_to_address_p (gdbarch
))
1774 return gdbarch_integer_to_address (gdbarch
, value_type (val
),
1775 value_contents (val
));
1777 return unpack_long (value_type (val
), value_contents (val
));
1781 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1782 as a long, or as a double, assuming the raw data is described
1783 by type TYPE. Knows how to convert different sizes of values
1784 and can convert between fixed and floating point. We don't assume
1785 any alignment for the raw data. Return value is in host byte order.
1787 If you want functions and arrays to be coerced to pointers, and
1788 references to be dereferenced, call value_as_long() instead.
1790 C++: It is assumed that the front-end has taken care of
1791 all matters concerning pointers to members. A pointer
1792 to member which reaches here is considered to be equivalent
1793 to an INT (or some size). After all, it is only an offset. */
1796 unpack_long (struct type
*type
, const gdb_byte
*valaddr
)
1798 enum bfd_endian byte_order
= gdbarch_byte_order (get_type_arch (type
));
1799 enum type_code code
= TYPE_CODE (type
);
1800 int len
= TYPE_LENGTH (type
);
1801 int nosign
= TYPE_UNSIGNED (type
);
1805 case TYPE_CODE_TYPEDEF
:
1806 return unpack_long (check_typedef (type
), valaddr
);
1807 case TYPE_CODE_ENUM
:
1808 case TYPE_CODE_FLAGS
:
1809 case TYPE_CODE_BOOL
:
1811 case TYPE_CODE_CHAR
:
1812 case TYPE_CODE_RANGE
:
1813 case TYPE_CODE_MEMBERPTR
:
1815 return extract_unsigned_integer (valaddr
, len
, byte_order
);
1817 return extract_signed_integer (valaddr
, len
, byte_order
);
1820 return extract_typed_floating (valaddr
, type
);
1822 case TYPE_CODE_DECFLOAT
:
1823 /* libdecnumber has a function to convert from decimal to integer, but
1824 it doesn't work when the decimal number has a fractional part. */
1825 return decimal_to_doublest (valaddr
, len
, byte_order
);
1829 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1830 whether we want this to be true eventually. */
1831 return extract_typed_address (valaddr
, type
);
1834 error (_("Value can't be converted to integer."));
1836 return 0; /* Placate lint. */
1839 /* Return a double value from the specified type and address.
1840 INVP points to an int which is set to 0 for valid value,
1841 1 for invalid value (bad float format). In either case,
1842 the returned double is OK to use. Argument is in target
1843 format, result is in host format. */
1846 unpack_double (struct type
*type
, const gdb_byte
*valaddr
, int *invp
)
1848 enum bfd_endian byte_order
= gdbarch_byte_order (get_type_arch (type
));
1849 enum type_code code
;
1853 *invp
= 0; /* Assume valid. */
1854 CHECK_TYPEDEF (type
);
1855 code
= TYPE_CODE (type
);
1856 len
= TYPE_LENGTH (type
);
1857 nosign
= TYPE_UNSIGNED (type
);
1858 if (code
== TYPE_CODE_FLT
)
1860 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1861 floating-point value was valid (using the macro
1862 INVALID_FLOAT). That test/macro have been removed.
1864 It turns out that only the VAX defined this macro and then
1865 only in a non-portable way. Fixing the portability problem
1866 wouldn't help since the VAX floating-point code is also badly
1867 bit-rotten. The target needs to add definitions for the
1868 methods gdbarch_float_format and gdbarch_double_format - these
1869 exactly describe the target floating-point format. The
1870 problem here is that the corresponding floatformat_vax_f and
1871 floatformat_vax_d values these methods should be set to are
1872 also not defined either. Oops!
1874 Hopefully someone will add both the missing floatformat
1875 definitions and the new cases for floatformat_is_valid (). */
1877 if (!floatformat_is_valid (floatformat_from_type (type
), valaddr
))
1883 return extract_typed_floating (valaddr
, type
);
1885 else if (code
== TYPE_CODE_DECFLOAT
)
1886 return decimal_to_doublest (valaddr
, len
, byte_order
);
1889 /* Unsigned -- be sure we compensate for signed LONGEST. */
1890 return (ULONGEST
) unpack_long (type
, valaddr
);
1894 /* Signed -- we are OK with unpack_long. */
1895 return unpack_long (type
, valaddr
);
1899 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1900 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1901 We don't assume any alignment for the raw data. Return value is in
1904 If you want functions and arrays to be coerced to pointers, and
1905 references to be dereferenced, call value_as_address() instead.
1907 C++: It is assumed that the front-end has taken care of
1908 all matters concerning pointers to members. A pointer
1909 to member which reaches here is considered to be equivalent
1910 to an INT (or some size). After all, it is only an offset. */
1913 unpack_pointer (struct type
*type
, const gdb_byte
*valaddr
)
1915 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1916 whether we want this to be true eventually. */
1917 return unpack_long (type
, valaddr
);
1921 /* Get the value of the FIELDNO'th field (which must be static) of
1922 TYPE. Return NULL if the field doesn't exist or has been
1926 value_static_field (struct type
*type
, int fieldno
)
1928 struct value
*retval
;
1930 switch (TYPE_FIELD_LOC_KIND (type
, fieldno
))
1932 case FIELD_LOC_KIND_PHYSADDR
:
1933 retval
= value_at_lazy (TYPE_FIELD_TYPE (type
, fieldno
),
1934 TYPE_FIELD_STATIC_PHYSADDR (type
, fieldno
));
1936 case FIELD_LOC_KIND_PHYSNAME
:
1938 char *phys_name
= TYPE_FIELD_STATIC_PHYSNAME (type
, fieldno
);
1939 /* TYPE_FIELD_NAME (type, fieldno); */
1940 struct symbol
*sym
= lookup_symbol (phys_name
, 0, VAR_DOMAIN
, 0);
1944 /* With some compilers, e.g. HP aCC, static data members are
1945 reported as non-debuggable symbols. */
1946 struct minimal_symbol
*msym
= lookup_minimal_symbol (phys_name
,
1953 retval
= value_at_lazy (TYPE_FIELD_TYPE (type
, fieldno
),
1954 SYMBOL_VALUE_ADDRESS (msym
));
1958 retval
= value_of_variable (sym
, NULL
);
1962 gdb_assert_not_reached ("unexpected field location kind");
1968 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1969 You have to be careful here, since the size of the data area for the value
1970 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1971 than the old enclosing type, you have to allocate more space for the
1975 set_value_enclosing_type (struct value
*val
, struct type
*new_encl_type
)
1977 if (TYPE_LENGTH (new_encl_type
) > TYPE_LENGTH (value_enclosing_type (val
)))
1979 (gdb_byte
*) xrealloc (val
->contents
, TYPE_LENGTH (new_encl_type
));
1981 val
->enclosing_type
= new_encl_type
;
1984 /* Given a value ARG1 (offset by OFFSET bytes)
1985 of a struct or union type ARG_TYPE,
1986 extract and return the value of one of its (non-static) fields.
1987 FIELDNO says which field. */
1990 value_primitive_field (struct value
*arg1
, int offset
,
1991 int fieldno
, struct type
*arg_type
)
1996 CHECK_TYPEDEF (arg_type
);
1997 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
1999 /* Call check_typedef on our type to make sure that, if TYPE
2000 is a TYPE_CODE_TYPEDEF, its length is set to the length
2001 of the target type instead of zero. However, we do not
2002 replace the typedef type by the target type, because we want
2003 to keep the typedef in order to be able to print the type
2004 description correctly. */
2005 check_typedef (type
);
2007 /* Handle packed fields */
2009 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
))
2011 /* Create a new value for the bitfield, with bitpos and bitsize
2012 set. If possible, arrange offset and bitpos so that we can
2013 do a single aligned read of the size of the containing type.
2014 Otherwise, adjust offset to the byte containing the first
2015 bit. Assume that the address, offset, and embedded offset
2016 are sufficiently aligned. */
2017 int bitpos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
);
2018 int container_bitsize
= TYPE_LENGTH (type
) * 8;
2020 v
= allocate_value_lazy (type
);
2021 v
->bitsize
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
2022 if ((bitpos
% container_bitsize
) + v
->bitsize
<= container_bitsize
2023 && TYPE_LENGTH (type
) <= (int) sizeof (LONGEST
))
2024 v
->bitpos
= bitpos
% container_bitsize
;
2026 v
->bitpos
= bitpos
% 8;
2027 v
->offset
= (value_embedded_offset (arg1
)
2029 + (bitpos
- v
->bitpos
) / 8);
2031 value_incref (v
->parent
);
2032 if (!value_lazy (arg1
))
2033 value_fetch_lazy (v
);
2035 else if (fieldno
< TYPE_N_BASECLASSES (arg_type
))
2037 /* This field is actually a base subobject, so preserve the
2038 entire object's contents for later references to virtual
2041 /* Lazy register values with offsets are not supported. */
2042 if (VALUE_LVAL (arg1
) == lval_register
&& value_lazy (arg1
))
2043 value_fetch_lazy (arg1
);
2045 if (value_lazy (arg1
))
2046 v
= allocate_value_lazy (value_enclosing_type (arg1
));
2049 v
= allocate_value (value_enclosing_type (arg1
));
2050 memcpy (value_contents_all_raw (v
), value_contents_all_raw (arg1
),
2051 TYPE_LENGTH (value_enclosing_type (arg1
)));
2054 v
->offset
= value_offset (arg1
);
2055 v
->embedded_offset
= (offset
+ value_embedded_offset (arg1
)
2056 + TYPE_FIELD_BITPOS (arg_type
, fieldno
) / 8);
2060 /* Plain old data member */
2061 offset
+= TYPE_FIELD_BITPOS (arg_type
, fieldno
) / 8;
2063 /* Lazy register values with offsets are not supported. */
2064 if (VALUE_LVAL (arg1
) == lval_register
&& value_lazy (arg1
))
2065 value_fetch_lazy (arg1
);
2067 if (value_lazy (arg1
))
2068 v
= allocate_value_lazy (type
);
2071 v
= allocate_value (type
);
2072 memcpy (value_contents_raw (v
),
2073 value_contents_raw (arg1
) + offset
,
2074 TYPE_LENGTH (type
));
2076 v
->offset
= (value_offset (arg1
) + offset
2077 + value_embedded_offset (arg1
));
2079 set_value_component_location (v
, arg1
);
2080 VALUE_REGNUM (v
) = VALUE_REGNUM (arg1
);
2081 VALUE_FRAME_ID (v
) = VALUE_FRAME_ID (arg1
);
2085 /* Given a value ARG1 of a struct or union type,
2086 extract and return the value of one of its (non-static) fields.
2087 FIELDNO says which field. */
2090 value_field (struct value
*arg1
, int fieldno
)
2092 return value_primitive_field (arg1
, 0, fieldno
, value_type (arg1
));
2095 /* Return a non-virtual function as a value.
2096 F is the list of member functions which contains the desired method.
2097 J is an index into F which provides the desired method.
2099 We only use the symbol for its address, so be happy with either a
2100 full symbol or a minimal symbol. */
2103 value_fn_field (struct value
**arg1p
, struct fn_field
*f
,
2104 int j
, struct type
*type
,
2108 struct type
*ftype
= TYPE_FN_FIELD_TYPE (f
, j
);
2109 char *physname
= TYPE_FN_FIELD_PHYSNAME (f
, j
);
2111 struct minimal_symbol
*msym
;
2113 sym
= lookup_symbol (physname
, 0, VAR_DOMAIN
, 0);
2120 gdb_assert (sym
== NULL
);
2121 msym
= lookup_minimal_symbol (physname
, NULL
, NULL
);
2126 v
= allocate_value (ftype
);
2129 set_value_address (v
, BLOCK_START (SYMBOL_BLOCK_VALUE (sym
)));
2133 /* The minimal symbol might point to a function descriptor;
2134 resolve it to the actual code address instead. */
2135 struct objfile
*objfile
= msymbol_objfile (msym
);
2136 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
2138 set_value_address (v
,
2139 gdbarch_convert_from_func_ptr_addr
2140 (gdbarch
, SYMBOL_VALUE_ADDRESS (msym
), ¤t_target
));
2145 if (type
!= value_type (*arg1p
))
2146 *arg1p
= value_ind (value_cast (lookup_pointer_type (type
),
2147 value_addr (*arg1p
)));
2149 /* Move the `this' pointer according to the offset.
2150 VALUE_OFFSET (*arg1p) += offset; */
2157 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2158 object at VALADDR. The bitfield starts at BITPOS bits and contains
2161 Extracting bits depends on endianness of the machine. Compute the
2162 number of least significant bits to discard. For big endian machines,
2163 we compute the total number of bits in the anonymous object, subtract
2164 off the bit count from the MSB of the object to the MSB of the
2165 bitfield, then the size of the bitfield, which leaves the LSB discard
2166 count. For little endian machines, the discard count is simply the
2167 number of bits from the LSB of the anonymous object to the LSB of the
2170 If the field is signed, we also do sign extension. */
2173 unpack_bits_as_long (struct type
*field_type
, const gdb_byte
*valaddr
,
2174 int bitpos
, int bitsize
)
2176 enum bfd_endian byte_order
= gdbarch_byte_order (get_type_arch (field_type
));
2182 /* Read the minimum number of bytes required; there may not be
2183 enough bytes to read an entire ULONGEST. */
2184 CHECK_TYPEDEF (field_type
);
2186 bytes_read
= ((bitpos
% 8) + bitsize
+ 7) / 8;
2188 bytes_read
= TYPE_LENGTH (field_type
);
2190 val
= extract_unsigned_integer (valaddr
+ bitpos
/ 8,
2191 bytes_read
, byte_order
);
2193 /* Extract bits. See comment above. */
2195 if (gdbarch_bits_big_endian (get_type_arch (field_type
)))
2196 lsbcount
= (bytes_read
* 8 - bitpos
% 8 - bitsize
);
2198 lsbcount
= (bitpos
% 8);
2201 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2202 If the field is signed, and is negative, then sign extend. */
2204 if ((bitsize
> 0) && (bitsize
< 8 * (int) sizeof (val
)))
2206 valmask
= (((ULONGEST
) 1) << bitsize
) - 1;
2208 if (!TYPE_UNSIGNED (field_type
))
2210 if (val
& (valmask
^ (valmask
>> 1)))
2219 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2220 VALADDR. See unpack_bits_as_long for more details. */
2223 unpack_field_as_long (struct type
*type
, const gdb_byte
*valaddr
, int fieldno
)
2225 int bitpos
= TYPE_FIELD_BITPOS (type
, fieldno
);
2226 int bitsize
= TYPE_FIELD_BITSIZE (type
, fieldno
);
2227 struct type
*field_type
= TYPE_FIELD_TYPE (type
, fieldno
);
2229 return unpack_bits_as_long (field_type
, valaddr
, bitpos
, bitsize
);
2232 /* Modify the value of a bitfield. ADDR points to a block of memory in
2233 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2234 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2235 indicate which bits (in target bit order) comprise the bitfield.
2236 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2237 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2240 modify_field (struct type
*type
, gdb_byte
*addr
,
2241 LONGEST fieldval
, int bitpos
, int bitsize
)
2243 enum bfd_endian byte_order
= gdbarch_byte_order (get_type_arch (type
));
2245 ULONGEST mask
= (ULONGEST
) -1 >> (8 * sizeof (ULONGEST
) - bitsize
);
2248 /* Normalize BITPOS. */
2252 /* If a negative fieldval fits in the field in question, chop
2253 off the sign extension bits. */
2254 if ((~fieldval
& ~(mask
>> 1)) == 0)
2257 /* Warn if value is too big to fit in the field in question. */
2258 if (0 != (fieldval
& ~mask
))
2260 /* FIXME: would like to include fieldval in the message, but
2261 we don't have a sprintf_longest. */
2262 warning (_("Value does not fit in %d bits."), bitsize
);
2264 /* Truncate it, otherwise adjoining fields may be corrupted. */
2268 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2269 false valgrind reports. */
2271 bytesize
= (bitpos
+ bitsize
+ 7) / 8;
2272 oword
= extract_unsigned_integer (addr
, bytesize
, byte_order
);
2274 /* Shifting for bit field depends on endianness of the target machine. */
2275 if (gdbarch_bits_big_endian (get_type_arch (type
)))
2276 bitpos
= bytesize
* 8 - bitpos
- bitsize
;
2278 oword
&= ~(mask
<< bitpos
);
2279 oword
|= fieldval
<< bitpos
;
2281 store_unsigned_integer (addr
, bytesize
, byte_order
, oword
);
2284 /* Pack NUM into BUF using a target format of TYPE. */
2287 pack_long (gdb_byte
*buf
, struct type
*type
, LONGEST num
)
2289 enum bfd_endian byte_order
= gdbarch_byte_order (get_type_arch (type
));
2292 type
= check_typedef (type
);
2293 len
= TYPE_LENGTH (type
);
2295 switch (TYPE_CODE (type
))
2298 case TYPE_CODE_CHAR
:
2299 case TYPE_CODE_ENUM
:
2300 case TYPE_CODE_FLAGS
:
2301 case TYPE_CODE_BOOL
:
2302 case TYPE_CODE_RANGE
:
2303 case TYPE_CODE_MEMBERPTR
:
2304 store_signed_integer (buf
, len
, byte_order
, num
);
2309 store_typed_address (buf
, type
, (CORE_ADDR
) num
);
2313 error (_("Unexpected type (%d) encountered for integer constant."),
2319 /* Pack NUM into BUF using a target format of TYPE. */
2322 pack_unsigned_long (gdb_byte
*buf
, struct type
*type
, ULONGEST num
)
2325 enum bfd_endian byte_order
;
2327 type
= check_typedef (type
);
2328 len
= TYPE_LENGTH (type
);
2329 byte_order
= gdbarch_byte_order (get_type_arch (type
));
2331 switch (TYPE_CODE (type
))
2334 case TYPE_CODE_CHAR
:
2335 case TYPE_CODE_ENUM
:
2336 case TYPE_CODE_FLAGS
:
2337 case TYPE_CODE_BOOL
:
2338 case TYPE_CODE_RANGE
:
2339 case TYPE_CODE_MEMBERPTR
:
2340 store_unsigned_integer (buf
, len
, byte_order
, num
);
2345 store_typed_address (buf
, type
, (CORE_ADDR
) num
);
2349 error (_("Unexpected type (%d) encountered "
2350 "for unsigned integer constant."),
2356 /* Convert C numbers into newly allocated values. */
2359 value_from_longest (struct type
*type
, LONGEST num
)
2361 struct value
*val
= allocate_value (type
);
2363 pack_long (value_contents_raw (val
), type
, num
);
2368 /* Convert C unsigned numbers into newly allocated values. */
2371 value_from_ulongest (struct type
*type
, ULONGEST num
)
2373 struct value
*val
= allocate_value (type
);
2375 pack_unsigned_long (value_contents_raw (val
), type
, num
);
2381 /* Create a value representing a pointer of type TYPE to the address
2384 value_from_pointer (struct type
*type
, CORE_ADDR addr
)
2386 struct value
*val
= allocate_value (type
);
2388 store_typed_address (value_contents_raw (val
), check_typedef (type
), addr
);
2393 /* Create a value of type TYPE whose contents come from VALADDR, if it
2394 is non-null, and whose memory address (in the inferior) is
2398 value_from_contents_and_address (struct type
*type
,
2399 const gdb_byte
*valaddr
,
2404 if (valaddr
== NULL
)
2405 v
= allocate_value_lazy (type
);
2408 v
= allocate_value (type
);
2409 memcpy (value_contents_raw (v
), valaddr
, TYPE_LENGTH (type
));
2411 set_value_address (v
, address
);
2412 VALUE_LVAL (v
) = lval_memory
;
2417 value_from_double (struct type
*type
, DOUBLEST num
)
2419 struct value
*val
= allocate_value (type
);
2420 struct type
*base_type
= check_typedef (type
);
2421 enum type_code code
= TYPE_CODE (base_type
);
2423 if (code
== TYPE_CODE_FLT
)
2425 store_typed_floating (value_contents_raw (val
), base_type
, num
);
2428 error (_("Unexpected type encountered for floating constant."));
2434 value_from_decfloat (struct type
*type
, const gdb_byte
*dec
)
2436 struct value
*val
= allocate_value (type
);
2438 memcpy (value_contents_raw (val
), dec
, TYPE_LENGTH (type
));
2443 coerce_ref (struct value
*arg
)
2445 struct type
*value_type_arg_tmp
= check_typedef (value_type (arg
));
2447 if (TYPE_CODE (value_type_arg_tmp
) == TYPE_CODE_REF
)
2448 arg
= value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp
),
2449 unpack_pointer (value_type (arg
),
2450 value_contents (arg
)));
2455 coerce_array (struct value
*arg
)
2459 arg
= coerce_ref (arg
);
2460 type
= check_typedef (value_type (arg
));
2462 switch (TYPE_CODE (type
))
2464 case TYPE_CODE_ARRAY
:
2465 if (!TYPE_VECTOR (type
) && current_language
->c_style_arrays
)
2466 arg
= value_coerce_array (arg
);
2468 case TYPE_CODE_FUNC
:
2469 arg
= value_coerce_function (arg
);
2476 /* Return true if the function returning the specified type is using
2477 the convention of returning structures in memory (passing in the
2478 address as a hidden first parameter). */
2481 using_struct_return (struct gdbarch
*gdbarch
,
2482 struct type
*func_type
, struct type
*value_type
)
2484 enum type_code code
= TYPE_CODE (value_type
);
2486 if (code
== TYPE_CODE_ERROR
)
2487 error (_("Function return type unknown."));
2489 if (code
== TYPE_CODE_VOID
)
2490 /* A void return value is never in memory. See also corresponding
2491 code in "print_return_value". */
2494 /* Probe the architecture for the return-value convention. */
2495 return (gdbarch_return_value (gdbarch
, func_type
, value_type
,
2497 != RETURN_VALUE_REGISTER_CONVENTION
);
2500 /* Set the initialized field in a value struct. */
2503 set_value_initialized (struct value
*val
, int status
)
2505 val
->initialized
= status
;
2508 /* Return the initialized field in a value struct. */
2511 value_initialized (struct value
*val
)
2513 return val
->initialized
;
2517 _initialize_values (void)
2519 add_cmd ("convenience", no_class
, show_convenience
, _("\
2520 Debugger convenience (\"$foo\") variables.\n\
2521 These variables are created when you assign them values;\n\
2522 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2524 A few convenience variables are given values automatically:\n\
2525 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2526 \"$__\" holds the contents of the last address examined with \"x\"."),
2529 add_cmd ("values", no_class
, show_values
, _("\
2530 Elements of value history around item number IDX (or last ten)."),
2533 add_com ("init-if-undefined", class_vars
, init_if_undefined_command
, _("\
2534 Initialize a convenience variable if necessary.\n\
2535 init-if-undefined VARIABLE = EXPRESSION\n\
2536 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2537 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2538 VARIABLE is already initialized."));
2540 add_prefix_cmd ("function", no_class
, function_command
, _("\
2541 Placeholder command for showing help on convenience functions."),
2542 &functionlist
, "function ", 0, &cmdlist
);