2007-06-09 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "doublest.h"
36 #include "gdb_assert.h"
37 #include "regcache.h"
38 #include "block.h"
39
40 /* Prototypes for exported functions. */
41
42 void _initialize_values (void);
43
44 struct value
45 {
46 /* Type of value; either not an lval, or one of the various
47 different possible kinds of lval. */
48 enum lval_type lval;
49
50 /* Is it modifiable? Only relevant if lval != not_lval. */
51 int modifiable;
52
53 /* Location of value (if lval). */
54 union
55 {
56 /* If lval == lval_memory, this is the address in the inferior.
57 If lval == lval_register, this is the byte offset into the
58 registers structure. */
59 CORE_ADDR address;
60
61 /* Pointer to internal variable. */
62 struct internalvar *internalvar;
63 } location;
64
65 /* Describes offset of a value within lval of a structure in bytes.
66 If lval == lval_memory, this is an offset to the address. If
67 lval == lval_register, this is a further offset from
68 location.address within the registers structure. Note also the
69 member embedded_offset below. */
70 int offset;
71
72 /* Only used for bitfields; number of bits contained in them. */
73 int bitsize;
74
75 /* Only used for bitfields; position of start of field. For
76 BITS_BIG_ENDIAN=0 targets, it is the position of the LSB. For
77 BITS_BIG_ENDIAN=1 targets, it is the position of the MSB. */
78 int bitpos;
79
80 /* Frame register value is relative to. This will be described in
81 the lval enum above as "lval_register". */
82 struct frame_id frame_id;
83
84 /* Type of the value. */
85 struct type *type;
86
87 /* If a value represents a C++ object, then the `type' field gives
88 the object's compile-time type. If the object actually belongs
89 to some class derived from `type', perhaps with other base
90 classes and additional members, then `type' is just a subobject
91 of the real thing, and the full object is probably larger than
92 `type' would suggest.
93
94 If `type' is a dynamic class (i.e. one with a vtable), then GDB
95 can actually determine the object's run-time type by looking at
96 the run-time type information in the vtable. When this
97 information is available, we may elect to read in the entire
98 object, for several reasons:
99
100 - When printing the value, the user would probably rather see the
101 full object, not just the limited portion apparent from the
102 compile-time type.
103
104 - If `type' has virtual base classes, then even printing `type'
105 alone may require reaching outside the `type' portion of the
106 object to wherever the virtual base class has been stored.
107
108 When we store the entire object, `enclosing_type' is the run-time
109 type -- the complete object -- and `embedded_offset' is the
110 offset of `type' within that larger type, in bytes. The
111 value_contents() macro takes `embedded_offset' into account, so
112 most GDB code continues to see the `type' portion of the value,
113 just as the inferior would.
114
115 If `type' is a pointer to an object, then `enclosing_type' is a
116 pointer to the object's run-time type, and `pointed_to_offset' is
117 the offset in bytes from the full object to the pointed-to object
118 -- that is, the value `embedded_offset' would have if we followed
119 the pointer and fetched the complete object. (I don't really see
120 the point. Why not just determine the run-time type when you
121 indirect, and avoid the special case? The contents don't matter
122 until you indirect anyway.)
123
124 If we're not doing anything fancy, `enclosing_type' is equal to
125 `type', and `embedded_offset' is zero, so everything works
126 normally. */
127 struct type *enclosing_type;
128 int embedded_offset;
129 int pointed_to_offset;
130
131 /* Values are stored in a chain, so that they can be deleted easily
132 over calls to the inferior. Values assigned to internal
133 variables or put into the value history are taken off this
134 list. */
135 struct value *next;
136
137 /* Register number if the value is from a register. */
138 short regnum;
139
140 /* If zero, contents of this value are in the contents field. If
141 nonzero, contents are in inferior memory at address in the
142 location.address field plus the offset field (and the lval field
143 should be lval_memory).
144
145 WARNING: This field is used by the code which handles watchpoints
146 (see breakpoint.c) to decide whether a particular value can be
147 watched by hardware watchpoints. If the lazy flag is set for
148 some member of a value chain, it is assumed that this member of
149 the chain doesn't need to be watched as part of watching the
150 value itself. This is how GDB avoids watching the entire struct
151 or array when the user wants to watch a single struct member or
152 array element. If you ever change the way lazy flag is set and
153 reset, be sure to consider this use as well! */
154 char lazy;
155
156 /* If nonzero, this is the value of a variable which does not
157 actually exist in the program. */
158 char optimized_out;
159
160 /* If value is a variable, is it initialized or not. */
161 int initialized;
162
163 /* Actual contents of the value. For use of this value; setting it
164 uses the stuff above. Not valid if lazy is nonzero. Target
165 byte-order. We force it to be aligned properly for any possible
166 value. Note that a value therefore extends beyond what is
167 declared here. */
168 union
169 {
170 gdb_byte contents[1];
171 DOUBLEST force_doublest_align;
172 LONGEST force_longest_align;
173 CORE_ADDR force_core_addr_align;
174 void *force_pointer_align;
175 } aligner;
176 /* Do not add any new members here -- contents above will trash
177 them. */
178 };
179
180 /* Prototypes for local functions. */
181
182 static void show_values (char *, int);
183
184 static void show_convenience (char *, int);
185
186
187 /* The value-history records all the values printed
188 by print commands during this session. Each chunk
189 records 60 consecutive values. The first chunk on
190 the chain records the most recent values.
191 The total number of values is in value_history_count. */
192
193 #define VALUE_HISTORY_CHUNK 60
194
195 struct value_history_chunk
196 {
197 struct value_history_chunk *next;
198 struct value *values[VALUE_HISTORY_CHUNK];
199 };
200
201 /* Chain of chunks now in use. */
202
203 static struct value_history_chunk *value_history_chain;
204
205 static int value_history_count; /* Abs number of last entry stored */
206 \f
207 /* List of all value objects currently allocated
208 (except for those released by calls to release_value)
209 This is so they can be freed after each command. */
210
211 static struct value *all_values;
212
213 /* Allocate a value that has the correct length for type TYPE. */
214
215 struct value *
216 allocate_value (struct type *type)
217 {
218 struct value *val;
219 struct type *atype = check_typedef (type);
220
221 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
222 val->next = all_values;
223 all_values = val;
224 val->type = type;
225 val->enclosing_type = type;
226 VALUE_LVAL (val) = not_lval;
227 VALUE_ADDRESS (val) = 0;
228 VALUE_FRAME_ID (val) = null_frame_id;
229 val->offset = 0;
230 val->bitpos = 0;
231 val->bitsize = 0;
232 VALUE_REGNUM (val) = -1;
233 val->lazy = 0;
234 val->optimized_out = 0;
235 val->embedded_offset = 0;
236 val->pointed_to_offset = 0;
237 val->modifiable = 1;
238 val->initialized = 1; /* Default to initialized. */
239 return val;
240 }
241
242 /* Allocate a value that has the correct length
243 for COUNT repetitions type TYPE. */
244
245 struct value *
246 allocate_repeat_value (struct type *type, int count)
247 {
248 int low_bound = current_language->string_lower_bound; /* ??? */
249 /* FIXME-type-allocation: need a way to free this type when we are
250 done with it. */
251 struct type *range_type
252 = create_range_type ((struct type *) NULL, builtin_type_int,
253 low_bound, count + low_bound - 1);
254 /* FIXME-type-allocation: need a way to free this type when we are
255 done with it. */
256 return allocate_value (create_array_type ((struct type *) NULL,
257 type, range_type));
258 }
259
260 /* Accessor methods. */
261
262 struct value *
263 value_next (struct value *value)
264 {
265 return value->next;
266 }
267
268 struct type *
269 value_type (struct value *value)
270 {
271 return value->type;
272 }
273 void
274 deprecated_set_value_type (struct value *value, struct type *type)
275 {
276 value->type = type;
277 }
278
279 int
280 value_offset (struct value *value)
281 {
282 return value->offset;
283 }
284 void
285 set_value_offset (struct value *value, int offset)
286 {
287 value->offset = offset;
288 }
289
290 int
291 value_bitpos (struct value *value)
292 {
293 return value->bitpos;
294 }
295 void
296 set_value_bitpos (struct value *value, int bit)
297 {
298 value->bitpos = bit;
299 }
300
301 int
302 value_bitsize (struct value *value)
303 {
304 return value->bitsize;
305 }
306 void
307 set_value_bitsize (struct value *value, int bit)
308 {
309 value->bitsize = bit;
310 }
311
312 gdb_byte *
313 value_contents_raw (struct value *value)
314 {
315 return value->aligner.contents + value->embedded_offset;
316 }
317
318 gdb_byte *
319 value_contents_all_raw (struct value *value)
320 {
321 return value->aligner.contents;
322 }
323
324 struct type *
325 value_enclosing_type (struct value *value)
326 {
327 return value->enclosing_type;
328 }
329
330 const gdb_byte *
331 value_contents_all (struct value *value)
332 {
333 if (value->lazy)
334 value_fetch_lazy (value);
335 return value->aligner.contents;
336 }
337
338 int
339 value_lazy (struct value *value)
340 {
341 return value->lazy;
342 }
343
344 void
345 set_value_lazy (struct value *value, int val)
346 {
347 value->lazy = val;
348 }
349
350 const gdb_byte *
351 value_contents (struct value *value)
352 {
353 return value_contents_writeable (value);
354 }
355
356 gdb_byte *
357 value_contents_writeable (struct value *value)
358 {
359 if (value->lazy)
360 value_fetch_lazy (value);
361 return value_contents_raw (value);
362 }
363
364 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
365 this function is different from value_equal; in C the operator ==
366 can return 0 even if the two values being compared are equal. */
367
368 int
369 value_contents_equal (struct value *val1, struct value *val2)
370 {
371 struct type *type1;
372 struct type *type2;
373 int len;
374
375 type1 = check_typedef (value_type (val1));
376 type2 = check_typedef (value_type (val2));
377 len = TYPE_LENGTH (type1);
378 if (len != TYPE_LENGTH (type2))
379 return 0;
380
381 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
382 }
383
384 int
385 value_optimized_out (struct value *value)
386 {
387 return value->optimized_out;
388 }
389
390 void
391 set_value_optimized_out (struct value *value, int val)
392 {
393 value->optimized_out = val;
394 }
395
396 int
397 value_embedded_offset (struct value *value)
398 {
399 return value->embedded_offset;
400 }
401
402 void
403 set_value_embedded_offset (struct value *value, int val)
404 {
405 value->embedded_offset = val;
406 }
407
408 int
409 value_pointed_to_offset (struct value *value)
410 {
411 return value->pointed_to_offset;
412 }
413
414 void
415 set_value_pointed_to_offset (struct value *value, int val)
416 {
417 value->pointed_to_offset = val;
418 }
419
420 enum lval_type *
421 deprecated_value_lval_hack (struct value *value)
422 {
423 return &value->lval;
424 }
425
426 CORE_ADDR *
427 deprecated_value_address_hack (struct value *value)
428 {
429 return &value->location.address;
430 }
431
432 struct internalvar **
433 deprecated_value_internalvar_hack (struct value *value)
434 {
435 return &value->location.internalvar;
436 }
437
438 struct frame_id *
439 deprecated_value_frame_id_hack (struct value *value)
440 {
441 return &value->frame_id;
442 }
443
444 short *
445 deprecated_value_regnum_hack (struct value *value)
446 {
447 return &value->regnum;
448 }
449
450 int
451 deprecated_value_modifiable (struct value *value)
452 {
453 return value->modifiable;
454 }
455 void
456 deprecated_set_value_modifiable (struct value *value, int modifiable)
457 {
458 value->modifiable = modifiable;
459 }
460 \f
461 /* Return a mark in the value chain. All values allocated after the
462 mark is obtained (except for those released) are subject to being freed
463 if a subsequent value_free_to_mark is passed the mark. */
464 struct value *
465 value_mark (void)
466 {
467 return all_values;
468 }
469
470 /* Free all values allocated since MARK was obtained by value_mark
471 (except for those released). */
472 void
473 value_free_to_mark (struct value *mark)
474 {
475 struct value *val;
476 struct value *next;
477
478 for (val = all_values; val && val != mark; val = next)
479 {
480 next = val->next;
481 value_free (val);
482 }
483 all_values = val;
484 }
485
486 /* Free all the values that have been allocated (except for those released).
487 Called after each command, successful or not. */
488
489 void
490 free_all_values (void)
491 {
492 struct value *val;
493 struct value *next;
494
495 for (val = all_values; val; val = next)
496 {
497 next = val->next;
498 value_free (val);
499 }
500
501 all_values = 0;
502 }
503
504 /* Remove VAL from the chain all_values
505 so it will not be freed automatically. */
506
507 void
508 release_value (struct value *val)
509 {
510 struct value *v;
511
512 if (all_values == val)
513 {
514 all_values = val->next;
515 return;
516 }
517
518 for (v = all_values; v; v = v->next)
519 {
520 if (v->next == val)
521 {
522 v->next = val->next;
523 break;
524 }
525 }
526 }
527
528 /* Release all values up to mark */
529 struct value *
530 value_release_to_mark (struct value *mark)
531 {
532 struct value *val;
533 struct value *next;
534
535 for (val = next = all_values; next; next = next->next)
536 if (next->next == mark)
537 {
538 all_values = next->next;
539 next->next = NULL;
540 return val;
541 }
542 all_values = 0;
543 return val;
544 }
545
546 /* Return a copy of the value ARG.
547 It contains the same contents, for same memory address,
548 but it's a different block of storage. */
549
550 struct value *
551 value_copy (struct value *arg)
552 {
553 struct type *encl_type = value_enclosing_type (arg);
554 struct value *val = allocate_value (encl_type);
555 val->type = arg->type;
556 VALUE_LVAL (val) = VALUE_LVAL (arg);
557 val->location = arg->location;
558 val->offset = arg->offset;
559 val->bitpos = arg->bitpos;
560 val->bitsize = arg->bitsize;
561 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
562 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
563 val->lazy = arg->lazy;
564 val->optimized_out = arg->optimized_out;
565 val->embedded_offset = value_embedded_offset (arg);
566 val->pointed_to_offset = arg->pointed_to_offset;
567 val->modifiable = arg->modifiable;
568 if (!value_lazy (val))
569 {
570 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
571 TYPE_LENGTH (value_enclosing_type (arg)));
572
573 }
574 return val;
575 }
576 \f
577 /* Access to the value history. */
578
579 /* Record a new value in the value history.
580 Returns the absolute history index of the entry.
581 Result of -1 indicates the value was not saved; otherwise it is the
582 value history index of this new item. */
583
584 int
585 record_latest_value (struct value *val)
586 {
587 int i;
588
589 /* We don't want this value to have anything to do with the inferior anymore.
590 In particular, "set $1 = 50" should not affect the variable from which
591 the value was taken, and fast watchpoints should be able to assume that
592 a value on the value history never changes. */
593 if (value_lazy (val))
594 value_fetch_lazy (val);
595 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
596 from. This is a bit dubious, because then *&$1 does not just return $1
597 but the current contents of that location. c'est la vie... */
598 val->modifiable = 0;
599 release_value (val);
600
601 /* Here we treat value_history_count as origin-zero
602 and applying to the value being stored now. */
603
604 i = value_history_count % VALUE_HISTORY_CHUNK;
605 if (i == 0)
606 {
607 struct value_history_chunk *new
608 = (struct value_history_chunk *)
609 xmalloc (sizeof (struct value_history_chunk));
610 memset (new->values, 0, sizeof new->values);
611 new->next = value_history_chain;
612 value_history_chain = new;
613 }
614
615 value_history_chain->values[i] = val;
616
617 /* Now we regard value_history_count as origin-one
618 and applying to the value just stored. */
619
620 return ++value_history_count;
621 }
622
623 /* Return a copy of the value in the history with sequence number NUM. */
624
625 struct value *
626 access_value_history (int num)
627 {
628 struct value_history_chunk *chunk;
629 int i;
630 int absnum = num;
631
632 if (absnum <= 0)
633 absnum += value_history_count;
634
635 if (absnum <= 0)
636 {
637 if (num == 0)
638 error (_("The history is empty."));
639 else if (num == 1)
640 error (_("There is only one value in the history."));
641 else
642 error (_("History does not go back to $$%d."), -num);
643 }
644 if (absnum > value_history_count)
645 error (_("History has not yet reached $%d."), absnum);
646
647 absnum--;
648
649 /* Now absnum is always absolute and origin zero. */
650
651 chunk = value_history_chain;
652 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
653 i > 0; i--)
654 chunk = chunk->next;
655
656 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
657 }
658
659 static void
660 show_values (char *num_exp, int from_tty)
661 {
662 int i;
663 struct value *val;
664 static int num = 1;
665
666 if (num_exp)
667 {
668 /* "info history +" should print from the stored position.
669 "info history <exp>" should print around value number <exp>. */
670 if (num_exp[0] != '+' || num_exp[1] != '\0')
671 num = parse_and_eval_long (num_exp) - 5;
672 }
673 else
674 {
675 /* "info history" means print the last 10 values. */
676 num = value_history_count - 9;
677 }
678
679 if (num <= 0)
680 num = 1;
681
682 for (i = num; i < num + 10 && i <= value_history_count; i++)
683 {
684 val = access_value_history (i);
685 printf_filtered (("$%d = "), i);
686 value_print (val, gdb_stdout, 0, Val_pretty_default);
687 printf_filtered (("\n"));
688 }
689
690 /* The next "info history +" should start after what we just printed. */
691 num += 10;
692
693 /* Hitting just return after this command should do the same thing as
694 "info history +". If num_exp is null, this is unnecessary, since
695 "info history +" is not useful after "info history". */
696 if (from_tty && num_exp)
697 {
698 num_exp[0] = '+';
699 num_exp[1] = '\0';
700 }
701 }
702 \f
703 /* Internal variables. These are variables within the debugger
704 that hold values assigned by debugger commands.
705 The user refers to them with a '$' prefix
706 that does not appear in the variable names stored internally. */
707
708 static struct internalvar *internalvars;
709
710 /* If the variable does not already exist create it and give it the value given.
711 If no value is given then the default is zero. */
712 static void
713 init_if_undefined_command (char* args, int from_tty)
714 {
715 struct internalvar* intvar;
716
717 /* Parse the expression - this is taken from set_command(). */
718 struct expression *expr = parse_expression (args);
719 register struct cleanup *old_chain =
720 make_cleanup (free_current_contents, &expr);
721
722 /* Validate the expression.
723 Was the expression an assignment?
724 Or even an expression at all? */
725 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
726 error (_("Init-if-undefined requires an assignment expression."));
727
728 /* Extract the variable from the parsed expression.
729 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
730 if (expr->elts[1].opcode != OP_INTERNALVAR)
731 error (_("The first parameter to init-if-undefined should be a GDB variable."));
732 intvar = expr->elts[2].internalvar;
733
734 /* Only evaluate the expression if the lvalue is void.
735 This may still fail if the expresssion is invalid. */
736 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
737 evaluate_expression (expr);
738
739 do_cleanups (old_chain);
740 }
741
742
743 /* Look up an internal variable with name NAME. NAME should not
744 normally include a dollar sign.
745
746 If the specified internal variable does not exist,
747 one is created, with a void value. */
748
749 struct internalvar *
750 lookup_internalvar (char *name)
751 {
752 struct internalvar *var;
753
754 for (var = internalvars; var; var = var->next)
755 if (strcmp (var->name, name) == 0)
756 return var;
757
758 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
759 var->name = concat (name, (char *)NULL);
760 var->value = allocate_value (builtin_type_void);
761 var->endian = gdbarch_byte_order (current_gdbarch);
762 release_value (var->value);
763 var->next = internalvars;
764 internalvars = var;
765 return var;
766 }
767
768 struct value *
769 value_of_internalvar (struct internalvar *var)
770 {
771 struct value *val;
772 int i, j;
773 gdb_byte temp;
774
775 val = value_copy (var->value);
776 if (value_lazy (val))
777 value_fetch_lazy (val);
778 VALUE_LVAL (val) = lval_internalvar;
779 VALUE_INTERNALVAR (val) = var;
780
781 /* Values are always stored in the target's byte order. When connected to a
782 target this will most likely always be correct, so there's normally no
783 need to worry about it.
784
785 However, internal variables can be set up before the target endian is
786 known and so may become out of date. Fix it up before anybody sees.
787
788 Internal variables usually hold simple scalar values, and we can
789 correct those. More complex values (e.g. structures and floating
790 point types) are left alone, because they would be too complicated
791 to correct. */
792
793 if (var->endian != gdbarch_byte_order (current_gdbarch))
794 {
795 gdb_byte *array = value_contents_raw (val);
796 struct type *type = check_typedef (value_enclosing_type (val));
797 switch (TYPE_CODE (type))
798 {
799 case TYPE_CODE_INT:
800 case TYPE_CODE_PTR:
801 /* Reverse the bytes. */
802 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
803 {
804 temp = array[j];
805 array[j] = array[i];
806 array[i] = temp;
807 }
808 break;
809 }
810 }
811
812 return val;
813 }
814
815 void
816 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
817 int bitsize, struct value *newval)
818 {
819 gdb_byte *addr = value_contents_writeable (var->value) + offset;
820
821 if (bitsize)
822 modify_field (addr, value_as_long (newval),
823 bitpos, bitsize);
824 else
825 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
826 }
827
828 void
829 set_internalvar (struct internalvar *var, struct value *val)
830 {
831 struct value *newval;
832
833 newval = value_copy (val);
834 newval->modifiable = 1;
835
836 /* Force the value to be fetched from the target now, to avoid problems
837 later when this internalvar is referenced and the target is gone or
838 has changed. */
839 if (value_lazy (newval))
840 value_fetch_lazy (newval);
841
842 /* Begin code which must not call error(). If var->value points to
843 something free'd, an error() obviously leaves a dangling pointer.
844 But we also get a danling pointer if var->value points to
845 something in the value chain (i.e., before release_value is
846 called), because after the error free_all_values will get called before
847 long. */
848 xfree (var->value);
849 var->value = newval;
850 var->endian = gdbarch_byte_order (current_gdbarch);
851 release_value (newval);
852 /* End code which must not call error(). */
853 }
854
855 char *
856 internalvar_name (struct internalvar *var)
857 {
858 return var->name;
859 }
860
861 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
862 prevent cycles / duplicates. */
863
864 static void
865 preserve_one_value (struct value *value, struct objfile *objfile,
866 htab_t copied_types)
867 {
868 if (TYPE_OBJFILE (value->type) == objfile)
869 value->type = copy_type_recursive (objfile, value->type, copied_types);
870
871 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
872 value->enclosing_type = copy_type_recursive (objfile,
873 value->enclosing_type,
874 copied_types);
875 }
876
877 /* Update the internal variables and value history when OBJFILE is
878 discarded; we must copy the types out of the objfile. New global types
879 will be created for every convenience variable which currently points to
880 this objfile's types, and the convenience variables will be adjusted to
881 use the new global types. */
882
883 void
884 preserve_values (struct objfile *objfile)
885 {
886 htab_t copied_types;
887 struct value_history_chunk *cur;
888 struct internalvar *var;
889 int i;
890
891 /* Create the hash table. We allocate on the objfile's obstack, since
892 it is soon to be deleted. */
893 copied_types = create_copied_types_hash (objfile);
894
895 for (cur = value_history_chain; cur; cur = cur->next)
896 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
897 if (cur->values[i])
898 preserve_one_value (cur->values[i], objfile, copied_types);
899
900 for (var = internalvars; var; var = var->next)
901 preserve_one_value (var->value, objfile, copied_types);
902
903 htab_delete (copied_types);
904 }
905
906 static void
907 show_convenience (char *ignore, int from_tty)
908 {
909 struct internalvar *var;
910 int varseen = 0;
911
912 for (var = internalvars; var; var = var->next)
913 {
914 if (!varseen)
915 {
916 varseen = 1;
917 }
918 printf_filtered (("$%s = "), var->name);
919 value_print (value_of_internalvar (var), gdb_stdout,
920 0, Val_pretty_default);
921 printf_filtered (("\n"));
922 }
923 if (!varseen)
924 printf_unfiltered (_("\
925 No debugger convenience variables now defined.\n\
926 Convenience variables have names starting with \"$\";\n\
927 use \"set\" as in \"set $foo = 5\" to define them.\n"));
928 }
929 \f
930 /* Extract a value as a C number (either long or double).
931 Knows how to convert fixed values to double, or
932 floating values to long.
933 Does not deallocate the value. */
934
935 LONGEST
936 value_as_long (struct value *val)
937 {
938 /* This coerces arrays and functions, which is necessary (e.g.
939 in disassemble_command). It also dereferences references, which
940 I suspect is the most logical thing to do. */
941 val = coerce_array (val);
942 return unpack_long (value_type (val), value_contents (val));
943 }
944
945 DOUBLEST
946 value_as_double (struct value *val)
947 {
948 DOUBLEST foo;
949 int inv;
950
951 foo = unpack_double (value_type (val), value_contents (val), &inv);
952 if (inv)
953 error (_("Invalid floating value found in program."));
954 return foo;
955 }
956 /* Extract a value as a C pointer. Does not deallocate the value.
957 Note that val's type may not actually be a pointer; value_as_long
958 handles all the cases. */
959 CORE_ADDR
960 value_as_address (struct value *val)
961 {
962 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
963 whether we want this to be true eventually. */
964 #if 0
965 /* gdbarch_addr_bits_remove is wrong if we are being called for a
966 non-address (e.g. argument to "signal", "info break", etc.), or
967 for pointers to char, in which the low bits *are* significant. */
968 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
969 #else
970
971 /* There are several targets (IA-64, PowerPC, and others) which
972 don't represent pointers to functions as simply the address of
973 the function's entry point. For example, on the IA-64, a
974 function pointer points to a two-word descriptor, generated by
975 the linker, which contains the function's entry point, and the
976 value the IA-64 "global pointer" register should have --- to
977 support position-independent code. The linker generates
978 descriptors only for those functions whose addresses are taken.
979
980 On such targets, it's difficult for GDB to convert an arbitrary
981 function address into a function pointer; it has to either find
982 an existing descriptor for that function, or call malloc and
983 build its own. On some targets, it is impossible for GDB to
984 build a descriptor at all: the descriptor must contain a jump
985 instruction; data memory cannot be executed; and code memory
986 cannot be modified.
987
988 Upon entry to this function, if VAL is a value of type `function'
989 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
990 VALUE_ADDRESS (val) is the address of the function. This is what
991 you'll get if you evaluate an expression like `main'. The call
992 to COERCE_ARRAY below actually does all the usual unary
993 conversions, which includes converting values of type `function'
994 to `pointer to function'. This is the challenging conversion
995 discussed above. Then, `unpack_long' will convert that pointer
996 back into an address.
997
998 So, suppose the user types `disassemble foo' on an architecture
999 with a strange function pointer representation, on which GDB
1000 cannot build its own descriptors, and suppose further that `foo'
1001 has no linker-built descriptor. The address->pointer conversion
1002 will signal an error and prevent the command from running, even
1003 though the next step would have been to convert the pointer
1004 directly back into the same address.
1005
1006 The following shortcut avoids this whole mess. If VAL is a
1007 function, just return its address directly. */
1008 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1009 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1010 return VALUE_ADDRESS (val);
1011
1012 val = coerce_array (val);
1013
1014 /* Some architectures (e.g. Harvard), map instruction and data
1015 addresses onto a single large unified address space. For
1016 instance: An architecture may consider a large integer in the
1017 range 0x10000000 .. 0x1000ffff to already represent a data
1018 addresses (hence not need a pointer to address conversion) while
1019 a small integer would still need to be converted integer to
1020 pointer to address. Just assume such architectures handle all
1021 integer conversions in a single function. */
1022
1023 /* JimB writes:
1024
1025 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1026 must admonish GDB hackers to make sure its behavior matches the
1027 compiler's, whenever possible.
1028
1029 In general, I think GDB should evaluate expressions the same way
1030 the compiler does. When the user copies an expression out of
1031 their source code and hands it to a `print' command, they should
1032 get the same value the compiler would have computed. Any
1033 deviation from this rule can cause major confusion and annoyance,
1034 and needs to be justified carefully. In other words, GDB doesn't
1035 really have the freedom to do these conversions in clever and
1036 useful ways.
1037
1038 AndrewC pointed out that users aren't complaining about how GDB
1039 casts integers to pointers; they are complaining that they can't
1040 take an address from a disassembly listing and give it to `x/i'.
1041 This is certainly important.
1042
1043 Adding an architecture method like integer_to_address() certainly
1044 makes it possible for GDB to "get it right" in all circumstances
1045 --- the target has complete control over how things get done, so
1046 people can Do The Right Thing for their target without breaking
1047 anyone else. The standard doesn't specify how integers get
1048 converted to pointers; usually, the ABI doesn't either, but
1049 ABI-specific code is a more reasonable place to handle it. */
1050
1051 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1052 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1053 && gdbarch_integer_to_address_p (current_gdbarch))
1054 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
1055 value_contents (val));
1056
1057 return unpack_long (value_type (val), value_contents (val));
1058 #endif
1059 }
1060 \f
1061 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1062 as a long, or as a double, assuming the raw data is described
1063 by type TYPE. Knows how to convert different sizes of values
1064 and can convert between fixed and floating point. We don't assume
1065 any alignment for the raw data. Return value is in host byte order.
1066
1067 If you want functions and arrays to be coerced to pointers, and
1068 references to be dereferenced, call value_as_long() instead.
1069
1070 C++: It is assumed that the front-end has taken care of
1071 all matters concerning pointers to members. A pointer
1072 to member which reaches here is considered to be equivalent
1073 to an INT (or some size). After all, it is only an offset. */
1074
1075 LONGEST
1076 unpack_long (struct type *type, const gdb_byte *valaddr)
1077 {
1078 enum type_code code = TYPE_CODE (type);
1079 int len = TYPE_LENGTH (type);
1080 int nosign = TYPE_UNSIGNED (type);
1081
1082 switch (code)
1083 {
1084 case TYPE_CODE_TYPEDEF:
1085 return unpack_long (check_typedef (type), valaddr);
1086 case TYPE_CODE_ENUM:
1087 case TYPE_CODE_FLAGS:
1088 case TYPE_CODE_BOOL:
1089 case TYPE_CODE_INT:
1090 case TYPE_CODE_CHAR:
1091 case TYPE_CODE_RANGE:
1092 case TYPE_CODE_MEMBERPTR:
1093 if (nosign)
1094 return extract_unsigned_integer (valaddr, len);
1095 else
1096 return extract_signed_integer (valaddr, len);
1097
1098 case TYPE_CODE_FLT:
1099 return extract_typed_floating (valaddr, type);
1100
1101 case TYPE_CODE_PTR:
1102 case TYPE_CODE_REF:
1103 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1104 whether we want this to be true eventually. */
1105 return extract_typed_address (valaddr, type);
1106
1107 default:
1108 error (_("Value can't be converted to integer."));
1109 }
1110 return 0; /* Placate lint. */
1111 }
1112
1113 /* Return a double value from the specified type and address.
1114 INVP points to an int which is set to 0 for valid value,
1115 1 for invalid value (bad float format). In either case,
1116 the returned double is OK to use. Argument is in target
1117 format, result is in host format. */
1118
1119 DOUBLEST
1120 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1121 {
1122 enum type_code code;
1123 int len;
1124 int nosign;
1125
1126 *invp = 0; /* Assume valid. */
1127 CHECK_TYPEDEF (type);
1128 code = TYPE_CODE (type);
1129 len = TYPE_LENGTH (type);
1130 nosign = TYPE_UNSIGNED (type);
1131 if (code == TYPE_CODE_FLT)
1132 {
1133 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1134 floating-point value was valid (using the macro
1135 INVALID_FLOAT). That test/macro have been removed.
1136
1137 It turns out that only the VAX defined this macro and then
1138 only in a non-portable way. Fixing the portability problem
1139 wouldn't help since the VAX floating-point code is also badly
1140 bit-rotten. The target needs to add definitions for the
1141 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
1142 exactly describe the target floating-point format. The
1143 problem here is that the corresponding floatformat_vax_f and
1144 floatformat_vax_d values these methods should be set to are
1145 also not defined either. Oops!
1146
1147 Hopefully someone will add both the missing floatformat
1148 definitions and the new cases for floatformat_is_valid (). */
1149
1150 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1151 {
1152 *invp = 1;
1153 return 0.0;
1154 }
1155
1156 return extract_typed_floating (valaddr, type);
1157 }
1158 else if (nosign)
1159 {
1160 /* Unsigned -- be sure we compensate for signed LONGEST. */
1161 return (ULONGEST) unpack_long (type, valaddr);
1162 }
1163 else
1164 {
1165 /* Signed -- we are OK with unpack_long. */
1166 return unpack_long (type, valaddr);
1167 }
1168 }
1169
1170 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1171 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1172 We don't assume any alignment for the raw data. Return value is in
1173 host byte order.
1174
1175 If you want functions and arrays to be coerced to pointers, and
1176 references to be dereferenced, call value_as_address() instead.
1177
1178 C++: It is assumed that the front-end has taken care of
1179 all matters concerning pointers to members. A pointer
1180 to member which reaches here is considered to be equivalent
1181 to an INT (or some size). After all, it is only an offset. */
1182
1183 CORE_ADDR
1184 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1185 {
1186 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1187 whether we want this to be true eventually. */
1188 return unpack_long (type, valaddr);
1189 }
1190
1191 \f
1192 /* Get the value of the FIELDN'th field (which must be static) of
1193 TYPE. Return NULL if the field doesn't exist or has been
1194 optimized out. */
1195
1196 struct value *
1197 value_static_field (struct type *type, int fieldno)
1198 {
1199 struct value *retval;
1200
1201 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
1202 {
1203 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1204 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1205 }
1206 else
1207 {
1208 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1209 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
1210 if (sym == NULL)
1211 {
1212 /* With some compilers, e.g. HP aCC, static data members are reported
1213 as non-debuggable symbols */
1214 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1215 if (!msym)
1216 return NULL;
1217 else
1218 {
1219 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1220 SYMBOL_VALUE_ADDRESS (msym));
1221 }
1222 }
1223 else
1224 {
1225 /* SYM should never have a SYMBOL_CLASS which will require
1226 read_var_value to use the FRAME parameter. */
1227 if (symbol_read_needs_frame (sym))
1228 warning (_("static field's value depends on the current "
1229 "frame - bad debug info?"));
1230 retval = read_var_value (sym, NULL);
1231 }
1232 if (retval && VALUE_LVAL (retval) == lval_memory)
1233 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1234 VALUE_ADDRESS (retval));
1235 }
1236 return retval;
1237 }
1238
1239 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1240 You have to be careful here, since the size of the data area for the value
1241 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1242 than the old enclosing type, you have to allocate more space for the data.
1243 The return value is a pointer to the new version of this value structure. */
1244
1245 struct value *
1246 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1247 {
1248 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
1249 {
1250 val->enclosing_type = new_encl_type;
1251 return val;
1252 }
1253 else
1254 {
1255 struct value *new_val;
1256 struct value *prev;
1257
1258 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
1259
1260 new_val->enclosing_type = new_encl_type;
1261
1262 /* We have to make sure this ends up in the same place in the value
1263 chain as the original copy, so it's clean-up behavior is the same.
1264 If the value has been released, this is a waste of time, but there
1265 is no way to tell that in advance, so... */
1266
1267 if (val != all_values)
1268 {
1269 for (prev = all_values; prev != NULL; prev = prev->next)
1270 {
1271 if (prev->next == val)
1272 {
1273 prev->next = new_val;
1274 break;
1275 }
1276 }
1277 }
1278
1279 return new_val;
1280 }
1281 }
1282
1283 /* Given a value ARG1 (offset by OFFSET bytes)
1284 of a struct or union type ARG_TYPE,
1285 extract and return the value of one of its (non-static) fields.
1286 FIELDNO says which field. */
1287
1288 struct value *
1289 value_primitive_field (struct value *arg1, int offset,
1290 int fieldno, struct type *arg_type)
1291 {
1292 struct value *v;
1293 struct type *type;
1294
1295 CHECK_TYPEDEF (arg_type);
1296 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1297
1298 /* Handle packed fields */
1299
1300 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1301 {
1302 v = value_from_longest (type,
1303 unpack_field_as_long (arg_type,
1304 value_contents (arg1)
1305 + offset,
1306 fieldno));
1307 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1308 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1309 v->offset = value_offset (arg1) + offset
1310 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1311 }
1312 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1313 {
1314 /* This field is actually a base subobject, so preserve the
1315 entire object's contents for later references to virtual
1316 bases, etc. */
1317 v = allocate_value (value_enclosing_type (arg1));
1318 v->type = type;
1319 if (value_lazy (arg1))
1320 set_value_lazy (v, 1);
1321 else
1322 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1323 TYPE_LENGTH (value_enclosing_type (arg1)));
1324 v->offset = value_offset (arg1);
1325 v->embedded_offset = (offset + value_embedded_offset (arg1)
1326 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1327 }
1328 else
1329 {
1330 /* Plain old data member */
1331 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1332 v = allocate_value (type);
1333 if (value_lazy (arg1))
1334 set_value_lazy (v, 1);
1335 else
1336 memcpy (value_contents_raw (v),
1337 value_contents_raw (arg1) + offset,
1338 TYPE_LENGTH (type));
1339 v->offset = (value_offset (arg1) + offset
1340 + value_embedded_offset (arg1));
1341 }
1342 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1343 if (VALUE_LVAL (arg1) == lval_internalvar)
1344 VALUE_LVAL (v) = lval_internalvar_component;
1345 v->location = arg1->location;
1346 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1347 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1348 return v;
1349 }
1350
1351 /* Given a value ARG1 of a struct or union type,
1352 extract and return the value of one of its (non-static) fields.
1353 FIELDNO says which field. */
1354
1355 struct value *
1356 value_field (struct value *arg1, int fieldno)
1357 {
1358 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1359 }
1360
1361 /* Return a non-virtual function as a value.
1362 F is the list of member functions which contains the desired method.
1363 J is an index into F which provides the desired method.
1364
1365 We only use the symbol for its address, so be happy with either a
1366 full symbol or a minimal symbol.
1367 */
1368
1369 struct value *
1370 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1371 int offset)
1372 {
1373 struct value *v;
1374 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1375 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1376 struct symbol *sym;
1377 struct minimal_symbol *msym;
1378
1379 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1380 if (sym != NULL)
1381 {
1382 msym = NULL;
1383 }
1384 else
1385 {
1386 gdb_assert (sym == NULL);
1387 msym = lookup_minimal_symbol (physname, NULL, NULL);
1388 if (msym == NULL)
1389 return NULL;
1390 }
1391
1392 v = allocate_value (ftype);
1393 if (sym)
1394 {
1395 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1396 }
1397 else
1398 {
1399 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1400 }
1401
1402 if (arg1p)
1403 {
1404 if (type != value_type (*arg1p))
1405 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1406 value_addr (*arg1p)));
1407
1408 /* Move the `this' pointer according to the offset.
1409 VALUE_OFFSET (*arg1p) += offset;
1410 */
1411 }
1412
1413 return v;
1414 }
1415
1416 \f
1417 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1418 VALADDR.
1419
1420 Extracting bits depends on endianness of the machine. Compute the
1421 number of least significant bits to discard. For big endian machines,
1422 we compute the total number of bits in the anonymous object, subtract
1423 off the bit count from the MSB of the object to the MSB of the
1424 bitfield, then the size of the bitfield, which leaves the LSB discard
1425 count. For little endian machines, the discard count is simply the
1426 number of bits from the LSB of the anonymous object to the LSB of the
1427 bitfield.
1428
1429 If the field is signed, we also do sign extension. */
1430
1431 LONGEST
1432 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
1433 {
1434 ULONGEST val;
1435 ULONGEST valmask;
1436 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1437 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1438 int lsbcount;
1439 struct type *field_type;
1440
1441 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1442 field_type = TYPE_FIELD_TYPE (type, fieldno);
1443 CHECK_TYPEDEF (field_type);
1444
1445 /* Extract bits. See comment above. */
1446
1447 if (BITS_BIG_ENDIAN)
1448 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1449 else
1450 lsbcount = (bitpos % 8);
1451 val >>= lsbcount;
1452
1453 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1454 If the field is signed, and is negative, then sign extend. */
1455
1456 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1457 {
1458 valmask = (((ULONGEST) 1) << bitsize) - 1;
1459 val &= valmask;
1460 if (!TYPE_UNSIGNED (field_type))
1461 {
1462 if (val & (valmask ^ (valmask >> 1)))
1463 {
1464 val |= ~valmask;
1465 }
1466 }
1467 }
1468 return (val);
1469 }
1470
1471 /* Modify the value of a bitfield. ADDR points to a block of memory in
1472 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1473 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1474 indicate which bits (in target bit order) comprise the bitfield.
1475 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1476 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1477
1478 void
1479 modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
1480 {
1481 ULONGEST oword;
1482 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1483
1484 /* If a negative fieldval fits in the field in question, chop
1485 off the sign extension bits. */
1486 if ((~fieldval & ~(mask >> 1)) == 0)
1487 fieldval &= mask;
1488
1489 /* Warn if value is too big to fit in the field in question. */
1490 if (0 != (fieldval & ~mask))
1491 {
1492 /* FIXME: would like to include fieldval in the message, but
1493 we don't have a sprintf_longest. */
1494 warning (_("Value does not fit in %d bits."), bitsize);
1495
1496 /* Truncate it, otherwise adjoining fields may be corrupted. */
1497 fieldval &= mask;
1498 }
1499
1500 oword = extract_unsigned_integer (addr, sizeof oword);
1501
1502 /* Shifting for bit field depends on endianness of the target machine. */
1503 if (BITS_BIG_ENDIAN)
1504 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1505
1506 oword &= ~(mask << bitpos);
1507 oword |= fieldval << bitpos;
1508
1509 store_unsigned_integer (addr, sizeof oword, oword);
1510 }
1511 \f
1512 /* Pack NUM into BUF using a target format of TYPE. */
1513
1514 void
1515 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
1516 {
1517 int len;
1518
1519 type = check_typedef (type);
1520 len = TYPE_LENGTH (type);
1521
1522 switch (TYPE_CODE (type))
1523 {
1524 case TYPE_CODE_INT:
1525 case TYPE_CODE_CHAR:
1526 case TYPE_CODE_ENUM:
1527 case TYPE_CODE_FLAGS:
1528 case TYPE_CODE_BOOL:
1529 case TYPE_CODE_RANGE:
1530 case TYPE_CODE_MEMBERPTR:
1531 store_signed_integer (buf, len, num);
1532 break;
1533
1534 case TYPE_CODE_REF:
1535 case TYPE_CODE_PTR:
1536 store_typed_address (buf, type, (CORE_ADDR) num);
1537 break;
1538
1539 default:
1540 error (_("Unexpected type (%d) encountered for integer constant."),
1541 TYPE_CODE (type));
1542 }
1543 }
1544
1545
1546 /* Convert C numbers into newly allocated values. */
1547
1548 struct value *
1549 value_from_longest (struct type *type, LONGEST num)
1550 {
1551 struct value *val = allocate_value (type);
1552
1553 pack_long (value_contents_raw (val), type, num);
1554
1555 return val;
1556 }
1557
1558
1559 /* Create a value representing a pointer of type TYPE to the address
1560 ADDR. */
1561 struct value *
1562 value_from_pointer (struct type *type, CORE_ADDR addr)
1563 {
1564 struct value *val = allocate_value (type);
1565 store_typed_address (value_contents_raw (val), type, addr);
1566 return val;
1567 }
1568
1569
1570 /* Create a value for a string constant to be stored locally
1571 (not in the inferior's memory space, but in GDB memory).
1572 This is analogous to value_from_longest, which also does not
1573 use inferior memory. String shall NOT contain embedded nulls. */
1574
1575 struct value *
1576 value_from_string (char *ptr)
1577 {
1578 struct value *val;
1579 int len = strlen (ptr);
1580 int lowbound = current_language->string_lower_bound;
1581 struct type *string_char_type;
1582 struct type *rangetype;
1583 struct type *stringtype;
1584
1585 rangetype = create_range_type ((struct type *) NULL,
1586 builtin_type_int,
1587 lowbound, len + lowbound - 1);
1588 string_char_type = language_string_char_type (current_language,
1589 current_gdbarch);
1590 stringtype = create_array_type ((struct type *) NULL,
1591 string_char_type,
1592 rangetype);
1593 val = allocate_value (stringtype);
1594 memcpy (value_contents_raw (val), ptr, len);
1595 return val;
1596 }
1597
1598 struct value *
1599 value_from_double (struct type *type, DOUBLEST num)
1600 {
1601 struct value *val = allocate_value (type);
1602 struct type *base_type = check_typedef (type);
1603 enum type_code code = TYPE_CODE (base_type);
1604 int len = TYPE_LENGTH (base_type);
1605
1606 if (code == TYPE_CODE_FLT)
1607 {
1608 store_typed_floating (value_contents_raw (val), base_type, num);
1609 }
1610 else
1611 error (_("Unexpected type encountered for floating constant."));
1612
1613 return val;
1614 }
1615
1616 struct value *
1617 coerce_ref (struct value *arg)
1618 {
1619 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1620 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1621 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1622 unpack_pointer (value_type (arg),
1623 value_contents (arg)));
1624 return arg;
1625 }
1626
1627 struct value *
1628 coerce_array (struct value *arg)
1629 {
1630 arg = coerce_ref (arg);
1631 if (current_language->c_style_arrays
1632 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1633 arg = value_coerce_array (arg);
1634 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1635 arg = value_coerce_function (arg);
1636 return arg;
1637 }
1638
1639 struct value *
1640 coerce_number (struct value *arg)
1641 {
1642 arg = coerce_array (arg);
1643 arg = coerce_enum (arg);
1644 return arg;
1645 }
1646
1647 struct value *
1648 coerce_enum (struct value *arg)
1649 {
1650 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1651 arg = value_cast (builtin_type_unsigned_int, arg);
1652 return arg;
1653 }
1654 \f
1655
1656 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1657 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1658 is the type (which is known to be struct, union or array).
1659
1660 On most machines, the struct convention is used unless we are
1661 using gcc and the type is of a special size. */
1662 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1663 native compiler. GCC 2.3.3 was the last release that did it the
1664 old way. Since gcc2_compiled was not changed, we have no
1665 way to correctly win in all cases, so we just do the right thing
1666 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1667 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1668 would cause more chaos than dealing with some struct returns being
1669 handled wrong. */
1670 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1671 dead. */
1672
1673 int
1674 generic_use_struct_convention (int gcc_p, struct type *value_type)
1675 {
1676 return !(TYPE_LENGTH (value_type) == 1
1677 || TYPE_LENGTH (value_type) == 2
1678 || TYPE_LENGTH (value_type) == 4
1679 || TYPE_LENGTH (value_type) == 8);
1680 }
1681
1682 /* Return true if the function returning the specified type is using
1683 the convention of returning structures in memory (passing in the
1684 address as a hidden first parameter). GCC_P is nonzero if compiled
1685 with GCC. */
1686
1687 int
1688 using_struct_return (struct type *value_type, int gcc_p)
1689 {
1690 enum type_code code = TYPE_CODE (value_type);
1691
1692 if (code == TYPE_CODE_ERROR)
1693 error (_("Function return type unknown."));
1694
1695 if (code == TYPE_CODE_VOID)
1696 /* A void return value is never in memory. See also corresponding
1697 code in "print_return_value". */
1698 return 0;
1699
1700 /* Probe the architecture for the return-value convention. */
1701 return (gdbarch_return_value (current_gdbarch, value_type,
1702 NULL, NULL, NULL)
1703 != RETURN_VALUE_REGISTER_CONVENTION);
1704 }
1705
1706 /* Set the initialized field in a value struct. */
1707
1708 void
1709 set_value_initialized (struct value *val, int status)
1710 {
1711 val->initialized = status;
1712 }
1713
1714 /* Return the initialized field in a value struct. */
1715
1716 int
1717 value_initialized (struct value *val)
1718 {
1719 return val->initialized;
1720 }
1721
1722 void
1723 _initialize_values (void)
1724 {
1725 add_cmd ("convenience", no_class, show_convenience, _("\
1726 Debugger convenience (\"$foo\") variables.\n\
1727 These variables are created when you assign them values;\n\
1728 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1729 \n\
1730 A few convenience variables are given values automatically:\n\
1731 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1732 \"$__\" holds the contents of the last address examined with \"x\"."),
1733 &showlist);
1734
1735 add_cmd ("values", no_class, show_values,
1736 _("Elements of value history around item number IDX (or last ten)."),
1737 &showlist);
1738
1739 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
1740 Initialize a convenience variable if necessary.\n\
1741 init-if-undefined VARIABLE = EXPRESSION\n\
1742 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1743 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1744 VARIABLE is already initialized."));
1745 }
This page took 0.085826 seconds and 5 git commands to generate.