ChangeLog:
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42
43 #include "python/python.h"
44
45 /* Prototypes for exported functions. */
46
47 void _initialize_values (void);
48
49 /* Definition of a user function. */
50 struct internal_function
51 {
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62 };
63
64 static struct cmd_list_element *functionlist;
65
66 struct value
67 {
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
109 int bitpos;
110
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
199 /* Actual contents of the value. Target byte-order. NULL or not
200 valid if lazy is nonzero. */
201 gdb_byte *contents;
202
203 /* The number of references to this value. When a value is created,
204 the value chain holds a reference, so REFERENCE_COUNT is 1. If
205 release_value is called, this value is removed from the chain but
206 the caller of release_value now has a reference to this value.
207 The caller must arrange for a call to value_free later. */
208 int reference_count;
209 };
210
211 /* Prototypes for local functions. */
212
213 static void show_values (char *, int);
214
215 static void show_convenience (char *, int);
216
217
218 /* The value-history records all the values printed
219 by print commands during this session. Each chunk
220 records 60 consecutive values. The first chunk on
221 the chain records the most recent values.
222 The total number of values is in value_history_count. */
223
224 #define VALUE_HISTORY_CHUNK 60
225
226 struct value_history_chunk
227 {
228 struct value_history_chunk *next;
229 struct value *values[VALUE_HISTORY_CHUNK];
230 };
231
232 /* Chain of chunks now in use. */
233
234 static struct value_history_chunk *value_history_chain;
235
236 static int value_history_count; /* Abs number of last entry stored */
237
238 \f
239 /* List of all value objects currently allocated
240 (except for those released by calls to release_value)
241 This is so they can be freed after each command. */
242
243 static struct value *all_values;
244
245 /* Allocate a lazy value for type TYPE. Its actual content is
246 "lazily" allocated too: the content field of the return value is
247 NULL; it will be allocated when it is fetched from the target. */
248
249 struct value *
250 allocate_value_lazy (struct type *type)
251 {
252 struct value *val;
253 struct type *atype = check_typedef (type);
254
255 val = (struct value *) xzalloc (sizeof (struct value));
256 val->contents = NULL;
257 val->next = all_values;
258 all_values = val;
259 val->type = type;
260 val->enclosing_type = type;
261 VALUE_LVAL (val) = not_lval;
262 val->location.address = 0;
263 VALUE_FRAME_ID (val) = null_frame_id;
264 val->offset = 0;
265 val->bitpos = 0;
266 val->bitsize = 0;
267 VALUE_REGNUM (val) = -1;
268 val->lazy = 1;
269 val->optimized_out = 0;
270 val->embedded_offset = 0;
271 val->pointed_to_offset = 0;
272 val->modifiable = 1;
273 val->initialized = 1; /* Default to initialized. */
274
275 /* Values start out on the all_values chain. */
276 val->reference_count = 1;
277
278 return val;
279 }
280
281 /* Allocate the contents of VAL if it has not been allocated yet. */
282
283 void
284 allocate_value_contents (struct value *val)
285 {
286 if (!val->contents)
287 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
288 }
289
290 /* Allocate a value and its contents for type TYPE. */
291
292 struct value *
293 allocate_value (struct type *type)
294 {
295 struct value *val = allocate_value_lazy (type);
296 allocate_value_contents (val);
297 val->lazy = 0;
298 return val;
299 }
300
301 /* Allocate a value that has the correct length
302 for COUNT repetitions of type TYPE. */
303
304 struct value *
305 allocate_repeat_value (struct type *type, int count)
306 {
307 int low_bound = current_language->string_lower_bound; /* ??? */
308 /* FIXME-type-allocation: need a way to free this type when we are
309 done with it. */
310 struct type *array_type
311 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
312 return allocate_value (array_type);
313 }
314
315 struct value *
316 allocate_computed_value (struct type *type,
317 struct lval_funcs *funcs,
318 void *closure)
319 {
320 struct value *v = allocate_value (type);
321 VALUE_LVAL (v) = lval_computed;
322 v->location.computed.funcs = funcs;
323 v->location.computed.closure = closure;
324 set_value_lazy (v, 1);
325
326 return v;
327 }
328
329 /* Accessor methods. */
330
331 struct value *
332 value_next (struct value *value)
333 {
334 return value->next;
335 }
336
337 struct type *
338 value_type (struct value *value)
339 {
340 return value->type;
341 }
342 void
343 deprecated_set_value_type (struct value *value, struct type *type)
344 {
345 value->type = type;
346 }
347
348 int
349 value_offset (struct value *value)
350 {
351 return value->offset;
352 }
353 void
354 set_value_offset (struct value *value, int offset)
355 {
356 value->offset = offset;
357 }
358
359 int
360 value_bitpos (struct value *value)
361 {
362 return value->bitpos;
363 }
364 void
365 set_value_bitpos (struct value *value, int bit)
366 {
367 value->bitpos = bit;
368 }
369
370 int
371 value_bitsize (struct value *value)
372 {
373 return value->bitsize;
374 }
375 void
376 set_value_bitsize (struct value *value, int bit)
377 {
378 value->bitsize = bit;
379 }
380
381 struct value *
382 value_parent (struct value *value)
383 {
384 return value->parent;
385 }
386
387 gdb_byte *
388 value_contents_raw (struct value *value)
389 {
390 allocate_value_contents (value);
391 return value->contents + value->embedded_offset;
392 }
393
394 gdb_byte *
395 value_contents_all_raw (struct value *value)
396 {
397 allocate_value_contents (value);
398 return value->contents;
399 }
400
401 struct type *
402 value_enclosing_type (struct value *value)
403 {
404 return value->enclosing_type;
405 }
406
407 const gdb_byte *
408 value_contents_all (struct value *value)
409 {
410 if (value->lazy)
411 value_fetch_lazy (value);
412 return value->contents;
413 }
414
415 int
416 value_lazy (struct value *value)
417 {
418 return value->lazy;
419 }
420
421 void
422 set_value_lazy (struct value *value, int val)
423 {
424 value->lazy = val;
425 }
426
427 const gdb_byte *
428 value_contents (struct value *value)
429 {
430 return value_contents_writeable (value);
431 }
432
433 gdb_byte *
434 value_contents_writeable (struct value *value)
435 {
436 if (value->lazy)
437 value_fetch_lazy (value);
438 return value_contents_raw (value);
439 }
440
441 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
442 this function is different from value_equal; in C the operator ==
443 can return 0 even if the two values being compared are equal. */
444
445 int
446 value_contents_equal (struct value *val1, struct value *val2)
447 {
448 struct type *type1;
449 struct type *type2;
450 int len;
451
452 type1 = check_typedef (value_type (val1));
453 type2 = check_typedef (value_type (val2));
454 len = TYPE_LENGTH (type1);
455 if (len != TYPE_LENGTH (type2))
456 return 0;
457
458 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
459 }
460
461 int
462 value_optimized_out (struct value *value)
463 {
464 return value->optimized_out;
465 }
466
467 void
468 set_value_optimized_out (struct value *value, int val)
469 {
470 value->optimized_out = val;
471 }
472
473 int
474 value_embedded_offset (struct value *value)
475 {
476 return value->embedded_offset;
477 }
478
479 void
480 set_value_embedded_offset (struct value *value, int val)
481 {
482 value->embedded_offset = val;
483 }
484
485 int
486 value_pointed_to_offset (struct value *value)
487 {
488 return value->pointed_to_offset;
489 }
490
491 void
492 set_value_pointed_to_offset (struct value *value, int val)
493 {
494 value->pointed_to_offset = val;
495 }
496
497 struct lval_funcs *
498 value_computed_funcs (struct value *v)
499 {
500 gdb_assert (VALUE_LVAL (v) == lval_computed);
501
502 return v->location.computed.funcs;
503 }
504
505 void *
506 value_computed_closure (struct value *v)
507 {
508 gdb_assert (VALUE_LVAL (v) == lval_computed);
509
510 return v->location.computed.closure;
511 }
512
513 enum lval_type *
514 deprecated_value_lval_hack (struct value *value)
515 {
516 return &value->lval;
517 }
518
519 CORE_ADDR
520 value_address (struct value *value)
521 {
522 if (value->lval == lval_internalvar
523 || value->lval == lval_internalvar_component)
524 return 0;
525 return value->location.address + value->offset;
526 }
527
528 CORE_ADDR
529 value_raw_address (struct value *value)
530 {
531 if (value->lval == lval_internalvar
532 || value->lval == lval_internalvar_component)
533 return 0;
534 return value->location.address;
535 }
536
537 void
538 set_value_address (struct value *value, CORE_ADDR addr)
539 {
540 gdb_assert (value->lval != lval_internalvar
541 && value->lval != lval_internalvar_component);
542 value->location.address = addr;
543 }
544
545 struct internalvar **
546 deprecated_value_internalvar_hack (struct value *value)
547 {
548 return &value->location.internalvar;
549 }
550
551 struct frame_id *
552 deprecated_value_frame_id_hack (struct value *value)
553 {
554 return &value->frame_id;
555 }
556
557 short *
558 deprecated_value_regnum_hack (struct value *value)
559 {
560 return &value->regnum;
561 }
562
563 int
564 deprecated_value_modifiable (struct value *value)
565 {
566 return value->modifiable;
567 }
568 void
569 deprecated_set_value_modifiable (struct value *value, int modifiable)
570 {
571 value->modifiable = modifiable;
572 }
573 \f
574 /* Return a mark in the value chain. All values allocated after the
575 mark is obtained (except for those released) are subject to being freed
576 if a subsequent value_free_to_mark is passed the mark. */
577 struct value *
578 value_mark (void)
579 {
580 return all_values;
581 }
582
583 /* Take a reference to VAL. VAL will not be deallocated until all
584 references are released. */
585
586 void
587 value_incref (struct value *val)
588 {
589 val->reference_count++;
590 }
591
592 /* Release a reference to VAL, which was acquired with value_incref.
593 This function is also called to deallocate values from the value
594 chain. */
595
596 void
597 value_free (struct value *val)
598 {
599 if (val)
600 {
601 gdb_assert (val->reference_count > 0);
602 val->reference_count--;
603 if (val->reference_count > 0)
604 return;
605
606 /* If there's an associated parent value, drop our reference to
607 it. */
608 if (val->parent != NULL)
609 value_free (val->parent);
610
611 if (VALUE_LVAL (val) == lval_computed)
612 {
613 struct lval_funcs *funcs = val->location.computed.funcs;
614
615 if (funcs->free_closure)
616 funcs->free_closure (val);
617 }
618
619 xfree (val->contents);
620 }
621 xfree (val);
622 }
623
624 /* Free all values allocated since MARK was obtained by value_mark
625 (except for those released). */
626 void
627 value_free_to_mark (struct value *mark)
628 {
629 struct value *val;
630 struct value *next;
631
632 for (val = all_values; val && val != mark; val = next)
633 {
634 next = val->next;
635 value_free (val);
636 }
637 all_values = val;
638 }
639
640 /* Free all the values that have been allocated (except for those released).
641 Called after each command, successful or not. */
642
643 void
644 free_all_values (void)
645 {
646 struct value *val;
647 struct value *next;
648
649 for (val = all_values; val; val = next)
650 {
651 next = val->next;
652 value_free (val);
653 }
654
655 all_values = 0;
656 }
657
658 /* Remove VAL from the chain all_values
659 so it will not be freed automatically. */
660
661 void
662 release_value (struct value *val)
663 {
664 struct value *v;
665
666 if (all_values == val)
667 {
668 all_values = val->next;
669 return;
670 }
671
672 for (v = all_values; v; v = v->next)
673 {
674 if (v->next == val)
675 {
676 v->next = val->next;
677 break;
678 }
679 }
680 }
681
682 /* Release all values up to mark */
683 struct value *
684 value_release_to_mark (struct value *mark)
685 {
686 struct value *val;
687 struct value *next;
688
689 for (val = next = all_values; next; next = next->next)
690 if (next->next == mark)
691 {
692 all_values = next->next;
693 next->next = NULL;
694 return val;
695 }
696 all_values = 0;
697 return val;
698 }
699
700 /* Return a copy of the value ARG.
701 It contains the same contents, for same memory address,
702 but it's a different block of storage. */
703
704 struct value *
705 value_copy (struct value *arg)
706 {
707 struct type *encl_type = value_enclosing_type (arg);
708 struct value *val;
709
710 if (value_lazy (arg))
711 val = allocate_value_lazy (encl_type);
712 else
713 val = allocate_value (encl_type);
714 val->type = arg->type;
715 VALUE_LVAL (val) = VALUE_LVAL (arg);
716 val->location = arg->location;
717 val->offset = arg->offset;
718 val->bitpos = arg->bitpos;
719 val->bitsize = arg->bitsize;
720 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
721 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
722 val->lazy = arg->lazy;
723 val->optimized_out = arg->optimized_out;
724 val->embedded_offset = value_embedded_offset (arg);
725 val->pointed_to_offset = arg->pointed_to_offset;
726 val->modifiable = arg->modifiable;
727 if (!value_lazy (val))
728 {
729 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
730 TYPE_LENGTH (value_enclosing_type (arg)));
731
732 }
733 val->parent = arg->parent;
734 if (val->parent)
735 value_incref (val->parent);
736 if (VALUE_LVAL (val) == lval_computed)
737 {
738 struct lval_funcs *funcs = val->location.computed.funcs;
739
740 if (funcs->copy_closure)
741 val->location.computed.closure = funcs->copy_closure (val);
742 }
743 return val;
744 }
745
746 void
747 set_value_component_location (struct value *component, struct value *whole)
748 {
749 if (VALUE_LVAL (whole) == lval_internalvar)
750 VALUE_LVAL (component) = lval_internalvar_component;
751 else
752 VALUE_LVAL (component) = VALUE_LVAL (whole);
753
754 component->location = whole->location;
755 if (VALUE_LVAL (whole) == lval_computed)
756 {
757 struct lval_funcs *funcs = whole->location.computed.funcs;
758
759 if (funcs->copy_closure)
760 component->location.computed.closure = funcs->copy_closure (whole);
761 }
762 }
763
764 \f
765 /* Access to the value history. */
766
767 /* Record a new value in the value history.
768 Returns the absolute history index of the entry.
769 Result of -1 indicates the value was not saved; otherwise it is the
770 value history index of this new item. */
771
772 int
773 record_latest_value (struct value *val)
774 {
775 int i;
776
777 /* We don't want this value to have anything to do with the inferior anymore.
778 In particular, "set $1 = 50" should not affect the variable from which
779 the value was taken, and fast watchpoints should be able to assume that
780 a value on the value history never changes. */
781 if (value_lazy (val))
782 value_fetch_lazy (val);
783 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
784 from. This is a bit dubious, because then *&$1 does not just return $1
785 but the current contents of that location. c'est la vie... */
786 val->modifiable = 0;
787 release_value (val);
788
789 /* Here we treat value_history_count as origin-zero
790 and applying to the value being stored now. */
791
792 i = value_history_count % VALUE_HISTORY_CHUNK;
793 if (i == 0)
794 {
795 struct value_history_chunk *new
796 = (struct value_history_chunk *)
797 xmalloc (sizeof (struct value_history_chunk));
798 memset (new->values, 0, sizeof new->values);
799 new->next = value_history_chain;
800 value_history_chain = new;
801 }
802
803 value_history_chain->values[i] = val;
804
805 /* Now we regard value_history_count as origin-one
806 and applying to the value just stored. */
807
808 return ++value_history_count;
809 }
810
811 /* Return a copy of the value in the history with sequence number NUM. */
812
813 struct value *
814 access_value_history (int num)
815 {
816 struct value_history_chunk *chunk;
817 int i;
818 int absnum = num;
819
820 if (absnum <= 0)
821 absnum += value_history_count;
822
823 if (absnum <= 0)
824 {
825 if (num == 0)
826 error (_("The history is empty."));
827 else if (num == 1)
828 error (_("There is only one value in the history."));
829 else
830 error (_("History does not go back to $$%d."), -num);
831 }
832 if (absnum > value_history_count)
833 error (_("History has not yet reached $%d."), absnum);
834
835 absnum--;
836
837 /* Now absnum is always absolute and origin zero. */
838
839 chunk = value_history_chain;
840 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
841 i > 0; i--)
842 chunk = chunk->next;
843
844 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
845 }
846
847 static void
848 show_values (char *num_exp, int from_tty)
849 {
850 int i;
851 struct value *val;
852 static int num = 1;
853
854 if (num_exp)
855 {
856 /* "show values +" should print from the stored position.
857 "show values <exp>" should print around value number <exp>. */
858 if (num_exp[0] != '+' || num_exp[1] != '\0')
859 num = parse_and_eval_long (num_exp) - 5;
860 }
861 else
862 {
863 /* "show values" means print the last 10 values. */
864 num = value_history_count - 9;
865 }
866
867 if (num <= 0)
868 num = 1;
869
870 for (i = num; i < num + 10 && i <= value_history_count; i++)
871 {
872 struct value_print_options opts;
873 val = access_value_history (i);
874 printf_filtered (("$%d = "), i);
875 get_user_print_options (&opts);
876 value_print (val, gdb_stdout, &opts);
877 printf_filtered (("\n"));
878 }
879
880 /* The next "show values +" should start after what we just printed. */
881 num += 10;
882
883 /* Hitting just return after this command should do the same thing as
884 "show values +". If num_exp is null, this is unnecessary, since
885 "show values +" is not useful after "show values". */
886 if (from_tty && num_exp)
887 {
888 num_exp[0] = '+';
889 num_exp[1] = '\0';
890 }
891 }
892 \f
893 /* Internal variables. These are variables within the debugger
894 that hold values assigned by debugger commands.
895 The user refers to them with a '$' prefix
896 that does not appear in the variable names stored internally. */
897
898 struct internalvar
899 {
900 struct internalvar *next;
901 char *name;
902
903 /* We support various different kinds of content of an internal variable.
904 enum internalvar_kind specifies the kind, and union internalvar_data
905 provides the data associated with this particular kind. */
906
907 enum internalvar_kind
908 {
909 /* The internal variable is empty. */
910 INTERNALVAR_VOID,
911
912 /* The value of the internal variable is provided directly as
913 a GDB value object. */
914 INTERNALVAR_VALUE,
915
916 /* A fresh value is computed via a call-back routine on every
917 access to the internal variable. */
918 INTERNALVAR_MAKE_VALUE,
919
920 /* The internal variable holds a GDB internal convenience function. */
921 INTERNALVAR_FUNCTION,
922
923 /* The variable holds an integer value. */
924 INTERNALVAR_INTEGER,
925
926 /* The variable holds a pointer value. */
927 INTERNALVAR_POINTER,
928
929 /* The variable holds a GDB-provided string. */
930 INTERNALVAR_STRING,
931
932 } kind;
933
934 union internalvar_data
935 {
936 /* A value object used with INTERNALVAR_VALUE. */
937 struct value *value;
938
939 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
940 internalvar_make_value make_value;
941
942 /* The internal function used with INTERNALVAR_FUNCTION. */
943 struct
944 {
945 struct internal_function *function;
946 /* True if this is the canonical name for the function. */
947 int canonical;
948 } fn;
949
950 /* An integer value used with INTERNALVAR_INTEGER. */
951 struct
952 {
953 /* If type is non-NULL, it will be used as the type to generate
954 a value for this internal variable. If type is NULL, a default
955 integer type for the architecture is used. */
956 struct type *type;
957 LONGEST val;
958 } integer;
959
960 /* A pointer value used with INTERNALVAR_POINTER. */
961 struct
962 {
963 struct type *type;
964 CORE_ADDR val;
965 } pointer;
966
967 /* A string value used with INTERNALVAR_STRING. */
968 char *string;
969 } u;
970 };
971
972 static struct internalvar *internalvars;
973
974 /* If the variable does not already exist create it and give it the value given.
975 If no value is given then the default is zero. */
976 static void
977 init_if_undefined_command (char* args, int from_tty)
978 {
979 struct internalvar* intvar;
980
981 /* Parse the expression - this is taken from set_command(). */
982 struct expression *expr = parse_expression (args);
983 register struct cleanup *old_chain =
984 make_cleanup (free_current_contents, &expr);
985
986 /* Validate the expression.
987 Was the expression an assignment?
988 Or even an expression at all? */
989 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
990 error (_("Init-if-undefined requires an assignment expression."));
991
992 /* Extract the variable from the parsed expression.
993 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
994 if (expr->elts[1].opcode != OP_INTERNALVAR)
995 error (_("The first parameter to init-if-undefined should be a GDB variable."));
996 intvar = expr->elts[2].internalvar;
997
998 /* Only evaluate the expression if the lvalue is void.
999 This may still fail if the expresssion is invalid. */
1000 if (intvar->kind == INTERNALVAR_VOID)
1001 evaluate_expression (expr);
1002
1003 do_cleanups (old_chain);
1004 }
1005
1006
1007 /* Look up an internal variable with name NAME. NAME should not
1008 normally include a dollar sign.
1009
1010 If the specified internal variable does not exist,
1011 the return value is NULL. */
1012
1013 struct internalvar *
1014 lookup_only_internalvar (const char *name)
1015 {
1016 struct internalvar *var;
1017
1018 for (var = internalvars; var; var = var->next)
1019 if (strcmp (var->name, name) == 0)
1020 return var;
1021
1022 return NULL;
1023 }
1024
1025
1026 /* Create an internal variable with name NAME and with a void value.
1027 NAME should not normally include a dollar sign. */
1028
1029 struct internalvar *
1030 create_internalvar (const char *name)
1031 {
1032 struct internalvar *var;
1033 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1034 var->name = concat (name, (char *)NULL);
1035 var->kind = INTERNALVAR_VOID;
1036 var->next = internalvars;
1037 internalvars = var;
1038 return var;
1039 }
1040
1041 /* Create an internal variable with name NAME and register FUN as the
1042 function that value_of_internalvar uses to create a value whenever
1043 this variable is referenced. NAME should not normally include a
1044 dollar sign. */
1045
1046 struct internalvar *
1047 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1048 {
1049 struct internalvar *var = create_internalvar (name);
1050 var->kind = INTERNALVAR_MAKE_VALUE;
1051 var->u.make_value = fun;
1052 return var;
1053 }
1054
1055 /* Look up an internal variable with name NAME. NAME should not
1056 normally include a dollar sign.
1057
1058 If the specified internal variable does not exist,
1059 one is created, with a void value. */
1060
1061 struct internalvar *
1062 lookup_internalvar (const char *name)
1063 {
1064 struct internalvar *var;
1065
1066 var = lookup_only_internalvar (name);
1067 if (var)
1068 return var;
1069
1070 return create_internalvar (name);
1071 }
1072
1073 /* Return current value of internal variable VAR. For variables that
1074 are not inherently typed, use a value type appropriate for GDBARCH. */
1075
1076 struct value *
1077 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1078 {
1079 struct value *val;
1080
1081 switch (var->kind)
1082 {
1083 case INTERNALVAR_VOID:
1084 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1085 break;
1086
1087 case INTERNALVAR_FUNCTION:
1088 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1089 break;
1090
1091 case INTERNALVAR_INTEGER:
1092 if (!var->u.integer.type)
1093 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1094 var->u.integer.val);
1095 else
1096 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1097 break;
1098
1099 case INTERNALVAR_POINTER:
1100 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
1101 break;
1102
1103 case INTERNALVAR_STRING:
1104 val = value_cstring (var->u.string, strlen (var->u.string),
1105 builtin_type (gdbarch)->builtin_char);
1106 break;
1107
1108 case INTERNALVAR_VALUE:
1109 val = value_copy (var->u.value);
1110 if (value_lazy (val))
1111 value_fetch_lazy (val);
1112 break;
1113
1114 case INTERNALVAR_MAKE_VALUE:
1115 val = (*var->u.make_value) (gdbarch, var);
1116 break;
1117
1118 default:
1119 internal_error (__FILE__, __LINE__, "bad kind");
1120 }
1121
1122 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1123 on this value go back to affect the original internal variable.
1124
1125 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1126 no underlying modifyable state in the internal variable.
1127
1128 Likewise, if the variable's value is a computed lvalue, we want
1129 references to it to produce another computed lvalue, where
1130 references and assignments actually operate through the
1131 computed value's functions.
1132
1133 This means that internal variables with computed values
1134 behave a little differently from other internal variables:
1135 assignments to them don't just replace the previous value
1136 altogether. At the moment, this seems like the behavior we
1137 want. */
1138
1139 if (var->kind != INTERNALVAR_MAKE_VALUE
1140 && val->lval != lval_computed)
1141 {
1142 VALUE_LVAL (val) = lval_internalvar;
1143 VALUE_INTERNALVAR (val) = var;
1144 }
1145
1146 return val;
1147 }
1148
1149 int
1150 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1151 {
1152 switch (var->kind)
1153 {
1154 case INTERNALVAR_INTEGER:
1155 *result = var->u.integer.val;
1156 return 1;
1157
1158 default:
1159 return 0;
1160 }
1161 }
1162
1163 static int
1164 get_internalvar_function (struct internalvar *var,
1165 struct internal_function **result)
1166 {
1167 switch (var->kind)
1168 {
1169 case INTERNALVAR_FUNCTION:
1170 *result = var->u.fn.function;
1171 return 1;
1172
1173 default:
1174 return 0;
1175 }
1176 }
1177
1178 void
1179 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1180 int bitsize, struct value *newval)
1181 {
1182 gdb_byte *addr;
1183
1184 switch (var->kind)
1185 {
1186 case INTERNALVAR_VALUE:
1187 addr = value_contents_writeable (var->u.value);
1188
1189 if (bitsize)
1190 modify_field (value_type (var->u.value), addr + offset,
1191 value_as_long (newval), bitpos, bitsize);
1192 else
1193 memcpy (addr + offset, value_contents (newval),
1194 TYPE_LENGTH (value_type (newval)));
1195 break;
1196
1197 default:
1198 /* We can never get a component of any other kind. */
1199 internal_error (__FILE__, __LINE__, "set_internalvar_component");
1200 }
1201 }
1202
1203 void
1204 set_internalvar (struct internalvar *var, struct value *val)
1205 {
1206 enum internalvar_kind new_kind;
1207 union internalvar_data new_data = { 0 };
1208
1209 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1210 error (_("Cannot overwrite convenience function %s"), var->name);
1211
1212 /* Prepare new contents. */
1213 switch (TYPE_CODE (check_typedef (value_type (val))))
1214 {
1215 case TYPE_CODE_VOID:
1216 new_kind = INTERNALVAR_VOID;
1217 break;
1218
1219 case TYPE_CODE_INTERNAL_FUNCTION:
1220 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1221 new_kind = INTERNALVAR_FUNCTION;
1222 get_internalvar_function (VALUE_INTERNALVAR (val),
1223 &new_data.fn.function);
1224 /* Copies created here are never canonical. */
1225 break;
1226
1227 case TYPE_CODE_INT:
1228 new_kind = INTERNALVAR_INTEGER;
1229 new_data.integer.type = value_type (val);
1230 new_data.integer.val = value_as_long (val);
1231 break;
1232
1233 case TYPE_CODE_PTR:
1234 new_kind = INTERNALVAR_POINTER;
1235 new_data.pointer.type = value_type (val);
1236 new_data.pointer.val = value_as_address (val);
1237 break;
1238
1239 default:
1240 new_kind = INTERNALVAR_VALUE;
1241 new_data.value = value_copy (val);
1242 new_data.value->modifiable = 1;
1243
1244 /* Force the value to be fetched from the target now, to avoid problems
1245 later when this internalvar is referenced and the target is gone or
1246 has changed. */
1247 if (value_lazy (new_data.value))
1248 value_fetch_lazy (new_data.value);
1249
1250 /* Release the value from the value chain to prevent it from being
1251 deleted by free_all_values. From here on this function should not
1252 call error () until new_data is installed into the var->u to avoid
1253 leaking memory. */
1254 release_value (new_data.value);
1255 break;
1256 }
1257
1258 /* Clean up old contents. */
1259 clear_internalvar (var);
1260
1261 /* Switch over. */
1262 var->kind = new_kind;
1263 var->u = new_data;
1264 /* End code which must not call error(). */
1265 }
1266
1267 void
1268 set_internalvar_integer (struct internalvar *var, LONGEST l)
1269 {
1270 /* Clean up old contents. */
1271 clear_internalvar (var);
1272
1273 var->kind = INTERNALVAR_INTEGER;
1274 var->u.integer.type = NULL;
1275 var->u.integer.val = l;
1276 }
1277
1278 void
1279 set_internalvar_string (struct internalvar *var, const char *string)
1280 {
1281 /* Clean up old contents. */
1282 clear_internalvar (var);
1283
1284 var->kind = INTERNALVAR_STRING;
1285 var->u.string = xstrdup (string);
1286 }
1287
1288 static void
1289 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1290 {
1291 /* Clean up old contents. */
1292 clear_internalvar (var);
1293
1294 var->kind = INTERNALVAR_FUNCTION;
1295 var->u.fn.function = f;
1296 var->u.fn.canonical = 1;
1297 /* Variables installed here are always the canonical version. */
1298 }
1299
1300 void
1301 clear_internalvar (struct internalvar *var)
1302 {
1303 /* Clean up old contents. */
1304 switch (var->kind)
1305 {
1306 case INTERNALVAR_VALUE:
1307 value_free (var->u.value);
1308 break;
1309
1310 case INTERNALVAR_STRING:
1311 xfree (var->u.string);
1312 break;
1313
1314 default:
1315 break;
1316 }
1317
1318 /* Reset to void kind. */
1319 var->kind = INTERNALVAR_VOID;
1320 }
1321
1322 char *
1323 internalvar_name (struct internalvar *var)
1324 {
1325 return var->name;
1326 }
1327
1328 static struct internal_function *
1329 create_internal_function (const char *name,
1330 internal_function_fn handler, void *cookie)
1331 {
1332 struct internal_function *ifn = XNEW (struct internal_function);
1333 ifn->name = xstrdup (name);
1334 ifn->handler = handler;
1335 ifn->cookie = cookie;
1336 return ifn;
1337 }
1338
1339 char *
1340 value_internal_function_name (struct value *val)
1341 {
1342 struct internal_function *ifn;
1343 int result;
1344
1345 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1346 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1347 gdb_assert (result);
1348
1349 return ifn->name;
1350 }
1351
1352 struct value *
1353 call_internal_function (struct gdbarch *gdbarch,
1354 const struct language_defn *language,
1355 struct value *func, int argc, struct value **argv)
1356 {
1357 struct internal_function *ifn;
1358 int result;
1359
1360 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1361 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1362 gdb_assert (result);
1363
1364 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1365 }
1366
1367 /* The 'function' command. This does nothing -- it is just a
1368 placeholder to let "help function NAME" work. This is also used as
1369 the implementation of the sub-command that is created when
1370 registering an internal function. */
1371 static void
1372 function_command (char *command, int from_tty)
1373 {
1374 /* Do nothing. */
1375 }
1376
1377 /* Clean up if an internal function's command is destroyed. */
1378 static void
1379 function_destroyer (struct cmd_list_element *self, void *ignore)
1380 {
1381 xfree (self->name);
1382 xfree (self->doc);
1383 }
1384
1385 /* Add a new internal function. NAME is the name of the function; DOC
1386 is a documentation string describing the function. HANDLER is
1387 called when the function is invoked. COOKIE is an arbitrary
1388 pointer which is passed to HANDLER and is intended for "user
1389 data". */
1390 void
1391 add_internal_function (const char *name, const char *doc,
1392 internal_function_fn handler, void *cookie)
1393 {
1394 struct cmd_list_element *cmd;
1395 struct internal_function *ifn;
1396 struct internalvar *var = lookup_internalvar (name);
1397
1398 ifn = create_internal_function (name, handler, cookie);
1399 set_internalvar_function (var, ifn);
1400
1401 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1402 &functionlist);
1403 cmd->destroyer = function_destroyer;
1404 }
1405
1406 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1407 prevent cycles / duplicates. */
1408
1409 void
1410 preserve_one_value (struct value *value, struct objfile *objfile,
1411 htab_t copied_types)
1412 {
1413 if (TYPE_OBJFILE (value->type) == objfile)
1414 value->type = copy_type_recursive (objfile, value->type, copied_types);
1415
1416 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1417 value->enclosing_type = copy_type_recursive (objfile,
1418 value->enclosing_type,
1419 copied_types);
1420 }
1421
1422 /* Likewise for internal variable VAR. */
1423
1424 static void
1425 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1426 htab_t copied_types)
1427 {
1428 switch (var->kind)
1429 {
1430 case INTERNALVAR_INTEGER:
1431 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1432 var->u.integer.type
1433 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1434 break;
1435
1436 case INTERNALVAR_POINTER:
1437 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1438 var->u.pointer.type
1439 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
1440 break;
1441
1442 case INTERNALVAR_VALUE:
1443 preserve_one_value (var->u.value, objfile, copied_types);
1444 break;
1445 }
1446 }
1447
1448 /* Update the internal variables and value history when OBJFILE is
1449 discarded; we must copy the types out of the objfile. New global types
1450 will be created for every convenience variable which currently points to
1451 this objfile's types, and the convenience variables will be adjusted to
1452 use the new global types. */
1453
1454 void
1455 preserve_values (struct objfile *objfile)
1456 {
1457 htab_t copied_types;
1458 struct value_history_chunk *cur;
1459 struct internalvar *var;
1460 struct value *val;
1461 int i;
1462
1463 /* Create the hash table. We allocate on the objfile's obstack, since
1464 it is soon to be deleted. */
1465 copied_types = create_copied_types_hash (objfile);
1466
1467 for (cur = value_history_chain; cur; cur = cur->next)
1468 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1469 if (cur->values[i])
1470 preserve_one_value (cur->values[i], objfile, copied_types);
1471
1472 for (var = internalvars; var; var = var->next)
1473 preserve_one_internalvar (var, objfile, copied_types);
1474
1475 preserve_python_values (objfile, copied_types);
1476
1477 htab_delete (copied_types);
1478 }
1479
1480 static void
1481 show_convenience (char *ignore, int from_tty)
1482 {
1483 struct gdbarch *gdbarch = get_current_arch ();
1484 struct internalvar *var;
1485 int varseen = 0;
1486 struct value_print_options opts;
1487
1488 get_user_print_options (&opts);
1489 for (var = internalvars; var; var = var->next)
1490 {
1491 if (!varseen)
1492 {
1493 varseen = 1;
1494 }
1495 printf_filtered (("$%s = "), var->name);
1496 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1497 &opts);
1498 printf_filtered (("\n"));
1499 }
1500 if (!varseen)
1501 printf_unfiltered (_("\
1502 No debugger convenience variables now defined.\n\
1503 Convenience variables have names starting with \"$\";\n\
1504 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1505 }
1506 \f
1507 /* Extract a value as a C number (either long or double).
1508 Knows how to convert fixed values to double, or
1509 floating values to long.
1510 Does not deallocate the value. */
1511
1512 LONGEST
1513 value_as_long (struct value *val)
1514 {
1515 /* This coerces arrays and functions, which is necessary (e.g.
1516 in disassemble_command). It also dereferences references, which
1517 I suspect is the most logical thing to do. */
1518 val = coerce_array (val);
1519 return unpack_long (value_type (val), value_contents (val));
1520 }
1521
1522 DOUBLEST
1523 value_as_double (struct value *val)
1524 {
1525 DOUBLEST foo;
1526 int inv;
1527
1528 foo = unpack_double (value_type (val), value_contents (val), &inv);
1529 if (inv)
1530 error (_("Invalid floating value found in program."));
1531 return foo;
1532 }
1533
1534 /* Extract a value as a C pointer. Does not deallocate the value.
1535 Note that val's type may not actually be a pointer; value_as_long
1536 handles all the cases. */
1537 CORE_ADDR
1538 value_as_address (struct value *val)
1539 {
1540 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1541
1542 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1543 whether we want this to be true eventually. */
1544 #if 0
1545 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1546 non-address (e.g. argument to "signal", "info break", etc.), or
1547 for pointers to char, in which the low bits *are* significant. */
1548 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1549 #else
1550
1551 /* There are several targets (IA-64, PowerPC, and others) which
1552 don't represent pointers to functions as simply the address of
1553 the function's entry point. For example, on the IA-64, a
1554 function pointer points to a two-word descriptor, generated by
1555 the linker, which contains the function's entry point, and the
1556 value the IA-64 "global pointer" register should have --- to
1557 support position-independent code. The linker generates
1558 descriptors only for those functions whose addresses are taken.
1559
1560 On such targets, it's difficult for GDB to convert an arbitrary
1561 function address into a function pointer; it has to either find
1562 an existing descriptor for that function, or call malloc and
1563 build its own. On some targets, it is impossible for GDB to
1564 build a descriptor at all: the descriptor must contain a jump
1565 instruction; data memory cannot be executed; and code memory
1566 cannot be modified.
1567
1568 Upon entry to this function, if VAL is a value of type `function'
1569 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1570 value_address (val) is the address of the function. This is what
1571 you'll get if you evaluate an expression like `main'. The call
1572 to COERCE_ARRAY below actually does all the usual unary
1573 conversions, which includes converting values of type `function'
1574 to `pointer to function'. This is the challenging conversion
1575 discussed above. Then, `unpack_long' will convert that pointer
1576 back into an address.
1577
1578 So, suppose the user types `disassemble foo' on an architecture
1579 with a strange function pointer representation, on which GDB
1580 cannot build its own descriptors, and suppose further that `foo'
1581 has no linker-built descriptor. The address->pointer conversion
1582 will signal an error and prevent the command from running, even
1583 though the next step would have been to convert the pointer
1584 directly back into the same address.
1585
1586 The following shortcut avoids this whole mess. If VAL is a
1587 function, just return its address directly. */
1588 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1589 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1590 return value_address (val);
1591
1592 val = coerce_array (val);
1593
1594 /* Some architectures (e.g. Harvard), map instruction and data
1595 addresses onto a single large unified address space. For
1596 instance: An architecture may consider a large integer in the
1597 range 0x10000000 .. 0x1000ffff to already represent a data
1598 addresses (hence not need a pointer to address conversion) while
1599 a small integer would still need to be converted integer to
1600 pointer to address. Just assume such architectures handle all
1601 integer conversions in a single function. */
1602
1603 /* JimB writes:
1604
1605 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1606 must admonish GDB hackers to make sure its behavior matches the
1607 compiler's, whenever possible.
1608
1609 In general, I think GDB should evaluate expressions the same way
1610 the compiler does. When the user copies an expression out of
1611 their source code and hands it to a `print' command, they should
1612 get the same value the compiler would have computed. Any
1613 deviation from this rule can cause major confusion and annoyance,
1614 and needs to be justified carefully. In other words, GDB doesn't
1615 really have the freedom to do these conversions in clever and
1616 useful ways.
1617
1618 AndrewC pointed out that users aren't complaining about how GDB
1619 casts integers to pointers; they are complaining that they can't
1620 take an address from a disassembly listing and give it to `x/i'.
1621 This is certainly important.
1622
1623 Adding an architecture method like integer_to_address() certainly
1624 makes it possible for GDB to "get it right" in all circumstances
1625 --- the target has complete control over how things get done, so
1626 people can Do The Right Thing for their target without breaking
1627 anyone else. The standard doesn't specify how integers get
1628 converted to pointers; usually, the ABI doesn't either, but
1629 ABI-specific code is a more reasonable place to handle it. */
1630
1631 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1632 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1633 && gdbarch_integer_to_address_p (gdbarch))
1634 return gdbarch_integer_to_address (gdbarch, value_type (val),
1635 value_contents (val));
1636
1637 return unpack_long (value_type (val), value_contents (val));
1638 #endif
1639 }
1640 \f
1641 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1642 as a long, or as a double, assuming the raw data is described
1643 by type TYPE. Knows how to convert different sizes of values
1644 and can convert between fixed and floating point. We don't assume
1645 any alignment for the raw data. Return value is in host byte order.
1646
1647 If you want functions and arrays to be coerced to pointers, and
1648 references to be dereferenced, call value_as_long() instead.
1649
1650 C++: It is assumed that the front-end has taken care of
1651 all matters concerning pointers to members. A pointer
1652 to member which reaches here is considered to be equivalent
1653 to an INT (or some size). After all, it is only an offset. */
1654
1655 LONGEST
1656 unpack_long (struct type *type, const gdb_byte *valaddr)
1657 {
1658 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1659 enum type_code code = TYPE_CODE (type);
1660 int len = TYPE_LENGTH (type);
1661 int nosign = TYPE_UNSIGNED (type);
1662
1663 switch (code)
1664 {
1665 case TYPE_CODE_TYPEDEF:
1666 return unpack_long (check_typedef (type), valaddr);
1667 case TYPE_CODE_ENUM:
1668 case TYPE_CODE_FLAGS:
1669 case TYPE_CODE_BOOL:
1670 case TYPE_CODE_INT:
1671 case TYPE_CODE_CHAR:
1672 case TYPE_CODE_RANGE:
1673 case TYPE_CODE_MEMBERPTR:
1674 if (nosign)
1675 return extract_unsigned_integer (valaddr, len, byte_order);
1676 else
1677 return extract_signed_integer (valaddr, len, byte_order);
1678
1679 case TYPE_CODE_FLT:
1680 return extract_typed_floating (valaddr, type);
1681
1682 case TYPE_CODE_DECFLOAT:
1683 /* libdecnumber has a function to convert from decimal to integer, but
1684 it doesn't work when the decimal number has a fractional part. */
1685 return decimal_to_doublest (valaddr, len, byte_order);
1686
1687 case TYPE_CODE_PTR:
1688 case TYPE_CODE_REF:
1689 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1690 whether we want this to be true eventually. */
1691 return extract_typed_address (valaddr, type);
1692
1693 default:
1694 error (_("Value can't be converted to integer."));
1695 }
1696 return 0; /* Placate lint. */
1697 }
1698
1699 /* Return a double value from the specified type and address.
1700 INVP points to an int which is set to 0 for valid value,
1701 1 for invalid value (bad float format). In either case,
1702 the returned double is OK to use. Argument is in target
1703 format, result is in host format. */
1704
1705 DOUBLEST
1706 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1707 {
1708 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1709 enum type_code code;
1710 int len;
1711 int nosign;
1712
1713 *invp = 0; /* Assume valid. */
1714 CHECK_TYPEDEF (type);
1715 code = TYPE_CODE (type);
1716 len = TYPE_LENGTH (type);
1717 nosign = TYPE_UNSIGNED (type);
1718 if (code == TYPE_CODE_FLT)
1719 {
1720 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1721 floating-point value was valid (using the macro
1722 INVALID_FLOAT). That test/macro have been removed.
1723
1724 It turns out that only the VAX defined this macro and then
1725 only in a non-portable way. Fixing the portability problem
1726 wouldn't help since the VAX floating-point code is also badly
1727 bit-rotten. The target needs to add definitions for the
1728 methods gdbarch_float_format and gdbarch_double_format - these
1729 exactly describe the target floating-point format. The
1730 problem here is that the corresponding floatformat_vax_f and
1731 floatformat_vax_d values these methods should be set to are
1732 also not defined either. Oops!
1733
1734 Hopefully someone will add both the missing floatformat
1735 definitions and the new cases for floatformat_is_valid (). */
1736
1737 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1738 {
1739 *invp = 1;
1740 return 0.0;
1741 }
1742
1743 return extract_typed_floating (valaddr, type);
1744 }
1745 else if (code == TYPE_CODE_DECFLOAT)
1746 return decimal_to_doublest (valaddr, len, byte_order);
1747 else if (nosign)
1748 {
1749 /* Unsigned -- be sure we compensate for signed LONGEST. */
1750 return (ULONGEST) unpack_long (type, valaddr);
1751 }
1752 else
1753 {
1754 /* Signed -- we are OK with unpack_long. */
1755 return unpack_long (type, valaddr);
1756 }
1757 }
1758
1759 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1760 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1761 We don't assume any alignment for the raw data. Return value is in
1762 host byte order.
1763
1764 If you want functions and arrays to be coerced to pointers, and
1765 references to be dereferenced, call value_as_address() instead.
1766
1767 C++: It is assumed that the front-end has taken care of
1768 all matters concerning pointers to members. A pointer
1769 to member which reaches here is considered to be equivalent
1770 to an INT (or some size). After all, it is only an offset. */
1771
1772 CORE_ADDR
1773 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1774 {
1775 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1776 whether we want this to be true eventually. */
1777 return unpack_long (type, valaddr);
1778 }
1779
1780 \f
1781 /* Get the value of the FIELDN'th field (which must be static) of
1782 TYPE. Return NULL if the field doesn't exist or has been
1783 optimized out. */
1784
1785 struct value *
1786 value_static_field (struct type *type, int fieldno)
1787 {
1788 struct value *retval;
1789
1790 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1791 {
1792 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1793 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1794 }
1795 else
1796 {
1797 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1798 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1799 if (sym == NULL)
1800 {
1801 /* With some compilers, e.g. HP aCC, static data members are reported
1802 as non-debuggable symbols */
1803 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1804 if (!msym)
1805 return NULL;
1806 else
1807 {
1808 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1809 SYMBOL_VALUE_ADDRESS (msym));
1810 }
1811 }
1812 else
1813 {
1814 /* SYM should never have a SYMBOL_CLASS which will require
1815 read_var_value to use the FRAME parameter. */
1816 if (symbol_read_needs_frame (sym))
1817 warning (_("static field's value depends on the current "
1818 "frame - bad debug info?"));
1819 retval = read_var_value (sym, NULL);
1820 }
1821 if (retval && VALUE_LVAL (retval) == lval_memory)
1822 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1823 value_address (retval));
1824 }
1825 return retval;
1826 }
1827
1828 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1829 You have to be careful here, since the size of the data area for the value
1830 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1831 than the old enclosing type, you have to allocate more space for the data.
1832 The return value is a pointer to the new version of this value structure. */
1833
1834 struct value *
1835 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1836 {
1837 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1838 val->contents =
1839 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1840
1841 val->enclosing_type = new_encl_type;
1842 return val;
1843 }
1844
1845 /* Given a value ARG1 (offset by OFFSET bytes)
1846 of a struct or union type ARG_TYPE,
1847 extract and return the value of one of its (non-static) fields.
1848 FIELDNO says which field. */
1849
1850 struct value *
1851 value_primitive_field (struct value *arg1, int offset,
1852 int fieldno, struct type *arg_type)
1853 {
1854 struct value *v;
1855 struct type *type;
1856
1857 CHECK_TYPEDEF (arg_type);
1858 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1859
1860 /* Handle packed fields */
1861
1862 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1863 {
1864 /* Create a new value for the bitfield, with bitpos and bitsize
1865 set. If possible, arrange offset and bitpos so that we can
1866 do a single aligned read of the size of the containing type.
1867 Otherwise, adjust offset to the byte containing the first
1868 bit. Assume that the address, offset, and embedded offset
1869 are sufficiently aligned. */
1870 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1871 int container_bitsize = TYPE_LENGTH (type) * 8;
1872
1873 v = allocate_value_lazy (type);
1874 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1875 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1876 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1877 v->bitpos = bitpos % container_bitsize;
1878 else
1879 v->bitpos = bitpos % 8;
1880 v->offset = value_offset (arg1) + value_embedded_offset (arg1)
1881 + (bitpos - v->bitpos) / 8;
1882 v->parent = arg1;
1883 value_incref (v->parent);
1884 if (!value_lazy (arg1))
1885 value_fetch_lazy (v);
1886 }
1887 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1888 {
1889 /* This field is actually a base subobject, so preserve the
1890 entire object's contents for later references to virtual
1891 bases, etc. */
1892
1893 /* Lazy register values with offsets are not supported. */
1894 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1895 value_fetch_lazy (arg1);
1896
1897 if (value_lazy (arg1))
1898 v = allocate_value_lazy (value_enclosing_type (arg1));
1899 else
1900 {
1901 v = allocate_value (value_enclosing_type (arg1));
1902 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1903 TYPE_LENGTH (value_enclosing_type (arg1)));
1904 }
1905 v->type = type;
1906 v->offset = value_offset (arg1);
1907 v->embedded_offset = (offset + value_embedded_offset (arg1)
1908 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1909 }
1910 else
1911 {
1912 /* Plain old data member */
1913 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1914
1915 /* Lazy register values with offsets are not supported. */
1916 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1917 value_fetch_lazy (arg1);
1918
1919 if (value_lazy (arg1))
1920 v = allocate_value_lazy (type);
1921 else
1922 {
1923 v = allocate_value (type);
1924 memcpy (value_contents_raw (v),
1925 value_contents_raw (arg1) + offset,
1926 TYPE_LENGTH (type));
1927 }
1928 v->offset = (value_offset (arg1) + offset
1929 + value_embedded_offset (arg1));
1930 }
1931 set_value_component_location (v, arg1);
1932 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1933 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1934 return v;
1935 }
1936
1937 /* Given a value ARG1 of a struct or union type,
1938 extract and return the value of one of its (non-static) fields.
1939 FIELDNO says which field. */
1940
1941 struct value *
1942 value_field (struct value *arg1, int fieldno)
1943 {
1944 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1945 }
1946
1947 /* Return a non-virtual function as a value.
1948 F is the list of member functions which contains the desired method.
1949 J is an index into F which provides the desired method.
1950
1951 We only use the symbol for its address, so be happy with either a
1952 full symbol or a minimal symbol.
1953 */
1954
1955 struct value *
1956 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1957 int offset)
1958 {
1959 struct value *v;
1960 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1961 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1962 struct symbol *sym;
1963 struct minimal_symbol *msym;
1964
1965 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
1966 if (sym != NULL)
1967 {
1968 msym = NULL;
1969 }
1970 else
1971 {
1972 gdb_assert (sym == NULL);
1973 msym = lookup_minimal_symbol (physname, NULL, NULL);
1974 if (msym == NULL)
1975 return NULL;
1976 }
1977
1978 v = allocate_value (ftype);
1979 if (sym)
1980 {
1981 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
1982 }
1983 else
1984 {
1985 /* The minimal symbol might point to a function descriptor;
1986 resolve it to the actual code address instead. */
1987 struct objfile *objfile = msymbol_objfile (msym);
1988 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1989
1990 set_value_address (v,
1991 gdbarch_convert_from_func_ptr_addr
1992 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
1993 }
1994
1995 if (arg1p)
1996 {
1997 if (type != value_type (*arg1p))
1998 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1999 value_addr (*arg1p)));
2000
2001 /* Move the `this' pointer according to the offset.
2002 VALUE_OFFSET (*arg1p) += offset;
2003 */
2004 }
2005
2006 return v;
2007 }
2008
2009 \f
2010 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2011 object at VALADDR. The bitfield starts at BITPOS bits and contains
2012 BITSIZE bits.
2013
2014 Extracting bits depends on endianness of the machine. Compute the
2015 number of least significant bits to discard. For big endian machines,
2016 we compute the total number of bits in the anonymous object, subtract
2017 off the bit count from the MSB of the object to the MSB of the
2018 bitfield, then the size of the bitfield, which leaves the LSB discard
2019 count. For little endian machines, the discard count is simply the
2020 number of bits from the LSB of the anonymous object to the LSB of the
2021 bitfield.
2022
2023 If the field is signed, we also do sign extension. */
2024
2025 LONGEST
2026 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2027 int bitpos, int bitsize)
2028 {
2029 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2030 ULONGEST val;
2031 ULONGEST valmask;
2032 int lsbcount;
2033
2034 val = extract_unsigned_integer (valaddr + bitpos / 8,
2035 sizeof (val), byte_order);
2036 CHECK_TYPEDEF (field_type);
2037
2038 /* Extract bits. See comment above. */
2039
2040 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2041 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
2042 else
2043 lsbcount = (bitpos % 8);
2044 val >>= lsbcount;
2045
2046 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2047 If the field is signed, and is negative, then sign extend. */
2048
2049 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2050 {
2051 valmask = (((ULONGEST) 1) << bitsize) - 1;
2052 val &= valmask;
2053 if (!TYPE_UNSIGNED (field_type))
2054 {
2055 if (val & (valmask ^ (valmask >> 1)))
2056 {
2057 val |= ~valmask;
2058 }
2059 }
2060 }
2061 return (val);
2062 }
2063
2064 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2065 VALADDR. See unpack_bits_as_long for more details. */
2066
2067 LONGEST
2068 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2069 {
2070 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2071 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2072 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2073
2074 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2075 }
2076
2077 /* Modify the value of a bitfield. ADDR points to a block of memory in
2078 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2079 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2080 indicate which bits (in target bit order) comprise the bitfield.
2081 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2082 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2083
2084 void
2085 modify_field (struct type *type, gdb_byte *addr,
2086 LONGEST fieldval, int bitpos, int bitsize)
2087 {
2088 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2089 ULONGEST oword;
2090 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2091
2092 /* If a negative fieldval fits in the field in question, chop
2093 off the sign extension bits. */
2094 if ((~fieldval & ~(mask >> 1)) == 0)
2095 fieldval &= mask;
2096
2097 /* Warn if value is too big to fit in the field in question. */
2098 if (0 != (fieldval & ~mask))
2099 {
2100 /* FIXME: would like to include fieldval in the message, but
2101 we don't have a sprintf_longest. */
2102 warning (_("Value does not fit in %d bits."), bitsize);
2103
2104 /* Truncate it, otherwise adjoining fields may be corrupted. */
2105 fieldval &= mask;
2106 }
2107
2108 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
2109
2110 /* Shifting for bit field depends on endianness of the target machine. */
2111 if (gdbarch_bits_big_endian (get_type_arch (type)))
2112 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2113
2114 oword &= ~(mask << bitpos);
2115 oword |= fieldval << bitpos;
2116
2117 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
2118 }
2119 \f
2120 /* Pack NUM into BUF using a target format of TYPE. */
2121
2122 void
2123 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2124 {
2125 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2126 int len;
2127
2128 type = check_typedef (type);
2129 len = TYPE_LENGTH (type);
2130
2131 switch (TYPE_CODE (type))
2132 {
2133 case TYPE_CODE_INT:
2134 case TYPE_CODE_CHAR:
2135 case TYPE_CODE_ENUM:
2136 case TYPE_CODE_FLAGS:
2137 case TYPE_CODE_BOOL:
2138 case TYPE_CODE_RANGE:
2139 case TYPE_CODE_MEMBERPTR:
2140 store_signed_integer (buf, len, byte_order, num);
2141 break;
2142
2143 case TYPE_CODE_REF:
2144 case TYPE_CODE_PTR:
2145 store_typed_address (buf, type, (CORE_ADDR) num);
2146 break;
2147
2148 default:
2149 error (_("Unexpected type (%d) encountered for integer constant."),
2150 TYPE_CODE (type));
2151 }
2152 }
2153
2154
2155 /* Convert C numbers into newly allocated values. */
2156
2157 struct value *
2158 value_from_longest (struct type *type, LONGEST num)
2159 {
2160 struct value *val = allocate_value (type);
2161
2162 pack_long (value_contents_raw (val), type, num);
2163
2164 return val;
2165 }
2166
2167
2168 /* Create a value representing a pointer of type TYPE to the address
2169 ADDR. */
2170 struct value *
2171 value_from_pointer (struct type *type, CORE_ADDR addr)
2172 {
2173 struct value *val = allocate_value (type);
2174 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2175 return val;
2176 }
2177
2178
2179 /* Create a value of type TYPE whose contents come from VALADDR, if it
2180 is non-null, and whose memory address (in the inferior) is
2181 ADDRESS. */
2182
2183 struct value *
2184 value_from_contents_and_address (struct type *type,
2185 const gdb_byte *valaddr,
2186 CORE_ADDR address)
2187 {
2188 struct value *v = allocate_value (type);
2189 if (valaddr == NULL)
2190 set_value_lazy (v, 1);
2191 else
2192 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2193 set_value_address (v, address);
2194 VALUE_LVAL (v) = lval_memory;
2195 return v;
2196 }
2197
2198 struct value *
2199 value_from_double (struct type *type, DOUBLEST num)
2200 {
2201 struct value *val = allocate_value (type);
2202 struct type *base_type = check_typedef (type);
2203 enum type_code code = TYPE_CODE (base_type);
2204 int len = TYPE_LENGTH (base_type);
2205
2206 if (code == TYPE_CODE_FLT)
2207 {
2208 store_typed_floating (value_contents_raw (val), base_type, num);
2209 }
2210 else
2211 error (_("Unexpected type encountered for floating constant."));
2212
2213 return val;
2214 }
2215
2216 struct value *
2217 value_from_decfloat (struct type *type, const gdb_byte *dec)
2218 {
2219 struct value *val = allocate_value (type);
2220
2221 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2222
2223 return val;
2224 }
2225
2226 struct value *
2227 coerce_ref (struct value *arg)
2228 {
2229 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2230 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2231 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2232 unpack_pointer (value_type (arg),
2233 value_contents (arg)));
2234 return arg;
2235 }
2236
2237 struct value *
2238 coerce_array (struct value *arg)
2239 {
2240 struct type *type;
2241
2242 arg = coerce_ref (arg);
2243 type = check_typedef (value_type (arg));
2244
2245 switch (TYPE_CODE (type))
2246 {
2247 case TYPE_CODE_ARRAY:
2248 if (current_language->c_style_arrays)
2249 arg = value_coerce_array (arg);
2250 break;
2251 case TYPE_CODE_FUNC:
2252 arg = value_coerce_function (arg);
2253 break;
2254 }
2255 return arg;
2256 }
2257 \f
2258
2259 /* Return true if the function returning the specified type is using
2260 the convention of returning structures in memory (passing in the
2261 address as a hidden first parameter). */
2262
2263 int
2264 using_struct_return (struct gdbarch *gdbarch,
2265 struct type *func_type, struct type *value_type)
2266 {
2267 enum type_code code = TYPE_CODE (value_type);
2268
2269 if (code == TYPE_CODE_ERROR)
2270 error (_("Function return type unknown."));
2271
2272 if (code == TYPE_CODE_VOID)
2273 /* A void return value is never in memory. See also corresponding
2274 code in "print_return_value". */
2275 return 0;
2276
2277 /* Probe the architecture for the return-value convention. */
2278 return (gdbarch_return_value (gdbarch, func_type, value_type,
2279 NULL, NULL, NULL)
2280 != RETURN_VALUE_REGISTER_CONVENTION);
2281 }
2282
2283 /* Set the initialized field in a value struct. */
2284
2285 void
2286 set_value_initialized (struct value *val, int status)
2287 {
2288 val->initialized = status;
2289 }
2290
2291 /* Return the initialized field in a value struct. */
2292
2293 int
2294 value_initialized (struct value *val)
2295 {
2296 return val->initialized;
2297 }
2298
2299 void
2300 _initialize_values (void)
2301 {
2302 add_cmd ("convenience", no_class, show_convenience, _("\
2303 Debugger convenience (\"$foo\") variables.\n\
2304 These variables are created when you assign them values;\n\
2305 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2306 \n\
2307 A few convenience variables are given values automatically:\n\
2308 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2309 \"$__\" holds the contents of the last address examined with \"x\"."),
2310 &showlist);
2311
2312 add_cmd ("values", no_class, show_values,
2313 _("Elements of value history around item number IDX (or last ten)."),
2314 &showlist);
2315
2316 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2317 Initialize a convenience variable if necessary.\n\
2318 init-if-undefined VARIABLE = EXPRESSION\n\
2319 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2320 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2321 VARIABLE is already initialized."));
2322
2323 add_prefix_cmd ("function", no_class, function_command, _("\
2324 Placeholder command for showing help on convenience functions."),
2325 &functionlist, "function ", 0, &cmdlist);
2326 }
This page took 0.08682 seconds and 5 git commands to generate.