2003-02-06 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "language.h"
34 #include "scm-lang.h"
35 #include "demangle.h"
36 #include "doublest.h"
37 #include "gdb_assert.h"
38 #include "regcache.h"
39
40 /* Prototypes for exported functions. */
41
42 void _initialize_values (void);
43
44 /* Prototypes for local functions. */
45
46 static void show_values (char *, int);
47
48 static void show_convenience (char *, int);
49
50
51 /* The value-history records all the values printed
52 by print commands during this session. Each chunk
53 records 60 consecutive values. The first chunk on
54 the chain records the most recent values.
55 The total number of values is in value_history_count. */
56
57 #define VALUE_HISTORY_CHUNK 60
58
59 struct value_history_chunk
60 {
61 struct value_history_chunk *next;
62 struct value *values[VALUE_HISTORY_CHUNK];
63 };
64
65 /* Chain of chunks now in use. */
66
67 static struct value_history_chunk *value_history_chain;
68
69 static int value_history_count; /* Abs number of last entry stored */
70 \f
71 /* List of all value objects currently allocated
72 (except for those released by calls to release_value)
73 This is so they can be freed after each command. */
74
75 static struct value *all_values;
76
77 /* Allocate a value that has the correct length for type TYPE. */
78
79 struct value *
80 allocate_value (struct type *type)
81 {
82 struct value *val;
83 struct type *atype = check_typedef (type);
84
85 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
86 VALUE_NEXT (val) = all_values;
87 all_values = val;
88 VALUE_TYPE (val) = type;
89 VALUE_ENCLOSING_TYPE (val) = type;
90 VALUE_LVAL (val) = not_lval;
91 VALUE_ADDRESS (val) = 0;
92 VALUE_FRAME (val) = 0;
93 VALUE_OFFSET (val) = 0;
94 VALUE_BITPOS (val) = 0;
95 VALUE_BITSIZE (val) = 0;
96 VALUE_REGNO (val) = -1;
97 VALUE_LAZY (val) = 0;
98 VALUE_OPTIMIZED_OUT (val) = 0;
99 VALUE_BFD_SECTION (val) = NULL;
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104 }
105
106 /* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
109 struct value *
110 allocate_repeat_value (struct type *type, int count)
111 {
112 int low_bound = current_language->string_lower_bound; /* ??? */
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 struct type *range_type
116 = create_range_type ((struct type *) NULL, builtin_type_int,
117 low_bound, count + low_bound - 1);
118 /* FIXME-type-allocation: need a way to free this type when we are
119 done with it. */
120 return allocate_value (create_array_type ((struct type *) NULL,
121 type, range_type));
122 }
123
124 /* Return a mark in the value chain. All values allocated after the
125 mark is obtained (except for those released) are subject to being freed
126 if a subsequent value_free_to_mark is passed the mark. */
127 struct value *
128 value_mark (void)
129 {
130 return all_values;
131 }
132
133 /* Free all values allocated since MARK was obtained by value_mark
134 (except for those released). */
135 void
136 value_free_to_mark (struct value *mark)
137 {
138 struct value *val;
139 struct value *next;
140
141 for (val = all_values; val && val != mark; val = next)
142 {
143 next = VALUE_NEXT (val);
144 value_free (val);
145 }
146 all_values = val;
147 }
148
149 /* Free all the values that have been allocated (except for those released).
150 Called after each command, successful or not. */
151
152 void
153 free_all_values (void)
154 {
155 struct value *val;
156 struct value *next;
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165 }
166
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170 void
171 release_value (struct value *val)
172 {
173 struct value *v;
174
175 if (all_values == val)
176 {
177 all_values = val->next;
178 return;
179 }
180
181 for (v = all_values; v; v = v->next)
182 {
183 if (v->next == val)
184 {
185 v->next = val->next;
186 break;
187 }
188 }
189 }
190
191 /* Release all values up to mark */
192 struct value *
193 value_release_to_mark (struct value *mark)
194 {
195 struct value *val;
196 struct value *next;
197
198 for (val = next = all_values; next; next = VALUE_NEXT (next))
199 if (VALUE_NEXT (next) == mark)
200 {
201 all_values = VALUE_NEXT (next);
202 VALUE_NEXT (next) = 0;
203 return val;
204 }
205 all_values = 0;
206 return val;
207 }
208
209 /* Return a copy of the value ARG.
210 It contains the same contents, for same memory address,
211 but it's a different block of storage. */
212
213 struct value *
214 value_copy (struct value *arg)
215 {
216 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
217 struct value *val = allocate_value (encl_type);
218 VALUE_TYPE (val) = VALUE_TYPE (arg);
219 VALUE_LVAL (val) = VALUE_LVAL (arg);
220 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
221 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
222 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
223 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
224 VALUE_FRAME (val) = VALUE_FRAME (arg);
225 VALUE_REGNO (val) = VALUE_REGNO (arg);
226 VALUE_LAZY (val) = VALUE_LAZY (arg);
227 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
228 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
229 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
230 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
231 val->modifiable = arg->modifiable;
232 if (!VALUE_LAZY (val))
233 {
234 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
235 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
236
237 }
238 return val;
239 }
240 \f
241 /* Access to the value history. */
242
243 /* Record a new value in the value history.
244 Returns the absolute history index of the entry.
245 Result of -1 indicates the value was not saved; otherwise it is the
246 value history index of this new item. */
247
248 int
249 record_latest_value (struct value *val)
250 {
251 int i;
252
253 /* We don't want this value to have anything to do with the inferior anymore.
254 In particular, "set $1 = 50" should not affect the variable from which
255 the value was taken, and fast watchpoints should be able to assume that
256 a value on the value history never changes. */
257 if (VALUE_LAZY (val))
258 value_fetch_lazy (val);
259 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
260 from. This is a bit dubious, because then *&$1 does not just return $1
261 but the current contents of that location. c'est la vie... */
262 val->modifiable = 0;
263 release_value (val);
264
265 /* Here we treat value_history_count as origin-zero
266 and applying to the value being stored now. */
267
268 i = value_history_count % VALUE_HISTORY_CHUNK;
269 if (i == 0)
270 {
271 struct value_history_chunk *new
272 = (struct value_history_chunk *)
273 xmalloc (sizeof (struct value_history_chunk));
274 memset (new->values, 0, sizeof new->values);
275 new->next = value_history_chain;
276 value_history_chain = new;
277 }
278
279 value_history_chain->values[i] = val;
280
281 /* Now we regard value_history_count as origin-one
282 and applying to the value just stored. */
283
284 return ++value_history_count;
285 }
286
287 /* Return a copy of the value in the history with sequence number NUM. */
288
289 struct value *
290 access_value_history (int num)
291 {
292 struct value_history_chunk *chunk;
293 register int i;
294 register int absnum = num;
295
296 if (absnum <= 0)
297 absnum += value_history_count;
298
299 if (absnum <= 0)
300 {
301 if (num == 0)
302 error ("The history is empty.");
303 else if (num == 1)
304 error ("There is only one value in the history.");
305 else
306 error ("History does not go back to $$%d.", -num);
307 }
308 if (absnum > value_history_count)
309 error ("History has not yet reached $%d.", absnum);
310
311 absnum--;
312
313 /* Now absnum is always absolute and origin zero. */
314
315 chunk = value_history_chain;
316 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
317 i > 0; i--)
318 chunk = chunk->next;
319
320 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
321 }
322
323 /* Clear the value history entirely.
324 Must be done when new symbol tables are loaded,
325 because the type pointers become invalid. */
326
327 void
328 clear_value_history (void)
329 {
330 struct value_history_chunk *next;
331 register int i;
332 struct value *val;
333
334 while (value_history_chain)
335 {
336 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
337 if ((val = value_history_chain->values[i]) != NULL)
338 xfree (val);
339 next = value_history_chain->next;
340 xfree (value_history_chain);
341 value_history_chain = next;
342 }
343 value_history_count = 0;
344 }
345
346 static void
347 show_values (char *num_exp, int from_tty)
348 {
349 register int i;
350 struct value *val;
351 static int num = 1;
352
353 if (num_exp)
354 {
355 /* "info history +" should print from the stored position.
356 "info history <exp>" should print around value number <exp>. */
357 if (num_exp[0] != '+' || num_exp[1] != '\0')
358 num = parse_and_eval_long (num_exp) - 5;
359 }
360 else
361 {
362 /* "info history" means print the last 10 values. */
363 num = value_history_count - 9;
364 }
365
366 if (num <= 0)
367 num = 1;
368
369 for (i = num; i < num + 10 && i <= value_history_count; i++)
370 {
371 val = access_value_history (i);
372 printf_filtered ("$%d = ", i);
373 value_print (val, gdb_stdout, 0, Val_pretty_default);
374 printf_filtered ("\n");
375 }
376
377 /* The next "info history +" should start after what we just printed. */
378 num += 10;
379
380 /* Hitting just return after this command should do the same thing as
381 "info history +". If num_exp is null, this is unnecessary, since
382 "info history +" is not useful after "info history". */
383 if (from_tty && num_exp)
384 {
385 num_exp[0] = '+';
386 num_exp[1] = '\0';
387 }
388 }
389 \f
390 /* Internal variables. These are variables within the debugger
391 that hold values assigned by debugger commands.
392 The user refers to them with a '$' prefix
393 that does not appear in the variable names stored internally. */
394
395 static struct internalvar *internalvars;
396
397 /* Look up an internal variable with name NAME. NAME should not
398 normally include a dollar sign.
399
400 If the specified internal variable does not exist,
401 one is created, with a void value. */
402
403 struct internalvar *
404 lookup_internalvar (char *name)
405 {
406 register struct internalvar *var;
407
408 for (var = internalvars; var; var = var->next)
409 if (strcmp (var->name, name) == 0)
410 return var;
411
412 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
413 var->name = concat (name, NULL);
414 var->value = allocate_value (builtin_type_void);
415 release_value (var->value);
416 var->next = internalvars;
417 internalvars = var;
418 return var;
419 }
420
421 struct value *
422 value_of_internalvar (struct internalvar *var)
423 {
424 struct value *val;
425
426 val = value_copy (var->value);
427 if (VALUE_LAZY (val))
428 value_fetch_lazy (val);
429 VALUE_LVAL (val) = lval_internalvar;
430 VALUE_INTERNALVAR (val) = var;
431 return val;
432 }
433
434 void
435 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
436 int bitsize, struct value *newval)
437 {
438 register char *addr = VALUE_CONTENTS (var->value) + offset;
439
440 if (bitsize)
441 modify_field (addr, value_as_long (newval),
442 bitpos, bitsize);
443 else
444 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
445 }
446
447 void
448 set_internalvar (struct internalvar *var, struct value *val)
449 {
450 struct value *newval;
451
452 newval = value_copy (val);
453 newval->modifiable = 1;
454
455 /* Force the value to be fetched from the target now, to avoid problems
456 later when this internalvar is referenced and the target is gone or
457 has changed. */
458 if (VALUE_LAZY (newval))
459 value_fetch_lazy (newval);
460
461 /* Begin code which must not call error(). If var->value points to
462 something free'd, an error() obviously leaves a dangling pointer.
463 But we also get a danling pointer if var->value points to
464 something in the value chain (i.e., before release_value is
465 called), because after the error free_all_values will get called before
466 long. */
467 xfree (var->value);
468 var->value = newval;
469 release_value (newval);
470 /* End code which must not call error(). */
471 }
472
473 char *
474 internalvar_name (struct internalvar *var)
475 {
476 return var->name;
477 }
478
479 /* Free all internalvars. Done when new symtabs are loaded,
480 because that makes the values invalid. */
481
482 void
483 clear_internalvars (void)
484 {
485 register struct internalvar *var;
486
487 while (internalvars)
488 {
489 var = internalvars;
490 internalvars = var->next;
491 xfree (var->name);
492 xfree (var->value);
493 xfree (var);
494 }
495 }
496
497 static void
498 show_convenience (char *ignore, int from_tty)
499 {
500 register struct internalvar *var;
501 int varseen = 0;
502
503 for (var = internalvars; var; var = var->next)
504 {
505 if (!varseen)
506 {
507 varseen = 1;
508 }
509 printf_filtered ("$%s = ", var->name);
510 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
511 printf_filtered ("\n");
512 }
513 if (!varseen)
514 printf_unfiltered ("No debugger convenience variables now defined.\n\
515 Convenience variables have names starting with \"$\";\n\
516 use \"set\" as in \"set $foo = 5\" to define them.\n");
517 }
518 \f
519 /* Extract a value as a C number (either long or double).
520 Knows how to convert fixed values to double, or
521 floating values to long.
522 Does not deallocate the value. */
523
524 LONGEST
525 value_as_long (struct value *val)
526 {
527 /* This coerces arrays and functions, which is necessary (e.g.
528 in disassemble_command). It also dereferences references, which
529 I suspect is the most logical thing to do. */
530 COERCE_ARRAY (val);
531 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
532 }
533
534 DOUBLEST
535 value_as_double (struct value *val)
536 {
537 DOUBLEST foo;
538 int inv;
539
540 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
541 if (inv)
542 error ("Invalid floating value found in program.");
543 return foo;
544 }
545 /* Extract a value as a C pointer. Does not deallocate the value.
546 Note that val's type may not actually be a pointer; value_as_long
547 handles all the cases. */
548 CORE_ADDR
549 value_as_address (struct value *val)
550 {
551 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
552 whether we want this to be true eventually. */
553 #if 0
554 /* ADDR_BITS_REMOVE is wrong if we are being called for a
555 non-address (e.g. argument to "signal", "info break", etc.), or
556 for pointers to char, in which the low bits *are* significant. */
557 return ADDR_BITS_REMOVE (value_as_long (val));
558 #else
559
560 /* There are several targets (IA-64, PowerPC, and others) which
561 don't represent pointers to functions as simply the address of
562 the function's entry point. For example, on the IA-64, a
563 function pointer points to a two-word descriptor, generated by
564 the linker, which contains the function's entry point, and the
565 value the IA-64 "global pointer" register should have --- to
566 support position-independent code. The linker generates
567 descriptors only for those functions whose addresses are taken.
568
569 On such targets, it's difficult for GDB to convert an arbitrary
570 function address into a function pointer; it has to either find
571 an existing descriptor for that function, or call malloc and
572 build its own. On some targets, it is impossible for GDB to
573 build a descriptor at all: the descriptor must contain a jump
574 instruction; data memory cannot be executed; and code memory
575 cannot be modified.
576
577 Upon entry to this function, if VAL is a value of type `function'
578 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
579 VALUE_ADDRESS (val) is the address of the function. This is what
580 you'll get if you evaluate an expression like `main'. The call
581 to COERCE_ARRAY below actually does all the usual unary
582 conversions, which includes converting values of type `function'
583 to `pointer to function'. This is the challenging conversion
584 discussed above. Then, `unpack_long' will convert that pointer
585 back into an address.
586
587 So, suppose the user types `disassemble foo' on an architecture
588 with a strange function pointer representation, on which GDB
589 cannot build its own descriptors, and suppose further that `foo'
590 has no linker-built descriptor. The address->pointer conversion
591 will signal an error and prevent the command from running, even
592 though the next step would have been to convert the pointer
593 directly back into the same address.
594
595 The following shortcut avoids this whole mess. If VAL is a
596 function, just return its address directly. */
597 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
598 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_METHOD)
599 return VALUE_ADDRESS (val);
600
601 COERCE_ARRAY (val);
602
603 /* Some architectures (e.g. Harvard), map instruction and data
604 addresses onto a single large unified address space. For
605 instance: An architecture may consider a large integer in the
606 range 0x10000000 .. 0x1000ffff to already represent a data
607 addresses (hence not need a pointer to address conversion) while
608 a small integer would still need to be converted integer to
609 pointer to address. Just assume such architectures handle all
610 integer conversions in a single function. */
611
612 /* JimB writes:
613
614 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
615 must admonish GDB hackers to make sure its behavior matches the
616 compiler's, whenever possible.
617
618 In general, I think GDB should evaluate expressions the same way
619 the compiler does. When the user copies an expression out of
620 their source code and hands it to a `print' command, they should
621 get the same value the compiler would have computed. Any
622 deviation from this rule can cause major confusion and annoyance,
623 and needs to be justified carefully. In other words, GDB doesn't
624 really have the freedom to do these conversions in clever and
625 useful ways.
626
627 AndrewC pointed out that users aren't complaining about how GDB
628 casts integers to pointers; they are complaining that they can't
629 take an address from a disassembly listing and give it to `x/i'.
630 This is certainly important.
631
632 Adding an architecture method like INTEGER_TO_ADDRESS certainly
633 makes it possible for GDB to "get it right" in all circumstances
634 --- the target has complete control over how things get done, so
635 people can Do The Right Thing for their target without breaking
636 anyone else. The standard doesn't specify how integers get
637 converted to pointers; usually, the ABI doesn't either, but
638 ABI-specific code is a more reasonable place to handle it. */
639
640 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_PTR
641 && TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_REF
642 && INTEGER_TO_ADDRESS_P ())
643 return INTEGER_TO_ADDRESS (VALUE_TYPE (val), VALUE_CONTENTS (val));
644
645 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
646 #endif
647 }
648 \f
649 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
650 as a long, or as a double, assuming the raw data is described
651 by type TYPE. Knows how to convert different sizes of values
652 and can convert between fixed and floating point. We don't assume
653 any alignment for the raw data. Return value is in host byte order.
654
655 If you want functions and arrays to be coerced to pointers, and
656 references to be dereferenced, call value_as_long() instead.
657
658 C++: It is assumed that the front-end has taken care of
659 all matters concerning pointers to members. A pointer
660 to member which reaches here is considered to be equivalent
661 to an INT (or some size). After all, it is only an offset. */
662
663 LONGEST
664 unpack_long (struct type *type, const char *valaddr)
665 {
666 register enum type_code code = TYPE_CODE (type);
667 register int len = TYPE_LENGTH (type);
668 register int nosign = TYPE_UNSIGNED (type);
669
670 if (current_language->la_language == language_scm
671 && is_scmvalue_type (type))
672 return scm_unpack (type, valaddr, TYPE_CODE_INT);
673
674 switch (code)
675 {
676 case TYPE_CODE_TYPEDEF:
677 return unpack_long (check_typedef (type), valaddr);
678 case TYPE_CODE_ENUM:
679 case TYPE_CODE_BOOL:
680 case TYPE_CODE_INT:
681 case TYPE_CODE_CHAR:
682 case TYPE_CODE_RANGE:
683 if (nosign)
684 return extract_unsigned_integer (valaddr, len);
685 else
686 return extract_signed_integer (valaddr, len);
687
688 case TYPE_CODE_FLT:
689 return extract_typed_floating (valaddr, type);
690
691 case TYPE_CODE_PTR:
692 case TYPE_CODE_REF:
693 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
694 whether we want this to be true eventually. */
695 return extract_typed_address (valaddr, type);
696
697 case TYPE_CODE_MEMBER:
698 error ("not implemented: member types in unpack_long");
699
700 default:
701 error ("Value can't be converted to integer.");
702 }
703 return 0; /* Placate lint. */
704 }
705
706 /* Return a double value from the specified type and address.
707 INVP points to an int which is set to 0 for valid value,
708 1 for invalid value (bad float format). In either case,
709 the returned double is OK to use. Argument is in target
710 format, result is in host format. */
711
712 DOUBLEST
713 unpack_double (struct type *type, const char *valaddr, int *invp)
714 {
715 enum type_code code;
716 int len;
717 int nosign;
718
719 *invp = 0; /* Assume valid. */
720 CHECK_TYPEDEF (type);
721 code = TYPE_CODE (type);
722 len = TYPE_LENGTH (type);
723 nosign = TYPE_UNSIGNED (type);
724 if (code == TYPE_CODE_FLT)
725 {
726 /* NOTE: cagney/2002-02-19: There was a test here to see if the
727 floating-point value was valid (using the macro
728 INVALID_FLOAT). That test/macro have been removed.
729
730 It turns out that only the VAX defined this macro and then
731 only in a non-portable way. Fixing the portability problem
732 wouldn't help since the VAX floating-point code is also badly
733 bit-rotten. The target needs to add definitions for the
734 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
735 exactly describe the target floating-point format. The
736 problem here is that the corresponding floatformat_vax_f and
737 floatformat_vax_d values these methods should be set to are
738 also not defined either. Oops!
739
740 Hopefully someone will add both the missing floatformat
741 definitions and floatformat_is_invalid() function. */
742 return extract_typed_floating (valaddr, type);
743 }
744 else if (nosign)
745 {
746 /* Unsigned -- be sure we compensate for signed LONGEST. */
747 return (ULONGEST) unpack_long (type, valaddr);
748 }
749 else
750 {
751 /* Signed -- we are OK with unpack_long. */
752 return unpack_long (type, valaddr);
753 }
754 }
755
756 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
757 as a CORE_ADDR, assuming the raw data is described by type TYPE.
758 We don't assume any alignment for the raw data. Return value is in
759 host byte order.
760
761 If you want functions and arrays to be coerced to pointers, and
762 references to be dereferenced, call value_as_address() instead.
763
764 C++: It is assumed that the front-end has taken care of
765 all matters concerning pointers to members. A pointer
766 to member which reaches here is considered to be equivalent
767 to an INT (or some size). After all, it is only an offset. */
768
769 CORE_ADDR
770 unpack_pointer (struct type *type, const char *valaddr)
771 {
772 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
773 whether we want this to be true eventually. */
774 return unpack_long (type, valaddr);
775 }
776
777 \f
778 /* Get the value of the FIELDN'th field (which must be static) of
779 TYPE. Return NULL if the field doesn't exist or has been
780 optimized out. */
781
782 struct value *
783 value_static_field (struct type *type, int fieldno)
784 {
785 struct value *retval;
786
787 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
788 {
789 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
790 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno),
791 NULL);
792 }
793 else
794 {
795 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
796 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
797 if (sym == NULL)
798 {
799 /* With some compilers, e.g. HP aCC, static data members are reported
800 as non-debuggable symbols */
801 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
802 if (!msym)
803 return NULL;
804 else
805 {
806 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
807 SYMBOL_VALUE_ADDRESS (msym),
808 SYMBOL_BFD_SECTION (msym));
809 }
810 }
811 else
812 {
813 /* SYM should never have a SYMBOL_CLASS which will require
814 read_var_value to use the FRAME parameter. */
815 if (symbol_read_needs_frame (sym))
816 warning ("static field's value depends on the current "
817 "frame - bad debug info?");
818 retval = read_var_value (sym, NULL);
819 }
820 if (retval && VALUE_LVAL (retval) == lval_memory)
821 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
822 VALUE_ADDRESS (retval));
823 }
824 return retval;
825 }
826
827 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
828 You have to be careful here, since the size of the data area for the value
829 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
830 than the old enclosing type, you have to allocate more space for the data.
831 The return value is a pointer to the new version of this value structure. */
832
833 struct value *
834 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
835 {
836 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
837 {
838 VALUE_ENCLOSING_TYPE (val) = new_encl_type;
839 return val;
840 }
841 else
842 {
843 struct value *new_val;
844 struct value *prev;
845
846 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
847
848 VALUE_ENCLOSING_TYPE (new_val) = new_encl_type;
849
850 /* We have to make sure this ends up in the same place in the value
851 chain as the original copy, so it's clean-up behavior is the same.
852 If the value has been released, this is a waste of time, but there
853 is no way to tell that in advance, so... */
854
855 if (val != all_values)
856 {
857 for (prev = all_values; prev != NULL; prev = prev->next)
858 {
859 if (prev->next == val)
860 {
861 prev->next = new_val;
862 break;
863 }
864 }
865 }
866
867 return new_val;
868 }
869 }
870
871 /* Given a value ARG1 (offset by OFFSET bytes)
872 of a struct or union type ARG_TYPE,
873 extract and return the value of one of its (non-static) fields.
874 FIELDNO says which field. */
875
876 struct value *
877 value_primitive_field (struct value *arg1, int offset,
878 register int fieldno, register struct type *arg_type)
879 {
880 struct value *v;
881 register struct type *type;
882
883 CHECK_TYPEDEF (arg_type);
884 type = TYPE_FIELD_TYPE (arg_type, fieldno);
885
886 /* Handle packed fields */
887
888 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
889 {
890 v = value_from_longest (type,
891 unpack_field_as_long (arg_type,
892 VALUE_CONTENTS (arg1)
893 + offset,
894 fieldno));
895 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
896 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
897 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
898 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
899 }
900 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
901 {
902 /* This field is actually a base subobject, so preserve the
903 entire object's contents for later references to virtual
904 bases, etc. */
905 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
906 VALUE_TYPE (v) = type;
907 if (VALUE_LAZY (arg1))
908 VALUE_LAZY (v) = 1;
909 else
910 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
911 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
912 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
913 VALUE_EMBEDDED_OFFSET (v)
914 = offset +
915 VALUE_EMBEDDED_OFFSET (arg1) +
916 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
917 }
918 else
919 {
920 /* Plain old data member */
921 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
922 v = allocate_value (type);
923 if (VALUE_LAZY (arg1))
924 VALUE_LAZY (v) = 1;
925 else
926 memcpy (VALUE_CONTENTS_RAW (v),
927 VALUE_CONTENTS_RAW (arg1) + offset,
928 TYPE_LENGTH (type));
929 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
930 + VALUE_EMBEDDED_OFFSET (arg1);
931 }
932 VALUE_LVAL (v) = VALUE_LVAL (arg1);
933 if (VALUE_LVAL (arg1) == lval_internalvar)
934 VALUE_LVAL (v) = lval_internalvar_component;
935 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
936 VALUE_REGNO (v) = VALUE_REGNO (arg1);
937 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
938 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
939 return v;
940 }
941
942 /* Given a value ARG1 of a struct or union type,
943 extract and return the value of one of its (non-static) fields.
944 FIELDNO says which field. */
945
946 struct value *
947 value_field (struct value *arg1, register int fieldno)
948 {
949 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
950 }
951
952 /* Return a non-virtual function as a value.
953 F is the list of member functions which contains the desired method.
954 J is an index into F which provides the desired method.
955
956 We only use the symbol for its address, so be happy with either a
957 full symbol or a minimal symbol.
958 */
959
960 struct value *
961 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
962 int offset)
963 {
964 struct value *v;
965 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
966 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
967 struct symbol *sym;
968 struct minimal_symbol *msym;
969
970 sym = lookup_symbol (physname, 0, VAR_NAMESPACE, 0, NULL);
971 if (sym != NULL)
972 {
973 msym = NULL;
974 }
975 else
976 {
977 gdb_assert (sym == NULL);
978 msym = lookup_minimal_symbol (physname, NULL, NULL);
979 if (msym == NULL)
980 return NULL;
981 }
982
983 v = allocate_value (ftype);
984 if (sym)
985 {
986 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
987 }
988 else
989 {
990 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
991 }
992
993 if (arg1p)
994 {
995 if (type != VALUE_TYPE (*arg1p))
996 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
997 value_addr (*arg1p)));
998
999 /* Move the `this' pointer according to the offset.
1000 VALUE_OFFSET (*arg1p) += offset;
1001 */
1002 }
1003
1004 return v;
1005 }
1006
1007 \f
1008 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1009 VALADDR.
1010
1011 Extracting bits depends on endianness of the machine. Compute the
1012 number of least significant bits to discard. For big endian machines,
1013 we compute the total number of bits in the anonymous object, subtract
1014 off the bit count from the MSB of the object to the MSB of the
1015 bitfield, then the size of the bitfield, which leaves the LSB discard
1016 count. For little endian machines, the discard count is simply the
1017 number of bits from the LSB of the anonymous object to the LSB of the
1018 bitfield.
1019
1020 If the field is signed, we also do sign extension. */
1021
1022 LONGEST
1023 unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
1024 {
1025 ULONGEST val;
1026 ULONGEST valmask;
1027 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1028 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1029 int lsbcount;
1030 struct type *field_type;
1031
1032 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1033 field_type = TYPE_FIELD_TYPE (type, fieldno);
1034 CHECK_TYPEDEF (field_type);
1035
1036 /* Extract bits. See comment above. */
1037
1038 if (BITS_BIG_ENDIAN)
1039 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1040 else
1041 lsbcount = (bitpos % 8);
1042 val >>= lsbcount;
1043
1044 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1045 If the field is signed, and is negative, then sign extend. */
1046
1047 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1048 {
1049 valmask = (((ULONGEST) 1) << bitsize) - 1;
1050 val &= valmask;
1051 if (!TYPE_UNSIGNED (field_type))
1052 {
1053 if (val & (valmask ^ (valmask >> 1)))
1054 {
1055 val |= ~valmask;
1056 }
1057 }
1058 }
1059 return (val);
1060 }
1061
1062 /* Modify the value of a bitfield. ADDR points to a block of memory in
1063 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1064 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1065 indicate which bits (in target bit order) comprise the bitfield. */
1066
1067 void
1068 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1069 {
1070 LONGEST oword;
1071
1072 /* If a negative fieldval fits in the field in question, chop
1073 off the sign extension bits. */
1074 if (bitsize < (8 * (int) sizeof (fieldval))
1075 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1076 fieldval = fieldval & ((1 << bitsize) - 1);
1077
1078 /* Warn if value is too big to fit in the field in question. */
1079 if (bitsize < (8 * (int) sizeof (fieldval))
1080 && 0 != (fieldval & ~((1 << bitsize) - 1)))
1081 {
1082 /* FIXME: would like to include fieldval in the message, but
1083 we don't have a sprintf_longest. */
1084 warning ("Value does not fit in %d bits.", bitsize);
1085
1086 /* Truncate it, otherwise adjoining fields may be corrupted. */
1087 fieldval = fieldval & ((1 << bitsize) - 1);
1088 }
1089
1090 oword = extract_signed_integer (addr, sizeof oword);
1091
1092 /* Shifting for bit field depends on endianness of the target machine. */
1093 if (BITS_BIG_ENDIAN)
1094 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1095
1096 /* Mask out old value, while avoiding shifts >= size of oword */
1097 if (bitsize < 8 * (int) sizeof (oword))
1098 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
1099 else
1100 oword &= ~((~(ULONGEST) 0) << bitpos);
1101 oword |= fieldval << bitpos;
1102
1103 store_signed_integer (addr, sizeof oword, oword);
1104 }
1105 \f
1106 /* Convert C numbers into newly allocated values */
1107
1108 struct value *
1109 value_from_longest (struct type *type, register LONGEST num)
1110 {
1111 struct value *val = allocate_value (type);
1112 register enum type_code code;
1113 register int len;
1114 retry:
1115 code = TYPE_CODE (type);
1116 len = TYPE_LENGTH (type);
1117
1118 switch (code)
1119 {
1120 case TYPE_CODE_TYPEDEF:
1121 type = check_typedef (type);
1122 goto retry;
1123 case TYPE_CODE_INT:
1124 case TYPE_CODE_CHAR:
1125 case TYPE_CODE_ENUM:
1126 case TYPE_CODE_BOOL:
1127 case TYPE_CODE_RANGE:
1128 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1129 break;
1130
1131 case TYPE_CODE_REF:
1132 case TYPE_CODE_PTR:
1133 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
1134 break;
1135
1136 default:
1137 error ("Unexpected type (%d) encountered for integer constant.", code);
1138 }
1139 return val;
1140 }
1141
1142
1143 /* Create a value representing a pointer of type TYPE to the address
1144 ADDR. */
1145 struct value *
1146 value_from_pointer (struct type *type, CORE_ADDR addr)
1147 {
1148 struct value *val = allocate_value (type);
1149 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1150 return val;
1151 }
1152
1153
1154 /* Create a value for a string constant to be stored locally
1155 (not in the inferior's memory space, but in GDB memory).
1156 This is analogous to value_from_longest, which also does not
1157 use inferior memory. String shall NOT contain embedded nulls. */
1158
1159 struct value *
1160 value_from_string (char *ptr)
1161 {
1162 struct value *val;
1163 int len = strlen (ptr);
1164 int lowbound = current_language->string_lower_bound;
1165 struct type *rangetype =
1166 create_range_type ((struct type *) NULL,
1167 builtin_type_int,
1168 lowbound, len + lowbound - 1);
1169 struct type *stringtype =
1170 create_array_type ((struct type *) NULL,
1171 *current_language->string_char_type,
1172 rangetype);
1173
1174 val = allocate_value (stringtype);
1175 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1176 return val;
1177 }
1178
1179 struct value *
1180 value_from_double (struct type *type, DOUBLEST num)
1181 {
1182 struct value *val = allocate_value (type);
1183 struct type *base_type = check_typedef (type);
1184 register enum type_code code = TYPE_CODE (base_type);
1185 register int len = TYPE_LENGTH (base_type);
1186
1187 if (code == TYPE_CODE_FLT)
1188 {
1189 store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
1190 }
1191 else
1192 error ("Unexpected type encountered for floating constant.");
1193
1194 return val;
1195 }
1196 \f
1197 /* Deal with the value that is "about to be returned". */
1198
1199 /* Return the value that a function returning now
1200 would be returning to its caller, assuming its type is VALTYPE.
1201 RETBUF is where we look for what ought to be the contents
1202 of the registers (in raw form). This is because it is often
1203 desirable to restore old values to those registers
1204 after saving the contents of interest, and then call
1205 this function using the saved values.
1206 struct_return is non-zero when the function in question is
1207 using the structure return conventions on the machine in question;
1208 0 when it is using the value returning conventions (this often
1209 means returning pointer to where structure is vs. returning value). */
1210
1211 /* ARGSUSED */
1212 struct value *
1213 value_being_returned (struct type *valtype, struct regcache *retbuf,
1214 int struct_return)
1215 {
1216 struct value *val;
1217 CORE_ADDR addr;
1218
1219 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1220 if (EXTRACT_STRUCT_VALUE_ADDRESS_P ())
1221 if (struct_return)
1222 {
1223 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1224 if (!addr)
1225 error ("Function return value unknown.");
1226 return value_at (valtype, addr, NULL);
1227 }
1228
1229 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1230 if (DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS_P ())
1231 if (struct_return)
1232 {
1233 char *buf = deprecated_grub_regcache_for_registers (retbuf);
1234 addr = DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS (buf);
1235 if (!addr)
1236 error ("Function return value unknown.");
1237 return value_at (valtype, addr, NULL);
1238 }
1239
1240 val = allocate_value (valtype);
1241 CHECK_TYPEDEF (valtype);
1242 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1243
1244 return val;
1245 }
1246
1247 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1248 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1249 and TYPE is the type (which is known to be struct, union or array).
1250
1251 On most machines, the struct convention is used unless we are
1252 using gcc and the type is of a special size. */
1253 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1254 native compiler. GCC 2.3.3 was the last release that did it the
1255 old way. Since gcc2_compiled was not changed, we have no
1256 way to correctly win in all cases, so we just do the right thing
1257 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1258 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1259 would cause more chaos than dealing with some struct returns being
1260 handled wrong. */
1261
1262 int
1263 generic_use_struct_convention (int gcc_p, struct type *value_type)
1264 {
1265 return !((gcc_p == 1)
1266 && (TYPE_LENGTH (value_type) == 1
1267 || TYPE_LENGTH (value_type) == 2
1268 || TYPE_LENGTH (value_type) == 4
1269 || TYPE_LENGTH (value_type) == 8));
1270 }
1271
1272 /* Return true if the function specified is using the structure returning
1273 convention on this machine to return arguments, or 0 if it is using
1274 the value returning convention. FUNCTION is the value representing
1275 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1276 is the type returned by the function. GCC_P is nonzero if compiled
1277 with GCC. */
1278
1279 /* ARGSUSED */
1280 int
1281 using_struct_return (struct value *function, CORE_ADDR funcaddr,
1282 struct type *value_type, int gcc_p)
1283 {
1284 register enum type_code code = TYPE_CODE (value_type);
1285
1286 if (code == TYPE_CODE_ERROR)
1287 error ("Function return type unknown.");
1288
1289 if (code == TYPE_CODE_STRUCT
1290 || code == TYPE_CODE_UNION
1291 || code == TYPE_CODE_ARRAY
1292 || RETURN_VALUE_ON_STACK (value_type))
1293 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1294
1295 return 0;
1296 }
1297
1298 /* Store VAL so it will be returned if a function returns now.
1299 Does not verify that VAL's type matches what the current
1300 function wants to return. */
1301
1302 void
1303 set_return_value (struct value *val)
1304 {
1305 struct type *type = check_typedef (VALUE_TYPE (val));
1306 register enum type_code code = TYPE_CODE (type);
1307
1308 if (code == TYPE_CODE_ERROR)
1309 error ("Function return type unknown.");
1310
1311 if (code == TYPE_CODE_STRUCT
1312 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1313 error ("GDB does not support specifying a struct or union return value.");
1314
1315 STORE_RETURN_VALUE (type, current_regcache, VALUE_CONTENTS (val));
1316 }
1317 \f
1318 void
1319 _initialize_values (void)
1320 {
1321 add_cmd ("convenience", no_class, show_convenience,
1322 "Debugger convenience (\"$foo\") variables.\n\
1323 These variables are created when you assign them values;\n\
1324 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1325 A few convenience variables are given values automatically:\n\
1326 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1327 \"$__\" holds the contents of the last address examined with \"x\".",
1328 &showlist);
1329
1330 add_cmd ("values", no_class, show_values,
1331 "Elements of value history around item number IDX (or last ten).",
1332 &showlist);
1333 }
This page took 0.060588 seconds and 4 git commands to generate.