2002-01-04 Daniel Jacobowitz <drow@mvista.com>
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2002.
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "scm-lang.h"
34 #include "demangle.h"
35 #include "doublest.h"
36 #include "gdb_assert.h"
37
38 /* Prototypes for exported functions. */
39
40 void _initialize_values (void);
41
42 /* Prototypes for local functions. */
43
44 static struct value *value_headof (struct value *, struct type *, struct type *);
45
46 static void show_values (char *, int);
47
48 static void show_convenience (char *, int);
49
50
51 /* The value-history records all the values printed
52 by print commands during this session. Each chunk
53 records 60 consecutive values. The first chunk on
54 the chain records the most recent values.
55 The total number of values is in value_history_count. */
56
57 #define VALUE_HISTORY_CHUNK 60
58
59 struct value_history_chunk
60 {
61 struct value_history_chunk *next;
62 struct value *values[VALUE_HISTORY_CHUNK];
63 };
64
65 /* Chain of chunks now in use. */
66
67 static struct value_history_chunk *value_history_chain;
68
69 static int value_history_count; /* Abs number of last entry stored */
70 \f
71 /* List of all value objects currently allocated
72 (except for those released by calls to release_value)
73 This is so they can be freed after each command. */
74
75 static struct value *all_values;
76
77 /* Allocate a value that has the correct length for type TYPE. */
78
79 struct value *
80 allocate_value (struct type *type)
81 {
82 struct value *val;
83 struct type *atype = check_typedef (type);
84
85 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
86 VALUE_NEXT (val) = all_values;
87 all_values = val;
88 VALUE_TYPE (val) = type;
89 VALUE_ENCLOSING_TYPE (val) = type;
90 VALUE_LVAL (val) = not_lval;
91 VALUE_ADDRESS (val) = 0;
92 VALUE_FRAME (val) = 0;
93 VALUE_OFFSET (val) = 0;
94 VALUE_BITPOS (val) = 0;
95 VALUE_BITSIZE (val) = 0;
96 VALUE_REGNO (val) = -1;
97 VALUE_LAZY (val) = 0;
98 VALUE_OPTIMIZED_OUT (val) = 0;
99 VALUE_BFD_SECTION (val) = NULL;
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104 }
105
106 /* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
109 struct value *
110 allocate_repeat_value (struct type *type, int count)
111 {
112 int low_bound = current_language->string_lower_bound; /* ??? */
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 struct type *range_type
116 = create_range_type ((struct type *) NULL, builtin_type_int,
117 low_bound, count + low_bound - 1);
118 /* FIXME-type-allocation: need a way to free this type when we are
119 done with it. */
120 return allocate_value (create_array_type ((struct type *) NULL,
121 type, range_type));
122 }
123
124 /* Return a mark in the value chain. All values allocated after the
125 mark is obtained (except for those released) are subject to being freed
126 if a subsequent value_free_to_mark is passed the mark. */
127 struct value *
128 value_mark (void)
129 {
130 return all_values;
131 }
132
133 /* Free all values allocated since MARK was obtained by value_mark
134 (except for those released). */
135 void
136 value_free_to_mark (struct value *mark)
137 {
138 struct value *val;
139 struct value *next;
140
141 for (val = all_values; val && val != mark; val = next)
142 {
143 next = VALUE_NEXT (val);
144 value_free (val);
145 }
146 all_values = val;
147 }
148
149 /* Free all the values that have been allocated (except for those released).
150 Called after each command, successful or not. */
151
152 void
153 free_all_values (void)
154 {
155 struct value *val;
156 struct value *next;
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165 }
166
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170 void
171 release_value (struct value *val)
172 {
173 struct value *v;
174
175 if (all_values == val)
176 {
177 all_values = val->next;
178 return;
179 }
180
181 for (v = all_values; v; v = v->next)
182 {
183 if (v->next == val)
184 {
185 v->next = val->next;
186 break;
187 }
188 }
189 }
190
191 /* Release all values up to mark */
192 struct value *
193 value_release_to_mark (struct value *mark)
194 {
195 struct value *val;
196 struct value *next;
197
198 for (val = next = all_values; next; next = VALUE_NEXT (next))
199 if (VALUE_NEXT (next) == mark)
200 {
201 all_values = VALUE_NEXT (next);
202 VALUE_NEXT (next) = 0;
203 return val;
204 }
205 all_values = 0;
206 return val;
207 }
208
209 /* Return a copy of the value ARG.
210 It contains the same contents, for same memory address,
211 but it's a different block of storage. */
212
213 struct value *
214 value_copy (struct value *arg)
215 {
216 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
217 struct value *val = allocate_value (encl_type);
218 VALUE_TYPE (val) = VALUE_TYPE (arg);
219 VALUE_LVAL (val) = VALUE_LVAL (arg);
220 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
221 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
222 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
223 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
224 VALUE_FRAME (val) = VALUE_FRAME (arg);
225 VALUE_REGNO (val) = VALUE_REGNO (arg);
226 VALUE_LAZY (val) = VALUE_LAZY (arg);
227 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
228 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
229 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
230 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
231 val->modifiable = arg->modifiable;
232 if (!VALUE_LAZY (val))
233 {
234 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
235 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
236
237 }
238 return val;
239 }
240 \f
241 /* Access to the value history. */
242
243 /* Record a new value in the value history.
244 Returns the absolute history index of the entry.
245 Result of -1 indicates the value was not saved; otherwise it is the
246 value history index of this new item. */
247
248 int
249 record_latest_value (struct value *val)
250 {
251 int i;
252
253 /* We don't want this value to have anything to do with the inferior anymore.
254 In particular, "set $1 = 50" should not affect the variable from which
255 the value was taken, and fast watchpoints should be able to assume that
256 a value on the value history never changes. */
257 if (VALUE_LAZY (val))
258 value_fetch_lazy (val);
259 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
260 from. This is a bit dubious, because then *&$1 does not just return $1
261 but the current contents of that location. c'est la vie... */
262 val->modifiable = 0;
263 release_value (val);
264
265 /* Here we treat value_history_count as origin-zero
266 and applying to the value being stored now. */
267
268 i = value_history_count % VALUE_HISTORY_CHUNK;
269 if (i == 0)
270 {
271 struct value_history_chunk *new
272 = (struct value_history_chunk *)
273 xmalloc (sizeof (struct value_history_chunk));
274 memset (new->values, 0, sizeof new->values);
275 new->next = value_history_chain;
276 value_history_chain = new;
277 }
278
279 value_history_chain->values[i] = val;
280
281 /* Now we regard value_history_count as origin-one
282 and applying to the value just stored. */
283
284 return ++value_history_count;
285 }
286
287 /* Return a copy of the value in the history with sequence number NUM. */
288
289 struct value *
290 access_value_history (int num)
291 {
292 struct value_history_chunk *chunk;
293 register int i;
294 register int absnum = num;
295
296 if (absnum <= 0)
297 absnum += value_history_count;
298
299 if (absnum <= 0)
300 {
301 if (num == 0)
302 error ("The history is empty.");
303 else if (num == 1)
304 error ("There is only one value in the history.");
305 else
306 error ("History does not go back to $$%d.", -num);
307 }
308 if (absnum > value_history_count)
309 error ("History has not yet reached $%d.", absnum);
310
311 absnum--;
312
313 /* Now absnum is always absolute and origin zero. */
314
315 chunk = value_history_chain;
316 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
317 i > 0; i--)
318 chunk = chunk->next;
319
320 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
321 }
322
323 /* Clear the value history entirely.
324 Must be done when new symbol tables are loaded,
325 because the type pointers become invalid. */
326
327 void
328 clear_value_history (void)
329 {
330 struct value_history_chunk *next;
331 register int i;
332 struct value *val;
333
334 while (value_history_chain)
335 {
336 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
337 if ((val = value_history_chain->values[i]) != NULL)
338 xfree (val);
339 next = value_history_chain->next;
340 xfree (value_history_chain);
341 value_history_chain = next;
342 }
343 value_history_count = 0;
344 }
345
346 static void
347 show_values (char *num_exp, int from_tty)
348 {
349 register int i;
350 struct value *val;
351 static int num = 1;
352
353 if (num_exp)
354 {
355 /* "info history +" should print from the stored position.
356 "info history <exp>" should print around value number <exp>. */
357 if (num_exp[0] != '+' || num_exp[1] != '\0')
358 num = parse_and_eval_long (num_exp) - 5;
359 }
360 else
361 {
362 /* "info history" means print the last 10 values. */
363 num = value_history_count - 9;
364 }
365
366 if (num <= 0)
367 num = 1;
368
369 for (i = num; i < num + 10 && i <= value_history_count; i++)
370 {
371 val = access_value_history (i);
372 printf_filtered ("$%d = ", i);
373 value_print (val, gdb_stdout, 0, Val_pretty_default);
374 printf_filtered ("\n");
375 }
376
377 /* The next "info history +" should start after what we just printed. */
378 num += 10;
379
380 /* Hitting just return after this command should do the same thing as
381 "info history +". If num_exp is null, this is unnecessary, since
382 "info history +" is not useful after "info history". */
383 if (from_tty && num_exp)
384 {
385 num_exp[0] = '+';
386 num_exp[1] = '\0';
387 }
388 }
389 \f
390 /* Internal variables. These are variables within the debugger
391 that hold values assigned by debugger commands.
392 The user refers to them with a '$' prefix
393 that does not appear in the variable names stored internally. */
394
395 static struct internalvar *internalvars;
396
397 /* Look up an internal variable with name NAME. NAME should not
398 normally include a dollar sign.
399
400 If the specified internal variable does not exist,
401 one is created, with a void value. */
402
403 struct internalvar *
404 lookup_internalvar (char *name)
405 {
406 register struct internalvar *var;
407
408 for (var = internalvars; var; var = var->next)
409 if (STREQ (var->name, name))
410 return var;
411
412 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
413 var->name = concat (name, NULL);
414 var->value = allocate_value (builtin_type_void);
415 release_value (var->value);
416 var->next = internalvars;
417 internalvars = var;
418 return var;
419 }
420
421 struct value *
422 value_of_internalvar (struct internalvar *var)
423 {
424 struct value *val;
425
426 #ifdef IS_TRAPPED_INTERNALVAR
427 if (IS_TRAPPED_INTERNALVAR (var->name))
428 return VALUE_OF_TRAPPED_INTERNALVAR (var);
429 #endif
430
431 val = value_copy (var->value);
432 if (VALUE_LAZY (val))
433 value_fetch_lazy (val);
434 VALUE_LVAL (val) = lval_internalvar;
435 VALUE_INTERNALVAR (val) = var;
436 return val;
437 }
438
439 void
440 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
441 int bitsize, struct value *newval)
442 {
443 register char *addr = VALUE_CONTENTS (var->value) + offset;
444
445 #ifdef IS_TRAPPED_INTERNALVAR
446 if (IS_TRAPPED_INTERNALVAR (var->name))
447 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
448 #endif
449
450 if (bitsize)
451 modify_field (addr, value_as_long (newval),
452 bitpos, bitsize);
453 else
454 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
455 }
456
457 void
458 set_internalvar (struct internalvar *var, struct value *val)
459 {
460 struct value *newval;
461
462 #ifdef IS_TRAPPED_INTERNALVAR
463 if (IS_TRAPPED_INTERNALVAR (var->name))
464 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
465 #endif
466
467 newval = value_copy (val);
468 newval->modifiable = 1;
469
470 /* Force the value to be fetched from the target now, to avoid problems
471 later when this internalvar is referenced and the target is gone or
472 has changed. */
473 if (VALUE_LAZY (newval))
474 value_fetch_lazy (newval);
475
476 /* Begin code which must not call error(). If var->value points to
477 something free'd, an error() obviously leaves a dangling pointer.
478 But we also get a danling pointer if var->value points to
479 something in the value chain (i.e., before release_value is
480 called), because after the error free_all_values will get called before
481 long. */
482 xfree (var->value);
483 var->value = newval;
484 release_value (newval);
485 /* End code which must not call error(). */
486 }
487
488 char *
489 internalvar_name (struct internalvar *var)
490 {
491 return var->name;
492 }
493
494 /* Free all internalvars. Done when new symtabs are loaded,
495 because that makes the values invalid. */
496
497 void
498 clear_internalvars (void)
499 {
500 register struct internalvar *var;
501
502 while (internalvars)
503 {
504 var = internalvars;
505 internalvars = var->next;
506 xfree (var->name);
507 xfree (var->value);
508 xfree (var);
509 }
510 }
511
512 static void
513 show_convenience (char *ignore, int from_tty)
514 {
515 register struct internalvar *var;
516 int varseen = 0;
517
518 for (var = internalvars; var; var = var->next)
519 {
520 #ifdef IS_TRAPPED_INTERNALVAR
521 if (IS_TRAPPED_INTERNALVAR (var->name))
522 continue;
523 #endif
524 if (!varseen)
525 {
526 varseen = 1;
527 }
528 printf_filtered ("$%s = ", var->name);
529 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
530 printf_filtered ("\n");
531 }
532 if (!varseen)
533 printf_unfiltered ("No debugger convenience variables now defined.\n\
534 Convenience variables have names starting with \"$\";\n\
535 use \"set\" as in \"set $foo = 5\" to define them.\n");
536 }
537 \f
538 /* Extract a value as a C number (either long or double).
539 Knows how to convert fixed values to double, or
540 floating values to long.
541 Does not deallocate the value. */
542
543 LONGEST
544 value_as_long (struct value *val)
545 {
546 /* This coerces arrays and functions, which is necessary (e.g.
547 in disassemble_command). It also dereferences references, which
548 I suspect is the most logical thing to do. */
549 COERCE_ARRAY (val);
550 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
551 }
552
553 DOUBLEST
554 value_as_double (struct value *val)
555 {
556 DOUBLEST foo;
557 int inv;
558
559 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
560 if (inv)
561 error ("Invalid floating value found in program.");
562 return foo;
563 }
564 /* Extract a value as a C pointer. Does not deallocate the value.
565 Note that val's type may not actually be a pointer; value_as_long
566 handles all the cases. */
567 CORE_ADDR
568 value_as_address (struct value *val)
569 {
570 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
571 whether we want this to be true eventually. */
572 #if 0
573 /* ADDR_BITS_REMOVE is wrong if we are being called for a
574 non-address (e.g. argument to "signal", "info break", etc.), or
575 for pointers to char, in which the low bits *are* significant. */
576 return ADDR_BITS_REMOVE (value_as_long (val));
577 #else
578
579 /* There are several targets (IA-64, PowerPC, and others) which
580 don't represent pointers to functions as simply the address of
581 the function's entry point. For example, on the IA-64, a
582 function pointer points to a two-word descriptor, generated by
583 the linker, which contains the function's entry point, and the
584 value the IA-64 "global pointer" register should have --- to
585 support position-independent code. The linker generates
586 descriptors only for those functions whose addresses are taken.
587
588 On such targets, it's difficult for GDB to convert an arbitrary
589 function address into a function pointer; it has to either find
590 an existing descriptor for that function, or call malloc and
591 build its own. On some targets, it is impossible for GDB to
592 build a descriptor at all: the descriptor must contain a jump
593 instruction; data memory cannot be executed; and code memory
594 cannot be modified.
595
596 Upon entry to this function, if VAL is a value of type `function'
597 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
598 VALUE_ADDRESS (val) is the address of the function. This is what
599 you'll get if you evaluate an expression like `main'. The call
600 to COERCE_ARRAY below actually does all the usual unary
601 conversions, which includes converting values of type `function'
602 to `pointer to function'. This is the challenging conversion
603 discussed above. Then, `unpack_long' will convert that pointer
604 back into an address.
605
606 So, suppose the user types `disassemble foo' on an architecture
607 with a strange function pointer representation, on which GDB
608 cannot build its own descriptors, and suppose further that `foo'
609 has no linker-built descriptor. The address->pointer conversion
610 will signal an error and prevent the command from running, even
611 though the next step would have been to convert the pointer
612 directly back into the same address.
613
614 The following shortcut avoids this whole mess. If VAL is a
615 function, just return its address directly. */
616 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
617 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_METHOD)
618 return VALUE_ADDRESS (val);
619
620 COERCE_ARRAY (val);
621
622 /* Some architectures (e.g. Harvard), map instruction and data
623 addresses onto a single large unified address space. For
624 instance: An architecture may consider a large integer in the
625 range 0x10000000 .. 0x1000ffff to already represent a data
626 addresses (hence not need a pointer to address conversion) while
627 a small integer would still need to be converted integer to
628 pointer to address. Just assume such architectures handle all
629 integer conversions in a single function. */
630
631 /* JimB writes:
632
633 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
634 must admonish GDB hackers to make sure its behavior matches the
635 compiler's, whenever possible.
636
637 In general, I think GDB should evaluate expressions the same way
638 the compiler does. When the user copies an expression out of
639 their source code and hands it to a `print' command, they should
640 get the same value the compiler would have computed. Any
641 deviation from this rule can cause major confusion and annoyance,
642 and needs to be justified carefully. In other words, GDB doesn't
643 really have the freedom to do these conversions in clever and
644 useful ways.
645
646 AndrewC pointed out that users aren't complaining about how GDB
647 casts integers to pointers; they are complaining that they can't
648 take an address from a disassembly listing and give it to `x/i'.
649 This is certainly important.
650
651 Adding an architecture method like INTEGER_TO_ADDRESS certainly
652 makes it possible for GDB to "get it right" in all circumstances
653 --- the target has complete control over how things get done, so
654 people can Do The Right Thing for their target without breaking
655 anyone else. The standard doesn't specify how integers get
656 converted to pointers; usually, the ABI doesn't either, but
657 ABI-specific code is a more reasonable place to handle it. */
658
659 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_PTR
660 && TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_REF
661 && INTEGER_TO_ADDRESS_P ())
662 return INTEGER_TO_ADDRESS (VALUE_TYPE (val), VALUE_CONTENTS (val));
663
664 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
665 #endif
666 }
667 \f
668 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
669 as a long, or as a double, assuming the raw data is described
670 by type TYPE. Knows how to convert different sizes of values
671 and can convert between fixed and floating point. We don't assume
672 any alignment for the raw data. Return value is in host byte order.
673
674 If you want functions and arrays to be coerced to pointers, and
675 references to be dereferenced, call value_as_long() instead.
676
677 C++: It is assumed that the front-end has taken care of
678 all matters concerning pointers to members. A pointer
679 to member which reaches here is considered to be equivalent
680 to an INT (or some size). After all, it is only an offset. */
681
682 LONGEST
683 unpack_long (struct type *type, char *valaddr)
684 {
685 register enum type_code code = TYPE_CODE (type);
686 register int len = TYPE_LENGTH (type);
687 register int nosign = TYPE_UNSIGNED (type);
688
689 if (current_language->la_language == language_scm
690 && is_scmvalue_type (type))
691 return scm_unpack (type, valaddr, TYPE_CODE_INT);
692
693 switch (code)
694 {
695 case TYPE_CODE_TYPEDEF:
696 return unpack_long (check_typedef (type), valaddr);
697 case TYPE_CODE_ENUM:
698 case TYPE_CODE_BOOL:
699 case TYPE_CODE_INT:
700 case TYPE_CODE_CHAR:
701 case TYPE_CODE_RANGE:
702 if (nosign)
703 return extract_unsigned_integer (valaddr, len);
704 else
705 return extract_signed_integer (valaddr, len);
706
707 case TYPE_CODE_FLT:
708 return extract_typed_floating (valaddr, type);
709
710 case TYPE_CODE_PTR:
711 case TYPE_CODE_REF:
712 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
713 whether we want this to be true eventually. */
714 return extract_typed_address (valaddr, type);
715
716 case TYPE_CODE_MEMBER:
717 error ("not implemented: member types in unpack_long");
718
719 default:
720 error ("Value can't be converted to integer.");
721 }
722 return 0; /* Placate lint. */
723 }
724
725 /* Return a double value from the specified type and address.
726 INVP points to an int which is set to 0 for valid value,
727 1 for invalid value (bad float format). In either case,
728 the returned double is OK to use. Argument is in target
729 format, result is in host format. */
730
731 DOUBLEST
732 unpack_double (struct type *type, char *valaddr, int *invp)
733 {
734 enum type_code code;
735 int len;
736 int nosign;
737
738 *invp = 0; /* Assume valid. */
739 CHECK_TYPEDEF (type);
740 code = TYPE_CODE (type);
741 len = TYPE_LENGTH (type);
742 nosign = TYPE_UNSIGNED (type);
743 if (code == TYPE_CODE_FLT)
744 {
745 #ifdef INVALID_FLOAT
746 if (INVALID_FLOAT (valaddr, len))
747 {
748 *invp = 1;
749 return 1.234567891011121314;
750 }
751 #endif
752 return extract_typed_floating (valaddr, type);
753 }
754 else if (nosign)
755 {
756 /* Unsigned -- be sure we compensate for signed LONGEST. */
757 return (ULONGEST) unpack_long (type, valaddr);
758 }
759 else
760 {
761 /* Signed -- we are OK with unpack_long. */
762 return unpack_long (type, valaddr);
763 }
764 }
765
766 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
767 as a CORE_ADDR, assuming the raw data is described by type TYPE.
768 We don't assume any alignment for the raw data. Return value is in
769 host byte order.
770
771 If you want functions and arrays to be coerced to pointers, and
772 references to be dereferenced, call value_as_address() instead.
773
774 C++: It is assumed that the front-end has taken care of
775 all matters concerning pointers to members. A pointer
776 to member which reaches here is considered to be equivalent
777 to an INT (or some size). After all, it is only an offset. */
778
779 CORE_ADDR
780 unpack_pointer (struct type *type, char *valaddr)
781 {
782 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
783 whether we want this to be true eventually. */
784 return unpack_long (type, valaddr);
785 }
786
787 \f
788 /* Get the value of the FIELDN'th field (which must be static) of TYPE. */
789
790 struct value *
791 value_static_field (struct type *type, int fieldno)
792 {
793 CORE_ADDR addr;
794 asection *sect;
795 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
796 {
797 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
798 sect = NULL;
799 }
800 else
801 {
802 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
803 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
804 if (sym == NULL)
805 {
806 /* With some compilers, e.g. HP aCC, static data members are reported
807 as non-debuggable symbols */
808 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
809 if (!msym)
810 return NULL;
811 else
812 {
813 addr = SYMBOL_VALUE_ADDRESS (msym);
814 sect = SYMBOL_BFD_SECTION (msym);
815 }
816 }
817 else
818 {
819 /* Anything static that isn't a constant, has an address */
820 if (SYMBOL_CLASS (sym) != LOC_CONST)
821 {
822 addr = SYMBOL_VALUE_ADDRESS (sym);
823 sect = SYMBOL_BFD_SECTION (sym);
824 }
825 /* However, static const's do not, the value is already known. */
826 else
827 {
828 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), SYMBOL_VALUE (sym));
829 }
830 }
831 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
832 }
833 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
834 }
835
836 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
837 You have to be careful here, since the size of the data area for the value
838 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
839 than the old enclosing type, you have to allocate more space for the data.
840 The return value is a pointer to the new version of this value structure. */
841
842 struct value *
843 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
844 {
845 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
846 {
847 VALUE_ENCLOSING_TYPE (val) = new_encl_type;
848 return val;
849 }
850 else
851 {
852 struct value *new_val;
853 struct value *prev;
854
855 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
856
857 /* We have to make sure this ends up in the same place in the value
858 chain as the original copy, so it's clean-up behavior is the same.
859 If the value has been released, this is a waste of time, but there
860 is no way to tell that in advance, so... */
861
862 if (val != all_values)
863 {
864 for (prev = all_values; prev != NULL; prev = prev->next)
865 {
866 if (prev->next == val)
867 {
868 prev->next = new_val;
869 break;
870 }
871 }
872 }
873
874 return new_val;
875 }
876 }
877
878 /* Given a value ARG1 (offset by OFFSET bytes)
879 of a struct or union type ARG_TYPE,
880 extract and return the value of one of its (non-static) fields.
881 FIELDNO says which field. */
882
883 struct value *
884 value_primitive_field (struct value *arg1, int offset,
885 register int fieldno, register struct type *arg_type)
886 {
887 struct value *v;
888 register struct type *type;
889
890 CHECK_TYPEDEF (arg_type);
891 type = TYPE_FIELD_TYPE (arg_type, fieldno);
892
893 /* Handle packed fields */
894
895 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
896 {
897 v = value_from_longest (type,
898 unpack_field_as_long (arg_type,
899 VALUE_CONTENTS (arg1)
900 + offset,
901 fieldno));
902 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
903 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
904 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
905 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
906 }
907 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
908 {
909 /* This field is actually a base subobject, so preserve the
910 entire object's contents for later references to virtual
911 bases, etc. */
912 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
913 VALUE_TYPE (v) = type;
914 if (VALUE_LAZY (arg1))
915 VALUE_LAZY (v) = 1;
916 else
917 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
918 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
919 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
920 VALUE_EMBEDDED_OFFSET (v)
921 = offset +
922 VALUE_EMBEDDED_OFFSET (arg1) +
923 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
924 }
925 else
926 {
927 /* Plain old data member */
928 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
929 v = allocate_value (type);
930 if (VALUE_LAZY (arg1))
931 VALUE_LAZY (v) = 1;
932 else
933 memcpy (VALUE_CONTENTS_RAW (v),
934 VALUE_CONTENTS_RAW (arg1) + offset,
935 TYPE_LENGTH (type));
936 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
937 + VALUE_EMBEDDED_OFFSET (arg1);
938 }
939 VALUE_LVAL (v) = VALUE_LVAL (arg1);
940 if (VALUE_LVAL (arg1) == lval_internalvar)
941 VALUE_LVAL (v) = lval_internalvar_component;
942 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
943 VALUE_REGNO (v) = VALUE_REGNO (arg1);
944 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
945 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
946 return v;
947 }
948
949 /* Given a value ARG1 of a struct or union type,
950 extract and return the value of one of its (non-static) fields.
951 FIELDNO says which field. */
952
953 struct value *
954 value_field (struct value *arg1, register int fieldno)
955 {
956 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
957 }
958
959 /* Return a non-virtual function as a value.
960 F is the list of member functions which contains the desired method.
961 J is an index into F which provides the desired method.
962
963 We only use the symbol for its address, so be happy with either a
964 full symbol or a minimal symbol.
965 */
966
967 struct value *
968 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
969 int offset)
970 {
971 struct value *v;
972 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
973 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
974 struct symbol *sym;
975 struct minimal_symbol *msym;
976
977 sym = lookup_symbol (physname, 0, VAR_NAMESPACE, 0, NULL);
978 if (sym != NULL)
979 {
980 msym = NULL;
981 }
982 else
983 {
984 gdb_assert (sym == NULL);
985 msym = lookup_minimal_symbol (physname, NULL, NULL);
986 if (msym == NULL)
987 return NULL;
988 }
989
990 v = allocate_value (ftype);
991 if (sym)
992 {
993 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
994 }
995 else
996 {
997 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
998 }
999
1000 if (arg1p)
1001 {
1002 if (type != VALUE_TYPE (*arg1p))
1003 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1004 value_addr (*arg1p)));
1005
1006 /* Move the `this' pointer according to the offset.
1007 VALUE_OFFSET (*arg1p) += offset;
1008 */
1009 }
1010
1011 return v;
1012 }
1013
1014 /* ARG is a pointer to an object we know to be at least
1015 a DTYPE. BTYPE is the most derived basetype that has
1016 already been searched (and need not be searched again).
1017 After looking at the vtables between BTYPE and DTYPE,
1018 return the most derived type we find. The caller must
1019 be satisfied when the return value == DTYPE.
1020
1021 FIXME-tiemann: should work with dossier entries as well.
1022 NOTICE - djb: I see no good reason at all to keep this function now that
1023 we have RTTI support. It's used in literally one place, and it's
1024 hard to keep this function up to date when it's purpose is served
1025 by value_rtti_type efficiently.
1026 Consider it gone for 5.1. */
1027
1028 static struct value *
1029 value_headof (struct value *in_arg, struct type *btype, struct type *dtype)
1030 {
1031 /* First collect the vtables we must look at for this object. */
1032 struct value *arg;
1033 struct value *vtbl;
1034 struct symbol *sym;
1035 char *demangled_name;
1036 struct minimal_symbol *msymbol;
1037
1038 btype = TYPE_VPTR_BASETYPE (dtype);
1039 CHECK_TYPEDEF (btype);
1040 arg = in_arg;
1041 if (btype != dtype)
1042 arg = value_cast (lookup_pointer_type (btype), arg);
1043 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
1044 {
1045 /*
1046 * Copy the value, but change the type from (T&) to (T*).
1047 * We keep the same location information, which is efficient,
1048 * and allows &(&X) to get the location containing the reference.
1049 */
1050 arg = value_copy (arg);
1051 VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
1052 }
1053 if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
1054 return arg;
1055
1056 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
1057 /* Turn vtable into typeinfo function */
1058 VALUE_OFFSET(vtbl)+=4;
1059
1060 msymbol = lookup_minimal_symbol_by_pc ( value_as_address(value_ind(vtbl)) );
1061 if (msymbol == NULL
1062 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
1063 {
1064 /* If we expected to find a vtable, but did not, let the user
1065 know that we aren't happy, but don't throw an error.
1066 FIXME: there has to be a better way to do this. */
1067 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
1068 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1069 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1070 VALUE_TYPE (in_arg) = error_type;
1071 return in_arg;
1072 }
1073 demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
1074 *(strchr (demangled_name, ' ')) = '\0';
1075
1076 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1077 if (sym == NULL)
1078 error ("could not find type declaration for `%s'", demangled_name);
1079
1080 arg = in_arg;
1081 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1082 return arg;
1083 }
1084
1085 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1086 function tables, probe ARG's tables (including the vtables
1087 of its baseclasses) to figure out the most derived type that ARG
1088 could actually be a pointer to. */
1089
1090 struct value *
1091 value_from_vtable_info (struct value *arg, struct type *type)
1092 {
1093 /* Take care of preliminaries. */
1094 if (TYPE_VPTR_FIELDNO (type) < 0)
1095 fill_in_vptr_fieldno (type);
1096 if (TYPE_VPTR_FIELDNO (type) < 0)
1097 return 0;
1098
1099 return value_headof (arg, 0, type);
1100 }
1101 \f
1102 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1103 VALADDR.
1104
1105 Extracting bits depends on endianness of the machine. Compute the
1106 number of least significant bits to discard. For big endian machines,
1107 we compute the total number of bits in the anonymous object, subtract
1108 off the bit count from the MSB of the object to the MSB of the
1109 bitfield, then the size of the bitfield, which leaves the LSB discard
1110 count. For little endian machines, the discard count is simply the
1111 number of bits from the LSB of the anonymous object to the LSB of the
1112 bitfield.
1113
1114 If the field is signed, we also do sign extension. */
1115
1116 LONGEST
1117 unpack_field_as_long (struct type *type, char *valaddr, int fieldno)
1118 {
1119 ULONGEST val;
1120 ULONGEST valmask;
1121 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1122 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1123 int lsbcount;
1124 struct type *field_type;
1125
1126 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1127 field_type = TYPE_FIELD_TYPE (type, fieldno);
1128 CHECK_TYPEDEF (field_type);
1129
1130 /* Extract bits. See comment above. */
1131
1132 if (BITS_BIG_ENDIAN)
1133 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1134 else
1135 lsbcount = (bitpos % 8);
1136 val >>= lsbcount;
1137
1138 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1139 If the field is signed, and is negative, then sign extend. */
1140
1141 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1142 {
1143 valmask = (((ULONGEST) 1) << bitsize) - 1;
1144 val &= valmask;
1145 if (!TYPE_UNSIGNED (field_type))
1146 {
1147 if (val & (valmask ^ (valmask >> 1)))
1148 {
1149 val |= ~valmask;
1150 }
1151 }
1152 }
1153 return (val);
1154 }
1155
1156 /* Modify the value of a bitfield. ADDR points to a block of memory in
1157 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1158 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1159 indicate which bits (in target bit order) comprise the bitfield. */
1160
1161 void
1162 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1163 {
1164 LONGEST oword;
1165
1166 /* If a negative fieldval fits in the field in question, chop
1167 off the sign extension bits. */
1168 if (bitsize < (8 * (int) sizeof (fieldval))
1169 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1170 fieldval = fieldval & ((1 << bitsize) - 1);
1171
1172 /* Warn if value is too big to fit in the field in question. */
1173 if (bitsize < (8 * (int) sizeof (fieldval))
1174 && 0 != (fieldval & ~((1 << bitsize) - 1)))
1175 {
1176 /* FIXME: would like to include fieldval in the message, but
1177 we don't have a sprintf_longest. */
1178 warning ("Value does not fit in %d bits.", bitsize);
1179
1180 /* Truncate it, otherwise adjoining fields may be corrupted. */
1181 fieldval = fieldval & ((1 << bitsize) - 1);
1182 }
1183
1184 oword = extract_signed_integer (addr, sizeof oword);
1185
1186 /* Shifting for bit field depends on endianness of the target machine. */
1187 if (BITS_BIG_ENDIAN)
1188 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1189
1190 /* Mask out old value, while avoiding shifts >= size of oword */
1191 if (bitsize < 8 * (int) sizeof (oword))
1192 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
1193 else
1194 oword &= ~((~(ULONGEST) 0) << bitpos);
1195 oword |= fieldval << bitpos;
1196
1197 store_signed_integer (addr, sizeof oword, oword);
1198 }
1199 \f
1200 /* Convert C numbers into newly allocated values */
1201
1202 struct value *
1203 value_from_longest (struct type *type, register LONGEST num)
1204 {
1205 struct value *val = allocate_value (type);
1206 register enum type_code code;
1207 register int len;
1208 retry:
1209 code = TYPE_CODE (type);
1210 len = TYPE_LENGTH (type);
1211
1212 switch (code)
1213 {
1214 case TYPE_CODE_TYPEDEF:
1215 type = check_typedef (type);
1216 goto retry;
1217 case TYPE_CODE_INT:
1218 case TYPE_CODE_CHAR:
1219 case TYPE_CODE_ENUM:
1220 case TYPE_CODE_BOOL:
1221 case TYPE_CODE_RANGE:
1222 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1223 break;
1224
1225 case TYPE_CODE_REF:
1226 case TYPE_CODE_PTR:
1227 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
1228 break;
1229
1230 default:
1231 error ("Unexpected type (%d) encountered for integer constant.", code);
1232 }
1233 return val;
1234 }
1235
1236
1237 /* Create a value representing a pointer of type TYPE to the address
1238 ADDR. */
1239 struct value *
1240 value_from_pointer (struct type *type, CORE_ADDR addr)
1241 {
1242 struct value *val = allocate_value (type);
1243 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1244 return val;
1245 }
1246
1247
1248 /* Create a value for a string constant to be stored locally
1249 (not in the inferior's memory space, but in GDB memory).
1250 This is analogous to value_from_longest, which also does not
1251 use inferior memory. String shall NOT contain embedded nulls. */
1252
1253 struct value *
1254 value_from_string (char *ptr)
1255 {
1256 struct value *val;
1257 int len = strlen (ptr);
1258 int lowbound = current_language->string_lower_bound;
1259 struct type *rangetype =
1260 create_range_type ((struct type *) NULL,
1261 builtin_type_int,
1262 lowbound, len + lowbound - 1);
1263 struct type *stringtype =
1264 create_array_type ((struct type *) NULL,
1265 *current_language->string_char_type,
1266 rangetype);
1267
1268 val = allocate_value (stringtype);
1269 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1270 return val;
1271 }
1272
1273 struct value *
1274 value_from_double (struct type *type, DOUBLEST num)
1275 {
1276 struct value *val = allocate_value (type);
1277 struct type *base_type = check_typedef (type);
1278 register enum type_code code = TYPE_CODE (base_type);
1279 register int len = TYPE_LENGTH (base_type);
1280
1281 if (code == TYPE_CODE_FLT)
1282 {
1283 store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
1284 }
1285 else
1286 error ("Unexpected type encountered for floating constant.");
1287
1288 return val;
1289 }
1290 \f
1291 /* Deal with the value that is "about to be returned". */
1292
1293 /* Return the value that a function returning now
1294 would be returning to its caller, assuming its type is VALTYPE.
1295 RETBUF is where we look for what ought to be the contents
1296 of the registers (in raw form). This is because it is often
1297 desirable to restore old values to those registers
1298 after saving the contents of interest, and then call
1299 this function using the saved values.
1300 struct_return is non-zero when the function in question is
1301 using the structure return conventions on the machine in question;
1302 0 when it is using the value returning conventions (this often
1303 means returning pointer to where structure is vs. returning value). */
1304
1305 /* ARGSUSED */
1306 struct value *
1307 value_being_returned (struct type *valtype, char *retbuf, int struct_return)
1308 {
1309 struct value *val;
1310 CORE_ADDR addr;
1311
1312 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1313 if (EXTRACT_STRUCT_VALUE_ADDRESS_P ())
1314 if (struct_return)
1315 {
1316 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1317 if (!addr)
1318 error ("Function return value unknown.");
1319 return value_at (valtype, addr, NULL);
1320 }
1321
1322 val = allocate_value (valtype);
1323 CHECK_TYPEDEF (valtype);
1324 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1325
1326 return val;
1327 }
1328
1329 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1330 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1331 and TYPE is the type (which is known to be struct, union or array).
1332
1333 On most machines, the struct convention is used unless we are
1334 using gcc and the type is of a special size. */
1335 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1336 native compiler. GCC 2.3.3 was the last release that did it the
1337 old way. Since gcc2_compiled was not changed, we have no
1338 way to correctly win in all cases, so we just do the right thing
1339 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1340 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1341 would cause more chaos than dealing with some struct returns being
1342 handled wrong. */
1343
1344 int
1345 generic_use_struct_convention (int gcc_p, struct type *value_type)
1346 {
1347 return !((gcc_p == 1)
1348 && (TYPE_LENGTH (value_type) == 1
1349 || TYPE_LENGTH (value_type) == 2
1350 || TYPE_LENGTH (value_type) == 4
1351 || TYPE_LENGTH (value_type) == 8));
1352 }
1353
1354 /* Return true if the function specified is using the structure returning
1355 convention on this machine to return arguments, or 0 if it is using
1356 the value returning convention. FUNCTION is the value representing
1357 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1358 is the type returned by the function. GCC_P is nonzero if compiled
1359 with GCC. */
1360
1361 /* ARGSUSED */
1362 int
1363 using_struct_return (struct value *function, CORE_ADDR funcaddr,
1364 struct type *value_type, int gcc_p)
1365 {
1366 register enum type_code code = TYPE_CODE (value_type);
1367
1368 if (code == TYPE_CODE_ERROR)
1369 error ("Function return type unknown.");
1370
1371 if (code == TYPE_CODE_STRUCT
1372 || code == TYPE_CODE_UNION
1373 || code == TYPE_CODE_ARRAY
1374 || RETURN_VALUE_ON_STACK (value_type))
1375 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1376
1377 return 0;
1378 }
1379
1380 /* Store VAL so it will be returned if a function returns now.
1381 Does not verify that VAL's type matches what the current
1382 function wants to return. */
1383
1384 void
1385 set_return_value (struct value *val)
1386 {
1387 struct type *type = check_typedef (VALUE_TYPE (val));
1388 register enum type_code code = TYPE_CODE (type);
1389
1390 if (code == TYPE_CODE_ERROR)
1391 error ("Function return type unknown.");
1392
1393 if (code == TYPE_CODE_STRUCT
1394 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1395 error ("GDB does not support specifying a struct or union return value.");
1396
1397 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1398 }
1399 \f
1400 void
1401 _initialize_values (void)
1402 {
1403 add_cmd ("convenience", no_class, show_convenience,
1404 "Debugger convenience (\"$foo\") variables.\n\
1405 These variables are created when you assign them values;\n\
1406 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1407 A few convenience variables are given values automatically:\n\
1408 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1409 \"$__\" holds the contents of the last address examined with \"x\".",
1410 &showlist);
1411
1412 add_cmd ("values", no_class, show_values,
1413 "Elements of value history around item number IDX (or last ten).",
1414 &showlist);
1415 }
This page took 0.059979 seconds and 4 git commands to generate.