* config/tc-dvp.c (VU_LABEL_PREFIX): New macro.
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995, 1996, 1997
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "scm-lang.h"
33 #include "demangle.h"
34
35 /* Local function prototypes. */
36
37 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
38 struct type *));
39
40 static void show_values PARAMS ((char *, int));
41
42 static void show_convenience PARAMS ((char *, int));
43
44 static int vb_match PARAMS ((struct type *, int, struct type *));
45
46 /* The value-history records all the values printed
47 by print commands during this session. Each chunk
48 records 60 consecutive values. The first chunk on
49 the chain records the most recent values.
50 The total number of values is in value_history_count. */
51
52 #define VALUE_HISTORY_CHUNK 60
53
54 struct value_history_chunk
55 {
56 struct value_history_chunk *next;
57 value_ptr values[VALUE_HISTORY_CHUNK];
58 };
59
60 /* Chain of chunks now in use. */
61
62 static struct value_history_chunk *value_history_chain;
63
64 static int value_history_count; /* Abs number of last entry stored */
65 \f
66 /* List of all value objects currently allocated
67 (except for those released by calls to release_value)
68 This is so they can be freed after each command. */
69
70 static value_ptr all_values;
71
72 /* Allocate a value that has the correct length for type TYPE. */
73
74 value_ptr
75 allocate_value (type)
76 struct type *type;
77 {
78 register value_ptr val;
79 struct type *atype = check_typedef (type);
80
81 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
82 VALUE_NEXT (val) = all_values;
83 all_values = val;
84 VALUE_TYPE (val) = type;
85 VALUE_LVAL (val) = not_lval;
86 VALUE_ADDRESS (val) = 0;
87 VALUE_FRAME (val) = 0;
88 VALUE_OFFSET (val) = 0;
89 VALUE_BITPOS (val) = 0;
90 VALUE_BITSIZE (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 VALUE_BFD_SECTION (val) = NULL;
95 val->modifiable = 1;
96 return val;
97 }
98
99 /* Allocate a value that has the correct length
100 for COUNT repetitions type TYPE. */
101
102 value_ptr
103 allocate_repeat_value (type, count)
104 struct type *type;
105 int count;
106 {
107 int low_bound = current_language->string_lower_bound; /* ??? */
108 /* FIXME-type-allocation: need a way to free this type when we are
109 done with it. */
110 struct type *range_type
111 = create_range_type ((struct type *) NULL, builtin_type_int,
112 low_bound, count + low_bound - 1);
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 return allocate_value (create_array_type ((struct type *) NULL,
116 type, range_type));
117 }
118
119 /* Return a mark in the value chain. All values allocated after the
120 mark is obtained (except for those released) are subject to being freed
121 if a subsequent value_free_to_mark is passed the mark. */
122 value_ptr
123 value_mark ()
124 {
125 return all_values;
126 }
127
128 /* Free all values allocated since MARK was obtained by value_mark
129 (except for those released). */
130 void
131 value_free_to_mark (mark)
132 value_ptr mark;
133 {
134 value_ptr val, next;
135
136 for (val = all_values; val && val != mark; val = next)
137 {
138 next = VALUE_NEXT (val);
139 value_free (val);
140 }
141 all_values = val;
142 }
143
144 /* Free all the values that have been allocated (except for those released).
145 Called after each command, successful or not. */
146
147 void
148 free_all_values ()
149 {
150 register value_ptr val, next;
151
152 for (val = all_values; val; val = next)
153 {
154 next = VALUE_NEXT (val);
155 value_free (val);
156 }
157
158 all_values = 0;
159 }
160
161 /* Remove VAL from the chain all_values
162 so it will not be freed automatically. */
163
164 void
165 release_value (val)
166 register value_ptr val;
167 {
168 register value_ptr v;
169
170 if (all_values == val)
171 {
172 all_values = val->next;
173 return;
174 }
175
176 for (v = all_values; v; v = v->next)
177 {
178 if (v->next == val)
179 {
180 v->next = val->next;
181 break;
182 }
183 }
184 }
185
186 /* Release all values up to mark */
187 value_ptr
188 value_release_to_mark (mark)
189 value_ptr mark;
190 {
191 value_ptr val, next;
192
193 for (val = next = all_values; next; next = VALUE_NEXT (next))
194 if (VALUE_NEXT (next) == mark)
195 {
196 all_values = VALUE_NEXT (next);
197 VALUE_NEXT (next) = 0;
198 return val;
199 }
200 all_values = 0;
201 return val;
202 }
203
204 /* Return a copy of the value ARG.
205 It contains the same contents, for same memory address,
206 but it's a different block of storage. */
207
208 value_ptr
209 value_copy (arg)
210 value_ptr arg;
211 {
212 register struct type *type = VALUE_TYPE (arg);
213 register value_ptr val = allocate_value (type);
214 VALUE_LVAL (val) = VALUE_LVAL (arg);
215 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
216 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
217 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
218 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
219 VALUE_FRAME (val) = VALUE_FRAME (arg);
220 VALUE_REGNO (val) = VALUE_REGNO (arg);
221 VALUE_LAZY (val) = VALUE_LAZY (arg);
222 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
223 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
224 val->modifiable = arg->modifiable;
225 if (!VALUE_LAZY (val))
226 {
227 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
228 TYPE_LENGTH (VALUE_TYPE (arg)));
229 }
230 return val;
231 }
232 \f
233 /* Access to the value history. */
234
235 /* Record a new value in the value history.
236 Returns the absolute history index of the entry.
237 Result of -1 indicates the value was not saved; otherwise it is the
238 value history index of this new item. */
239
240 int
241 record_latest_value (val)
242 value_ptr val;
243 {
244 int i;
245
246 /* We don't want this value to have anything to do with the inferior anymore.
247 In particular, "set $1 = 50" should not affect the variable from which
248 the value was taken, and fast watchpoints should be able to assume that
249 a value on the value history never changes. */
250 if (VALUE_LAZY (val))
251 value_fetch_lazy (val);
252 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
253 from. This is a bit dubious, because then *&$1 does not just return $1
254 but the current contents of that location. c'est la vie... */
255 val->modifiable = 0;
256 release_value (val);
257
258 /* Here we treat value_history_count as origin-zero
259 and applying to the value being stored now. */
260
261 i = value_history_count % VALUE_HISTORY_CHUNK;
262 if (i == 0)
263 {
264 register struct value_history_chunk *new
265 = (struct value_history_chunk *)
266 xmalloc (sizeof (struct value_history_chunk));
267 memset (new->values, 0, sizeof new->values);
268 new->next = value_history_chain;
269 value_history_chain = new;
270 }
271
272 value_history_chain->values[i] = val;
273
274 /* Now we regard value_history_count as origin-one
275 and applying to the value just stored. */
276
277 return ++value_history_count;
278 }
279
280 /* Return a copy of the value in the history with sequence number NUM. */
281
282 value_ptr
283 access_value_history (num)
284 int num;
285 {
286 register struct value_history_chunk *chunk;
287 register int i;
288 register int absnum = num;
289
290 if (absnum <= 0)
291 absnum += value_history_count;
292
293 if (absnum <= 0)
294 {
295 if (num == 0)
296 error ("The history is empty.");
297 else if (num == 1)
298 error ("There is only one value in the history.");
299 else
300 error ("History does not go back to $$%d.", -num);
301 }
302 if (absnum > value_history_count)
303 error ("History has not yet reached $%d.", absnum);
304
305 absnum--;
306
307 /* Now absnum is always absolute and origin zero. */
308
309 chunk = value_history_chain;
310 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
311 i > 0; i--)
312 chunk = chunk->next;
313
314 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
315 }
316
317 /* Clear the value history entirely.
318 Must be done when new symbol tables are loaded,
319 because the type pointers become invalid. */
320
321 void
322 clear_value_history ()
323 {
324 register struct value_history_chunk *next;
325 register int i;
326 register value_ptr val;
327
328 while (value_history_chain)
329 {
330 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
331 if ((val = value_history_chain->values[i]) != NULL)
332 free ((PTR)val);
333 next = value_history_chain->next;
334 free ((PTR)value_history_chain);
335 value_history_chain = next;
336 }
337 value_history_count = 0;
338 }
339
340 static void
341 show_values (num_exp, from_tty)
342 char *num_exp;
343 int from_tty;
344 {
345 register int i;
346 register value_ptr val;
347 static int num = 1;
348
349 if (num_exp)
350 {
351 /* "info history +" should print from the stored position.
352 "info history <exp>" should print around value number <exp>. */
353 if (num_exp[0] != '+' || num_exp[1] != '\0')
354 num = parse_and_eval_address (num_exp) - 5;
355 }
356 else
357 {
358 /* "info history" means print the last 10 values. */
359 num = value_history_count - 9;
360 }
361
362 if (num <= 0)
363 num = 1;
364
365 for (i = num; i < num + 10 && i <= value_history_count; i++)
366 {
367 val = access_value_history (i);
368 printf_filtered ("$%d = ", i);
369 value_print (val, gdb_stdout, 0, Val_pretty_default);
370 printf_filtered ("\n");
371 }
372
373 /* The next "info history +" should start after what we just printed. */
374 num += 10;
375
376 /* Hitting just return after this command should do the same thing as
377 "info history +". If num_exp is null, this is unnecessary, since
378 "info history +" is not useful after "info history". */
379 if (from_tty && num_exp)
380 {
381 num_exp[0] = '+';
382 num_exp[1] = '\0';
383 }
384 }
385 \f
386 /* Internal variables. These are variables within the debugger
387 that hold values assigned by debugger commands.
388 The user refers to them with a '$' prefix
389 that does not appear in the variable names stored internally. */
390
391 static struct internalvar *internalvars;
392
393 /* Look up an internal variable with name NAME. NAME should not
394 normally include a dollar sign.
395
396 If the specified internal variable does not exist,
397 one is created, with a void value. */
398
399 struct internalvar *
400 lookup_internalvar (name)
401 char *name;
402 {
403 register struct internalvar *var;
404
405 for (var = internalvars; var; var = var->next)
406 if (STREQ (var->name, name))
407 return var;
408
409 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
410 var->name = concat (name, NULL);
411 var->value = allocate_value (builtin_type_void);
412 release_value (var->value);
413 var->next = internalvars;
414 internalvars = var;
415 return var;
416 }
417
418 value_ptr
419 value_of_internalvar (var)
420 struct internalvar *var;
421 {
422 register value_ptr val;
423
424 #ifdef IS_TRAPPED_INTERNALVAR
425 if (IS_TRAPPED_INTERNALVAR (var->name))
426 return VALUE_OF_TRAPPED_INTERNALVAR (var);
427 #endif
428
429 val = value_copy (var->value);
430 if (VALUE_LAZY (val))
431 value_fetch_lazy (val);
432 VALUE_LVAL (val) = lval_internalvar;
433 VALUE_INTERNALVAR (val) = var;
434 return val;
435 }
436
437 void
438 set_internalvar_component (var, offset, bitpos, bitsize, newval)
439 struct internalvar *var;
440 int offset, bitpos, bitsize;
441 value_ptr newval;
442 {
443 register char *addr = VALUE_CONTENTS (var->value) + offset;
444
445 #ifdef IS_TRAPPED_INTERNALVAR
446 if (IS_TRAPPED_INTERNALVAR (var->name))
447 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
448 #endif
449
450 if (bitsize)
451 modify_field (addr, value_as_long (newval),
452 bitpos, bitsize);
453 else
454 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
455 }
456
457 void
458 set_internalvar (var, val)
459 struct internalvar *var;
460 value_ptr val;
461 {
462 value_ptr newval;
463
464 #ifdef IS_TRAPPED_INTERNALVAR
465 if (IS_TRAPPED_INTERNALVAR (var->name))
466 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
467 #endif
468
469 newval = value_copy (val);
470 newval->modifiable = 1;
471
472 /* Force the value to be fetched from the target now, to avoid problems
473 later when this internalvar is referenced and the target is gone or
474 has changed. */
475 if (VALUE_LAZY (newval))
476 value_fetch_lazy (newval);
477
478 /* Begin code which must not call error(). If var->value points to
479 something free'd, an error() obviously leaves a dangling pointer.
480 But we also get a danling pointer if var->value points to
481 something in the value chain (i.e., before release_value is
482 called), because after the error free_all_values will get called before
483 long. */
484 free ((PTR)var->value);
485 var->value = newval;
486 release_value (newval);
487 /* End code which must not call error(). */
488 }
489
490 char *
491 internalvar_name (var)
492 struct internalvar *var;
493 {
494 return var->name;
495 }
496
497 /* Free all internalvars. Done when new symtabs are loaded,
498 because that makes the values invalid. */
499
500 void
501 clear_internalvars ()
502 {
503 register struct internalvar *var;
504
505 while (internalvars)
506 {
507 var = internalvars;
508 internalvars = var->next;
509 free ((PTR)var->name);
510 free ((PTR)var->value);
511 free ((PTR)var);
512 }
513 }
514
515 static void
516 show_convenience (ignore, from_tty)
517 char *ignore;
518 int from_tty;
519 {
520 register struct internalvar *var;
521 int varseen = 0;
522
523 for (var = internalvars; var; var = var->next)
524 {
525 #ifdef IS_TRAPPED_INTERNALVAR
526 if (IS_TRAPPED_INTERNALVAR (var->name))
527 continue;
528 #endif
529 if (!varseen)
530 {
531 varseen = 1;
532 }
533 printf_filtered ("$%s = ", var->name);
534 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
535 printf_filtered ("\n");
536 }
537 if (!varseen)
538 printf_unfiltered ("No debugger convenience variables now defined.\n\
539 Convenience variables have names starting with \"$\";\n\
540 use \"set\" as in \"set $foo = 5\" to define them.\n");
541 }
542 \f
543 /* Extract a value as a C number (either long or double).
544 Knows how to convert fixed values to double, or
545 floating values to long.
546 Does not deallocate the value. */
547
548 LONGEST
549 value_as_long (val)
550 register value_ptr val;
551 {
552 /* This coerces arrays and functions, which is necessary (e.g.
553 in disassemble_command). It also dereferences references, which
554 I suspect is the most logical thing to do. */
555 COERCE_ARRAY (val);
556 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
557 }
558
559 DOUBLEST
560 value_as_double (val)
561 register value_ptr val;
562 {
563 DOUBLEST foo;
564 int inv;
565
566 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
567 if (inv)
568 error ("Invalid floating value found in program.");
569 return foo;
570 }
571 /* Extract a value as a C pointer.
572 Does not deallocate the value. */
573 CORE_ADDR
574 value_as_pointer (val)
575 value_ptr val;
576 {
577 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
578 whether we want this to be true eventually. */
579 #if 0
580 /* ADDR_BITS_REMOVE is wrong if we are being called for a
581 non-address (e.g. argument to "signal", "info break", etc.), or
582 for pointers to char, in which the low bits *are* significant. */
583 return ADDR_BITS_REMOVE(value_as_long (val));
584 #else
585 return value_as_long (val);
586 #endif
587 }
588 \f
589 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
590 as a long, or as a double, assuming the raw data is described
591 by type TYPE. Knows how to convert different sizes of values
592 and can convert between fixed and floating point. We don't assume
593 any alignment for the raw data. Return value is in host byte order.
594
595 If you want functions and arrays to be coerced to pointers, and
596 references to be dereferenced, call value_as_long() instead.
597
598 C++: It is assumed that the front-end has taken care of
599 all matters concerning pointers to members. A pointer
600 to member which reaches here is considered to be equivalent
601 to an INT (or some size). After all, it is only an offset. */
602
603 LONGEST
604 unpack_long (type, valaddr)
605 struct type *type;
606 char *valaddr;
607 {
608 register enum type_code code = TYPE_CODE (type);
609 register int len = TYPE_LENGTH (type);
610 register int nosign = TYPE_UNSIGNED (type);
611
612 if (current_language->la_language == language_scm
613 && is_scmvalue_type (type))
614 return scm_unpack (type, valaddr, TYPE_CODE_INT);
615
616 switch (code)
617 {
618 case TYPE_CODE_TYPEDEF:
619 return unpack_long (check_typedef (type), valaddr);
620 case TYPE_CODE_ENUM:
621 case TYPE_CODE_BOOL:
622 case TYPE_CODE_INT:
623 case TYPE_CODE_CHAR:
624 case TYPE_CODE_RANGE:
625 if (nosign)
626 return extract_unsigned_integer (valaddr, len);
627 else
628 return extract_signed_integer (valaddr, len);
629
630 case TYPE_CODE_FLT:
631 return extract_floating (valaddr, len);
632
633 case TYPE_CODE_PTR:
634 case TYPE_CODE_REF:
635 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
636 whether we want this to be true eventually. */
637 #ifdef GDB_TARGET_IS_D10V
638 if (len == 2)
639 return D10V_MAKE_DADDR(extract_address (valaddr, len));
640 #endif
641 return extract_address (valaddr, len);
642
643 case TYPE_CODE_MEMBER:
644 error ("not implemented: member types in unpack_long");
645
646 default:
647 error ("Value can't be converted to integer.");
648 }
649 return 0; /* Placate lint. */
650 }
651
652 /* Return a double value from the specified type and address.
653 INVP points to an int which is set to 0 for valid value,
654 1 for invalid value (bad float format). In either case,
655 the returned double is OK to use. Argument is in target
656 format, result is in host format. */
657
658 DOUBLEST
659 unpack_double (type, valaddr, invp)
660 struct type *type;
661 char *valaddr;
662 int *invp;
663 {
664 register enum type_code code = TYPE_CODE (type);
665 register int len = TYPE_LENGTH (type);
666 register int nosign = TYPE_UNSIGNED (type);
667
668 *invp = 0; /* Assume valid. */
669 CHECK_TYPEDEF (type);
670 if (code == TYPE_CODE_FLT)
671 {
672 #ifdef INVALID_FLOAT
673 if (INVALID_FLOAT (valaddr, len))
674 {
675 *invp = 1;
676 return 1.234567891011121314;
677 }
678 #endif
679 return extract_floating (valaddr, len);
680 }
681 else if (nosign)
682 {
683 /* Unsigned -- be sure we compensate for signed LONGEST. */
684 #if !defined (_MSC_VER) || (_MSC_VER > 900)
685 return (ULONGEST) unpack_long (type, valaddr);
686 #else
687 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
688 return (LONGEST) unpack_long (type, valaddr);
689 #endif /* _MSC_VER */
690 }
691 else
692 {
693 /* Signed -- we are OK with unpack_long. */
694 return unpack_long (type, valaddr);
695 }
696 }
697
698 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
699 as a CORE_ADDR, assuming the raw data is described by type TYPE.
700 We don't assume any alignment for the raw data. Return value is in
701 host byte order.
702
703 If you want functions and arrays to be coerced to pointers, and
704 references to be dereferenced, call value_as_pointer() instead.
705
706 C++: It is assumed that the front-end has taken care of
707 all matters concerning pointers to members. A pointer
708 to member which reaches here is considered to be equivalent
709 to an INT (or some size). After all, it is only an offset. */
710
711 CORE_ADDR
712 unpack_pointer (type, valaddr)
713 struct type *type;
714 char *valaddr;
715 {
716 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
717 whether we want this to be true eventually. */
718 return unpack_long (type, valaddr);
719 }
720 \f
721 /* Get the value of the FIELDN'th field (which must be static) of TYPE. */
722
723 value_ptr
724 value_static_field (type, fieldno)
725 struct type *type;
726 int fieldno;
727 {
728 CORE_ADDR addr;
729 asection *sect;
730 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
731 {
732 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
733 sect = NULL;
734 }
735 else
736 {
737 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
738 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
739 if (sym == NULL)
740 return NULL;
741 addr = SYMBOL_VALUE_ADDRESS (sym);
742 sect = SYMBOL_BFD_SECTION (sym);
743 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
744 }
745 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
746 }
747
748 /* Given a value ARG1 (offset by OFFSET bytes)
749 of a struct or union type ARG_TYPE,
750 extract and return the value of one of its (non-static) fields.
751 FIELDNO says which field. */
752
753 value_ptr
754 value_primitive_field (arg1, offset, fieldno, arg_type)
755 register value_ptr arg1;
756 int offset;
757 register int fieldno;
758 register struct type *arg_type;
759 {
760 register value_ptr v;
761 register struct type *type;
762
763 CHECK_TYPEDEF (arg_type);
764 type = TYPE_FIELD_TYPE (arg_type, fieldno);
765
766 /* Handle packed fields */
767
768 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
769 {
770 v = value_from_longest (type,
771 unpack_field_as_long (arg_type,
772 VALUE_CONTENTS (arg1)
773 + offset,
774 fieldno));
775 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
776 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
777 }
778 else
779 {
780 v = allocate_value (type);
781 if (VALUE_LAZY (arg1))
782 VALUE_LAZY (v) = 1;
783 else
784 memcpy (VALUE_CONTENTS_RAW (v),
785 VALUE_CONTENTS_RAW (arg1) + offset
786 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8,
787 TYPE_LENGTH (type));
788 }
789 VALUE_LVAL (v) = VALUE_LVAL (arg1);
790 if (VALUE_LVAL (arg1) == lval_internalvar)
791 VALUE_LVAL (v) = lval_internalvar_component;
792 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
793 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
794 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
795 return v;
796 }
797
798 /* Given a value ARG1 of a struct or union type,
799 extract and return the value of one of its (non-static) fields.
800 FIELDNO says which field. */
801
802 value_ptr
803 value_field (arg1, fieldno)
804 register value_ptr arg1;
805 register int fieldno;
806 {
807 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
808 }
809
810 /* Return a non-virtual function as a value.
811 F is the list of member functions which contains the desired method.
812 J is an index into F which provides the desired method. */
813
814 value_ptr
815 value_fn_field (arg1p, f, j, type, offset)
816 value_ptr *arg1p;
817 struct fn_field *f;
818 int j;
819 struct type *type;
820 int offset;
821 {
822 register value_ptr v;
823 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
824 struct symbol *sym;
825
826 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
827 0, VAR_NAMESPACE, 0, NULL);
828 if (! sym)
829 return NULL;
830 /*
831 error ("Internal error: could not find physical method named %s",
832 TYPE_FN_FIELD_PHYSNAME (f, j));
833 */
834
835 v = allocate_value (ftype);
836 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
837 VALUE_TYPE (v) = ftype;
838
839 if (arg1p)
840 {
841 if (type != VALUE_TYPE (*arg1p))
842 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
843 value_addr (*arg1p)));
844
845 /* Move the `this' pointer according to the offset.
846 VALUE_OFFSET (*arg1p) += offset;
847 */
848 }
849
850 return v;
851 }
852
853 /* Return a virtual function as a value.
854 ARG1 is the object which provides the virtual function
855 table pointer. *ARG1P is side-effected in calling this function.
856 F is the list of member functions which contains the desired virtual
857 function.
858 J is an index into F which provides the desired virtual function.
859
860 TYPE is the type in which F is located. */
861 value_ptr
862 value_virtual_fn_field (arg1p, f, j, type, offset)
863 value_ptr *arg1p;
864 struct fn_field *f;
865 int j;
866 struct type *type;
867 int offset;
868 {
869 value_ptr arg1 = *arg1p;
870 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
871 struct type *entry_type;
872 /* First, get the virtual function table pointer. That comes
873 with a strange type, so cast it to type `pointer to long' (which
874 should serve just fine as a function type). Then, index into
875 the table, and convert final value to appropriate function type. */
876 value_ptr entry, vfn, vtbl;
877 value_ptr vi = value_from_longest (builtin_type_int,
878 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
879 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
880 struct type *context;
881 if (fcontext == NULL)
882 /* We don't have an fcontext (e.g. the program was compiled with
883 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
884 This won't work right for multiple inheritance, but at least we
885 should do as well as GDB 3.x did. */
886 fcontext = TYPE_VPTR_BASETYPE (type);
887 context = lookup_pointer_type (fcontext);
888 /* Now context is a pointer to the basetype containing the vtbl. */
889 if (TYPE_TARGET_TYPE (context) != type1)
890 {
891 arg1 = value_ind (value_cast (context, value_addr (arg1)));
892 type1 = check_typedef (VALUE_TYPE (arg1));
893 }
894
895 context = type1;
896 /* Now context is the basetype containing the vtbl. */
897
898 /* This type may have been defined before its virtual function table
899 was. If so, fill in the virtual function table entry for the
900 type now. */
901 if (TYPE_VPTR_FIELDNO (context) < 0)
902 fill_in_vptr_fieldno (context);
903
904 /* The virtual function table is now an array of structures
905 which have the form { int16 offset, delta; void *pfn; }. */
906 vtbl = value_ind (value_primitive_field (arg1, 0,
907 TYPE_VPTR_FIELDNO (context),
908 TYPE_VPTR_BASETYPE (context)));
909
910 /* Index into the virtual function table. This is hard-coded because
911 looking up a field is not cheap, and it may be important to save
912 time, e.g. if the user has set a conditional breakpoint calling
913 a virtual function. */
914 entry = value_subscript (vtbl, vi);
915 entry_type = check_typedef (VALUE_TYPE (entry));
916
917 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
918 {
919 /* Move the `this' pointer according to the virtual function table. */
920 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
921
922 if (! VALUE_LAZY (arg1))
923 {
924 VALUE_LAZY (arg1) = 1;
925 value_fetch_lazy (arg1);
926 }
927
928 vfn = value_field (entry, 2);
929 }
930 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
931 vfn = entry;
932 else
933 error ("I'm confused: virtual function table has bad type");
934 /* Reinstantiate the function pointer with the correct type. */
935 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
936
937 *arg1p = arg1;
938 return vfn;
939 }
940
941 /* ARG is a pointer to an object we know to be at least
942 a DTYPE. BTYPE is the most derived basetype that has
943 already been searched (and need not be searched again).
944 After looking at the vtables between BTYPE and DTYPE,
945 return the most derived type we find. The caller must
946 be satisfied when the return value == DTYPE.
947
948 FIXME-tiemann: should work with dossier entries as well. */
949
950 static value_ptr
951 value_headof (in_arg, btype, dtype)
952 value_ptr in_arg;
953 struct type *btype, *dtype;
954 {
955 /* First collect the vtables we must look at for this object. */
956 /* FIXME-tiemann: right now, just look at top-most vtable. */
957 value_ptr arg, vtbl, entry, best_entry = 0;
958 int i, nelems;
959 int offset, best_offset = 0;
960 struct symbol *sym;
961 CORE_ADDR pc_for_sym;
962 char *demangled_name;
963 struct minimal_symbol *msymbol;
964
965 btype = TYPE_VPTR_BASETYPE (dtype);
966 CHECK_TYPEDEF (btype);
967 arg = in_arg;
968 if (btype != dtype)
969 arg = value_cast (lookup_pointer_type (btype), arg);
970 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
971
972 /* Check that VTBL looks like it points to a virtual function table. */
973 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
974 if (msymbol == NULL
975 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
976 || !VTBL_PREFIX_P (demangled_name))
977 {
978 /* If we expected to find a vtable, but did not, let the user
979 know that we aren't happy, but don't throw an error.
980 FIXME: there has to be a better way to do this. */
981 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
982 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
983 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
984 VALUE_TYPE (in_arg) = error_type;
985 return in_arg;
986 }
987
988 /* Now search through the virtual function table. */
989 entry = value_ind (vtbl);
990 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
991 for (i = 1; i <= nelems; i++)
992 {
993 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
994 (LONGEST) i));
995 /* This won't work if we're using thunks. */
996 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
997 break;
998 offset = longest_to_int (value_as_long (value_field (entry, 0)));
999 /* If we use '<=' we can handle single inheritance
1000 * where all offsets are zero - just use the first entry found. */
1001 if (offset <= best_offset)
1002 {
1003 best_offset = offset;
1004 best_entry = entry;
1005 }
1006 }
1007 /* Move the pointer according to BEST_ENTRY's offset, and figure
1008 out what type we should return as the new pointer. */
1009 if (best_entry == 0)
1010 {
1011 /* An alternative method (which should no longer be necessary).
1012 * But we leave it in for future use, when we will hopefully
1013 * have optimizes the vtable to use thunks instead of offsets. */
1014 /* Use the name of vtable itself to extract a base type. */
1015 demangled_name += 4; /* Skip _vt$ prefix. */
1016 }
1017 else
1018 {
1019 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1020 sym = find_pc_function (pc_for_sym);
1021 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
1022 *(strchr (demangled_name, ':')) = '\0';
1023 }
1024 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1025 if (sym == NULL)
1026 error ("could not find type declaration for `%s'", demangled_name);
1027 if (best_entry)
1028 {
1029 free (demangled_name);
1030 arg = value_add (value_cast (builtin_type_int, arg),
1031 value_field (best_entry, 0));
1032 }
1033 else arg = in_arg;
1034 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1035 return arg;
1036 }
1037
1038 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1039 function tables, probe ARG's tables (including the vtables
1040 of its baseclasses) to figure out the most derived type that ARG
1041 could actually be a pointer to. */
1042
1043 value_ptr
1044 value_from_vtable_info (arg, type)
1045 value_ptr arg;
1046 struct type *type;
1047 {
1048 /* Take care of preliminaries. */
1049 if (TYPE_VPTR_FIELDNO (type) < 0)
1050 fill_in_vptr_fieldno (type);
1051 if (TYPE_VPTR_FIELDNO (type) < 0)
1052 return 0;
1053
1054 return value_headof (arg, 0, type);
1055 }
1056
1057 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1058 pointer which is for the base class whose type is BASECLASS. */
1059
1060 static int
1061 vb_match (type, index, basetype)
1062 struct type *type;
1063 int index;
1064 struct type *basetype;
1065 {
1066 struct type *fieldtype;
1067 char *name = TYPE_FIELD_NAME (type, index);
1068 char *field_class_name = NULL;
1069
1070 if (*name != '_')
1071 return 0;
1072 /* gcc 2.4 uses _vb$. */
1073 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1074 field_class_name = name + 4;
1075 /* gcc 2.5 will use __vb_. */
1076 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1077 field_class_name = name + 5;
1078
1079 if (field_class_name == NULL)
1080 /* This field is not a virtual base class pointer. */
1081 return 0;
1082
1083 /* It's a virtual baseclass pointer, now we just need to find out whether
1084 it is for this baseclass. */
1085 fieldtype = TYPE_FIELD_TYPE (type, index);
1086 if (fieldtype == NULL
1087 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1088 /* "Can't happen". */
1089 return 0;
1090
1091 /* What we check for is that either the types are equal (needed for
1092 nameless types) or have the same name. This is ugly, and a more
1093 elegant solution should be devised (which would probably just push
1094 the ugliness into symbol reading unless we change the stabs format). */
1095 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1096 return 1;
1097
1098 if (TYPE_NAME (basetype) != NULL
1099 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1100 && STREQ (TYPE_NAME (basetype),
1101 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1102 return 1;
1103 return 0;
1104 }
1105
1106 /* Compute the offset of the baseclass which is
1107 the INDEXth baseclass of class TYPE,
1108 for value at VALADDR (in host) at ADDRESS (in target).
1109 The result is the offset of the baseclass value relative
1110 to (the address of)(ARG) + OFFSET.
1111
1112 -1 is returned on error. */
1113
1114 int
1115 baseclass_offset (type, index, valaddr, address)
1116 struct type *type;
1117 int index;
1118 char *valaddr;
1119 CORE_ADDR address;
1120 {
1121 struct type *basetype = TYPE_BASECLASS (type, index);
1122
1123 if (BASETYPE_VIA_VIRTUAL (type, index))
1124 {
1125 /* Must hunt for the pointer to this virtual baseclass. */
1126 register int i, len = TYPE_NFIELDS (type);
1127 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1128
1129 /* First look for the virtual baseclass pointer
1130 in the fields. */
1131 for (i = n_baseclasses; i < len; i++)
1132 {
1133 if (vb_match (type, i, basetype))
1134 {
1135 CORE_ADDR addr
1136 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1137 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1138
1139 return addr - (LONGEST) address;
1140 }
1141 }
1142 /* Not in the fields, so try looking through the baseclasses. */
1143 for (i = index+1; i < n_baseclasses; i++)
1144 {
1145 int boffset =
1146 baseclass_offset (type, i, valaddr, address);
1147 if (boffset)
1148 return boffset;
1149 }
1150 /* Not found. */
1151 return -1;
1152 }
1153
1154 /* Baseclass is easily computed. */
1155 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1156 }
1157 \f
1158 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1159 VALADDR.
1160
1161 Extracting bits depends on endianness of the machine. Compute the
1162 number of least significant bits to discard. For big endian machines,
1163 we compute the total number of bits in the anonymous object, subtract
1164 off the bit count from the MSB of the object to the MSB of the
1165 bitfield, then the size of the bitfield, which leaves the LSB discard
1166 count. For little endian machines, the discard count is simply the
1167 number of bits from the LSB of the anonymous object to the LSB of the
1168 bitfield.
1169
1170 If the field is signed, we also do sign extension. */
1171
1172 LONGEST
1173 unpack_field_as_long (type, valaddr, fieldno)
1174 struct type *type;
1175 char *valaddr;
1176 int fieldno;
1177 {
1178 ULONGEST val;
1179 ULONGEST valmask;
1180 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1181 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1182 int lsbcount;
1183
1184 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1185
1186 /* Extract bits. See comment above. */
1187
1188 if (BITS_BIG_ENDIAN)
1189 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1190 else
1191 lsbcount = (bitpos % 8);
1192 val >>= lsbcount;
1193
1194 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1195 If the field is signed, and is negative, then sign extend. */
1196
1197 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1198 {
1199 valmask = (((ULONGEST) 1) << bitsize) - 1;
1200 val &= valmask;
1201 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1202 {
1203 if (val & (valmask ^ (valmask >> 1)))
1204 {
1205 val |= ~valmask;
1206 }
1207 }
1208 }
1209 return (val);
1210 }
1211
1212 /* Modify the value of a bitfield. ADDR points to a block of memory in
1213 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1214 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1215 indicate which bits (in target bit order) comprise the bitfield. */
1216
1217 void
1218 modify_field (addr, fieldval, bitpos, bitsize)
1219 char *addr;
1220 LONGEST fieldval;
1221 int bitpos, bitsize;
1222 {
1223 LONGEST oword;
1224
1225 /* If a negative fieldval fits in the field in question, chop
1226 off the sign extension bits. */
1227 if (bitsize < (8 * (int) sizeof (fieldval))
1228 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1229 fieldval = fieldval & ((1 << bitsize) - 1);
1230
1231 /* Warn if value is too big to fit in the field in question. */
1232 if (bitsize < (8 * (int) sizeof (fieldval))
1233 && 0 != (fieldval & ~((1<<bitsize)-1)))
1234 {
1235 /* FIXME: would like to include fieldval in the message, but
1236 we don't have a sprintf_longest. */
1237 warning ("Value does not fit in %d bits.", bitsize);
1238
1239 /* Truncate it, otherwise adjoining fields may be corrupted. */
1240 fieldval = fieldval & ((1 << bitsize) - 1);
1241 }
1242
1243 oword = extract_signed_integer (addr, sizeof oword);
1244
1245 /* Shifting for bit field depends on endianness of the target machine. */
1246 if (BITS_BIG_ENDIAN)
1247 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1248
1249 /* Mask out old value, while avoiding shifts >= size of oword */
1250 if (bitsize < 8 * (int) sizeof (oword))
1251 oword &= ~(((((ULONGEST)1) << bitsize) - 1) << bitpos);
1252 else
1253 oword &= ~((~(ULONGEST)0) << bitpos);
1254 oword |= fieldval << bitpos;
1255
1256 store_signed_integer (addr, sizeof oword, oword);
1257 }
1258 \f
1259 /* Convert C numbers into newly allocated values */
1260
1261 value_ptr
1262 value_from_longest (type, num)
1263 struct type *type;
1264 register LONGEST num;
1265 {
1266 register value_ptr val = allocate_value (type);
1267 register enum type_code code;
1268 register int len;
1269 retry:
1270 code = TYPE_CODE (type);
1271 len = TYPE_LENGTH (type);
1272
1273 switch (code)
1274 {
1275 case TYPE_CODE_TYPEDEF:
1276 type = check_typedef (type);
1277 goto retry;
1278 case TYPE_CODE_INT:
1279 case TYPE_CODE_CHAR:
1280 case TYPE_CODE_ENUM:
1281 case TYPE_CODE_BOOL:
1282 case TYPE_CODE_RANGE:
1283 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1284 break;
1285
1286 case TYPE_CODE_REF:
1287 case TYPE_CODE_PTR:
1288 /* This assumes that all pointers of a given length
1289 have the same form. */
1290 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1291 break;
1292
1293 default:
1294 error ("Unexpected type encountered for integer constant.");
1295 }
1296 return val;
1297 }
1298
1299 value_ptr
1300 value_from_double (type, num)
1301 struct type *type;
1302 DOUBLEST num;
1303 {
1304 register value_ptr val = allocate_value (type);
1305 struct type *base_type = check_typedef (type);
1306 register enum type_code code = TYPE_CODE (base_type);
1307 register int len = TYPE_LENGTH (base_type);
1308
1309 if (code == TYPE_CODE_FLT)
1310 {
1311 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1312 }
1313 else
1314 error ("Unexpected type encountered for floating constant.");
1315
1316 return val;
1317 }
1318 \f
1319 /* Deal with the value that is "about to be returned". */
1320
1321 /* Return the value that a function returning now
1322 would be returning to its caller, assuming its type is VALTYPE.
1323 RETBUF is where we look for what ought to be the contents
1324 of the registers (in raw form). This is because it is often
1325 desirable to restore old values to those registers
1326 after saving the contents of interest, and then call
1327 this function using the saved values.
1328 struct_return is non-zero when the function in question is
1329 using the structure return conventions on the machine in question;
1330 0 when it is using the value returning conventions (this often
1331 means returning pointer to where structure is vs. returning value). */
1332
1333 value_ptr
1334 value_being_returned (valtype, retbuf, struct_return)
1335 register struct type *valtype;
1336 char retbuf[REGISTER_BYTES];
1337 int struct_return;
1338 /*ARGSUSED*/
1339 {
1340 register value_ptr val;
1341 CORE_ADDR addr;
1342
1343 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1344 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1345 if (struct_return) {
1346 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1347 if (!addr)
1348 error ("Function return value unknown");
1349 return value_at (valtype, addr, NULL);
1350 }
1351 #endif
1352
1353 val = allocate_value (valtype);
1354 CHECK_TYPEDEF (valtype);
1355 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1356
1357 return val;
1358 }
1359
1360 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1361 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1362 and TYPE is the type (which is known to be struct, union or array).
1363
1364 On most machines, the struct convention is used unless we are
1365 using gcc and the type is of a special size. */
1366 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1367 native compiler. GCC 2.3.3 was the last release that did it the
1368 old way. Since gcc2_compiled was not changed, we have no
1369 way to correctly win in all cases, so we just do the right thing
1370 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1371 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1372 would cause more chaos than dealing with some struct returns being
1373 handled wrong. */
1374 #if !defined (USE_STRUCT_CONVENTION)
1375 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1376 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1377 || TYPE_LENGTH (value_type) == 2 \
1378 || TYPE_LENGTH (value_type) == 4 \
1379 || TYPE_LENGTH (value_type) == 8 \
1380 ) \
1381 ))
1382 #endif
1383
1384 /* Some fundamental types (such as long double) are returned on the stack for
1385 certain architectures. This macro should return true for any type besides
1386 struct, union or array that gets returned on the stack. */
1387
1388 #ifndef RETURN_VALUE_ON_STACK
1389 #define RETURN_VALUE_ON_STACK(TYPE) 0
1390 #endif
1391
1392 /* Return true if the function specified is using the structure returning
1393 convention on this machine to return arguments, or 0 if it is using
1394 the value returning convention. FUNCTION is the value representing
1395 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1396 is the type returned by the function. GCC_P is nonzero if compiled
1397 with GCC. */
1398
1399 int
1400 using_struct_return (function, funcaddr, value_type, gcc_p)
1401 value_ptr function;
1402 CORE_ADDR funcaddr;
1403 struct type *value_type;
1404 int gcc_p;
1405 /*ARGSUSED*/
1406 {
1407 register enum type_code code = TYPE_CODE (value_type);
1408
1409 if (code == TYPE_CODE_ERROR)
1410 error ("Function return type unknown.");
1411
1412 if (code == TYPE_CODE_STRUCT
1413 || code == TYPE_CODE_UNION
1414 || code == TYPE_CODE_ARRAY
1415 || RETURN_VALUE_ON_STACK (value_type))
1416 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1417
1418 return 0;
1419 }
1420
1421 /* Store VAL so it will be returned if a function returns now.
1422 Does not verify that VAL's type matches what the current
1423 function wants to return. */
1424
1425 void
1426 set_return_value (val)
1427 value_ptr val;
1428 {
1429 struct type *type = check_typedef (VALUE_TYPE (val));
1430 register enum type_code code = TYPE_CODE (type);
1431
1432 if (code == TYPE_CODE_ERROR)
1433 error ("Function return type unknown.");
1434
1435 if ( code == TYPE_CODE_STRUCT
1436 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1437 error ("GDB does not support specifying a struct or union return value.");
1438
1439 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1440 }
1441 \f
1442 void
1443 _initialize_values ()
1444 {
1445 add_cmd ("convenience", no_class, show_convenience,
1446 "Debugger convenience (\"$foo\") variables.\n\
1447 These variables are created when you assign them values;\n\
1448 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1449 A few convenience variables are given values automatically:\n\
1450 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1451 \"$__\" holds the contents of the last address examined with \"x\".",
1452 &showlist);
1453
1454 add_cmd ("values", no_class, show_values,
1455 "Elements of value history around item number IDX (or last ten).",
1456 &showlist);
1457 }
This page took 0.078255 seconds and 4 git commands to generate.