2002-08-14 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2002.
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "scm-lang.h"
34 #include "demangle.h"
35 #include "doublest.h"
36 #include "gdb_assert.h"
37 #include "regcache.h"
38
39 /* Prototypes for exported functions. */
40
41 void _initialize_values (void);
42
43 /* Prototypes for local functions. */
44
45 static void show_values (char *, int);
46
47 static void show_convenience (char *, int);
48
49
50 /* The value-history records all the values printed
51 by print commands during this session. Each chunk
52 records 60 consecutive values. The first chunk on
53 the chain records the most recent values.
54 The total number of values is in value_history_count. */
55
56 #define VALUE_HISTORY_CHUNK 60
57
58 struct value_history_chunk
59 {
60 struct value_history_chunk *next;
61 struct value *values[VALUE_HISTORY_CHUNK];
62 };
63
64 /* Chain of chunks now in use. */
65
66 static struct value_history_chunk *value_history_chain;
67
68 static int value_history_count; /* Abs number of last entry stored */
69 \f
70 /* List of all value objects currently allocated
71 (except for those released by calls to release_value)
72 This is so they can be freed after each command. */
73
74 static struct value *all_values;
75
76 /* Allocate a value that has the correct length for type TYPE. */
77
78 struct value *
79 allocate_value (struct type *type)
80 {
81 struct value *val;
82 struct type *atype = check_typedef (type);
83
84 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
85 VALUE_NEXT (val) = all_values;
86 all_values = val;
87 VALUE_TYPE (val) = type;
88 VALUE_ENCLOSING_TYPE (val) = type;
89 VALUE_LVAL (val) = not_lval;
90 VALUE_ADDRESS (val) = 0;
91 VALUE_FRAME (val) = 0;
92 VALUE_OFFSET (val) = 0;
93 VALUE_BITPOS (val) = 0;
94 VALUE_BITSIZE (val) = 0;
95 VALUE_REGNO (val) = -1;
96 VALUE_LAZY (val) = 0;
97 VALUE_OPTIMIZED_OUT (val) = 0;
98 VALUE_BFD_SECTION (val) = NULL;
99 VALUE_EMBEDDED_OFFSET (val) = 0;
100 VALUE_POINTED_TO_OFFSET (val) = 0;
101 val->modifiable = 1;
102 return val;
103 }
104
105 /* Allocate a value that has the correct length
106 for COUNT repetitions type TYPE. */
107
108 struct value *
109 allocate_repeat_value (struct type *type, int count)
110 {
111 int low_bound = current_language->string_lower_bound; /* ??? */
112 /* FIXME-type-allocation: need a way to free this type when we are
113 done with it. */
114 struct type *range_type
115 = create_range_type ((struct type *) NULL, builtin_type_int,
116 low_bound, count + low_bound - 1);
117 /* FIXME-type-allocation: need a way to free this type when we are
118 done with it. */
119 return allocate_value (create_array_type ((struct type *) NULL,
120 type, range_type));
121 }
122
123 /* Return a mark in the value chain. All values allocated after the
124 mark is obtained (except for those released) are subject to being freed
125 if a subsequent value_free_to_mark is passed the mark. */
126 struct value *
127 value_mark (void)
128 {
129 return all_values;
130 }
131
132 /* Free all values allocated since MARK was obtained by value_mark
133 (except for those released). */
134 void
135 value_free_to_mark (struct value *mark)
136 {
137 struct value *val;
138 struct value *next;
139
140 for (val = all_values; val && val != mark; val = next)
141 {
142 next = VALUE_NEXT (val);
143 value_free (val);
144 }
145 all_values = val;
146 }
147
148 /* Free all the values that have been allocated (except for those released).
149 Called after each command, successful or not. */
150
151 void
152 free_all_values (void)
153 {
154 struct value *val;
155 struct value *next;
156
157 for (val = all_values; val; val = next)
158 {
159 next = VALUE_NEXT (val);
160 value_free (val);
161 }
162
163 all_values = 0;
164 }
165
166 /* Remove VAL from the chain all_values
167 so it will not be freed automatically. */
168
169 void
170 release_value (struct value *val)
171 {
172 struct value *v;
173
174 if (all_values == val)
175 {
176 all_values = val->next;
177 return;
178 }
179
180 for (v = all_values; v; v = v->next)
181 {
182 if (v->next == val)
183 {
184 v->next = val->next;
185 break;
186 }
187 }
188 }
189
190 /* Release all values up to mark */
191 struct value *
192 value_release_to_mark (struct value *mark)
193 {
194 struct value *val;
195 struct value *next;
196
197 for (val = next = all_values; next; next = VALUE_NEXT (next))
198 if (VALUE_NEXT (next) == mark)
199 {
200 all_values = VALUE_NEXT (next);
201 VALUE_NEXT (next) = 0;
202 return val;
203 }
204 all_values = 0;
205 return val;
206 }
207
208 /* Return a copy of the value ARG.
209 It contains the same contents, for same memory address,
210 but it's a different block of storage. */
211
212 struct value *
213 value_copy (struct value *arg)
214 {
215 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
216 struct value *val = allocate_value (encl_type);
217 VALUE_TYPE (val) = VALUE_TYPE (arg);
218 VALUE_LVAL (val) = VALUE_LVAL (arg);
219 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
220 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
221 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
222 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
223 VALUE_FRAME (val) = VALUE_FRAME (arg);
224 VALUE_REGNO (val) = VALUE_REGNO (arg);
225 VALUE_LAZY (val) = VALUE_LAZY (arg);
226 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
227 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
228 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
229 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
230 val->modifiable = arg->modifiable;
231 if (!VALUE_LAZY (val))
232 {
233 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
234 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
235
236 }
237 return val;
238 }
239 \f
240 /* Access to the value history. */
241
242 /* Record a new value in the value history.
243 Returns the absolute history index of the entry.
244 Result of -1 indicates the value was not saved; otherwise it is the
245 value history index of this new item. */
246
247 int
248 record_latest_value (struct value *val)
249 {
250 int i;
251
252 /* We don't want this value to have anything to do with the inferior anymore.
253 In particular, "set $1 = 50" should not affect the variable from which
254 the value was taken, and fast watchpoints should be able to assume that
255 a value on the value history never changes. */
256 if (VALUE_LAZY (val))
257 value_fetch_lazy (val);
258 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
259 from. This is a bit dubious, because then *&$1 does not just return $1
260 but the current contents of that location. c'est la vie... */
261 val->modifiable = 0;
262 release_value (val);
263
264 /* Here we treat value_history_count as origin-zero
265 and applying to the value being stored now. */
266
267 i = value_history_count % VALUE_HISTORY_CHUNK;
268 if (i == 0)
269 {
270 struct value_history_chunk *new
271 = (struct value_history_chunk *)
272 xmalloc (sizeof (struct value_history_chunk));
273 memset (new->values, 0, sizeof new->values);
274 new->next = value_history_chain;
275 value_history_chain = new;
276 }
277
278 value_history_chain->values[i] = val;
279
280 /* Now we regard value_history_count as origin-one
281 and applying to the value just stored. */
282
283 return ++value_history_count;
284 }
285
286 /* Return a copy of the value in the history with sequence number NUM. */
287
288 struct value *
289 access_value_history (int num)
290 {
291 struct value_history_chunk *chunk;
292 register int i;
293 register int absnum = num;
294
295 if (absnum <= 0)
296 absnum += value_history_count;
297
298 if (absnum <= 0)
299 {
300 if (num == 0)
301 error ("The history is empty.");
302 else if (num == 1)
303 error ("There is only one value in the history.");
304 else
305 error ("History does not go back to $$%d.", -num);
306 }
307 if (absnum > value_history_count)
308 error ("History has not yet reached $%d.", absnum);
309
310 absnum--;
311
312 /* Now absnum is always absolute and origin zero. */
313
314 chunk = value_history_chain;
315 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
316 i > 0; i--)
317 chunk = chunk->next;
318
319 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
320 }
321
322 /* Clear the value history entirely.
323 Must be done when new symbol tables are loaded,
324 because the type pointers become invalid. */
325
326 void
327 clear_value_history (void)
328 {
329 struct value_history_chunk *next;
330 register int i;
331 struct value *val;
332
333 while (value_history_chain)
334 {
335 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
336 if ((val = value_history_chain->values[i]) != NULL)
337 xfree (val);
338 next = value_history_chain->next;
339 xfree (value_history_chain);
340 value_history_chain = next;
341 }
342 value_history_count = 0;
343 }
344
345 static void
346 show_values (char *num_exp, int from_tty)
347 {
348 register int i;
349 struct value *val;
350 static int num = 1;
351
352 if (num_exp)
353 {
354 /* "info history +" should print from the stored position.
355 "info history <exp>" should print around value number <exp>. */
356 if (num_exp[0] != '+' || num_exp[1] != '\0')
357 num = parse_and_eval_long (num_exp) - 5;
358 }
359 else
360 {
361 /* "info history" means print the last 10 values. */
362 num = value_history_count - 9;
363 }
364
365 if (num <= 0)
366 num = 1;
367
368 for (i = num; i < num + 10 && i <= value_history_count; i++)
369 {
370 val = access_value_history (i);
371 printf_filtered ("$%d = ", i);
372 value_print (val, gdb_stdout, 0, Val_pretty_default);
373 printf_filtered ("\n");
374 }
375
376 /* The next "info history +" should start after what we just printed. */
377 num += 10;
378
379 /* Hitting just return after this command should do the same thing as
380 "info history +". If num_exp is null, this is unnecessary, since
381 "info history +" is not useful after "info history". */
382 if (from_tty && num_exp)
383 {
384 num_exp[0] = '+';
385 num_exp[1] = '\0';
386 }
387 }
388 \f
389 /* Internal variables. These are variables within the debugger
390 that hold values assigned by debugger commands.
391 The user refers to them with a '$' prefix
392 that does not appear in the variable names stored internally. */
393
394 static struct internalvar *internalvars;
395
396 /* Look up an internal variable with name NAME. NAME should not
397 normally include a dollar sign.
398
399 If the specified internal variable does not exist,
400 one is created, with a void value. */
401
402 struct internalvar *
403 lookup_internalvar (char *name)
404 {
405 register struct internalvar *var;
406
407 for (var = internalvars; var; var = var->next)
408 if (STREQ (var->name, name))
409 return var;
410
411 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
412 var->name = concat (name, NULL);
413 var->value = allocate_value (builtin_type_void);
414 release_value (var->value);
415 var->next = internalvars;
416 internalvars = var;
417 return var;
418 }
419
420 struct value *
421 value_of_internalvar (struct internalvar *var)
422 {
423 struct value *val;
424
425 #ifdef IS_TRAPPED_INTERNALVAR
426 if (IS_TRAPPED_INTERNALVAR (var->name))
427 return VALUE_OF_TRAPPED_INTERNALVAR (var);
428 #endif
429
430 val = value_copy (var->value);
431 if (VALUE_LAZY (val))
432 value_fetch_lazy (val);
433 VALUE_LVAL (val) = lval_internalvar;
434 VALUE_INTERNALVAR (val) = var;
435 return val;
436 }
437
438 void
439 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
440 int bitsize, struct value *newval)
441 {
442 register char *addr = VALUE_CONTENTS (var->value) + offset;
443
444 #ifdef IS_TRAPPED_INTERNALVAR
445 if (IS_TRAPPED_INTERNALVAR (var->name))
446 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
447 #endif
448
449 if (bitsize)
450 modify_field (addr, value_as_long (newval),
451 bitpos, bitsize);
452 else
453 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
454 }
455
456 void
457 set_internalvar (struct internalvar *var, struct value *val)
458 {
459 struct value *newval;
460
461 #ifdef IS_TRAPPED_INTERNALVAR
462 if (IS_TRAPPED_INTERNALVAR (var->name))
463 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
464 #endif
465
466 newval = value_copy (val);
467 newval->modifiable = 1;
468
469 /* Force the value to be fetched from the target now, to avoid problems
470 later when this internalvar is referenced and the target is gone or
471 has changed. */
472 if (VALUE_LAZY (newval))
473 value_fetch_lazy (newval);
474
475 /* Begin code which must not call error(). If var->value points to
476 something free'd, an error() obviously leaves a dangling pointer.
477 But we also get a danling pointer if var->value points to
478 something in the value chain (i.e., before release_value is
479 called), because after the error free_all_values will get called before
480 long. */
481 xfree (var->value);
482 var->value = newval;
483 release_value (newval);
484 /* End code which must not call error(). */
485 }
486
487 char *
488 internalvar_name (struct internalvar *var)
489 {
490 return var->name;
491 }
492
493 /* Free all internalvars. Done when new symtabs are loaded,
494 because that makes the values invalid. */
495
496 void
497 clear_internalvars (void)
498 {
499 register struct internalvar *var;
500
501 while (internalvars)
502 {
503 var = internalvars;
504 internalvars = var->next;
505 xfree (var->name);
506 xfree (var->value);
507 xfree (var);
508 }
509 }
510
511 static void
512 show_convenience (char *ignore, int from_tty)
513 {
514 register struct internalvar *var;
515 int varseen = 0;
516
517 for (var = internalvars; var; var = var->next)
518 {
519 #ifdef IS_TRAPPED_INTERNALVAR
520 if (IS_TRAPPED_INTERNALVAR (var->name))
521 continue;
522 #endif
523 if (!varseen)
524 {
525 varseen = 1;
526 }
527 printf_filtered ("$%s = ", var->name);
528 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
529 printf_filtered ("\n");
530 }
531 if (!varseen)
532 printf_unfiltered ("No debugger convenience variables now defined.\n\
533 Convenience variables have names starting with \"$\";\n\
534 use \"set\" as in \"set $foo = 5\" to define them.\n");
535 }
536 \f
537 /* Extract a value as a C number (either long or double).
538 Knows how to convert fixed values to double, or
539 floating values to long.
540 Does not deallocate the value. */
541
542 LONGEST
543 value_as_long (struct value *val)
544 {
545 /* This coerces arrays and functions, which is necessary (e.g.
546 in disassemble_command). It also dereferences references, which
547 I suspect is the most logical thing to do. */
548 COERCE_ARRAY (val);
549 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
550 }
551
552 DOUBLEST
553 value_as_double (struct value *val)
554 {
555 DOUBLEST foo;
556 int inv;
557
558 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
559 if (inv)
560 error ("Invalid floating value found in program.");
561 return foo;
562 }
563 /* Extract a value as a C pointer. Does not deallocate the value.
564 Note that val's type may not actually be a pointer; value_as_long
565 handles all the cases. */
566 CORE_ADDR
567 value_as_address (struct value *val)
568 {
569 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
570 whether we want this to be true eventually. */
571 #if 0
572 /* ADDR_BITS_REMOVE is wrong if we are being called for a
573 non-address (e.g. argument to "signal", "info break", etc.), or
574 for pointers to char, in which the low bits *are* significant. */
575 return ADDR_BITS_REMOVE (value_as_long (val));
576 #else
577
578 /* There are several targets (IA-64, PowerPC, and others) which
579 don't represent pointers to functions as simply the address of
580 the function's entry point. For example, on the IA-64, a
581 function pointer points to a two-word descriptor, generated by
582 the linker, which contains the function's entry point, and the
583 value the IA-64 "global pointer" register should have --- to
584 support position-independent code. The linker generates
585 descriptors only for those functions whose addresses are taken.
586
587 On such targets, it's difficult for GDB to convert an arbitrary
588 function address into a function pointer; it has to either find
589 an existing descriptor for that function, or call malloc and
590 build its own. On some targets, it is impossible for GDB to
591 build a descriptor at all: the descriptor must contain a jump
592 instruction; data memory cannot be executed; and code memory
593 cannot be modified.
594
595 Upon entry to this function, if VAL is a value of type `function'
596 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
597 VALUE_ADDRESS (val) is the address of the function. This is what
598 you'll get if you evaluate an expression like `main'. The call
599 to COERCE_ARRAY below actually does all the usual unary
600 conversions, which includes converting values of type `function'
601 to `pointer to function'. This is the challenging conversion
602 discussed above. Then, `unpack_long' will convert that pointer
603 back into an address.
604
605 So, suppose the user types `disassemble foo' on an architecture
606 with a strange function pointer representation, on which GDB
607 cannot build its own descriptors, and suppose further that `foo'
608 has no linker-built descriptor. The address->pointer conversion
609 will signal an error and prevent the command from running, even
610 though the next step would have been to convert the pointer
611 directly back into the same address.
612
613 The following shortcut avoids this whole mess. If VAL is a
614 function, just return its address directly. */
615 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
616 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_METHOD)
617 return VALUE_ADDRESS (val);
618
619 COERCE_ARRAY (val);
620
621 /* Some architectures (e.g. Harvard), map instruction and data
622 addresses onto a single large unified address space. For
623 instance: An architecture may consider a large integer in the
624 range 0x10000000 .. 0x1000ffff to already represent a data
625 addresses (hence not need a pointer to address conversion) while
626 a small integer would still need to be converted integer to
627 pointer to address. Just assume such architectures handle all
628 integer conversions in a single function. */
629
630 /* JimB writes:
631
632 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
633 must admonish GDB hackers to make sure its behavior matches the
634 compiler's, whenever possible.
635
636 In general, I think GDB should evaluate expressions the same way
637 the compiler does. When the user copies an expression out of
638 their source code and hands it to a `print' command, they should
639 get the same value the compiler would have computed. Any
640 deviation from this rule can cause major confusion and annoyance,
641 and needs to be justified carefully. In other words, GDB doesn't
642 really have the freedom to do these conversions in clever and
643 useful ways.
644
645 AndrewC pointed out that users aren't complaining about how GDB
646 casts integers to pointers; they are complaining that they can't
647 take an address from a disassembly listing and give it to `x/i'.
648 This is certainly important.
649
650 Adding an architecture method like INTEGER_TO_ADDRESS certainly
651 makes it possible for GDB to "get it right" in all circumstances
652 --- the target has complete control over how things get done, so
653 people can Do The Right Thing for their target without breaking
654 anyone else. The standard doesn't specify how integers get
655 converted to pointers; usually, the ABI doesn't either, but
656 ABI-specific code is a more reasonable place to handle it. */
657
658 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_PTR
659 && TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_REF
660 && INTEGER_TO_ADDRESS_P ())
661 return INTEGER_TO_ADDRESS (VALUE_TYPE (val), VALUE_CONTENTS (val));
662
663 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
664 #endif
665 }
666 \f
667 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
668 as a long, or as a double, assuming the raw data is described
669 by type TYPE. Knows how to convert different sizes of values
670 and can convert between fixed and floating point. We don't assume
671 any alignment for the raw data. Return value is in host byte order.
672
673 If you want functions and arrays to be coerced to pointers, and
674 references to be dereferenced, call value_as_long() instead.
675
676 C++: It is assumed that the front-end has taken care of
677 all matters concerning pointers to members. A pointer
678 to member which reaches here is considered to be equivalent
679 to an INT (or some size). After all, it is only an offset. */
680
681 LONGEST
682 unpack_long (struct type *type, char *valaddr)
683 {
684 register enum type_code code = TYPE_CODE (type);
685 register int len = TYPE_LENGTH (type);
686 register int nosign = TYPE_UNSIGNED (type);
687
688 if (current_language->la_language == language_scm
689 && is_scmvalue_type (type))
690 return scm_unpack (type, valaddr, TYPE_CODE_INT);
691
692 switch (code)
693 {
694 case TYPE_CODE_TYPEDEF:
695 return unpack_long (check_typedef (type), valaddr);
696 case TYPE_CODE_ENUM:
697 case TYPE_CODE_BOOL:
698 case TYPE_CODE_INT:
699 case TYPE_CODE_CHAR:
700 case TYPE_CODE_RANGE:
701 if (nosign)
702 return extract_unsigned_integer (valaddr, len);
703 else
704 return extract_signed_integer (valaddr, len);
705
706 case TYPE_CODE_FLT:
707 return extract_typed_floating (valaddr, type);
708
709 case TYPE_CODE_PTR:
710 case TYPE_CODE_REF:
711 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
712 whether we want this to be true eventually. */
713 return extract_typed_address (valaddr, type);
714
715 case TYPE_CODE_MEMBER:
716 error ("not implemented: member types in unpack_long");
717
718 default:
719 error ("Value can't be converted to integer.");
720 }
721 return 0; /* Placate lint. */
722 }
723
724 /* Return a double value from the specified type and address.
725 INVP points to an int which is set to 0 for valid value,
726 1 for invalid value (bad float format). In either case,
727 the returned double is OK to use. Argument is in target
728 format, result is in host format. */
729
730 DOUBLEST
731 unpack_double (struct type *type, char *valaddr, int *invp)
732 {
733 enum type_code code;
734 int len;
735 int nosign;
736
737 *invp = 0; /* Assume valid. */
738 CHECK_TYPEDEF (type);
739 code = TYPE_CODE (type);
740 len = TYPE_LENGTH (type);
741 nosign = TYPE_UNSIGNED (type);
742 if (code == TYPE_CODE_FLT)
743 {
744 /* NOTE: cagney/2002-02-19: There was a test here to see if the
745 floating-point value was valid (using the macro
746 INVALID_FLOAT). That test/macro have been removed.
747
748 It turns out that only the VAX defined this macro and then
749 only in a non-portable way. Fixing the portability problem
750 wouldn't help since the VAX floating-point code is also badly
751 bit-rotten. The target needs to add definitions for the
752 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
753 exactly describe the target floating-point format. The
754 problem here is that the corresponding floatformat_vax_f and
755 floatformat_vax_d values these methods should be set to are
756 also not defined either. Oops!
757
758 Hopefully someone will add both the missing floatformat
759 definitions and floatformat_is_invalid() function. */
760 return extract_typed_floating (valaddr, type);
761 }
762 else if (nosign)
763 {
764 /* Unsigned -- be sure we compensate for signed LONGEST. */
765 return (ULONGEST) unpack_long (type, valaddr);
766 }
767 else
768 {
769 /* Signed -- we are OK with unpack_long. */
770 return unpack_long (type, valaddr);
771 }
772 }
773
774 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
775 as a CORE_ADDR, assuming the raw data is described by type TYPE.
776 We don't assume any alignment for the raw data. Return value is in
777 host byte order.
778
779 If you want functions and arrays to be coerced to pointers, and
780 references to be dereferenced, call value_as_address() instead.
781
782 C++: It is assumed that the front-end has taken care of
783 all matters concerning pointers to members. A pointer
784 to member which reaches here is considered to be equivalent
785 to an INT (or some size). After all, it is only an offset. */
786
787 CORE_ADDR
788 unpack_pointer (struct type *type, char *valaddr)
789 {
790 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
791 whether we want this to be true eventually. */
792 return unpack_long (type, valaddr);
793 }
794
795 \f
796 /* Get the value of the FIELDN'th field (which must be static) of
797 TYPE. Return NULL if the field doesn't exist or has been
798 optimized out. */
799
800 struct value *
801 value_static_field (struct type *type, int fieldno)
802 {
803 CORE_ADDR addr;
804 asection *sect;
805 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
806 {
807 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
808 sect = NULL;
809 }
810 else
811 {
812 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
813 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
814 /* In some cases (involving uninitalized, unreferenced static
815 const integral members), g++ -gdwarf-2 can emit debugging
816 information giving rise to symbols whose SYMBOL_CLASS is
817 LOC_UNRESOLVED. In that case, do a minimal symbol lookup.
818 If it returns a useful value, then the symbol was defined
819 elsewhere, so we use that information. Otherwise, return
820 NULL. */
821 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
822 {
823 /* With some compilers, e.g. HP aCC, static data members are reported
824 as non-debuggable symbols */
825 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
826 if (!msym)
827 return NULL;
828 else
829 {
830 addr = SYMBOL_VALUE_ADDRESS (msym);
831 sect = SYMBOL_BFD_SECTION (msym);
832 }
833 }
834 else
835 {
836 /* Anything static that isn't a constant, has an address */
837 if (SYMBOL_CLASS (sym) != LOC_CONST)
838 {
839 addr = SYMBOL_VALUE_ADDRESS (sym);
840 sect = SYMBOL_BFD_SECTION (sym);
841 }
842 /* However, static const's do not, the value is already known. */
843 else
844 {
845 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), SYMBOL_VALUE (sym));
846 }
847 }
848 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
849 }
850 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
851 }
852
853 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
854 You have to be careful here, since the size of the data area for the value
855 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
856 than the old enclosing type, you have to allocate more space for the data.
857 The return value is a pointer to the new version of this value structure. */
858
859 struct value *
860 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
861 {
862 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
863 {
864 VALUE_ENCLOSING_TYPE (val) = new_encl_type;
865 return val;
866 }
867 else
868 {
869 struct value *new_val;
870 struct value *prev;
871
872 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
873
874 /* We have to make sure this ends up in the same place in the value
875 chain as the original copy, so it's clean-up behavior is the same.
876 If the value has been released, this is a waste of time, but there
877 is no way to tell that in advance, so... */
878
879 if (val != all_values)
880 {
881 for (prev = all_values; prev != NULL; prev = prev->next)
882 {
883 if (prev->next == val)
884 {
885 prev->next = new_val;
886 break;
887 }
888 }
889 }
890
891 return new_val;
892 }
893 }
894
895 /* Given a value ARG1 (offset by OFFSET bytes)
896 of a struct or union type ARG_TYPE,
897 extract and return the value of one of its (non-static) fields.
898 FIELDNO says which field. */
899
900 struct value *
901 value_primitive_field (struct value *arg1, int offset,
902 register int fieldno, register struct type *arg_type)
903 {
904 struct value *v;
905 register struct type *type;
906
907 CHECK_TYPEDEF (arg_type);
908 type = TYPE_FIELD_TYPE (arg_type, fieldno);
909
910 /* Handle packed fields */
911
912 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
913 {
914 v = value_from_longest (type,
915 unpack_field_as_long (arg_type,
916 VALUE_CONTENTS (arg1)
917 + offset,
918 fieldno));
919 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
920 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
921 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
922 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
923 }
924 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
925 {
926 /* This field is actually a base subobject, so preserve the
927 entire object's contents for later references to virtual
928 bases, etc. */
929 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
930 VALUE_TYPE (v) = type;
931 if (VALUE_LAZY (arg1))
932 VALUE_LAZY (v) = 1;
933 else
934 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
935 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
936 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
937 VALUE_EMBEDDED_OFFSET (v)
938 = offset +
939 VALUE_EMBEDDED_OFFSET (arg1) +
940 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
941 }
942 else
943 {
944 /* Plain old data member */
945 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
946 v = allocate_value (type);
947 if (VALUE_LAZY (arg1))
948 VALUE_LAZY (v) = 1;
949 else
950 memcpy (VALUE_CONTENTS_RAW (v),
951 VALUE_CONTENTS_RAW (arg1) + offset,
952 TYPE_LENGTH (type));
953 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
954 + VALUE_EMBEDDED_OFFSET (arg1);
955 }
956 VALUE_LVAL (v) = VALUE_LVAL (arg1);
957 if (VALUE_LVAL (arg1) == lval_internalvar)
958 VALUE_LVAL (v) = lval_internalvar_component;
959 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
960 VALUE_REGNO (v) = VALUE_REGNO (arg1);
961 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
962 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
963 return v;
964 }
965
966 /* Given a value ARG1 of a struct or union type,
967 extract and return the value of one of its (non-static) fields.
968 FIELDNO says which field. */
969
970 struct value *
971 value_field (struct value *arg1, register int fieldno)
972 {
973 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
974 }
975
976 /* Return a non-virtual function as a value.
977 F is the list of member functions which contains the desired method.
978 J is an index into F which provides the desired method.
979
980 We only use the symbol for its address, so be happy with either a
981 full symbol or a minimal symbol.
982 */
983
984 struct value *
985 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
986 int offset)
987 {
988 struct value *v;
989 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
990 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
991 struct symbol *sym;
992 struct minimal_symbol *msym;
993
994 sym = lookup_symbol (physname, 0, VAR_NAMESPACE, 0, NULL);
995 if (sym != NULL)
996 {
997 msym = NULL;
998 }
999 else
1000 {
1001 gdb_assert (sym == NULL);
1002 msym = lookup_minimal_symbol (physname, NULL, NULL);
1003 if (msym == NULL)
1004 return NULL;
1005 }
1006
1007 v = allocate_value (ftype);
1008 if (sym)
1009 {
1010 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1011 }
1012 else
1013 {
1014 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1015 }
1016
1017 if (arg1p)
1018 {
1019 if (type != VALUE_TYPE (*arg1p))
1020 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1021 value_addr (*arg1p)));
1022
1023 /* Move the `this' pointer according to the offset.
1024 VALUE_OFFSET (*arg1p) += offset;
1025 */
1026 }
1027
1028 return v;
1029 }
1030
1031 \f
1032 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1033 VALADDR.
1034
1035 Extracting bits depends on endianness of the machine. Compute the
1036 number of least significant bits to discard. For big endian machines,
1037 we compute the total number of bits in the anonymous object, subtract
1038 off the bit count from the MSB of the object to the MSB of the
1039 bitfield, then the size of the bitfield, which leaves the LSB discard
1040 count. For little endian machines, the discard count is simply the
1041 number of bits from the LSB of the anonymous object to the LSB of the
1042 bitfield.
1043
1044 If the field is signed, we also do sign extension. */
1045
1046 LONGEST
1047 unpack_field_as_long (struct type *type, char *valaddr, int fieldno)
1048 {
1049 ULONGEST val;
1050 ULONGEST valmask;
1051 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1052 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1053 int lsbcount;
1054 struct type *field_type;
1055
1056 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1057 field_type = TYPE_FIELD_TYPE (type, fieldno);
1058 CHECK_TYPEDEF (field_type);
1059
1060 /* Extract bits. See comment above. */
1061
1062 if (BITS_BIG_ENDIAN)
1063 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1064 else
1065 lsbcount = (bitpos % 8);
1066 val >>= lsbcount;
1067
1068 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1069 If the field is signed, and is negative, then sign extend. */
1070
1071 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1072 {
1073 valmask = (((ULONGEST) 1) << bitsize) - 1;
1074 val &= valmask;
1075 if (!TYPE_UNSIGNED (field_type))
1076 {
1077 if (val & (valmask ^ (valmask >> 1)))
1078 {
1079 val |= ~valmask;
1080 }
1081 }
1082 }
1083 return (val);
1084 }
1085
1086 /* Modify the value of a bitfield. ADDR points to a block of memory in
1087 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1088 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1089 indicate which bits (in target bit order) comprise the bitfield. */
1090
1091 void
1092 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1093 {
1094 LONGEST oword;
1095
1096 /* If a negative fieldval fits in the field in question, chop
1097 off the sign extension bits. */
1098 if (bitsize < (8 * (int) sizeof (fieldval))
1099 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1100 fieldval = fieldval & ((1 << bitsize) - 1);
1101
1102 /* Warn if value is too big to fit in the field in question. */
1103 if (bitsize < (8 * (int) sizeof (fieldval))
1104 && 0 != (fieldval & ~((1 << bitsize) - 1)))
1105 {
1106 /* FIXME: would like to include fieldval in the message, but
1107 we don't have a sprintf_longest. */
1108 warning ("Value does not fit in %d bits.", bitsize);
1109
1110 /* Truncate it, otherwise adjoining fields may be corrupted. */
1111 fieldval = fieldval & ((1 << bitsize) - 1);
1112 }
1113
1114 oword = extract_signed_integer (addr, sizeof oword);
1115
1116 /* Shifting for bit field depends on endianness of the target machine. */
1117 if (BITS_BIG_ENDIAN)
1118 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1119
1120 /* Mask out old value, while avoiding shifts >= size of oword */
1121 if (bitsize < 8 * (int) sizeof (oword))
1122 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
1123 else
1124 oword &= ~((~(ULONGEST) 0) << bitpos);
1125 oword |= fieldval << bitpos;
1126
1127 store_signed_integer (addr, sizeof oword, oword);
1128 }
1129 \f
1130 /* Convert C numbers into newly allocated values */
1131
1132 struct value *
1133 value_from_longest (struct type *type, register LONGEST num)
1134 {
1135 struct value *val = allocate_value (type);
1136 register enum type_code code;
1137 register int len;
1138 retry:
1139 code = TYPE_CODE (type);
1140 len = TYPE_LENGTH (type);
1141
1142 switch (code)
1143 {
1144 case TYPE_CODE_TYPEDEF:
1145 type = check_typedef (type);
1146 goto retry;
1147 case TYPE_CODE_INT:
1148 case TYPE_CODE_CHAR:
1149 case TYPE_CODE_ENUM:
1150 case TYPE_CODE_BOOL:
1151 case TYPE_CODE_RANGE:
1152 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1153 break;
1154
1155 case TYPE_CODE_REF:
1156 case TYPE_CODE_PTR:
1157 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
1158 break;
1159
1160 default:
1161 error ("Unexpected type (%d) encountered for integer constant.", code);
1162 }
1163 return val;
1164 }
1165
1166
1167 /* Create a value representing a pointer of type TYPE to the address
1168 ADDR. */
1169 struct value *
1170 value_from_pointer (struct type *type, CORE_ADDR addr)
1171 {
1172 struct value *val = allocate_value (type);
1173 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1174 return val;
1175 }
1176
1177
1178 /* Create a value for a string constant to be stored locally
1179 (not in the inferior's memory space, but in GDB memory).
1180 This is analogous to value_from_longest, which also does not
1181 use inferior memory. String shall NOT contain embedded nulls. */
1182
1183 struct value *
1184 value_from_string (char *ptr)
1185 {
1186 struct value *val;
1187 int len = strlen (ptr);
1188 int lowbound = current_language->string_lower_bound;
1189 struct type *rangetype =
1190 create_range_type ((struct type *) NULL,
1191 builtin_type_int,
1192 lowbound, len + lowbound - 1);
1193 struct type *stringtype =
1194 create_array_type ((struct type *) NULL,
1195 *current_language->string_char_type,
1196 rangetype);
1197
1198 val = allocate_value (stringtype);
1199 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1200 return val;
1201 }
1202
1203 struct value *
1204 value_from_double (struct type *type, DOUBLEST num)
1205 {
1206 struct value *val = allocate_value (type);
1207 struct type *base_type = check_typedef (type);
1208 register enum type_code code = TYPE_CODE (base_type);
1209 register int len = TYPE_LENGTH (base_type);
1210
1211 if (code == TYPE_CODE_FLT)
1212 {
1213 store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
1214 }
1215 else
1216 error ("Unexpected type encountered for floating constant.");
1217
1218 return val;
1219 }
1220 \f
1221 /* Deal with the value that is "about to be returned". */
1222
1223 /* Return the value that a function returning now
1224 would be returning to its caller, assuming its type is VALTYPE.
1225 RETBUF is where we look for what ought to be the contents
1226 of the registers (in raw form). This is because it is often
1227 desirable to restore old values to those registers
1228 after saving the contents of interest, and then call
1229 this function using the saved values.
1230 struct_return is non-zero when the function in question is
1231 using the structure return conventions on the machine in question;
1232 0 when it is using the value returning conventions (this often
1233 means returning pointer to where structure is vs. returning value). */
1234
1235 /* ARGSUSED */
1236 struct value *
1237 value_being_returned (struct type *valtype, struct regcache *retbuf,
1238 int struct_return)
1239 {
1240 struct value *val;
1241 CORE_ADDR addr;
1242
1243 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1244 if (EXTRACT_STRUCT_VALUE_ADDRESS_P ())
1245 if (struct_return)
1246 {
1247 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1248 if (!addr)
1249 error ("Function return value unknown.");
1250 return value_at (valtype, addr, NULL);
1251 }
1252
1253 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1254 if (DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS_P ())
1255 if (struct_return)
1256 {
1257 char *buf = deprecated_grub_regcache_for_registers (retbuf);
1258 addr = DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS (buf);
1259 if (!addr)
1260 error ("Function return value unknown.");
1261 return value_at (valtype, addr, NULL);
1262 }
1263
1264 val = allocate_value (valtype);
1265 CHECK_TYPEDEF (valtype);
1266 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1267
1268 return val;
1269 }
1270
1271 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1272 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1273 and TYPE is the type (which is known to be struct, union or array).
1274
1275 On most machines, the struct convention is used unless we are
1276 using gcc and the type is of a special size. */
1277 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1278 native compiler. GCC 2.3.3 was the last release that did it the
1279 old way. Since gcc2_compiled was not changed, we have no
1280 way to correctly win in all cases, so we just do the right thing
1281 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1282 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1283 would cause more chaos than dealing with some struct returns being
1284 handled wrong. */
1285
1286 int
1287 generic_use_struct_convention (int gcc_p, struct type *value_type)
1288 {
1289 return !((gcc_p == 1)
1290 && (TYPE_LENGTH (value_type) == 1
1291 || TYPE_LENGTH (value_type) == 2
1292 || TYPE_LENGTH (value_type) == 4
1293 || TYPE_LENGTH (value_type) == 8));
1294 }
1295
1296 /* Return true if the function specified is using the structure returning
1297 convention on this machine to return arguments, or 0 if it is using
1298 the value returning convention. FUNCTION is the value representing
1299 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1300 is the type returned by the function. GCC_P is nonzero if compiled
1301 with GCC. */
1302
1303 /* ARGSUSED */
1304 int
1305 using_struct_return (struct value *function, CORE_ADDR funcaddr,
1306 struct type *value_type, int gcc_p)
1307 {
1308 register enum type_code code = TYPE_CODE (value_type);
1309
1310 if (code == TYPE_CODE_ERROR)
1311 error ("Function return type unknown.");
1312
1313 if (code == TYPE_CODE_STRUCT
1314 || code == TYPE_CODE_UNION
1315 || code == TYPE_CODE_ARRAY
1316 || RETURN_VALUE_ON_STACK (value_type))
1317 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1318
1319 return 0;
1320 }
1321
1322 /* Store VAL so it will be returned if a function returns now.
1323 Does not verify that VAL's type matches what the current
1324 function wants to return. */
1325
1326 void
1327 set_return_value (struct value *val)
1328 {
1329 struct type *type = check_typedef (VALUE_TYPE (val));
1330 register enum type_code code = TYPE_CODE (type);
1331
1332 if (code == TYPE_CODE_ERROR)
1333 error ("Function return type unknown.");
1334
1335 if (code == TYPE_CODE_STRUCT
1336 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1337 error ("GDB does not support specifying a struct or union return value.");
1338
1339 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1340 }
1341 \f
1342 void
1343 _initialize_values (void)
1344 {
1345 add_cmd ("convenience", no_class, show_convenience,
1346 "Debugger convenience (\"$foo\") variables.\n\
1347 These variables are created when you assign them values;\n\
1348 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1349 A few convenience variables are given values automatically:\n\
1350 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1351 \"$__\" holds the contents of the last address examined with \"x\".",
1352 &showlist);
1353
1354 add_cmd ("values", no_class, show_values,
1355 "Elements of value history around item number IDX (or last ten).",
1356 &showlist);
1357 }
This page took 0.061577 seconds and 4 git commands to generate.