HPPA merge.
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30
31 /* Local function prototypes. */
32
33 static value
34 value_headof PARAMS ((value, struct type *, struct type *));
35
36 static void
37 show_values PARAMS ((char *, int));
38
39 static void
40 show_convenience PARAMS ((char *, int));
41
42 /* The value-history records all the values printed
43 by print commands during this session. Each chunk
44 records 60 consecutive values. The first chunk on
45 the chain records the most recent values.
46 The total number of values is in value_history_count. */
47
48 #define VALUE_HISTORY_CHUNK 60
49
50 struct value_history_chunk
51 {
52 struct value_history_chunk *next;
53 value values[VALUE_HISTORY_CHUNK];
54 };
55
56 /* Chain of chunks now in use. */
57
58 static struct value_history_chunk *value_history_chain;
59
60 static int value_history_count; /* Abs number of last entry stored */
61 \f
62 /* List of all value objects currently allocated
63 (except for those released by calls to release_value)
64 This is so they can be freed after each command. */
65
66 static value all_values;
67
68 /* Allocate a value that has the correct length for type TYPE. */
69
70 value
71 allocate_value (type)
72 struct type *type;
73 {
74 register value val;
75
76 check_stub_type (type);
77
78 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
79 VALUE_NEXT (val) = all_values;
80 all_values = val;
81 VALUE_TYPE (val) = type;
82 VALUE_LVAL (val) = not_lval;
83 VALUE_ADDRESS (val) = 0;
84 VALUE_FRAME (val) = 0;
85 VALUE_OFFSET (val) = 0;
86 VALUE_BITPOS (val) = 0;
87 VALUE_BITSIZE (val) = 0;
88 VALUE_REPEATED (val) = 0;
89 VALUE_REPETITIONS (val) = 0;
90 VALUE_REGNO (val) = -1;
91 VALUE_LAZY (val) = 0;
92 VALUE_OPTIMIZED_OUT (val) = 0;
93 return val;
94 }
95
96 /* Allocate a value that has the correct length
97 for COUNT repetitions type TYPE. */
98
99 value
100 allocate_repeat_value (type, count)
101 struct type *type;
102 int count;
103 {
104 register value val;
105
106 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
107 VALUE_NEXT (val) = all_values;
108 all_values = val;
109 VALUE_TYPE (val) = type;
110 VALUE_LVAL (val) = not_lval;
111 VALUE_ADDRESS (val) = 0;
112 VALUE_FRAME (val) = 0;
113 VALUE_OFFSET (val) = 0;
114 VALUE_BITPOS (val) = 0;
115 VALUE_BITSIZE (val) = 0;
116 VALUE_REPEATED (val) = 1;
117 VALUE_REPETITIONS (val) = count;
118 VALUE_REGNO (val) = -1;
119 VALUE_LAZY (val) = 0;
120 VALUE_OPTIMIZED_OUT (val) = 0;
121 return val;
122 }
123
124 /* Return a mark in the value chain. All values allocated after the
125 mark is obtained (except for those released) are subject to being freed
126 if a subsequent value_free_to_mark is passed the mark. */
127 value
128 value_mark ()
129 {
130 return all_values;
131 }
132
133 /* Free all values allocated since MARK was obtained by value_mark
134 (except for those released). */
135 void
136 value_free_to_mark (mark)
137 value mark;
138 {
139 value val, next;
140
141 for (val = all_values; val && val != mark; val = next)
142 {
143 next = VALUE_NEXT (val);
144 value_free (val);
145 }
146 all_values = val;
147 }
148
149 /* Free all the values that have been allocated (except for those released).
150 Called after each command, successful or not. */
151
152 void
153 free_all_values ()
154 {
155 register value val, next;
156
157 for (val = all_values; val; val = next)
158 {
159 next = VALUE_NEXT (val);
160 value_free (val);
161 }
162
163 all_values = 0;
164 }
165
166 /* Remove VAL from the chain all_values
167 so it will not be freed automatically. */
168
169 void
170 release_value (val)
171 register value val;
172 {
173 register value v;
174
175 if (all_values == val)
176 {
177 all_values = val->next;
178 return;
179 }
180
181 for (v = all_values; v; v = v->next)
182 {
183 if (v->next == val)
184 {
185 v->next = val->next;
186 break;
187 }
188 }
189 }
190
191 /* Return a copy of the value ARG.
192 It contains the same contents, for same memory address,
193 but it's a different block of storage. */
194
195 value
196 value_copy (arg)
197 value arg;
198 {
199 register value val;
200 register struct type *type = VALUE_TYPE (arg);
201 if (VALUE_REPEATED (arg))
202 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
203 else
204 val = allocate_value (type);
205 VALUE_LVAL (val) = VALUE_LVAL (arg);
206 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
207 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
208 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
209 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
210 VALUE_REGNO (val) = VALUE_REGNO (arg);
211 VALUE_LAZY (val) = VALUE_LAZY (arg);
212 if (!VALUE_LAZY (val))
213 {
214 bcopy (VALUE_CONTENTS_RAW (arg), VALUE_CONTENTS_RAW (val),
215 TYPE_LENGTH (VALUE_TYPE (arg))
216 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
217 }
218 return val;
219 }
220 \f
221 /* Access to the value history. */
222
223 /* Record a new value in the value history.
224 Returns the absolute history index of the entry.
225 Result of -1 indicates the value was not saved; otherwise it is the
226 value history index of this new item. */
227
228 int
229 record_latest_value (val)
230 value val;
231 {
232 int i;
233
234 /* Check error now if about to store an invalid float. We return -1
235 to the caller, but allow them to continue, e.g. to print it as "Nan". */
236 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT) {
237 (void) unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
238 if (i) return -1; /* Indicate value not saved in history */
239 }
240
241 /* Here we treat value_history_count as origin-zero
242 and applying to the value being stored now. */
243
244 i = value_history_count % VALUE_HISTORY_CHUNK;
245 if (i == 0)
246 {
247 register struct value_history_chunk *new
248 = (struct value_history_chunk *)
249 xmalloc (sizeof (struct value_history_chunk));
250 bzero (new->values, sizeof new->values);
251 new->next = value_history_chain;
252 value_history_chain = new;
253 }
254
255 value_history_chain->values[i] = val;
256 release_value (val);
257
258 /* Now we regard value_history_count as origin-one
259 and applying to the value just stored. */
260
261 return ++value_history_count;
262 }
263
264 /* Return a copy of the value in the history with sequence number NUM. */
265
266 value
267 access_value_history (num)
268 int num;
269 {
270 register struct value_history_chunk *chunk;
271 register int i;
272 register int absnum = num;
273
274 if (absnum <= 0)
275 absnum += value_history_count;
276
277 if (absnum <= 0)
278 {
279 if (num == 0)
280 error ("The history is empty.");
281 else if (num == 1)
282 error ("There is only one value in the history.");
283 else
284 error ("History does not go back to $$%d.", -num);
285 }
286 if (absnum > value_history_count)
287 error ("History has not yet reached $%d.", absnum);
288
289 absnum--;
290
291 /* Now absnum is always absolute and origin zero. */
292
293 chunk = value_history_chain;
294 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
295 i > 0; i--)
296 chunk = chunk->next;
297
298 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
299 }
300
301 /* Clear the value history entirely.
302 Must be done when new symbol tables are loaded,
303 because the type pointers become invalid. */
304
305 void
306 clear_value_history ()
307 {
308 register struct value_history_chunk *next;
309 register int i;
310 register value val;
311
312 while (value_history_chain)
313 {
314 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
315 if (val = value_history_chain->values[i])
316 free ((PTR)val);
317 next = value_history_chain->next;
318 free ((PTR)value_history_chain);
319 value_history_chain = next;
320 }
321 value_history_count = 0;
322 }
323
324 static void
325 show_values (num_exp, from_tty)
326 char *num_exp;
327 int from_tty;
328 {
329 register int i;
330 register value val;
331 static int num = 1;
332
333 if (num_exp)
334 {
335 if (num_exp[0] == '+' && num_exp[1] == '\0')
336 /* "info history +" should print from the stored position. */
337 ;
338 else
339 /* "info history <exp>" should print around value number <exp>. */
340 num = parse_and_eval_address (num_exp) - 5;
341 }
342 else
343 {
344 /* "info history" means print the last 10 values. */
345 num = value_history_count - 9;
346 }
347
348 if (num <= 0)
349 num = 1;
350
351 for (i = num; i < num + 10 && i <= value_history_count; i++)
352 {
353 val = access_value_history (i);
354 printf_filtered ("$%d = ", i);
355 value_print (val, stdout, 0, Val_pretty_default);
356 printf_filtered ("\n");
357 }
358
359 /* The next "info history +" should start after what we just printed. */
360 num += 10;
361
362 /* Hitting just return after this command should do the same thing as
363 "info history +". If num_exp is null, this is unnecessary, since
364 "info history +" is not useful after "info history". */
365 if (from_tty && num_exp)
366 {
367 num_exp[0] = '+';
368 num_exp[1] = '\0';
369 }
370 }
371 \f
372 /* Internal variables. These are variables within the debugger
373 that hold values assigned by debugger commands.
374 The user refers to them with a '$' prefix
375 that does not appear in the variable names stored internally. */
376
377 static struct internalvar *internalvars;
378
379 /* Look up an internal variable with name NAME. NAME should not
380 normally include a dollar sign.
381
382 If the specified internal variable does not exist,
383 one is created, with a void value. */
384
385 struct internalvar *
386 lookup_internalvar (name)
387 char *name;
388 {
389 register struct internalvar *var;
390
391 for (var = internalvars; var; var = var->next)
392 if (!strcmp (var->name, name))
393 return var;
394
395 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
396 var->name = concat (name, NULL);
397 var->value = allocate_value (builtin_type_void);
398 release_value (var->value);
399 var->next = internalvars;
400 internalvars = var;
401 return var;
402 }
403
404 value
405 value_of_internalvar (var)
406 struct internalvar *var;
407 {
408 register value val;
409
410 #ifdef IS_TRAPPED_INTERNALVAR
411 if (IS_TRAPPED_INTERNALVAR (var->name))
412 return VALUE_OF_TRAPPED_INTERNALVAR (var);
413 #endif
414
415 val = value_copy (var->value);
416 if (VALUE_LAZY (val))
417 value_fetch_lazy (val);
418 VALUE_LVAL (val) = lval_internalvar;
419 VALUE_INTERNALVAR (val) = var;
420 return val;
421 }
422
423 void
424 set_internalvar_component (var, offset, bitpos, bitsize, newval)
425 struct internalvar *var;
426 int offset, bitpos, bitsize;
427 value newval;
428 {
429 register char *addr = VALUE_CONTENTS (var->value) + offset;
430
431 #ifdef IS_TRAPPED_INTERNALVAR
432 if (IS_TRAPPED_INTERNALVAR (var->name))
433 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
434 #endif
435
436 if (bitsize)
437 modify_field (addr, (int) value_as_long (newval),
438 bitpos, bitsize);
439 else
440 bcopy (VALUE_CONTENTS (newval), addr,
441 TYPE_LENGTH (VALUE_TYPE (newval)));
442 }
443
444 void
445 set_internalvar (var, val)
446 struct internalvar *var;
447 value val;
448 {
449 #ifdef IS_TRAPPED_INTERNALVAR
450 if (IS_TRAPPED_INTERNALVAR (var->name))
451 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
452 #endif
453
454 free ((PTR)var->value);
455 var->value = value_copy (val);
456 /* Force the value to be fetched from the target now, to avoid problems
457 later when this internalvar is referenced and the target is gone or
458 has changed. */
459 if (VALUE_LAZY (var->value))
460 value_fetch_lazy (var->value);
461 release_value (var->value);
462 }
463
464 char *
465 internalvar_name (var)
466 struct internalvar *var;
467 {
468 return var->name;
469 }
470
471 /* Free all internalvars. Done when new symtabs are loaded,
472 because that makes the values invalid. */
473
474 void
475 clear_internalvars ()
476 {
477 register struct internalvar *var;
478
479 while (internalvars)
480 {
481 var = internalvars;
482 internalvars = var->next;
483 free ((PTR)var->name);
484 free ((PTR)var->value);
485 free ((PTR)var);
486 }
487 }
488
489 static void
490 show_convenience (ignore, from_tty)
491 char *ignore;
492 int from_tty;
493 {
494 register struct internalvar *var;
495 int varseen = 0;
496
497 for (var = internalvars; var; var = var->next)
498 {
499 #ifdef IS_TRAPPED_INTERNALVAR
500 if (IS_TRAPPED_INTERNALVAR (var->name))
501 continue;
502 #endif
503 if (!varseen)
504 {
505 varseen = 1;
506 }
507 printf_filtered ("$%s = ", var->name);
508 value_print (var->value, stdout, 0, Val_pretty_default);
509 printf_filtered ("\n");
510 }
511 if (!varseen)
512 printf ("No debugger convenience variables now defined.\n\
513 Convenience variables have names starting with \"$\";\n\
514 use \"set\" as in \"set $foo = 5\" to define them.\n");
515 }
516 \f
517 /* Extract a value as a C number (either long or double).
518 Knows how to convert fixed values to double, or
519 floating values to long.
520 Does not deallocate the value. */
521
522 LONGEST
523 value_as_long (val)
524 register value val;
525 {
526 /* This coerces arrays and functions, which is necessary (e.g.
527 in disassemble_command). It also dereferences references, which
528 I suspect is the most logical thing to do. */
529 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
530 COERCE_ARRAY (val);
531 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
532 }
533
534 double
535 value_as_double (val)
536 register value val;
537 {
538 double foo;
539 int inv;
540
541 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
542 if (inv)
543 error ("Invalid floating value found in program.");
544 return foo;
545 }
546 /* Extract a value as a C pointer.
547 Does not deallocate the value. */
548 CORE_ADDR
549 value_as_pointer (val)
550 value val;
551 {
552 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
553 whether we want this to be true eventually. */
554 return ADDR_BITS_REMOVE(value_as_long (val));
555 }
556 \f
557 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
558 as a long, or as a double, assuming the raw data is described
559 by type TYPE. Knows how to convert different sizes of values
560 and can convert between fixed and floating point. We don't assume
561 any alignment for the raw data. Return value is in host byte order.
562
563 If you want functions and arrays to be coerced to pointers, and
564 references to be dereferenced, call value_as_long() instead.
565
566 C++: It is assumed that the front-end has taken care of
567 all matters concerning pointers to members. A pointer
568 to member which reaches here is considered to be equivalent
569 to an INT (or some size). After all, it is only an offset. */
570
571 /* FIXME: This should be rewritten as a switch statement for speed and
572 ease of comprehension. */
573
574 LONGEST
575 unpack_long (type, valaddr)
576 struct type *type;
577 char *valaddr;
578 {
579 register enum type_code code = TYPE_CODE (type);
580 register int len = TYPE_LENGTH (type);
581 register int nosign = TYPE_UNSIGNED (type);
582
583 if (code == TYPE_CODE_ENUM || code == TYPE_CODE_BOOL)
584 code = TYPE_CODE_INT;
585 if (code == TYPE_CODE_FLT)
586 {
587 if (len == sizeof (float))
588 {
589 float retval;
590 bcopy (valaddr, &retval, sizeof (retval));
591 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
592 return retval;
593 }
594
595 if (len == sizeof (double))
596 {
597 double retval;
598 bcopy (valaddr, &retval, sizeof (retval));
599 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
600 return retval;
601 }
602 else
603 {
604 error ("Unexpected type of floating point number.");
605 }
606 }
607 else if (code == TYPE_CODE_INT && nosign)
608 {
609 if (len == sizeof (char))
610 {
611 unsigned char retval = * (unsigned char *) valaddr;
612 /* SWAP_TARGET_AND_HOST (&retval, sizeof (unsigned char)); */
613 return retval;
614 }
615
616 if (len == sizeof (short))
617 {
618 unsigned short retval;
619 bcopy (valaddr, &retval, sizeof (retval));
620 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
621 return retval;
622 }
623
624 if (len == sizeof (int))
625 {
626 unsigned int retval;
627 bcopy (valaddr, &retval, sizeof (retval));
628 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
629 return retval;
630 }
631
632 if (len == sizeof (long))
633 {
634 unsigned long retval;
635 bcopy (valaddr, &retval, sizeof (retval));
636 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
637 return retval;
638 }
639 #ifdef LONG_LONG
640 if (len == sizeof (long long))
641 {
642 unsigned long long retval;
643 bcopy (valaddr, &retval, sizeof (retval));
644 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
645 return retval;
646 }
647 #endif
648 else
649 {
650 error ("That operation is not possible on an integer of that size.");
651 }
652 }
653 else if (code == TYPE_CODE_INT)
654 {
655 if (len == sizeof (char))
656 {
657 SIGNED char retval; /* plain chars might be unsigned on host */
658 bcopy (valaddr, &retval, sizeof (retval));
659 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
660 return retval;
661 }
662
663 if (len == sizeof (short))
664 {
665 short retval;
666 bcopy (valaddr, &retval, sizeof (retval));
667 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
668 return retval;
669 }
670
671 if (len == sizeof (int))
672 {
673 int retval;
674 bcopy (valaddr, &retval, sizeof (retval));
675 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
676 return retval;
677 }
678
679 if (len == sizeof (long))
680 {
681 long retval;
682 bcopy (valaddr, &retval, sizeof (retval));
683 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
684 return retval;
685 }
686
687 #ifdef LONG_LONG
688 if (len == sizeof (long long))
689 {
690 long long retval;
691 bcopy (valaddr, &retval, sizeof (retval));
692 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
693 return retval;
694 }
695 #endif
696 else
697 {
698 error ("That operation is not possible on an integer of that size.");
699 }
700 }
701 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
702 whether we want this to be true eventually. */
703 else if (code == TYPE_CODE_PTR
704 || code == TYPE_CODE_REF)
705 {
706 if (len == sizeof(long))
707 {
708 unsigned long retval;
709 bcopy (valaddr, &retval, sizeof(retval));
710 SWAP_TARGET_AND_HOST (&retval, sizeof(retval));
711 return retval;
712 }
713 else if (len == sizeof(short))
714 {
715 unsigned short retval;
716 bcopy (valaddr, &retval, len);
717 SWAP_TARGET_AND_HOST (&retval, len);
718 return retval;
719 }
720 }
721 else if (code == TYPE_CODE_MEMBER)
722 error ("not implemented: member types in unpack_long");
723 else if (code == TYPE_CODE_CHAR)
724 return *(unsigned char *)valaddr;
725
726 error ("Value not integer or pointer.");
727 return 0; /* For lint -- never reached */
728 }
729
730 /* Return a double value from the specified type and address.
731 INVP points to an int which is set to 0 for valid value,
732 1 for invalid value (bad float format). In either case,
733 the returned double is OK to use. Argument is in target
734 format, result is in host format. */
735
736 double
737 unpack_double (type, valaddr, invp)
738 struct type *type;
739 char *valaddr;
740 int *invp;
741 {
742 register enum type_code code = TYPE_CODE (type);
743 register int len = TYPE_LENGTH (type);
744 register int nosign = TYPE_UNSIGNED (type);
745
746 *invp = 0; /* Assume valid. */
747 if (code == TYPE_CODE_FLT)
748 {
749 if (INVALID_FLOAT (valaddr, len))
750 {
751 *invp = 1;
752 return 1.234567891011121314;
753 }
754
755 if (len == sizeof (float))
756 {
757 float retval;
758 bcopy (valaddr, &retval, sizeof (retval));
759 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
760 return retval;
761 }
762
763 if (len == sizeof (double))
764 {
765 double retval;
766 bcopy (valaddr, &retval, sizeof (retval));
767 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
768 return retval;
769 }
770 else
771 {
772 error ("Unexpected type of floating point number.");
773 return 0; /* Placate lint. */
774 }
775 }
776 else if (nosign) {
777 /* Unsigned -- be sure we compensate for signed LONGEST. */
778 #ifdef LONG_LONG
779 return (unsigned long long) unpack_long (type, valaddr);
780 #else
781 return (unsigned long ) unpack_long (type, valaddr);
782 #endif
783 } else {
784 /* Signed -- we are OK with unpack_long. */
785 return unpack_long (type, valaddr);
786 }
787 }
788
789 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
790 as a CORE_ADDR, assuming the raw data is described by type TYPE.
791 We don't assume any alignment for the raw data. Return value is in
792 host byte order.
793
794 If you want functions and arrays to be coerced to pointers, and
795 references to be dereferenced, call value_as_pointer() instead.
796
797 C++: It is assumed that the front-end has taken care of
798 all matters concerning pointers to members. A pointer
799 to member which reaches here is considered to be equivalent
800 to an INT (or some size). After all, it is only an offset. */
801
802 CORE_ADDR
803 unpack_pointer (type, valaddr)
804 struct type *type;
805 char *valaddr;
806 {
807 #if 0
808 /* The user should be able to use an int (e.g. 0x7892) in contexts
809 where a pointer is expected. So this doesn't do enough. */
810 register enum type_code code = TYPE_CODE (type);
811 register int len = TYPE_LENGTH (type);
812
813 if (code == TYPE_CODE_PTR
814 || code == TYPE_CODE_REF)
815 {
816 if (len == sizeof (CORE_ADDR))
817 {
818 CORE_ADDR retval;
819 bcopy (valaddr, &retval, sizeof (retval));
820 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
821 return retval;
822 }
823 error ("Unrecognized pointer size.");
824 }
825 else if (code == TYPE_CODE_MEMBER)
826 error ("not implemented: member types in unpack_pointer");
827
828 error ("Value is not a pointer.");
829 return 0; /* For lint -- never reached */
830 #else
831 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
832 whether we want this to be true eventually. */
833 return unpack_long (type, valaddr);
834 #endif
835 }
836 \f
837 /* Given a value ARG1 (offset by OFFSET bytes)
838 of a struct or union type ARG_TYPE,
839 extract and return the value of one of its fields.
840 FIELDNO says which field.
841
842 For C++, must also be able to return values from static fields */
843
844 value
845 value_primitive_field (arg1, offset, fieldno, arg_type)
846 register value arg1;
847 int offset;
848 register int fieldno;
849 register struct type *arg_type;
850 {
851 register value v;
852 register struct type *type;
853
854 check_stub_type (arg_type);
855 type = TYPE_FIELD_TYPE (arg_type, fieldno);
856
857 /* Handle packed fields */
858
859 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
860 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
861 {
862 v = value_from_longest (type,
863 unpack_field_as_long (arg_type,
864 VALUE_CONTENTS (arg1),
865 fieldno));
866 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
867 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
868 }
869 else
870 {
871 v = allocate_value (type);
872 if (VALUE_LAZY (arg1))
873 VALUE_LAZY (v) = 1;
874 else
875 bcopy (VALUE_CONTENTS_RAW (arg1) + offset,
876 VALUE_CONTENTS_RAW (v),
877 TYPE_LENGTH (type));
878 }
879 VALUE_LVAL (v) = VALUE_LVAL (arg1);
880 if (VALUE_LVAL (arg1) == lval_internalvar)
881 VALUE_LVAL (v) = lval_internalvar_component;
882 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
883 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
884 return v;
885 }
886
887 /* Given a value ARG1 of a struct or union type,
888 extract and return the value of one of its fields.
889 FIELDNO says which field.
890
891 For C++, must also be able to return values from static fields */
892
893 value
894 value_field (arg1, fieldno)
895 register value arg1;
896 register int fieldno;
897 {
898 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
899 }
900
901 /* Return a non-virtual function as a value.
902 F is the list of member functions which contains the desired method.
903 J is an index into F which provides the desired method. */
904
905 value
906 value_fn_field (f, j)
907 struct fn_field *f;
908 int j;
909 {
910 register value v;
911 register struct type *type = TYPE_FN_FIELD_TYPE (f, j);
912 struct symbol *sym;
913
914 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
915 0, VAR_NAMESPACE, 0, NULL);
916 if (! sym) error ("Internal error: could not find physical method named %s",
917 TYPE_FN_FIELD_PHYSNAME (f, j));
918
919 v = allocate_value (type);
920 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
921 VALUE_TYPE (v) = type;
922 return v;
923 }
924
925 /* Return a virtual function as a value.
926 ARG1 is the object which provides the virtual function
927 table pointer. ARG1 is side-effected in calling this function.
928 F is the list of member functions which contains the desired virtual
929 function.
930 J is an index into F which provides the desired virtual function.
931
932 TYPE is the type in which F is located. */
933 value
934 value_virtual_fn_field (arg1, f, j, type)
935 value arg1;
936 struct fn_field *f;
937 int j;
938 struct type *type;
939 {
940 /* First, get the virtual function table pointer. That comes
941 with a strange type, so cast it to type `pointer to long' (which
942 should serve just fine as a function type). Then, index into
943 the table, and convert final value to appropriate function type. */
944 value entry, vfn, vtbl;
945 value vi = value_from_longest (builtin_type_int,
946 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
947 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
948 struct type *context;
949 if (fcontext == NULL)
950 /* We don't have an fcontext (e.g. the program was compiled with
951 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
952 This won't work right for multiple inheritance, but at least we
953 should do as well as GDB 3.x did. */
954 fcontext = TYPE_VPTR_BASETYPE (type);
955 context = lookup_pointer_type (fcontext);
956 /* Now context is a pointer to the basetype containing the vtbl. */
957 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
958 arg1 = value_ind (value_cast (context, value_addr (arg1)));
959
960 context = VALUE_TYPE (arg1);
961 /* Now context is the basetype containing the vtbl. */
962
963 /* This type may have been defined before its virtual function table
964 was. If so, fill in the virtual function table entry for the
965 type now. */
966 if (TYPE_VPTR_FIELDNO (context) < 0)
967 fill_in_vptr_fieldno (context);
968
969 /* The virtual function table is now an array of structures
970 which have the form { int16 offset, delta; void *pfn; }. */
971 vtbl = value_ind (value_field (arg1, TYPE_VPTR_FIELDNO (context)));
972
973 /* Index into the virtual function table. This is hard-coded because
974 looking up a field is not cheap, and it may be important to save
975 time, e.g. if the user has set a conditional breakpoint calling
976 a virtual function. */
977 entry = value_subscript (vtbl, vi);
978
979 /* Move the `this' pointer according to the virtual function table. */
980 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
981 if (! VALUE_LAZY (arg1))
982 {
983 VALUE_LAZY (arg1) = 1;
984 value_fetch_lazy (arg1);
985 }
986
987 vfn = value_field (entry, 2);
988 /* Reinstantiate the function pointer with the correct type. */
989 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
990
991 return vfn;
992 }
993
994 /* ARG is a pointer to an object we know to be at least
995 a DTYPE. BTYPE is the most derived basetype that has
996 already been searched (and need not be searched again).
997 After looking at the vtables between BTYPE and DTYPE,
998 return the most derived type we find. The caller must
999 be satisfied when the return value == DTYPE.
1000
1001 FIXME-tiemann: should work with dossier entries as well. */
1002
1003 static value
1004 value_headof (arg, btype, dtype)
1005 value arg;
1006 struct type *btype, *dtype;
1007 {
1008 /* First collect the vtables we must look at for this object. */
1009 /* FIXME-tiemann: right now, just look at top-most vtable. */
1010 value vtbl, entry, best_entry = 0;
1011 /* FIXME: entry_type is never used. */
1012 struct type *entry_type;
1013 int i, nelems;
1014 int offset, best_offset = 0;
1015 struct symbol *sym;
1016 CORE_ADDR pc_for_sym;
1017 char *demangled_name;
1018 struct minimal_symbol *msymbol;
1019
1020 btype = TYPE_VPTR_BASETYPE (dtype);
1021 check_stub_type (btype);
1022 if (btype != dtype)
1023 vtbl = value_cast (lookup_pointer_type (btype), arg);
1024 else
1025 vtbl = arg;
1026 vtbl = value_ind (value_field (value_ind (vtbl), TYPE_VPTR_FIELDNO (btype)));
1027
1028 /* Check that VTBL looks like it points to a virtual function table. */
1029 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
1030 if (msymbol == NULL
1031 || !VTBL_PREFIX_P (demangled_name = msymbol -> name))
1032 {
1033 /* If we expected to find a vtable, but did not, let the user
1034 know that we aren't happy, but don't throw an error.
1035 FIXME: there has to be a better way to do this. */
1036 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
1037 bcopy (VALUE_TYPE (arg), error_type, sizeof (struct type));
1038 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1039 VALUE_TYPE (arg) = error_type;
1040 return arg;
1041 }
1042
1043 /* Now search through the virtual function table. */
1044 entry = value_ind (vtbl);
1045 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
1046 for (i = 1; i <= nelems; i++)
1047 {
1048 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1049 (LONGEST) i));
1050 offset = longest_to_int (value_as_long (value_field (entry, 0)));
1051 /* If we use '<=' we can handle single inheritance
1052 * where all offsets are zero - just use the first entry found. */
1053 if (offset <= best_offset)
1054 {
1055 best_offset = offset;
1056 best_entry = entry;
1057 }
1058 }
1059 /* Move the pointer according to BEST_ENTRY's offset, and figure
1060 out what type we should return as the new pointer. */
1061 if (best_entry == 0)
1062 {
1063 /* An alternative method (which should no longer be necessary).
1064 * But we leave it in for future use, when we will hopefully
1065 * have optimizes the vtable to use thunks instead of offsets. */
1066 /* Use the name of vtable itself to extract a base type. */
1067 demangled_name += 4; /* Skip _vt$ prefix. */
1068 }
1069 else
1070 {
1071 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1072 sym = find_pc_function (pc_for_sym);
1073 demangled_name = cplus_demangle (SYMBOL_NAME (sym), 0);
1074 *(strchr (demangled_name, ':')) = '\0';
1075 }
1076 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1077 if (sym == 0)
1078 error ("could not find type declaration for `%s'", SYMBOL_NAME (sym));
1079 if (best_entry)
1080 {
1081 free (demangled_name);
1082 arg = value_add (value_cast (builtin_type_int, arg),
1083 value_field (best_entry, 0));
1084 }
1085 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1086 return arg;
1087 }
1088
1089 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1090 function tables, probe ARG's tables (including the vtables
1091 of its baseclasses) to figure out the most derived type that ARG
1092 could actually be a pointer to. */
1093
1094 value
1095 value_from_vtable_info (arg, type)
1096 value arg;
1097 struct type *type;
1098 {
1099 /* Take care of preliminaries. */
1100 if (TYPE_VPTR_FIELDNO (type) < 0)
1101 fill_in_vptr_fieldno (type);
1102 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1103 return 0;
1104
1105 return value_headof (arg, 0, type);
1106 }
1107
1108 /* Compute the address of the baseclass which is
1109 the INDEXth baseclass of class TYPE. The TYPE base
1110 of the object is at VALADDR.
1111
1112 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1113 or 0 if no error. In that case the return value is not the address
1114 of the baseclasss, but the address which could not be read
1115 successfully. */
1116
1117 char *
1118 baseclass_addr (type, index, valaddr, valuep, errp)
1119 struct type *type;
1120 int index;
1121 char *valaddr;
1122 value *valuep;
1123 int *errp;
1124 {
1125 struct type *basetype = TYPE_BASECLASS (type, index);
1126
1127 if (errp)
1128 *errp = 0;
1129
1130 if (BASETYPE_VIA_VIRTUAL (type, index))
1131 {
1132 /* Must hunt for the pointer to this virtual baseclass. */
1133 register int i, len = TYPE_NFIELDS (type);
1134 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1135 char *vbase_name, *type_name = type_name_no_tag (basetype);
1136
1137 vbase_name = (char *)alloca (strlen (type_name) + 8);
1138 sprintf (vbase_name, "_vb$%s", type_name);
1139 /* First look for the virtual baseclass pointer
1140 in the fields. */
1141 for (i = n_baseclasses; i < len; i++)
1142 {
1143 if (! strcmp (vbase_name, TYPE_FIELD_NAME (type, i)))
1144 {
1145 value val = allocate_value (basetype);
1146 CORE_ADDR addr;
1147 int status;
1148
1149 addr
1150 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1151 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1152
1153 status = target_read_memory (addr,
1154 VALUE_CONTENTS_RAW (val),
1155 TYPE_LENGTH (basetype));
1156 VALUE_LVAL (val) = lval_memory;
1157 VALUE_ADDRESS (val) = addr;
1158
1159 if (status != 0)
1160 {
1161 if (valuep)
1162 *valuep = NULL;
1163 release_value (val);
1164 value_free (val);
1165 if (errp)
1166 *errp = status;
1167 return (char *)addr;
1168 }
1169 else
1170 {
1171 if (valuep)
1172 *valuep = val;
1173 return (char *) VALUE_CONTENTS (val);
1174 }
1175 }
1176 }
1177 /* Not in the fields, so try looking through the baseclasses. */
1178 for (i = index+1; i < n_baseclasses; i++)
1179 {
1180 char *baddr;
1181
1182 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1183 if (baddr)
1184 return baddr;
1185 }
1186 /* Not found. */
1187 if (valuep)
1188 *valuep = 0;
1189 return 0;
1190 }
1191
1192 /* Baseclass is easily computed. */
1193 if (valuep)
1194 *valuep = 0;
1195 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1196 }
1197 \f
1198 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1199 VALADDR.
1200
1201 Extracting bits depends on endianness of the machine. Compute the
1202 number of least significant bits to discard. For big endian machines,
1203 we compute the total number of bits in the anonymous object, subtract
1204 off the bit count from the MSB of the object to the MSB of the
1205 bitfield, then the size of the bitfield, which leaves the LSB discard
1206 count. For little endian machines, the discard count is simply the
1207 number of bits from the LSB of the anonymous object to the LSB of the
1208 bitfield.
1209
1210 If the field is signed, we also do sign extension. */
1211
1212 LONGEST
1213 unpack_field_as_long (type, valaddr, fieldno)
1214 struct type *type;
1215 char *valaddr;
1216 int fieldno;
1217 {
1218 unsigned LONGEST val;
1219 unsigned LONGEST valmask;
1220 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1221 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1222 int lsbcount;
1223
1224 bcopy (valaddr + bitpos / 8, &val, sizeof (val));
1225 SWAP_TARGET_AND_HOST (&val, sizeof (val));
1226
1227 /* Extract bits. See comment above. */
1228
1229 #if BITS_BIG_ENDIAN
1230 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1231 #else
1232 lsbcount = (bitpos % 8);
1233 #endif
1234 val >>= lsbcount;
1235
1236 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1237 If the field is signed, and is negative, then sign extend. */
1238
1239 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1240 {
1241 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1242 val &= valmask;
1243 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1244 {
1245 if (val & (valmask ^ (valmask >> 1)))
1246 {
1247 val |= ~valmask;
1248 }
1249 }
1250 }
1251 return (val);
1252 }
1253
1254 /* Modify the value of a bitfield. ADDR points to a block of memory in
1255 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1256 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1257 indicate which bits (in target bit order) comprise the bitfield. */
1258
1259 void
1260 modify_field (addr, fieldval, bitpos, bitsize)
1261 char *addr;
1262 int fieldval;
1263 int bitpos, bitsize;
1264 {
1265 long oword;
1266
1267 /* Reject values too big to fit in the field in question,
1268 otherwise adjoining fields may be corrupted. */
1269 if (bitsize < (8 * sizeof (fieldval))
1270 && 0 != (fieldval & ~((1<<bitsize)-1)))
1271 error ("Value %d does not fit in %d bits.", fieldval, bitsize);
1272
1273 bcopy (addr, &oword, sizeof oword);
1274 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To host format */
1275
1276 /* Shifting for bit field depends on endianness of the target machine. */
1277 #if BITS_BIG_ENDIAN
1278 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1279 #endif
1280
1281 /* Mask out old value, while avoiding shifts >= longword size */
1282 if (bitsize < 8 * sizeof (oword))
1283 oword &= ~(((((unsigned long)1) << bitsize) - 1) << bitpos);
1284 else
1285 oword &= ~((-1) << bitpos);
1286 oword |= fieldval << bitpos;
1287
1288 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To target format */
1289 bcopy (&oword, addr, sizeof oword);
1290 }
1291 \f
1292 /* Convert C numbers into newly allocated values */
1293
1294 value
1295 value_from_longest (type, num)
1296 struct type *type;
1297 register LONGEST num;
1298 {
1299 register value val = allocate_value (type);
1300 register enum type_code code = TYPE_CODE (type);
1301 register int len = TYPE_LENGTH (type);
1302
1303 /* FIXME, we assume that pointers have the same form and byte order as
1304 integers, and that all pointers have the same form. */
1305 if (code == TYPE_CODE_INT || code == TYPE_CODE_ENUM ||
1306 code == TYPE_CODE_CHAR || code == TYPE_CODE_PTR ||
1307 code == TYPE_CODE_REF)
1308 {
1309 if (len == sizeof (char))
1310 * (char *) VALUE_CONTENTS_RAW (val) = num;
1311 else if (len == sizeof (short))
1312 * (short *) VALUE_CONTENTS_RAW (val) = num;
1313 else if (len == sizeof (int))
1314 * (int *) VALUE_CONTENTS_RAW (val) = num;
1315 else if (len == sizeof (long))
1316 * (long *) VALUE_CONTENTS_RAW (val) = num;
1317 #ifdef LONG_LONG
1318 else if (len == sizeof (long long))
1319 * (long long *) VALUE_CONTENTS_RAW (val) = num;
1320 #endif
1321 else
1322 error ("Integer type encountered with unexpected data length.");
1323 }
1324 else
1325 error ("Unexpected type encountered for integer constant.");
1326
1327 /* num was in host byte order. So now put the value's contents
1328 into target byte order. */
1329 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1330
1331 return val;
1332 }
1333
1334 value
1335 value_from_double (type, num)
1336 struct type *type;
1337 double num;
1338 {
1339 register value val = allocate_value (type);
1340 register enum type_code code = TYPE_CODE (type);
1341 register int len = TYPE_LENGTH (type);
1342
1343 if (code == TYPE_CODE_FLT)
1344 {
1345 if (len == sizeof (float))
1346 * (float *) VALUE_CONTENTS_RAW (val) = num;
1347 else if (len == sizeof (double))
1348 * (double *) VALUE_CONTENTS_RAW (val) = num;
1349 else
1350 error ("Floating type encountered with unexpected data length.");
1351 }
1352 else
1353 error ("Unexpected type encountered for floating constant.");
1354
1355 /* num was in host byte order. So now put the value's contents
1356 into target byte order. */
1357 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1358
1359 return val;
1360 }
1361 \f
1362 /* Deal with the value that is "about to be returned". */
1363
1364 /* Return the value that a function returning now
1365 would be returning to its caller, assuming its type is VALTYPE.
1366 RETBUF is where we look for what ought to be the contents
1367 of the registers (in raw form). This is because it is often
1368 desirable to restore old values to those registers
1369 after saving the contents of interest, and then call
1370 this function using the saved values.
1371 struct_return is non-zero when the function in question is
1372 using the structure return conventions on the machine in question;
1373 0 when it is using the value returning conventions (this often
1374 means returning pointer to where structure is vs. returning value). */
1375
1376 value
1377 value_being_returned (valtype, retbuf, struct_return)
1378 register struct type *valtype;
1379 char retbuf[REGISTER_BYTES];
1380 int struct_return;
1381 /*ARGSUSED*/
1382 {
1383 register value val;
1384 CORE_ADDR addr;
1385
1386 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1387 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1388 if (struct_return) {
1389 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1390 if (!addr)
1391 error ("Function return value unknown");
1392 return value_at (valtype, addr);
1393 }
1394 #endif
1395
1396 val = allocate_value (valtype);
1397 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1398
1399 return val;
1400 }
1401
1402 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1403 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1404 and TYPE is the type (which is known to be struct, union or array).
1405
1406 On most machines, the struct convention is used unless we are
1407 using gcc and the type is of a special size. */
1408 #if !defined (USE_STRUCT_CONVENTION)
1409 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1410 (!((gcc_p) && (TYPE_LENGTH (value_type) == 1 \
1411 || TYPE_LENGTH (value_type) == 2 \
1412 || TYPE_LENGTH (value_type) == 4 \
1413 || TYPE_LENGTH (value_type) == 8 \
1414 ) \
1415 ))
1416 #endif
1417
1418 /* Return true if the function specified is using the structure returning
1419 convention on this machine to return arguments, or 0 if it is using
1420 the value returning convention. FUNCTION is the value representing
1421 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1422 is the type returned by the function. GCC_P is nonzero if compiled
1423 with GCC. */
1424
1425 int
1426 using_struct_return (function, funcaddr, value_type, gcc_p)
1427 value function;
1428 CORE_ADDR funcaddr;
1429 struct type *value_type;
1430 int gcc_p;
1431 /*ARGSUSED*/
1432 {
1433 register enum type_code code = TYPE_CODE (value_type);
1434
1435 if (code == TYPE_CODE_ERROR)
1436 error ("Function return type unknown.");
1437
1438 if (code == TYPE_CODE_STRUCT ||
1439 code == TYPE_CODE_UNION ||
1440 code == TYPE_CODE_ARRAY)
1441 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1442
1443 return 0;
1444 }
1445
1446 /* Store VAL so it will be returned if a function returns now.
1447 Does not verify that VAL's type matches what the current
1448 function wants to return. */
1449
1450 void
1451 set_return_value (val)
1452 value val;
1453 {
1454 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1455 double dbuf;
1456 LONGEST lbuf;
1457
1458 if (code == TYPE_CODE_ERROR)
1459 error ("Function return type unknown.");
1460
1461 if ( code == TYPE_CODE_STRUCT
1462 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1463 error ("GDB does not support specifying a struct or union return value.");
1464
1465 /* FIXME, this is bogus. We don't know what the return conventions
1466 are, or how values should be promoted.... */
1467 if (code == TYPE_CODE_FLT)
1468 {
1469 dbuf = value_as_double (val);
1470
1471 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1472 }
1473 else
1474 {
1475 lbuf = value_as_long (val);
1476 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1477 }
1478 }
1479 \f
1480 void
1481 _initialize_values ()
1482 {
1483 add_cmd ("convenience", no_class, show_convenience,
1484 "Debugger convenience (\"$foo\") variables.\n\
1485 These variables are created when you assign them values;\n\
1486 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1487 A few convenience variables are given values automatically:\n\
1488 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1489 \"$__\" holds the contents of the last address examined with \"x\".",
1490 &showlist);
1491
1492 add_cmd ("values", no_class, show_values,
1493 "Elements of value history around item number IDX (or last ten).",
1494 &showlist);
1495 }
This page took 0.062436 seconds and 4 git commands to generate.