import gdb-19990422 snapshot
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "scm-lang.h"
33 #include "demangle.h"
34
35 /* Prototypes for exported functions. */
36
37 void _initialize_values PARAMS ((void));
38
39 /* Prototypes for local functions. */
40
41 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
42 struct type *));
43
44 static void show_values PARAMS ((char *, int));
45
46 static void show_convenience PARAMS ((char *, int));
47
48 static int vb_match PARAMS ((struct type *, int, struct type *));
49
50 /* The value-history records all the values printed
51 by print commands during this session. Each chunk
52 records 60 consecutive values. The first chunk on
53 the chain records the most recent values.
54 The total number of values is in value_history_count. */
55
56 #define VALUE_HISTORY_CHUNK 60
57
58 struct value_history_chunk
59 {
60 struct value_history_chunk *next;
61 value_ptr values[VALUE_HISTORY_CHUNK];
62 };
63
64 /* Chain of chunks now in use. */
65
66 static struct value_history_chunk *value_history_chain;
67
68 static int value_history_count; /* Abs number of last entry stored */
69 \f
70 /* List of all value objects currently allocated
71 (except for those released by calls to release_value)
72 This is so they can be freed after each command. */
73
74 static value_ptr all_values;
75
76 /* Allocate a value that has the correct length for type TYPE. */
77
78 value_ptr
79 allocate_value (type)
80 struct type *type;
81 {
82 register value_ptr val;
83 struct type *atype = check_typedef (type);
84
85 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
86 VALUE_NEXT (val) = all_values;
87 all_values = val;
88 VALUE_TYPE (val) = type;
89 VALUE_ENCLOSING_TYPE (val) = type;
90 VALUE_LVAL (val) = not_lval;
91 VALUE_ADDRESS (val) = 0;
92 VALUE_FRAME (val) = 0;
93 VALUE_OFFSET (val) = 0;
94 VALUE_BITPOS (val) = 0;
95 VALUE_BITSIZE (val) = 0;
96 VALUE_REGNO (val) = -1;
97 VALUE_LAZY (val) = 0;
98 VALUE_OPTIMIZED_OUT (val) = 0;
99 VALUE_BFD_SECTION (val) = NULL;
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104 }
105
106 /* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
109 value_ptr
110 allocate_repeat_value (type, count)
111 struct type *type;
112 int count;
113 {
114 int low_bound = current_language->string_lower_bound; /* ??? */
115 /* FIXME-type-allocation: need a way to free this type when we are
116 done with it. */
117 struct type *range_type
118 = create_range_type ((struct type *) NULL, builtin_type_int,
119 low_bound, count + low_bound - 1);
120 /* FIXME-type-allocation: need a way to free this type when we are
121 done with it. */
122 return allocate_value (create_array_type ((struct type *) NULL,
123 type, range_type));
124 }
125
126 /* Return a mark in the value chain. All values allocated after the
127 mark is obtained (except for those released) are subject to being freed
128 if a subsequent value_free_to_mark is passed the mark. */
129 value_ptr
130 value_mark ()
131 {
132 return all_values;
133 }
134
135 /* Free all values allocated since MARK was obtained by value_mark
136 (except for those released). */
137 void
138 value_free_to_mark (mark)
139 value_ptr mark;
140 {
141 value_ptr val, next;
142
143 for (val = all_values; val && val != mark; val = next)
144 {
145 next = VALUE_NEXT (val);
146 value_free (val);
147 }
148 all_values = val;
149 }
150
151 /* Free all the values that have been allocated (except for those released).
152 Called after each command, successful or not. */
153
154 void
155 free_all_values ()
156 {
157 register value_ptr val, next;
158
159 for (val = all_values; val; val = next)
160 {
161 next = VALUE_NEXT (val);
162 value_free (val);
163 }
164
165 all_values = 0;
166 }
167
168 /* Remove VAL from the chain all_values
169 so it will not be freed automatically. */
170
171 void
172 release_value (val)
173 register value_ptr val;
174 {
175 register value_ptr v;
176
177 if (all_values == val)
178 {
179 all_values = val->next;
180 return;
181 }
182
183 for (v = all_values; v; v = v->next)
184 {
185 if (v->next == val)
186 {
187 v->next = val->next;
188 break;
189 }
190 }
191 }
192
193 /* Release all values up to mark */
194 value_ptr
195 value_release_to_mark (mark)
196 value_ptr mark;
197 {
198 value_ptr val, next;
199
200 for (val = next = all_values; next; next = VALUE_NEXT (next))
201 if (VALUE_NEXT (next) == mark)
202 {
203 all_values = VALUE_NEXT (next);
204 VALUE_NEXT (next) = 0;
205 return val;
206 }
207 all_values = 0;
208 return val;
209 }
210
211 /* Return a copy of the value ARG.
212 It contains the same contents, for same memory address,
213 but it's a different block of storage. */
214
215 value_ptr
216 value_copy (arg)
217 value_ptr arg;
218 {
219 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
220 register value_ptr val = allocate_value (encl_type);
221 VALUE_TYPE (val) = VALUE_TYPE (arg);
222 VALUE_LVAL (val) = VALUE_LVAL (arg);
223 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
224 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
225 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
226 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
227 VALUE_FRAME (val) = VALUE_FRAME (arg);
228 VALUE_REGNO (val) = VALUE_REGNO (arg);
229 VALUE_LAZY (val) = VALUE_LAZY (arg);
230 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
231 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
232 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
233 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
234 val->modifiable = arg->modifiable;
235 if (!VALUE_LAZY (val))
236 {
237 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
238 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
239
240 }
241 return val;
242 }
243 \f
244 /* Access to the value history. */
245
246 /* Record a new value in the value history.
247 Returns the absolute history index of the entry.
248 Result of -1 indicates the value was not saved; otherwise it is the
249 value history index of this new item. */
250
251 int
252 record_latest_value (val)
253 value_ptr val;
254 {
255 int i;
256
257 /* We don't want this value to have anything to do with the inferior anymore.
258 In particular, "set $1 = 50" should not affect the variable from which
259 the value was taken, and fast watchpoints should be able to assume that
260 a value on the value history never changes. */
261 if (VALUE_LAZY (val))
262 value_fetch_lazy (val);
263 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
264 from. This is a bit dubious, because then *&$1 does not just return $1
265 but the current contents of that location. c'est la vie... */
266 val->modifiable = 0;
267 release_value (val);
268
269 /* Here we treat value_history_count as origin-zero
270 and applying to the value being stored now. */
271
272 i = value_history_count % VALUE_HISTORY_CHUNK;
273 if (i == 0)
274 {
275 register struct value_history_chunk *new
276 = (struct value_history_chunk *)
277 xmalloc (sizeof (struct value_history_chunk));
278 memset (new->values, 0, sizeof new->values);
279 new->next = value_history_chain;
280 value_history_chain = new;
281 }
282
283 value_history_chain->values[i] = val;
284
285 /* Now we regard value_history_count as origin-one
286 and applying to the value just stored. */
287
288 return ++value_history_count;
289 }
290
291 /* Return a copy of the value in the history with sequence number NUM. */
292
293 value_ptr
294 access_value_history (num)
295 int num;
296 {
297 register struct value_history_chunk *chunk;
298 register int i;
299 register int absnum = num;
300
301 if (absnum <= 0)
302 absnum += value_history_count;
303
304 if (absnum <= 0)
305 {
306 if (num == 0)
307 error ("The history is empty.");
308 else if (num == 1)
309 error ("There is only one value in the history.");
310 else
311 error ("History does not go back to $$%d.", -num);
312 }
313 if (absnum > value_history_count)
314 error ("History has not yet reached $%d.", absnum);
315
316 absnum--;
317
318 /* Now absnum is always absolute and origin zero. */
319
320 chunk = value_history_chain;
321 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
322 i > 0; i--)
323 chunk = chunk->next;
324
325 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
326 }
327
328 /* Clear the value history entirely.
329 Must be done when new symbol tables are loaded,
330 because the type pointers become invalid. */
331
332 void
333 clear_value_history ()
334 {
335 register struct value_history_chunk *next;
336 register int i;
337 register value_ptr val;
338
339 while (value_history_chain)
340 {
341 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
342 if ((val = value_history_chain->values[i]) != NULL)
343 free ((PTR)val);
344 next = value_history_chain->next;
345 free ((PTR)value_history_chain);
346 value_history_chain = next;
347 }
348 value_history_count = 0;
349 }
350
351 static void
352 show_values (num_exp, from_tty)
353 char *num_exp;
354 int from_tty;
355 {
356 register int i;
357 register value_ptr val;
358 static int num = 1;
359
360 if (num_exp)
361 {
362 /* "info history +" should print from the stored position.
363 "info history <exp>" should print around value number <exp>. */
364 if (num_exp[0] != '+' || num_exp[1] != '\0')
365 num = parse_and_eval_address (num_exp) - 5;
366 }
367 else
368 {
369 /* "info history" means print the last 10 values. */
370 num = value_history_count - 9;
371 }
372
373 if (num <= 0)
374 num = 1;
375
376 for (i = num; i < num + 10 && i <= value_history_count; i++)
377 {
378 val = access_value_history (i);
379 printf_filtered ("$%d = ", i);
380 value_print (val, gdb_stdout, 0, Val_pretty_default);
381 printf_filtered ("\n");
382 }
383
384 /* The next "info history +" should start after what we just printed. */
385 num += 10;
386
387 /* Hitting just return after this command should do the same thing as
388 "info history +". If num_exp is null, this is unnecessary, since
389 "info history +" is not useful after "info history". */
390 if (from_tty && num_exp)
391 {
392 num_exp[0] = '+';
393 num_exp[1] = '\0';
394 }
395 }
396 \f
397 /* Internal variables. These are variables within the debugger
398 that hold values assigned by debugger commands.
399 The user refers to them with a '$' prefix
400 that does not appear in the variable names stored internally. */
401
402 static struct internalvar *internalvars;
403
404 /* Look up an internal variable with name NAME. NAME should not
405 normally include a dollar sign.
406
407 If the specified internal variable does not exist,
408 one is created, with a void value. */
409
410 struct internalvar *
411 lookup_internalvar (name)
412 char *name;
413 {
414 register struct internalvar *var;
415
416 for (var = internalvars; var; var = var->next)
417 if (STREQ (var->name, name))
418 return var;
419
420 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
421 var->name = concat (name, NULL);
422 var->value = allocate_value (builtin_type_void);
423 release_value (var->value);
424 var->next = internalvars;
425 internalvars = var;
426 return var;
427 }
428
429 value_ptr
430 value_of_internalvar (var)
431 struct internalvar *var;
432 {
433 register value_ptr val;
434
435 #ifdef IS_TRAPPED_INTERNALVAR
436 if (IS_TRAPPED_INTERNALVAR (var->name))
437 return VALUE_OF_TRAPPED_INTERNALVAR (var);
438 #endif
439
440 val = value_copy (var->value);
441 if (VALUE_LAZY (val))
442 value_fetch_lazy (val);
443 VALUE_LVAL (val) = lval_internalvar;
444 VALUE_INTERNALVAR (val) = var;
445 return val;
446 }
447
448 void
449 set_internalvar_component (var, offset, bitpos, bitsize, newval)
450 struct internalvar *var;
451 int offset, bitpos, bitsize;
452 value_ptr newval;
453 {
454 register char *addr = VALUE_CONTENTS (var->value) + offset;
455
456 #ifdef IS_TRAPPED_INTERNALVAR
457 if (IS_TRAPPED_INTERNALVAR (var->name))
458 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
459 #endif
460
461 if (bitsize)
462 modify_field (addr, value_as_long (newval),
463 bitpos, bitsize);
464 else
465 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
466 }
467
468 void
469 set_internalvar (var, val)
470 struct internalvar *var;
471 value_ptr val;
472 {
473 value_ptr newval;
474
475 #ifdef IS_TRAPPED_INTERNALVAR
476 if (IS_TRAPPED_INTERNALVAR (var->name))
477 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
478 #endif
479
480 newval = value_copy (val);
481 newval->modifiable = 1;
482
483 /* Force the value to be fetched from the target now, to avoid problems
484 later when this internalvar is referenced and the target is gone or
485 has changed. */
486 if (VALUE_LAZY (newval))
487 value_fetch_lazy (newval);
488
489 /* Begin code which must not call error(). If var->value points to
490 something free'd, an error() obviously leaves a dangling pointer.
491 But we also get a danling pointer if var->value points to
492 something in the value chain (i.e., before release_value is
493 called), because after the error free_all_values will get called before
494 long. */
495 free ((PTR)var->value);
496 var->value = newval;
497 release_value (newval);
498 /* End code which must not call error(). */
499 }
500
501 char *
502 internalvar_name (var)
503 struct internalvar *var;
504 {
505 return var->name;
506 }
507
508 /* Free all internalvars. Done when new symtabs are loaded,
509 because that makes the values invalid. */
510
511 void
512 clear_internalvars ()
513 {
514 register struct internalvar *var;
515
516 while (internalvars)
517 {
518 var = internalvars;
519 internalvars = var->next;
520 free ((PTR)var->name);
521 free ((PTR)var->value);
522 free ((PTR)var);
523 }
524 }
525
526 static void
527 show_convenience (ignore, from_tty)
528 char *ignore;
529 int from_tty;
530 {
531 register struct internalvar *var;
532 int varseen = 0;
533
534 for (var = internalvars; var; var = var->next)
535 {
536 #ifdef IS_TRAPPED_INTERNALVAR
537 if (IS_TRAPPED_INTERNALVAR (var->name))
538 continue;
539 #endif
540 if (!varseen)
541 {
542 varseen = 1;
543 }
544 printf_filtered ("$%s = ", var->name);
545 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
546 printf_filtered ("\n");
547 }
548 if (!varseen)
549 printf_unfiltered ("No debugger convenience variables now defined.\n\
550 Convenience variables have names starting with \"$\";\n\
551 use \"set\" as in \"set $foo = 5\" to define them.\n");
552 }
553 \f
554 /* Extract a value as a C number (either long or double).
555 Knows how to convert fixed values to double, or
556 floating values to long.
557 Does not deallocate the value. */
558
559 LONGEST
560 value_as_long (val)
561 register value_ptr val;
562 {
563 /* This coerces arrays and functions, which is necessary (e.g.
564 in disassemble_command). It also dereferences references, which
565 I suspect is the most logical thing to do. */
566 COERCE_ARRAY (val);
567 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
568 }
569
570 DOUBLEST
571 value_as_double (val)
572 register value_ptr val;
573 {
574 DOUBLEST foo;
575 int inv;
576
577 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
578 if (inv)
579 error ("Invalid floating value found in program.");
580 return foo;
581 }
582 /* Extract a value as a C pointer.
583 Does not deallocate the value. */
584 CORE_ADDR
585 value_as_pointer (val)
586 value_ptr val;
587 {
588 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
589 whether we want this to be true eventually. */
590 #if 0
591 /* ADDR_BITS_REMOVE is wrong if we are being called for a
592 non-address (e.g. argument to "signal", "info break", etc.), or
593 for pointers to char, in which the low bits *are* significant. */
594 return ADDR_BITS_REMOVE(value_as_long (val));
595 #else
596 return value_as_long (val);
597 #endif
598 }
599 \f
600 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
601 as a long, or as a double, assuming the raw data is described
602 by type TYPE. Knows how to convert different sizes of values
603 and can convert between fixed and floating point. We don't assume
604 any alignment for the raw data. Return value is in host byte order.
605
606 If you want functions and arrays to be coerced to pointers, and
607 references to be dereferenced, call value_as_long() instead.
608
609 C++: It is assumed that the front-end has taken care of
610 all matters concerning pointers to members. A pointer
611 to member which reaches here is considered to be equivalent
612 to an INT (or some size). After all, it is only an offset. */
613
614 LONGEST
615 unpack_long (type, valaddr)
616 struct type *type;
617 char *valaddr;
618 {
619 register enum type_code code = TYPE_CODE (type);
620 register int len = TYPE_LENGTH (type);
621 register int nosign = TYPE_UNSIGNED (type);
622
623 if (current_language->la_language == language_scm
624 && is_scmvalue_type (type))
625 return scm_unpack (type, valaddr, TYPE_CODE_INT);
626
627 switch (code)
628 {
629 case TYPE_CODE_TYPEDEF:
630 return unpack_long (check_typedef (type), valaddr);
631 case TYPE_CODE_ENUM:
632 case TYPE_CODE_BOOL:
633 case TYPE_CODE_INT:
634 case TYPE_CODE_CHAR:
635 case TYPE_CODE_RANGE:
636 if (nosign)
637 return extract_unsigned_integer (valaddr, len);
638 else
639 return extract_signed_integer (valaddr, len);
640
641 case TYPE_CODE_FLT:
642 return extract_floating (valaddr, len);
643
644 case TYPE_CODE_PTR:
645 case TYPE_CODE_REF:
646 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
647 whether we want this to be true eventually. */
648 if (GDB_TARGET_IS_D10V
649 && len == 2)
650 return D10V_MAKE_DADDR (extract_address (valaddr, len));
651 return extract_address (valaddr, len);
652
653 case TYPE_CODE_MEMBER:
654 error ("not implemented: member types in unpack_long");
655
656 default:
657 error ("Value can't be converted to integer.");
658 }
659 return 0; /* Placate lint. */
660 }
661
662 /* Return a double value from the specified type and address.
663 INVP points to an int which is set to 0 for valid value,
664 1 for invalid value (bad float format). In either case,
665 the returned double is OK to use. Argument is in target
666 format, result is in host format. */
667
668 DOUBLEST
669 unpack_double (type, valaddr, invp)
670 struct type *type;
671 char *valaddr;
672 int *invp;
673 {
674 enum type_code code;
675 int len;
676 int nosign;
677
678 *invp = 0; /* Assume valid. */
679 CHECK_TYPEDEF (type);
680 code = TYPE_CODE (type);
681 len = TYPE_LENGTH (type);
682 nosign = TYPE_UNSIGNED (type);
683 if (code == TYPE_CODE_FLT)
684 {
685 #ifdef INVALID_FLOAT
686 if (INVALID_FLOAT (valaddr, len))
687 {
688 *invp = 1;
689 return 1.234567891011121314;
690 }
691 #endif
692 return extract_floating (valaddr, len);
693 }
694 else if (nosign)
695 {
696 /* Unsigned -- be sure we compensate for signed LONGEST. */
697 #if !defined (_MSC_VER) || (_MSC_VER > 900)
698 return (ULONGEST) unpack_long (type, valaddr);
699 #else
700 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
701 return (LONGEST) unpack_long (type, valaddr);
702 #endif /* _MSC_VER */
703 }
704 else
705 {
706 /* Signed -- we are OK with unpack_long. */
707 return unpack_long (type, valaddr);
708 }
709 }
710
711 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
712 as a CORE_ADDR, assuming the raw data is described by type TYPE.
713 We don't assume any alignment for the raw data. Return value is in
714 host byte order.
715
716 If you want functions and arrays to be coerced to pointers, and
717 references to be dereferenced, call value_as_pointer() instead.
718
719 C++: It is assumed that the front-end has taken care of
720 all matters concerning pointers to members. A pointer
721 to member which reaches here is considered to be equivalent
722 to an INT (or some size). After all, it is only an offset. */
723
724 CORE_ADDR
725 unpack_pointer (type, valaddr)
726 struct type *type;
727 char *valaddr;
728 {
729 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
730 whether we want this to be true eventually. */
731 return unpack_long (type, valaddr);
732 }
733 \f
734 /* Get the value of the FIELDN'th field (which must be static) of TYPE. */
735
736 value_ptr
737 value_static_field (type, fieldno)
738 struct type *type;
739 int fieldno;
740 {
741 CORE_ADDR addr;
742 asection *sect;
743 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
744 {
745 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
746 sect = NULL;
747 }
748 else
749 {
750 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
751 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
752 if (sym == NULL)
753 {
754 /* With some compilers, e.g. HP aCC, static data members are reported
755 as non-debuggable symbols */
756 struct minimal_symbol * msym = lookup_minimal_symbol (phys_name, NULL, NULL);
757 if (!msym)
758 return NULL;
759 else
760 {
761 addr = SYMBOL_VALUE_ADDRESS (msym);
762 sect = SYMBOL_BFD_SECTION (msym);
763 }
764 }
765 else
766 {
767 addr = SYMBOL_VALUE_ADDRESS (sym);
768 sect = SYMBOL_BFD_SECTION (sym);
769 }
770 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
771 }
772 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
773 }
774
775 /* Given a value ARG1 (offset by OFFSET bytes)
776 of a struct or union type ARG_TYPE,
777 extract and return the value of one of its (non-static) fields.
778 FIELDNO says which field. */
779
780 value_ptr
781 value_primitive_field (arg1, offset, fieldno, arg_type)
782 register value_ptr arg1;
783 int offset;
784 register int fieldno;
785 register struct type *arg_type;
786 {
787 register value_ptr v;
788 register struct type *type;
789
790 CHECK_TYPEDEF (arg_type);
791 type = TYPE_FIELD_TYPE (arg_type, fieldno);
792
793 /* Handle packed fields */
794
795 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
796 {
797 v = value_from_longest (type,
798 unpack_field_as_long (arg_type,
799 VALUE_CONTENTS (arg1)
800 + offset,
801 fieldno));
802 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
803 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
804 }
805 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
806 {
807 /* This field is actually a base subobject, so preserve the
808 entire object's contents for later references to virtual
809 bases, etc. */
810 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
811 VALUE_TYPE (v) = arg_type;
812 if (VALUE_LAZY (arg1))
813 VALUE_LAZY (v) = 1;
814 else
815 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
816 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
817 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
818 VALUE_EMBEDDED_OFFSET (v)
819 = offset +
820 VALUE_EMBEDDED_OFFSET (arg1) +
821 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
822 }
823 else
824 {
825 /* Plain old data member */
826 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
827 v = allocate_value (type);
828 if (VALUE_LAZY (arg1))
829 VALUE_LAZY (v) = 1;
830 else
831 memcpy (VALUE_CONTENTS_RAW (v),
832 VALUE_CONTENTS_RAW (arg1) + offset,
833 TYPE_LENGTH (type));
834 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
835 }
836 VALUE_LVAL (v) = VALUE_LVAL (arg1);
837 if (VALUE_LVAL (arg1) == lval_internalvar)
838 VALUE_LVAL (v) = lval_internalvar_component;
839 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
840 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
841 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
842 return v;
843 }
844
845 /* Given a value ARG1 of a struct or union type,
846 extract and return the value of one of its (non-static) fields.
847 FIELDNO says which field. */
848
849 value_ptr
850 value_field (arg1, fieldno)
851 register value_ptr arg1;
852 register int fieldno;
853 {
854 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
855 }
856
857 /* Return a non-virtual function as a value.
858 F is the list of member functions which contains the desired method.
859 J is an index into F which provides the desired method. */
860
861 value_ptr
862 value_fn_field (arg1p, f, j, type, offset)
863 value_ptr *arg1p;
864 struct fn_field *f;
865 int j;
866 struct type *type;
867 int offset;
868 {
869 register value_ptr v;
870 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
871 struct symbol *sym;
872
873 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
874 0, VAR_NAMESPACE, 0, NULL);
875 if (! sym)
876 return NULL;
877 /*
878 error ("Internal error: could not find physical method named %s",
879 TYPE_FN_FIELD_PHYSNAME (f, j));
880 */
881
882 v = allocate_value (ftype);
883 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
884 VALUE_TYPE (v) = ftype;
885
886 if (arg1p)
887 {
888 if (type != VALUE_TYPE (*arg1p))
889 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
890 value_addr (*arg1p)));
891
892 /* Move the `this' pointer according to the offset.
893 VALUE_OFFSET (*arg1p) += offset;
894 */
895 }
896
897 return v;
898 }
899
900 /* Return a virtual function as a value.
901 ARG1 is the object which provides the virtual function
902 table pointer. *ARG1P is side-effected in calling this function.
903 F is the list of member functions which contains the desired virtual
904 function.
905 J is an index into F which provides the desired virtual function.
906
907 TYPE is the type in which F is located. */
908 value_ptr
909 value_virtual_fn_field (arg1p, f, j, type, offset)
910 value_ptr *arg1p;
911 struct fn_field *f;
912 int j;
913 struct type *type;
914 int offset;
915 {
916 value_ptr arg1 = *arg1p;
917 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
918
919 if (TYPE_HAS_VTABLE (type))
920 {
921 /* Deal with HP/Taligent runtime model for virtual functions */
922 value_ptr vp;
923 value_ptr argp; /* arg1 cast to base */
924 CORE_ADDR vfunc_addr; /* address of virtual method */
925 CORE_ADDR coreptr; /* pointer to target address */
926 int class_index; /* which class segment pointer to use */
927 struct type * ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
928
929 argp = value_cast (type, *arg1p);
930
931 if (VALUE_ADDRESS (argp) == 0)
932 error ("Address of object is null; object may not have been created.");
933
934 /* pai: FIXME -- 32x64 possible problem? */
935 /* First word (4 bytes) in object layout is the vtable pointer */
936 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
937 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
938
939 if (!coreptr)
940 error ("Virtual table pointer is null for object; object may not have been created.");
941
942 /* pai/1997-05-09
943 * FIXME: The code here currently handles only
944 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
945 * is introduced, the condition for the "if" below will have to
946 * be changed to be a test for the RRBC case. */
947
948 if (1)
949 {
950 /* Non-RRBC case; the virtual function pointers are stored at fixed
951 * offsets in the virtual table. */
952
953 /* Retrieve the offset in the virtual table from the debug
954 * info. The offset of the vfunc's entry is in words from
955 * the beginning of the vtable; but first we have to adjust
956 * by HP_ACC_VFUNC_START to account for other entries */
957
958 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
959 * which case the multiplier should be 8 and values should be long */
960 vp = value_at (builtin_type_int,
961 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
962
963 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
964 /* coreptr now contains the address of the virtual function */
965 /* (Actually, it contains the pointer to the plabel for the function. */
966 }
967 else
968 {
969 /* RRBC case; the virtual function pointers are found by double
970 * indirection through the class segment tables. */
971
972 /* Choose class segment depending on type we were passed */
973 class_index = class_index_in_primary_list (type);
974
975 /* Find class segment pointer. These are in the vtable slots after
976 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
977 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
978 * the multiplier below has to be 8 and value should be long. */
979 vp = value_at (builtin_type_int,
980 coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
981 /* Indirect once more, offset by function index */
982 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
983 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
984 vp = value_at (builtin_type_int, coreptr, NULL);
985 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
986
987 /* coreptr now contains the address of the virtual function */
988 /* (Actually, it contains the pointer to the plabel for the function.) */
989
990 }
991
992 if (!coreptr)
993 error ("Address of virtual function is null; error in virtual table?");
994
995 /* Wrap this addr in a value and return pointer */
996 vp = allocate_value (ftype);
997 VALUE_TYPE (vp) = ftype;
998 VALUE_ADDRESS (vp) = coreptr;
999
1000 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
1001 return vp;
1002 }
1003 else
1004 { /* Not using HP/Taligent runtime conventions; so try to
1005 * use g++ conventions for virtual table */
1006
1007 struct type *entry_type;
1008 /* First, get the virtual function table pointer. That comes
1009 with a strange type, so cast it to type `pointer to long' (which
1010 should serve just fine as a function type). Then, index into
1011 the table, and convert final value to appropriate function type. */
1012 value_ptr entry, vfn, vtbl;
1013 value_ptr vi = value_from_longest (builtin_type_int,
1014 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
1015 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
1016 struct type *context;
1017 if (fcontext == NULL)
1018 /* We don't have an fcontext (e.g. the program was compiled with
1019 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1020 This won't work right for multiple inheritance, but at least we
1021 should do as well as GDB 3.x did. */
1022 fcontext = TYPE_VPTR_BASETYPE (type);
1023 context = lookup_pointer_type (fcontext);
1024 /* Now context is a pointer to the basetype containing the vtbl. */
1025 if (TYPE_TARGET_TYPE (context) != type1)
1026 {
1027 value_ptr tmp = value_cast (context, value_addr (arg1));
1028 VALUE_POINTED_TO_OFFSET (tmp) = 0;
1029 arg1 = value_ind (tmp);
1030 type1 = check_typedef (VALUE_TYPE (arg1));
1031 }
1032
1033 context = type1;
1034 /* Now context is the basetype containing the vtbl. */
1035
1036 /* This type may have been defined before its virtual function table
1037 was. If so, fill in the virtual function table entry for the
1038 type now. */
1039 if (TYPE_VPTR_FIELDNO (context) < 0)
1040 fill_in_vptr_fieldno (context);
1041
1042 /* The virtual function table is now an array of structures
1043 which have the form { int16 offset, delta; void *pfn; }. */
1044 vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
1045 TYPE_VPTR_BASETYPE (context));
1046
1047 /* With older versions of g++, the vtbl field pointed to an array
1048 of structures. Nowadays it points directly to the structure. */
1049 if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
1050 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
1051 {
1052 /* Handle the case where the vtbl field points to an
1053 array of structures. */
1054 vtbl = value_ind (vtbl);
1055
1056 /* Index into the virtual function table. This is hard-coded because
1057 looking up a field is not cheap, and it may be important to save
1058 time, e.g. if the user has set a conditional breakpoint calling
1059 a virtual function. */
1060 entry = value_subscript (vtbl, vi);
1061 }
1062 else
1063 {
1064 /* Handle the case where the vtbl field points directly to a structure. */
1065 vtbl = value_add (vtbl, vi);
1066 entry = value_ind (vtbl);
1067 }
1068
1069 entry_type = check_typedef (VALUE_TYPE (entry));
1070
1071 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
1072 {
1073 /* Move the `this' pointer according to the virtual function table. */
1074 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
1075
1076 if (! VALUE_LAZY (arg1))
1077 {
1078 VALUE_LAZY (arg1) = 1;
1079 value_fetch_lazy (arg1);
1080 }
1081
1082 vfn = value_field (entry, 2);
1083 }
1084 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
1085 vfn = entry;
1086 else
1087 error ("I'm confused: virtual function table has bad type");
1088 /* Reinstantiate the function pointer with the correct type. */
1089 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1090
1091 *arg1p = arg1;
1092 return vfn;
1093 }
1094 }
1095
1096 /* ARG is a pointer to an object we know to be at least
1097 a DTYPE. BTYPE is the most derived basetype that has
1098 already been searched (and need not be searched again).
1099 After looking at the vtables between BTYPE and DTYPE,
1100 return the most derived type we find. The caller must
1101 be satisfied when the return value == DTYPE.
1102
1103 FIXME-tiemann: should work with dossier entries as well. */
1104
1105 static value_ptr
1106 value_headof (in_arg, btype, dtype)
1107 value_ptr in_arg;
1108 struct type *btype, *dtype;
1109 {
1110 /* First collect the vtables we must look at for this object. */
1111 /* FIXME-tiemann: right now, just look at top-most vtable. */
1112 value_ptr arg, vtbl, entry, best_entry = 0;
1113 int i, nelems;
1114 int offset, best_offset = 0;
1115 struct symbol *sym;
1116 CORE_ADDR pc_for_sym;
1117 char *demangled_name;
1118 struct minimal_symbol *msymbol;
1119
1120 btype = TYPE_VPTR_BASETYPE (dtype);
1121 CHECK_TYPEDEF (btype);
1122 arg = in_arg;
1123 if (btype != dtype)
1124 arg = value_cast (lookup_pointer_type (btype), arg);
1125 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
1126
1127 /* Check that VTBL looks like it points to a virtual function table. */
1128 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
1129 if (msymbol == NULL
1130 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
1131 || !VTBL_PREFIX_P (demangled_name))
1132 {
1133 /* If we expected to find a vtable, but did not, let the user
1134 know that we aren't happy, but don't throw an error.
1135 FIXME: there has to be a better way to do this. */
1136 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
1137 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1138 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1139 VALUE_TYPE (in_arg) = error_type;
1140 return in_arg;
1141 }
1142
1143 /* Now search through the virtual function table. */
1144 entry = value_ind (vtbl);
1145 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
1146 for (i = 1; i <= nelems; i++)
1147 {
1148 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1149 (LONGEST) i));
1150 /* This won't work if we're using thunks. */
1151 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
1152 break;
1153 offset = longest_to_int (value_as_long (value_field (entry, 0)));
1154 /* If we use '<=' we can handle single inheritance
1155 * where all offsets are zero - just use the first entry found. */
1156 if (offset <= best_offset)
1157 {
1158 best_offset = offset;
1159 best_entry = entry;
1160 }
1161 }
1162 /* Move the pointer according to BEST_ENTRY's offset, and figure
1163 out what type we should return as the new pointer. */
1164 if (best_entry == 0)
1165 {
1166 /* An alternative method (which should no longer be necessary).
1167 * But we leave it in for future use, when we will hopefully
1168 * have optimizes the vtable to use thunks instead of offsets. */
1169 /* Use the name of vtable itself to extract a base type. */
1170 demangled_name += 4; /* Skip _vt$ prefix. */
1171 }
1172 else
1173 {
1174 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1175 sym = find_pc_function (pc_for_sym);
1176 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
1177 *(strchr (demangled_name, ':')) = '\0';
1178 }
1179 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1180 if (sym == NULL)
1181 error ("could not find type declaration for `%s'", demangled_name);
1182 if (best_entry)
1183 {
1184 free (demangled_name);
1185 arg = value_add (value_cast (builtin_type_int, arg),
1186 value_field (best_entry, 0));
1187 }
1188 else arg = in_arg;
1189 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1190 return arg;
1191 }
1192
1193 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1194 function tables, probe ARG's tables (including the vtables
1195 of its baseclasses) to figure out the most derived type that ARG
1196 could actually be a pointer to. */
1197
1198 value_ptr
1199 value_from_vtable_info (arg, type)
1200 value_ptr arg;
1201 struct type *type;
1202 {
1203 /* Take care of preliminaries. */
1204 if (TYPE_VPTR_FIELDNO (type) < 0)
1205 fill_in_vptr_fieldno (type);
1206 if (TYPE_VPTR_FIELDNO (type) < 0)
1207 return 0;
1208
1209 return value_headof (arg, 0, type);
1210 }
1211
1212 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1213 pointer which is for the base class whose type is BASECLASS. */
1214
1215 static int
1216 vb_match (type, index, basetype)
1217 struct type *type;
1218 int index;
1219 struct type *basetype;
1220 {
1221 struct type *fieldtype;
1222 char *name = TYPE_FIELD_NAME (type, index);
1223 char *field_class_name = NULL;
1224
1225 if (*name != '_')
1226 return 0;
1227 /* gcc 2.4 uses _vb$. */
1228 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1229 field_class_name = name + 4;
1230 /* gcc 2.5 will use __vb_. */
1231 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1232 field_class_name = name + 5;
1233
1234 if (field_class_name == NULL)
1235 /* This field is not a virtual base class pointer. */
1236 return 0;
1237
1238 /* It's a virtual baseclass pointer, now we just need to find out whether
1239 it is for this baseclass. */
1240 fieldtype = TYPE_FIELD_TYPE (type, index);
1241 if (fieldtype == NULL
1242 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1243 /* "Can't happen". */
1244 return 0;
1245
1246 /* What we check for is that either the types are equal (needed for
1247 nameless types) or have the same name. This is ugly, and a more
1248 elegant solution should be devised (which would probably just push
1249 the ugliness into symbol reading unless we change the stabs format). */
1250 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1251 return 1;
1252
1253 if (TYPE_NAME (basetype) != NULL
1254 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1255 && STREQ (TYPE_NAME (basetype),
1256 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1257 return 1;
1258 return 0;
1259 }
1260
1261 /* Compute the offset of the baseclass which is
1262 the INDEXth baseclass of class TYPE,
1263 for value at VALADDR (in host) at ADDRESS (in target).
1264 The result is the offset of the baseclass value relative
1265 to (the address of)(ARG) + OFFSET.
1266
1267 -1 is returned on error. */
1268
1269 int
1270 baseclass_offset (type, index, valaddr, address)
1271 struct type *type;
1272 int index;
1273 char *valaddr;
1274 CORE_ADDR address;
1275 {
1276 struct type *basetype = TYPE_BASECLASS (type, index);
1277
1278 if (BASETYPE_VIA_VIRTUAL (type, index))
1279 {
1280 /* Must hunt for the pointer to this virtual baseclass. */
1281 register int i, len = TYPE_NFIELDS (type);
1282 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1283
1284 /* First look for the virtual baseclass pointer
1285 in the fields. */
1286 for (i = n_baseclasses; i < len; i++)
1287 {
1288 if (vb_match (type, i, basetype))
1289 {
1290 CORE_ADDR addr
1291 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1292 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1293
1294 return addr - (LONGEST) address;
1295 }
1296 }
1297 /* Not in the fields, so try looking through the baseclasses. */
1298 for (i = index+1; i < n_baseclasses; i++)
1299 {
1300 int boffset =
1301 baseclass_offset (type, i, valaddr, address);
1302 if (boffset)
1303 return boffset;
1304 }
1305 /* Not found. */
1306 return -1;
1307 }
1308
1309 /* Baseclass is easily computed. */
1310 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1311 }
1312 \f
1313 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1314 VALADDR.
1315
1316 Extracting bits depends on endianness of the machine. Compute the
1317 number of least significant bits to discard. For big endian machines,
1318 we compute the total number of bits in the anonymous object, subtract
1319 off the bit count from the MSB of the object to the MSB of the
1320 bitfield, then the size of the bitfield, which leaves the LSB discard
1321 count. For little endian machines, the discard count is simply the
1322 number of bits from the LSB of the anonymous object to the LSB of the
1323 bitfield.
1324
1325 If the field is signed, we also do sign extension. */
1326
1327 LONGEST
1328 unpack_field_as_long (type, valaddr, fieldno)
1329 struct type *type;
1330 char *valaddr;
1331 int fieldno;
1332 {
1333 ULONGEST val;
1334 ULONGEST valmask;
1335 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1336 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1337 int lsbcount;
1338 struct type *field_type;
1339
1340 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1341 field_type = TYPE_FIELD_TYPE (type, fieldno);
1342 CHECK_TYPEDEF (field_type);
1343
1344 /* Extract bits. See comment above. */
1345
1346 if (BITS_BIG_ENDIAN)
1347 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1348 else
1349 lsbcount = (bitpos % 8);
1350 val >>= lsbcount;
1351
1352 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1353 If the field is signed, and is negative, then sign extend. */
1354
1355 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1356 {
1357 valmask = (((ULONGEST) 1) << bitsize) - 1;
1358 val &= valmask;
1359 if (!TYPE_UNSIGNED (field_type))
1360 {
1361 if (val & (valmask ^ (valmask >> 1)))
1362 {
1363 val |= ~valmask;
1364 }
1365 }
1366 }
1367 return (val);
1368 }
1369
1370 /* Modify the value of a bitfield. ADDR points to a block of memory in
1371 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1372 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1373 indicate which bits (in target bit order) comprise the bitfield. */
1374
1375 void
1376 modify_field (addr, fieldval, bitpos, bitsize)
1377 char *addr;
1378 LONGEST fieldval;
1379 int bitpos, bitsize;
1380 {
1381 LONGEST oword;
1382
1383 /* If a negative fieldval fits in the field in question, chop
1384 off the sign extension bits. */
1385 if (bitsize < (8 * (int) sizeof (fieldval))
1386 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1387 fieldval = fieldval & ((1 << bitsize) - 1);
1388
1389 /* Warn if value is too big to fit in the field in question. */
1390 if (bitsize < (8 * (int) sizeof (fieldval))
1391 && 0 != (fieldval & ~((1<<bitsize)-1)))
1392 {
1393 /* FIXME: would like to include fieldval in the message, but
1394 we don't have a sprintf_longest. */
1395 warning ("Value does not fit in %d bits.", bitsize);
1396
1397 /* Truncate it, otherwise adjoining fields may be corrupted. */
1398 fieldval = fieldval & ((1 << bitsize) - 1);
1399 }
1400
1401 oword = extract_signed_integer (addr, sizeof oword);
1402
1403 /* Shifting for bit field depends on endianness of the target machine. */
1404 if (BITS_BIG_ENDIAN)
1405 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1406
1407 /* Mask out old value, while avoiding shifts >= size of oword */
1408 if (bitsize < 8 * (int) sizeof (oword))
1409 oword &= ~(((((ULONGEST)1) << bitsize) - 1) << bitpos);
1410 else
1411 oword &= ~((~(ULONGEST)0) << bitpos);
1412 oword |= fieldval << bitpos;
1413
1414 store_signed_integer (addr, sizeof oword, oword);
1415 }
1416 \f
1417 /* Convert C numbers into newly allocated values */
1418
1419 value_ptr
1420 value_from_longest (type, num)
1421 struct type *type;
1422 register LONGEST num;
1423 {
1424 register value_ptr val = allocate_value (type);
1425 register enum type_code code;
1426 register int len;
1427 retry:
1428 code = TYPE_CODE (type);
1429 len = TYPE_LENGTH (type);
1430
1431 switch (code)
1432 {
1433 case TYPE_CODE_TYPEDEF:
1434 type = check_typedef (type);
1435 goto retry;
1436 case TYPE_CODE_INT:
1437 case TYPE_CODE_CHAR:
1438 case TYPE_CODE_ENUM:
1439 case TYPE_CODE_BOOL:
1440 case TYPE_CODE_RANGE:
1441 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1442 break;
1443
1444 case TYPE_CODE_REF:
1445 case TYPE_CODE_PTR:
1446 /* This assumes that all pointers of a given length
1447 have the same form. */
1448 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1449 break;
1450
1451 default:
1452 error ("Unexpected type (%d) encountered for integer constant.", code);
1453 }
1454 return val;
1455 }
1456
1457 value_ptr
1458 value_from_double (type, num)
1459 struct type *type;
1460 DOUBLEST num;
1461 {
1462 register value_ptr val = allocate_value (type);
1463 struct type *base_type = check_typedef (type);
1464 register enum type_code code = TYPE_CODE (base_type);
1465 register int len = TYPE_LENGTH (base_type);
1466
1467 if (code == TYPE_CODE_FLT)
1468 {
1469 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1470 }
1471 else
1472 error ("Unexpected type encountered for floating constant.");
1473
1474 return val;
1475 }
1476 \f
1477 /* Deal with the value that is "about to be returned". */
1478
1479 /* Return the value that a function returning now
1480 would be returning to its caller, assuming its type is VALTYPE.
1481 RETBUF is where we look for what ought to be the contents
1482 of the registers (in raw form). This is because it is often
1483 desirable to restore old values to those registers
1484 after saving the contents of interest, and then call
1485 this function using the saved values.
1486 struct_return is non-zero when the function in question is
1487 using the structure return conventions on the machine in question;
1488 0 when it is using the value returning conventions (this often
1489 means returning pointer to where structure is vs. returning value). */
1490
1491 value_ptr
1492 value_being_returned (valtype, retbuf, struct_return)
1493 register struct type *valtype;
1494 char *retbuf;
1495 int struct_return;
1496 /*ARGSUSED*/
1497 {
1498 register value_ptr val;
1499 CORE_ADDR addr;
1500
1501 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1502 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1503 if (struct_return) {
1504 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1505 if (!addr)
1506 error ("Function return value unknown");
1507 return value_at (valtype, addr, NULL);
1508 }
1509 #endif
1510
1511 val = allocate_value (valtype);
1512 CHECK_TYPEDEF (valtype);
1513 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1514
1515 return val;
1516 }
1517
1518 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1519 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1520 and TYPE is the type (which is known to be struct, union or array).
1521
1522 On most machines, the struct convention is used unless we are
1523 using gcc and the type is of a special size. */
1524 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1525 native compiler. GCC 2.3.3 was the last release that did it the
1526 old way. Since gcc2_compiled was not changed, we have no
1527 way to correctly win in all cases, so we just do the right thing
1528 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1529 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1530 would cause more chaos than dealing with some struct returns being
1531 handled wrong. */
1532
1533 int
1534 generic_use_struct_convention (gcc_p, value_type)
1535 int gcc_p;
1536 struct type *value_type;
1537 {
1538 return !((gcc_p == 1)
1539 && (TYPE_LENGTH (value_type) == 1
1540 || TYPE_LENGTH (value_type) == 2
1541 || TYPE_LENGTH (value_type) == 4
1542 || TYPE_LENGTH (value_type) == 8));
1543 }
1544
1545 #ifndef USE_STRUCT_CONVENTION
1546 #define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1547 #endif
1548
1549 /* Some fundamental types (such as long double) are returned on the stack for
1550 certain architectures. This macro should return true for any type besides
1551 struct, union or array that gets returned on the stack. */
1552
1553 #ifndef RETURN_VALUE_ON_STACK
1554 #define RETURN_VALUE_ON_STACK(TYPE) 0
1555 #endif
1556
1557 /* Return true if the function specified is using the structure returning
1558 convention on this machine to return arguments, or 0 if it is using
1559 the value returning convention. FUNCTION is the value representing
1560 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1561 is the type returned by the function. GCC_P is nonzero if compiled
1562 with GCC. */
1563
1564 int
1565 using_struct_return (function, funcaddr, value_type, gcc_p)
1566 value_ptr function;
1567 CORE_ADDR funcaddr;
1568 struct type *value_type;
1569 int gcc_p;
1570 /*ARGSUSED*/
1571 {
1572 register enum type_code code = TYPE_CODE (value_type);
1573
1574 if (code == TYPE_CODE_ERROR)
1575 error ("Function return type unknown.");
1576
1577 if (code == TYPE_CODE_STRUCT
1578 || code == TYPE_CODE_UNION
1579 || code == TYPE_CODE_ARRAY
1580 || RETURN_VALUE_ON_STACK (value_type))
1581 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1582
1583 return 0;
1584 }
1585
1586 /* Store VAL so it will be returned if a function returns now.
1587 Does not verify that VAL's type matches what the current
1588 function wants to return. */
1589
1590 void
1591 set_return_value (val)
1592 value_ptr val;
1593 {
1594 struct type *type = check_typedef (VALUE_TYPE (val));
1595 register enum type_code code = TYPE_CODE (type);
1596
1597 if (code == TYPE_CODE_ERROR)
1598 error ("Function return type unknown.");
1599
1600 if ( code == TYPE_CODE_STRUCT
1601 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1602 error ("GDB does not support specifying a struct or union return value.");
1603
1604 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1605 }
1606 \f
1607 void
1608 _initialize_values ()
1609 {
1610 add_cmd ("convenience", no_class, show_convenience,
1611 "Debugger convenience (\"$foo\") variables.\n\
1612 These variables are created when you assign them values;\n\
1613 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1614 A few convenience variables are given values automatically:\n\
1615 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1616 \"$__\" holds the contents of the last address examined with \"x\".",
1617 &showlist);
1618
1619 add_cmd ("values", no_class, show_values,
1620 "Elements of value history around item number IDX (or last ten).",
1621 &showlist);
1622 }
This page took 0.086182 seconds and 4 git commands to generate.