2003-05-14 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "language.h"
34 #include "scm-lang.h"
35 #include "demangle.h"
36 #include "doublest.h"
37 #include "gdb_assert.h"
38 #include "regcache.h"
39 #include "block.h"
40
41 /* Prototypes for exported functions. */
42
43 void _initialize_values (void);
44
45 /* Prototypes for local functions. */
46
47 static void show_values (char *, int);
48
49 static void show_convenience (char *, int);
50
51
52 /* The value-history records all the values printed
53 by print commands during this session. Each chunk
54 records 60 consecutive values. The first chunk on
55 the chain records the most recent values.
56 The total number of values is in value_history_count. */
57
58 #define VALUE_HISTORY_CHUNK 60
59
60 struct value_history_chunk
61 {
62 struct value_history_chunk *next;
63 struct value *values[VALUE_HISTORY_CHUNK];
64 };
65
66 /* Chain of chunks now in use. */
67
68 static struct value_history_chunk *value_history_chain;
69
70 static int value_history_count; /* Abs number of last entry stored */
71 \f
72 /* List of all value objects currently allocated
73 (except for those released by calls to release_value)
74 This is so they can be freed after each command. */
75
76 static struct value *all_values;
77
78 /* Allocate a value that has the correct length for type TYPE. */
79
80 struct value *
81 allocate_value (struct type *type)
82 {
83 struct value *val;
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 VALUE_NEXT (val) = all_values;
88 all_values = val;
89 VALUE_TYPE (val) = type;
90 VALUE_ENCLOSING_TYPE (val) = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME (val) = 0;
94 VALUE_OFFSET (val) = 0;
95 VALUE_BITPOS (val) = 0;
96 VALUE_BITSIZE (val) = 0;
97 VALUE_REGNO (val) = -1;
98 VALUE_LAZY (val) = 0;
99 VALUE_OPTIMIZED_OUT (val) = 0;
100 VALUE_BFD_SECTION (val) = NULL;
101 VALUE_EMBEDDED_OFFSET (val) = 0;
102 VALUE_POINTED_TO_OFFSET (val) = 0;
103 val->modifiable = 1;
104 return val;
105 }
106
107 /* Allocate a value that has the correct length
108 for COUNT repetitions type TYPE. */
109
110 struct value *
111 allocate_repeat_value (struct type *type, int count)
112 {
113 int low_bound = current_language->string_lower_bound; /* ??? */
114 /* FIXME-type-allocation: need a way to free this type when we are
115 done with it. */
116 struct type *range_type
117 = create_range_type ((struct type *) NULL, builtin_type_int,
118 low_bound, count + low_bound - 1);
119 /* FIXME-type-allocation: need a way to free this type when we are
120 done with it. */
121 return allocate_value (create_array_type ((struct type *) NULL,
122 type, range_type));
123 }
124
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
128 struct value *
129 value_mark (void)
130 {
131 return all_values;
132 }
133
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136 void
137 value_free_to_mark (struct value *mark)
138 {
139 struct value *val;
140 struct value *next;
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val);
145 value_free (val);
146 }
147 all_values = val;
148 }
149
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153 void
154 free_all_values (void)
155 {
156 struct value *val;
157 struct value *next;
158
159 for (val = all_values; val; val = next)
160 {
161 next = VALUE_NEXT (val);
162 value_free (val);
163 }
164
165 all_values = 0;
166 }
167
168 /* Remove VAL from the chain all_values
169 so it will not be freed automatically. */
170
171 void
172 release_value (struct value *val)
173 {
174 struct value *v;
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190 }
191
192 /* Release all values up to mark */
193 struct value *
194 value_release_to_mark (struct value *mark)
195 {
196 struct value *val;
197 struct value *next;
198
199 for (val = next = all_values; next; next = VALUE_NEXT (next))
200 if (VALUE_NEXT (next) == mark)
201 {
202 all_values = VALUE_NEXT (next);
203 VALUE_NEXT (next) = 0;
204 return val;
205 }
206 all_values = 0;
207 return val;
208 }
209
210 /* Return a copy of the value ARG.
211 It contains the same contents, for same memory address,
212 but it's a different block of storage. */
213
214 struct value *
215 value_copy (struct value *arg)
216 {
217 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
218 struct value *val = allocate_value (encl_type);
219 VALUE_TYPE (val) = VALUE_TYPE (arg);
220 VALUE_LVAL (val) = VALUE_LVAL (arg);
221 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
222 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
223 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
224 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
225 VALUE_FRAME (val) = VALUE_FRAME (arg);
226 VALUE_REGNO (val) = VALUE_REGNO (arg);
227 VALUE_LAZY (val) = VALUE_LAZY (arg);
228 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
229 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
230 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
231 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
232 val->modifiable = arg->modifiable;
233 if (!VALUE_LAZY (val))
234 {
235 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
236 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
237
238 }
239 return val;
240 }
241 \f
242 /* Access to the value history. */
243
244 /* Record a new value in the value history.
245 Returns the absolute history index of the entry.
246 Result of -1 indicates the value was not saved; otherwise it is the
247 value history index of this new item. */
248
249 int
250 record_latest_value (struct value *val)
251 {
252 int i;
253
254 /* We don't want this value to have anything to do with the inferior anymore.
255 In particular, "set $1 = 50" should not affect the variable from which
256 the value was taken, and fast watchpoints should be able to assume that
257 a value on the value history never changes. */
258 if (VALUE_LAZY (val))
259 value_fetch_lazy (val);
260 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
261 from. This is a bit dubious, because then *&$1 does not just return $1
262 but the current contents of that location. c'est la vie... */
263 val->modifiable = 0;
264 release_value (val);
265
266 /* Here we treat value_history_count as origin-zero
267 and applying to the value being stored now. */
268
269 i = value_history_count % VALUE_HISTORY_CHUNK;
270 if (i == 0)
271 {
272 struct value_history_chunk *new
273 = (struct value_history_chunk *)
274 xmalloc (sizeof (struct value_history_chunk));
275 memset (new->values, 0, sizeof new->values);
276 new->next = value_history_chain;
277 value_history_chain = new;
278 }
279
280 value_history_chain->values[i] = val;
281
282 /* Now we regard value_history_count as origin-one
283 and applying to the value just stored. */
284
285 return ++value_history_count;
286 }
287
288 /* Return a copy of the value in the history with sequence number NUM. */
289
290 struct value *
291 access_value_history (int num)
292 {
293 struct value_history_chunk *chunk;
294 register int i;
295 register int absnum = num;
296
297 if (absnum <= 0)
298 absnum += value_history_count;
299
300 if (absnum <= 0)
301 {
302 if (num == 0)
303 error ("The history is empty.");
304 else if (num == 1)
305 error ("There is only one value in the history.");
306 else
307 error ("History does not go back to $$%d.", -num);
308 }
309 if (absnum > value_history_count)
310 error ("History has not yet reached $%d.", absnum);
311
312 absnum--;
313
314 /* Now absnum is always absolute and origin zero. */
315
316 chunk = value_history_chain;
317 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
318 i > 0; i--)
319 chunk = chunk->next;
320
321 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
322 }
323
324 /* Clear the value history entirely.
325 Must be done when new symbol tables are loaded,
326 because the type pointers become invalid. */
327
328 void
329 clear_value_history (void)
330 {
331 struct value_history_chunk *next;
332 register int i;
333 struct value *val;
334
335 while (value_history_chain)
336 {
337 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
338 if ((val = value_history_chain->values[i]) != NULL)
339 xfree (val);
340 next = value_history_chain->next;
341 xfree (value_history_chain);
342 value_history_chain = next;
343 }
344 value_history_count = 0;
345 }
346
347 static void
348 show_values (char *num_exp, int from_tty)
349 {
350 register int i;
351 struct value *val;
352 static int num = 1;
353
354 if (num_exp)
355 {
356 /* "info history +" should print from the stored position.
357 "info history <exp>" should print around value number <exp>. */
358 if (num_exp[0] != '+' || num_exp[1] != '\0')
359 num = parse_and_eval_long (num_exp) - 5;
360 }
361 else
362 {
363 /* "info history" means print the last 10 values. */
364 num = value_history_count - 9;
365 }
366
367 if (num <= 0)
368 num = 1;
369
370 for (i = num; i < num + 10 && i <= value_history_count; i++)
371 {
372 val = access_value_history (i);
373 printf_filtered ("$%d = ", i);
374 value_print (val, gdb_stdout, 0, Val_pretty_default);
375 printf_filtered ("\n");
376 }
377
378 /* The next "info history +" should start after what we just printed. */
379 num += 10;
380
381 /* Hitting just return after this command should do the same thing as
382 "info history +". If num_exp is null, this is unnecessary, since
383 "info history +" is not useful after "info history". */
384 if (from_tty && num_exp)
385 {
386 num_exp[0] = '+';
387 num_exp[1] = '\0';
388 }
389 }
390 \f
391 /* Internal variables. These are variables within the debugger
392 that hold values assigned by debugger commands.
393 The user refers to them with a '$' prefix
394 that does not appear in the variable names stored internally. */
395
396 static struct internalvar *internalvars;
397
398 /* Look up an internal variable with name NAME. NAME should not
399 normally include a dollar sign.
400
401 If the specified internal variable does not exist,
402 one is created, with a void value. */
403
404 struct internalvar *
405 lookup_internalvar (char *name)
406 {
407 register struct internalvar *var;
408
409 for (var = internalvars; var; var = var->next)
410 if (strcmp (var->name, name) == 0)
411 return var;
412
413 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
414 var->name = concat (name, NULL);
415 var->value = allocate_value (builtin_type_void);
416 release_value (var->value);
417 var->next = internalvars;
418 internalvars = var;
419 return var;
420 }
421
422 struct value *
423 value_of_internalvar (struct internalvar *var)
424 {
425 struct value *val;
426
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val))
429 value_fetch_lazy (val);
430 VALUE_LVAL (val) = lval_internalvar;
431 VALUE_INTERNALVAR (val) = var;
432 return val;
433 }
434
435 void
436 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
437 int bitsize, struct value *newval)
438 {
439 register char *addr = VALUE_CONTENTS (var->value) + offset;
440
441 if (bitsize)
442 modify_field (addr, value_as_long (newval),
443 bitpos, bitsize);
444 else
445 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
446 }
447
448 void
449 set_internalvar (struct internalvar *var, struct value *val)
450 {
451 struct value *newval;
452
453 newval = value_copy (val);
454 newval->modifiable = 1;
455
456 /* Force the value to be fetched from the target now, to avoid problems
457 later when this internalvar is referenced and the target is gone or
458 has changed. */
459 if (VALUE_LAZY (newval))
460 value_fetch_lazy (newval);
461
462 /* Begin code which must not call error(). If var->value points to
463 something free'd, an error() obviously leaves a dangling pointer.
464 But we also get a danling pointer if var->value points to
465 something in the value chain (i.e., before release_value is
466 called), because after the error free_all_values will get called before
467 long. */
468 xfree (var->value);
469 var->value = newval;
470 release_value (newval);
471 /* End code which must not call error(). */
472 }
473
474 char *
475 internalvar_name (struct internalvar *var)
476 {
477 return var->name;
478 }
479
480 /* Free all internalvars. Done when new symtabs are loaded,
481 because that makes the values invalid. */
482
483 void
484 clear_internalvars (void)
485 {
486 register struct internalvar *var;
487
488 while (internalvars)
489 {
490 var = internalvars;
491 internalvars = var->next;
492 xfree (var->name);
493 xfree (var->value);
494 xfree (var);
495 }
496 }
497
498 static void
499 show_convenience (char *ignore, int from_tty)
500 {
501 register struct internalvar *var;
502 int varseen = 0;
503
504 for (var = internalvars; var; var = var->next)
505 {
506 if (!varseen)
507 {
508 varseen = 1;
509 }
510 printf_filtered ("$%s = ", var->name);
511 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
512 printf_filtered ("\n");
513 }
514 if (!varseen)
515 printf_unfiltered ("No debugger convenience variables now defined.\n\
516 Convenience variables have names starting with \"$\";\n\
517 use \"set\" as in \"set $foo = 5\" to define them.\n");
518 }
519 \f
520 /* Extract a value as a C number (either long or double).
521 Knows how to convert fixed values to double, or
522 floating values to long.
523 Does not deallocate the value. */
524
525 LONGEST
526 value_as_long (struct value *val)
527 {
528 /* This coerces arrays and functions, which is necessary (e.g.
529 in disassemble_command). It also dereferences references, which
530 I suspect is the most logical thing to do. */
531 COERCE_ARRAY (val);
532 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
533 }
534
535 DOUBLEST
536 value_as_double (struct value *val)
537 {
538 DOUBLEST foo;
539 int inv;
540
541 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
542 if (inv)
543 error ("Invalid floating value found in program.");
544 return foo;
545 }
546 /* Extract a value as a C pointer. Does not deallocate the value.
547 Note that val's type may not actually be a pointer; value_as_long
548 handles all the cases. */
549 CORE_ADDR
550 value_as_address (struct value *val)
551 {
552 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
553 whether we want this to be true eventually. */
554 #if 0
555 /* ADDR_BITS_REMOVE is wrong if we are being called for a
556 non-address (e.g. argument to "signal", "info break", etc.), or
557 for pointers to char, in which the low bits *are* significant. */
558 return ADDR_BITS_REMOVE (value_as_long (val));
559 #else
560
561 /* There are several targets (IA-64, PowerPC, and others) which
562 don't represent pointers to functions as simply the address of
563 the function's entry point. For example, on the IA-64, a
564 function pointer points to a two-word descriptor, generated by
565 the linker, which contains the function's entry point, and the
566 value the IA-64 "global pointer" register should have --- to
567 support position-independent code. The linker generates
568 descriptors only for those functions whose addresses are taken.
569
570 On such targets, it's difficult for GDB to convert an arbitrary
571 function address into a function pointer; it has to either find
572 an existing descriptor for that function, or call malloc and
573 build its own. On some targets, it is impossible for GDB to
574 build a descriptor at all: the descriptor must contain a jump
575 instruction; data memory cannot be executed; and code memory
576 cannot be modified.
577
578 Upon entry to this function, if VAL is a value of type `function'
579 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
580 VALUE_ADDRESS (val) is the address of the function. This is what
581 you'll get if you evaluate an expression like `main'. The call
582 to COERCE_ARRAY below actually does all the usual unary
583 conversions, which includes converting values of type `function'
584 to `pointer to function'. This is the challenging conversion
585 discussed above. Then, `unpack_long' will convert that pointer
586 back into an address.
587
588 So, suppose the user types `disassemble foo' on an architecture
589 with a strange function pointer representation, on which GDB
590 cannot build its own descriptors, and suppose further that `foo'
591 has no linker-built descriptor. The address->pointer conversion
592 will signal an error and prevent the command from running, even
593 though the next step would have been to convert the pointer
594 directly back into the same address.
595
596 The following shortcut avoids this whole mess. If VAL is a
597 function, just return its address directly. */
598 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
599 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_METHOD)
600 return VALUE_ADDRESS (val);
601
602 COERCE_ARRAY (val);
603
604 /* Some architectures (e.g. Harvard), map instruction and data
605 addresses onto a single large unified address space. For
606 instance: An architecture may consider a large integer in the
607 range 0x10000000 .. 0x1000ffff to already represent a data
608 addresses (hence not need a pointer to address conversion) while
609 a small integer would still need to be converted integer to
610 pointer to address. Just assume such architectures handle all
611 integer conversions in a single function. */
612
613 /* JimB writes:
614
615 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
616 must admonish GDB hackers to make sure its behavior matches the
617 compiler's, whenever possible.
618
619 In general, I think GDB should evaluate expressions the same way
620 the compiler does. When the user copies an expression out of
621 their source code and hands it to a `print' command, they should
622 get the same value the compiler would have computed. Any
623 deviation from this rule can cause major confusion and annoyance,
624 and needs to be justified carefully. In other words, GDB doesn't
625 really have the freedom to do these conversions in clever and
626 useful ways.
627
628 AndrewC pointed out that users aren't complaining about how GDB
629 casts integers to pointers; they are complaining that they can't
630 take an address from a disassembly listing and give it to `x/i'.
631 This is certainly important.
632
633 Adding an architecture method like INTEGER_TO_ADDRESS certainly
634 makes it possible for GDB to "get it right" in all circumstances
635 --- the target has complete control over how things get done, so
636 people can Do The Right Thing for their target without breaking
637 anyone else. The standard doesn't specify how integers get
638 converted to pointers; usually, the ABI doesn't either, but
639 ABI-specific code is a more reasonable place to handle it. */
640
641 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_PTR
642 && TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_REF
643 && INTEGER_TO_ADDRESS_P ())
644 return INTEGER_TO_ADDRESS (VALUE_TYPE (val), VALUE_CONTENTS (val));
645
646 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
647 #endif
648 }
649 \f
650 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
651 as a long, or as a double, assuming the raw data is described
652 by type TYPE. Knows how to convert different sizes of values
653 and can convert between fixed and floating point. We don't assume
654 any alignment for the raw data. Return value is in host byte order.
655
656 If you want functions and arrays to be coerced to pointers, and
657 references to be dereferenced, call value_as_long() instead.
658
659 C++: It is assumed that the front-end has taken care of
660 all matters concerning pointers to members. A pointer
661 to member which reaches here is considered to be equivalent
662 to an INT (or some size). After all, it is only an offset. */
663
664 LONGEST
665 unpack_long (struct type *type, const char *valaddr)
666 {
667 register enum type_code code = TYPE_CODE (type);
668 register int len = TYPE_LENGTH (type);
669 register int nosign = TYPE_UNSIGNED (type);
670
671 if (current_language->la_language == language_scm
672 && is_scmvalue_type (type))
673 return scm_unpack (type, valaddr, TYPE_CODE_INT);
674
675 switch (code)
676 {
677 case TYPE_CODE_TYPEDEF:
678 return unpack_long (check_typedef (type), valaddr);
679 case TYPE_CODE_ENUM:
680 case TYPE_CODE_BOOL:
681 case TYPE_CODE_INT:
682 case TYPE_CODE_CHAR:
683 case TYPE_CODE_RANGE:
684 if (nosign)
685 return extract_unsigned_integer (valaddr, len);
686 else
687 return extract_signed_integer (valaddr, len);
688
689 case TYPE_CODE_FLT:
690 return extract_typed_floating (valaddr, type);
691
692 case TYPE_CODE_PTR:
693 case TYPE_CODE_REF:
694 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
695 whether we want this to be true eventually. */
696 return extract_typed_address (valaddr, type);
697
698 case TYPE_CODE_MEMBER:
699 error ("not implemented: member types in unpack_long");
700
701 default:
702 error ("Value can't be converted to integer.");
703 }
704 return 0; /* Placate lint. */
705 }
706
707 /* Return a double value from the specified type and address.
708 INVP points to an int which is set to 0 for valid value,
709 1 for invalid value (bad float format). In either case,
710 the returned double is OK to use. Argument is in target
711 format, result is in host format. */
712
713 DOUBLEST
714 unpack_double (struct type *type, const char *valaddr, int *invp)
715 {
716 enum type_code code;
717 int len;
718 int nosign;
719
720 *invp = 0; /* Assume valid. */
721 CHECK_TYPEDEF (type);
722 code = TYPE_CODE (type);
723 len = TYPE_LENGTH (type);
724 nosign = TYPE_UNSIGNED (type);
725 if (code == TYPE_CODE_FLT)
726 {
727 /* NOTE: cagney/2002-02-19: There was a test here to see if the
728 floating-point value was valid (using the macro
729 INVALID_FLOAT). That test/macro have been removed.
730
731 It turns out that only the VAX defined this macro and then
732 only in a non-portable way. Fixing the portability problem
733 wouldn't help since the VAX floating-point code is also badly
734 bit-rotten. The target needs to add definitions for the
735 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
736 exactly describe the target floating-point format. The
737 problem here is that the corresponding floatformat_vax_f and
738 floatformat_vax_d values these methods should be set to are
739 also not defined either. Oops!
740
741 Hopefully someone will add both the missing floatformat
742 definitions and floatformat_is_invalid() function. */
743 return extract_typed_floating (valaddr, type);
744 }
745 else if (nosign)
746 {
747 /* Unsigned -- be sure we compensate for signed LONGEST. */
748 return (ULONGEST) unpack_long (type, valaddr);
749 }
750 else
751 {
752 /* Signed -- we are OK with unpack_long. */
753 return unpack_long (type, valaddr);
754 }
755 }
756
757 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
758 as a CORE_ADDR, assuming the raw data is described by type TYPE.
759 We don't assume any alignment for the raw data. Return value is in
760 host byte order.
761
762 If you want functions and arrays to be coerced to pointers, and
763 references to be dereferenced, call value_as_address() instead.
764
765 C++: It is assumed that the front-end has taken care of
766 all matters concerning pointers to members. A pointer
767 to member which reaches here is considered to be equivalent
768 to an INT (or some size). After all, it is only an offset. */
769
770 CORE_ADDR
771 unpack_pointer (struct type *type, const char *valaddr)
772 {
773 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
774 whether we want this to be true eventually. */
775 return unpack_long (type, valaddr);
776 }
777
778 \f
779 /* Get the value of the FIELDN'th field (which must be static) of
780 TYPE. Return NULL if the field doesn't exist or has been
781 optimized out. */
782
783 struct value *
784 value_static_field (struct type *type, int fieldno)
785 {
786 struct value *retval;
787
788 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
789 {
790 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
791 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno),
792 NULL);
793 }
794 else
795 {
796 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
797 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
798 if (sym == NULL)
799 {
800 /* With some compilers, e.g. HP aCC, static data members are reported
801 as non-debuggable symbols */
802 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
803 if (!msym)
804 return NULL;
805 else
806 {
807 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
808 SYMBOL_VALUE_ADDRESS (msym),
809 SYMBOL_BFD_SECTION (msym));
810 }
811 }
812 else
813 {
814 /* SYM should never have a SYMBOL_CLASS which will require
815 read_var_value to use the FRAME parameter. */
816 if (symbol_read_needs_frame (sym))
817 warning ("static field's value depends on the current "
818 "frame - bad debug info?");
819 retval = read_var_value (sym, NULL);
820 }
821 if (retval && VALUE_LVAL (retval) == lval_memory)
822 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
823 VALUE_ADDRESS (retval));
824 }
825 return retval;
826 }
827
828 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
829 You have to be careful here, since the size of the data area for the value
830 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
831 than the old enclosing type, you have to allocate more space for the data.
832 The return value is a pointer to the new version of this value structure. */
833
834 struct value *
835 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
836 {
837 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
838 {
839 VALUE_ENCLOSING_TYPE (val) = new_encl_type;
840 return val;
841 }
842 else
843 {
844 struct value *new_val;
845 struct value *prev;
846
847 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
848
849 VALUE_ENCLOSING_TYPE (new_val) = new_encl_type;
850
851 /* We have to make sure this ends up in the same place in the value
852 chain as the original copy, so it's clean-up behavior is the same.
853 If the value has been released, this is a waste of time, but there
854 is no way to tell that in advance, so... */
855
856 if (val != all_values)
857 {
858 for (prev = all_values; prev != NULL; prev = prev->next)
859 {
860 if (prev->next == val)
861 {
862 prev->next = new_val;
863 break;
864 }
865 }
866 }
867
868 return new_val;
869 }
870 }
871
872 /* Given a value ARG1 (offset by OFFSET bytes)
873 of a struct or union type ARG_TYPE,
874 extract and return the value of one of its (non-static) fields.
875 FIELDNO says which field. */
876
877 struct value *
878 value_primitive_field (struct value *arg1, int offset,
879 register int fieldno, register struct type *arg_type)
880 {
881 struct value *v;
882 register struct type *type;
883
884 CHECK_TYPEDEF (arg_type);
885 type = TYPE_FIELD_TYPE (arg_type, fieldno);
886
887 /* Handle packed fields */
888
889 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
890 {
891 v = value_from_longest (type,
892 unpack_field_as_long (arg_type,
893 VALUE_CONTENTS (arg1)
894 + offset,
895 fieldno));
896 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
897 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
898 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
899 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
900 }
901 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
902 {
903 /* This field is actually a base subobject, so preserve the
904 entire object's contents for later references to virtual
905 bases, etc. */
906 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
907 VALUE_TYPE (v) = type;
908 if (VALUE_LAZY (arg1))
909 VALUE_LAZY (v) = 1;
910 else
911 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
912 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
913 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
914 VALUE_EMBEDDED_OFFSET (v)
915 = offset +
916 VALUE_EMBEDDED_OFFSET (arg1) +
917 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
918 }
919 else
920 {
921 /* Plain old data member */
922 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
923 v = allocate_value (type);
924 if (VALUE_LAZY (arg1))
925 VALUE_LAZY (v) = 1;
926 else
927 memcpy (VALUE_CONTENTS_RAW (v),
928 VALUE_CONTENTS_RAW (arg1) + offset,
929 TYPE_LENGTH (type));
930 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
931 + VALUE_EMBEDDED_OFFSET (arg1);
932 }
933 VALUE_LVAL (v) = VALUE_LVAL (arg1);
934 if (VALUE_LVAL (arg1) == lval_internalvar)
935 VALUE_LVAL (v) = lval_internalvar_component;
936 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
937 VALUE_REGNO (v) = VALUE_REGNO (arg1);
938 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
939 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
940 return v;
941 }
942
943 /* Given a value ARG1 of a struct or union type,
944 extract and return the value of one of its (non-static) fields.
945 FIELDNO says which field. */
946
947 struct value *
948 value_field (struct value *arg1, register int fieldno)
949 {
950 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
951 }
952
953 /* Return a non-virtual function as a value.
954 F is the list of member functions which contains the desired method.
955 J is an index into F which provides the desired method.
956
957 We only use the symbol for its address, so be happy with either a
958 full symbol or a minimal symbol.
959 */
960
961 struct value *
962 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
963 int offset)
964 {
965 struct value *v;
966 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
967 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
968 struct symbol *sym;
969 struct minimal_symbol *msym;
970
971 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
972 if (sym != NULL)
973 {
974 msym = NULL;
975 }
976 else
977 {
978 gdb_assert (sym == NULL);
979 msym = lookup_minimal_symbol (physname, NULL, NULL);
980 if (msym == NULL)
981 return NULL;
982 }
983
984 v = allocate_value (ftype);
985 if (sym)
986 {
987 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
988 }
989 else
990 {
991 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
992 }
993
994 if (arg1p)
995 {
996 if (type != VALUE_TYPE (*arg1p))
997 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
998 value_addr (*arg1p)));
999
1000 /* Move the `this' pointer according to the offset.
1001 VALUE_OFFSET (*arg1p) += offset;
1002 */
1003 }
1004
1005 return v;
1006 }
1007
1008 \f
1009 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1010 VALADDR.
1011
1012 Extracting bits depends on endianness of the machine. Compute the
1013 number of least significant bits to discard. For big endian machines,
1014 we compute the total number of bits in the anonymous object, subtract
1015 off the bit count from the MSB of the object to the MSB of the
1016 bitfield, then the size of the bitfield, which leaves the LSB discard
1017 count. For little endian machines, the discard count is simply the
1018 number of bits from the LSB of the anonymous object to the LSB of the
1019 bitfield.
1020
1021 If the field is signed, we also do sign extension. */
1022
1023 LONGEST
1024 unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
1025 {
1026 ULONGEST val;
1027 ULONGEST valmask;
1028 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1029 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1030 int lsbcount;
1031 struct type *field_type;
1032
1033 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1034 field_type = TYPE_FIELD_TYPE (type, fieldno);
1035 CHECK_TYPEDEF (field_type);
1036
1037 /* Extract bits. See comment above. */
1038
1039 if (BITS_BIG_ENDIAN)
1040 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1041 else
1042 lsbcount = (bitpos % 8);
1043 val >>= lsbcount;
1044
1045 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1046 If the field is signed, and is negative, then sign extend. */
1047
1048 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1049 {
1050 valmask = (((ULONGEST) 1) << bitsize) - 1;
1051 val &= valmask;
1052 if (!TYPE_UNSIGNED (field_type))
1053 {
1054 if (val & (valmask ^ (valmask >> 1)))
1055 {
1056 val |= ~valmask;
1057 }
1058 }
1059 }
1060 return (val);
1061 }
1062
1063 /* Modify the value of a bitfield. ADDR points to a block of memory in
1064 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1065 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1066 indicate which bits (in target bit order) comprise the bitfield. */
1067
1068 void
1069 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1070 {
1071 LONGEST oword;
1072
1073 /* If a negative fieldval fits in the field in question, chop
1074 off the sign extension bits. */
1075 if (bitsize < (8 * (int) sizeof (fieldval))
1076 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1077 fieldval = fieldval & ((1 << bitsize) - 1);
1078
1079 /* Warn if value is too big to fit in the field in question. */
1080 if (bitsize < (8 * (int) sizeof (fieldval))
1081 && 0 != (fieldval & ~((1 << bitsize) - 1)))
1082 {
1083 /* FIXME: would like to include fieldval in the message, but
1084 we don't have a sprintf_longest. */
1085 warning ("Value does not fit in %d bits.", bitsize);
1086
1087 /* Truncate it, otherwise adjoining fields may be corrupted. */
1088 fieldval = fieldval & ((1 << bitsize) - 1);
1089 }
1090
1091 oword = extract_signed_integer (addr, sizeof oword);
1092
1093 /* Shifting for bit field depends on endianness of the target machine. */
1094 if (BITS_BIG_ENDIAN)
1095 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1096
1097 /* Mask out old value, while avoiding shifts >= size of oword */
1098 if (bitsize < 8 * (int) sizeof (oword))
1099 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
1100 else
1101 oword &= ~((~(ULONGEST) 0) << bitpos);
1102 oword |= fieldval << bitpos;
1103
1104 store_signed_integer (addr, sizeof oword, oword);
1105 }
1106 \f
1107 /* Convert C numbers into newly allocated values */
1108
1109 struct value *
1110 value_from_longest (struct type *type, register LONGEST num)
1111 {
1112 struct value *val = allocate_value (type);
1113 register enum type_code code;
1114 register int len;
1115 retry:
1116 code = TYPE_CODE (type);
1117 len = TYPE_LENGTH (type);
1118
1119 switch (code)
1120 {
1121 case TYPE_CODE_TYPEDEF:
1122 type = check_typedef (type);
1123 goto retry;
1124 case TYPE_CODE_INT:
1125 case TYPE_CODE_CHAR:
1126 case TYPE_CODE_ENUM:
1127 case TYPE_CODE_BOOL:
1128 case TYPE_CODE_RANGE:
1129 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1130 break;
1131
1132 case TYPE_CODE_REF:
1133 case TYPE_CODE_PTR:
1134 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
1135 break;
1136
1137 default:
1138 error ("Unexpected type (%d) encountered for integer constant.", code);
1139 }
1140 return val;
1141 }
1142
1143
1144 /* Create a value representing a pointer of type TYPE to the address
1145 ADDR. */
1146 struct value *
1147 value_from_pointer (struct type *type, CORE_ADDR addr)
1148 {
1149 struct value *val = allocate_value (type);
1150 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1151 return val;
1152 }
1153
1154
1155 /* Create a value for a string constant to be stored locally
1156 (not in the inferior's memory space, but in GDB memory).
1157 This is analogous to value_from_longest, which also does not
1158 use inferior memory. String shall NOT contain embedded nulls. */
1159
1160 struct value *
1161 value_from_string (char *ptr)
1162 {
1163 struct value *val;
1164 int len = strlen (ptr);
1165 int lowbound = current_language->string_lower_bound;
1166 struct type *rangetype =
1167 create_range_type ((struct type *) NULL,
1168 builtin_type_int,
1169 lowbound, len + lowbound - 1);
1170 struct type *stringtype =
1171 create_array_type ((struct type *) NULL,
1172 *current_language->string_char_type,
1173 rangetype);
1174
1175 val = allocate_value (stringtype);
1176 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1177 return val;
1178 }
1179
1180 struct value *
1181 value_from_double (struct type *type, DOUBLEST num)
1182 {
1183 struct value *val = allocate_value (type);
1184 struct type *base_type = check_typedef (type);
1185 register enum type_code code = TYPE_CODE (base_type);
1186 register int len = TYPE_LENGTH (base_type);
1187
1188 if (code == TYPE_CODE_FLT)
1189 {
1190 store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
1191 }
1192 else
1193 error ("Unexpected type encountered for floating constant.");
1194
1195 return val;
1196 }
1197 \f
1198 /* Deal with the value that is "about to be returned". */
1199
1200 /* Return the value that a function returning now
1201 would be returning to its caller, assuming its type is VALTYPE.
1202 RETBUF is where we look for what ought to be the contents
1203 of the registers (in raw form). This is because it is often
1204 desirable to restore old values to those registers
1205 after saving the contents of interest, and then call
1206 this function using the saved values.
1207 struct_return is non-zero when the function in question is
1208 using the structure return conventions on the machine in question;
1209 0 when it is using the value returning conventions (this often
1210 means returning pointer to where structure is vs. returning value). */
1211
1212 /* ARGSUSED */
1213 struct value *
1214 value_being_returned (struct type *valtype, struct regcache *retbuf,
1215 int struct_return)
1216 {
1217 struct value *val;
1218 CORE_ADDR addr;
1219
1220 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1221 if (EXTRACT_STRUCT_VALUE_ADDRESS_P ())
1222 if (struct_return)
1223 {
1224 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1225 if (!addr)
1226 error ("Function return value unknown.");
1227 return value_at (valtype, addr, NULL);
1228 }
1229
1230 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1231 if (DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS_P ())
1232 if (struct_return)
1233 {
1234 char *buf = deprecated_grub_regcache_for_registers (retbuf);
1235 addr = DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS (buf);
1236 if (!addr)
1237 error ("Function return value unknown.");
1238 return value_at (valtype, addr, NULL);
1239 }
1240
1241 val = allocate_value (valtype);
1242 CHECK_TYPEDEF (valtype);
1243 /* If the function returns void, don't bother fetching the return value. */
1244 if (TYPE_CODE (valtype) != TYPE_CODE_VOID)
1245 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1246
1247 return val;
1248 }
1249
1250 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1251 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1252 and TYPE is the type (which is known to be struct, union or array).
1253
1254 On most machines, the struct convention is used unless we are
1255 using gcc and the type is of a special size. */
1256 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1257 native compiler. GCC 2.3.3 was the last release that did it the
1258 old way. Since gcc2_compiled was not changed, we have no
1259 way to correctly win in all cases, so we just do the right thing
1260 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1261 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1262 would cause more chaos than dealing with some struct returns being
1263 handled wrong. */
1264
1265 int
1266 generic_use_struct_convention (int gcc_p, struct type *value_type)
1267 {
1268 return !((gcc_p == 1)
1269 && (TYPE_LENGTH (value_type) == 1
1270 || TYPE_LENGTH (value_type) == 2
1271 || TYPE_LENGTH (value_type) == 4
1272 || TYPE_LENGTH (value_type) == 8));
1273 }
1274
1275 /* Return true if the function specified is using the structure returning
1276 convention on this machine to return arguments, or 0 if it is using
1277 the value returning convention. FUNCTION is the value representing
1278 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1279 is the type returned by the function. GCC_P is nonzero if compiled
1280 with GCC. */
1281
1282 /* ARGSUSED */
1283 int
1284 using_struct_return (struct value *function, CORE_ADDR funcaddr,
1285 struct type *value_type, int gcc_p)
1286 {
1287 register enum type_code code = TYPE_CODE (value_type);
1288
1289 if (code == TYPE_CODE_ERROR)
1290 error ("Function return type unknown.");
1291
1292 if (code == TYPE_CODE_STRUCT
1293 || code == TYPE_CODE_UNION
1294 || code == TYPE_CODE_ARRAY
1295 || RETURN_VALUE_ON_STACK (value_type))
1296 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1297
1298 return 0;
1299 }
1300
1301 /* Store VAL so it will be returned if a function returns now.
1302 Does not verify that VAL's type matches what the current
1303 function wants to return. */
1304
1305 void
1306 set_return_value (struct value *val)
1307 {
1308 struct type *type = check_typedef (VALUE_TYPE (val));
1309 register enum type_code code = TYPE_CODE (type);
1310
1311 if (code == TYPE_CODE_ERROR)
1312 error ("Function return type unknown.");
1313
1314 if (code == TYPE_CODE_STRUCT
1315 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1316 error ("GDB does not support specifying a struct or union return value.");
1317
1318 STORE_RETURN_VALUE (type, current_regcache, VALUE_CONTENTS (val));
1319 }
1320 \f
1321 void
1322 _initialize_values (void)
1323 {
1324 add_cmd ("convenience", no_class, show_convenience,
1325 "Debugger convenience (\"$foo\") variables.\n\
1326 These variables are created when you assign them values;\n\
1327 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1328 A few convenience variables are given values automatically:\n\
1329 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1330 \"$__\" holds the contents of the last address examined with \"x\".",
1331 &showlist);
1332
1333 add_cmd ("values", no_class, show_values,
1334 "Elements of value history around item number IDX (or last ten).",
1335 &showlist);
1336 }
This page took 0.056613 seconds and 4 git commands to generate.