* gdb.base/constvars.exp: Check for different orders of keywords
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "scm-lang.h"
34 #include "demangle.h"
35 #include "doublest.h"
36
37 /* Prototypes for exported functions. */
38
39 void _initialize_values (void);
40
41 /* Prototypes for local functions. */
42
43 static value_ptr value_headof (value_ptr, struct type *, struct type *);
44
45 static void show_values (char *, int);
46
47 static void show_convenience (char *, int);
48
49
50 /* The value-history records all the values printed
51 by print commands during this session. Each chunk
52 records 60 consecutive values. The first chunk on
53 the chain records the most recent values.
54 The total number of values is in value_history_count. */
55
56 #define VALUE_HISTORY_CHUNK 60
57
58 struct value_history_chunk
59 {
60 struct value_history_chunk *next;
61 value_ptr values[VALUE_HISTORY_CHUNK];
62 };
63
64 /* Chain of chunks now in use. */
65
66 static struct value_history_chunk *value_history_chain;
67
68 static int value_history_count; /* Abs number of last entry stored */
69 \f
70 /* List of all value objects currently allocated
71 (except for those released by calls to release_value)
72 This is so they can be freed after each command. */
73
74 static value_ptr all_values;
75
76 /* Allocate a value that has the correct length for type TYPE. */
77
78 value_ptr
79 allocate_value (struct type *type)
80 {
81 register value_ptr val;
82 struct type *atype = check_typedef (type);
83
84 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
85 VALUE_NEXT (val) = all_values;
86 all_values = val;
87 VALUE_TYPE (val) = type;
88 VALUE_ENCLOSING_TYPE (val) = type;
89 VALUE_LVAL (val) = not_lval;
90 VALUE_ADDRESS (val) = 0;
91 VALUE_FRAME (val) = 0;
92 VALUE_OFFSET (val) = 0;
93 VALUE_BITPOS (val) = 0;
94 VALUE_BITSIZE (val) = 0;
95 VALUE_REGNO (val) = -1;
96 VALUE_LAZY (val) = 0;
97 VALUE_OPTIMIZED_OUT (val) = 0;
98 VALUE_BFD_SECTION (val) = NULL;
99 VALUE_EMBEDDED_OFFSET (val) = 0;
100 VALUE_POINTED_TO_OFFSET (val) = 0;
101 val->modifiable = 1;
102 return val;
103 }
104
105 /* Allocate a value that has the correct length
106 for COUNT repetitions type TYPE. */
107
108 value_ptr
109 allocate_repeat_value (struct type *type, int count)
110 {
111 int low_bound = current_language->string_lower_bound; /* ??? */
112 /* FIXME-type-allocation: need a way to free this type when we are
113 done with it. */
114 struct type *range_type
115 = create_range_type ((struct type *) NULL, builtin_type_int,
116 low_bound, count + low_bound - 1);
117 /* FIXME-type-allocation: need a way to free this type when we are
118 done with it. */
119 return allocate_value (create_array_type ((struct type *) NULL,
120 type, range_type));
121 }
122
123 /* Return a mark in the value chain. All values allocated after the
124 mark is obtained (except for those released) are subject to being freed
125 if a subsequent value_free_to_mark is passed the mark. */
126 value_ptr
127 value_mark (void)
128 {
129 return all_values;
130 }
131
132 /* Free all values allocated since MARK was obtained by value_mark
133 (except for those released). */
134 void
135 value_free_to_mark (value_ptr mark)
136 {
137 value_ptr val, next;
138
139 for (val = all_values; val && val != mark; val = next)
140 {
141 next = VALUE_NEXT (val);
142 value_free (val);
143 }
144 all_values = val;
145 }
146
147 /* Free all the values that have been allocated (except for those released).
148 Called after each command, successful or not. */
149
150 void
151 free_all_values (void)
152 {
153 register value_ptr val, next;
154
155 for (val = all_values; val; val = next)
156 {
157 next = VALUE_NEXT (val);
158 value_free (val);
159 }
160
161 all_values = 0;
162 }
163
164 /* Remove VAL from the chain all_values
165 so it will not be freed automatically. */
166
167 void
168 release_value (register value_ptr val)
169 {
170 register value_ptr v;
171
172 if (all_values == val)
173 {
174 all_values = val->next;
175 return;
176 }
177
178 for (v = all_values; v; v = v->next)
179 {
180 if (v->next == val)
181 {
182 v->next = val->next;
183 break;
184 }
185 }
186 }
187
188 /* Release all values up to mark */
189 value_ptr
190 value_release_to_mark (value_ptr mark)
191 {
192 value_ptr val, next;
193
194 for (val = next = all_values; next; next = VALUE_NEXT (next))
195 if (VALUE_NEXT (next) == mark)
196 {
197 all_values = VALUE_NEXT (next);
198 VALUE_NEXT (next) = 0;
199 return val;
200 }
201 all_values = 0;
202 return val;
203 }
204
205 /* Return a copy of the value ARG.
206 It contains the same contents, for same memory address,
207 but it's a different block of storage. */
208
209 value_ptr
210 value_copy (value_ptr arg)
211 {
212 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
213 register value_ptr val = allocate_value (encl_type);
214 VALUE_TYPE (val) = VALUE_TYPE (arg);
215 VALUE_LVAL (val) = VALUE_LVAL (arg);
216 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
217 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
218 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
219 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
220 VALUE_FRAME (val) = VALUE_FRAME (arg);
221 VALUE_REGNO (val) = VALUE_REGNO (arg);
222 VALUE_LAZY (val) = VALUE_LAZY (arg);
223 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
224 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
225 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
226 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
227 val->modifiable = arg->modifiable;
228 if (!VALUE_LAZY (val))
229 {
230 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
231 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
232
233 }
234 return val;
235 }
236 \f
237 /* Access to the value history. */
238
239 /* Record a new value in the value history.
240 Returns the absolute history index of the entry.
241 Result of -1 indicates the value was not saved; otherwise it is the
242 value history index of this new item. */
243
244 int
245 record_latest_value (value_ptr val)
246 {
247 int i;
248
249 /* We don't want this value to have anything to do with the inferior anymore.
250 In particular, "set $1 = 50" should not affect the variable from which
251 the value was taken, and fast watchpoints should be able to assume that
252 a value on the value history never changes. */
253 if (VALUE_LAZY (val))
254 value_fetch_lazy (val);
255 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
256 from. This is a bit dubious, because then *&$1 does not just return $1
257 but the current contents of that location. c'est la vie... */
258 val->modifiable = 0;
259 release_value (val);
260
261 /* Here we treat value_history_count as origin-zero
262 and applying to the value being stored now. */
263
264 i = value_history_count % VALUE_HISTORY_CHUNK;
265 if (i == 0)
266 {
267 register struct value_history_chunk *new
268 = (struct value_history_chunk *)
269 xmalloc (sizeof (struct value_history_chunk));
270 memset (new->values, 0, sizeof new->values);
271 new->next = value_history_chain;
272 value_history_chain = new;
273 }
274
275 value_history_chain->values[i] = val;
276
277 /* Now we regard value_history_count as origin-one
278 and applying to the value just stored. */
279
280 return ++value_history_count;
281 }
282
283 /* Return a copy of the value in the history with sequence number NUM. */
284
285 value_ptr
286 access_value_history (int num)
287 {
288 register struct value_history_chunk *chunk;
289 register int i;
290 register int absnum = num;
291
292 if (absnum <= 0)
293 absnum += value_history_count;
294
295 if (absnum <= 0)
296 {
297 if (num == 0)
298 error ("The history is empty.");
299 else if (num == 1)
300 error ("There is only one value in the history.");
301 else
302 error ("History does not go back to $$%d.", -num);
303 }
304 if (absnum > value_history_count)
305 error ("History has not yet reached $%d.", absnum);
306
307 absnum--;
308
309 /* Now absnum is always absolute and origin zero. */
310
311 chunk = value_history_chain;
312 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
313 i > 0; i--)
314 chunk = chunk->next;
315
316 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
317 }
318
319 /* Clear the value history entirely.
320 Must be done when new symbol tables are loaded,
321 because the type pointers become invalid. */
322
323 void
324 clear_value_history (void)
325 {
326 register struct value_history_chunk *next;
327 register int i;
328 register value_ptr val;
329
330 while (value_history_chain)
331 {
332 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
333 if ((val = value_history_chain->values[i]) != NULL)
334 xfree (val);
335 next = value_history_chain->next;
336 xfree (value_history_chain);
337 value_history_chain = next;
338 }
339 value_history_count = 0;
340 }
341
342 static void
343 show_values (char *num_exp, int from_tty)
344 {
345 register int i;
346 register value_ptr val;
347 static int num = 1;
348
349 if (num_exp)
350 {
351 /* "info history +" should print from the stored position.
352 "info history <exp>" should print around value number <exp>. */
353 if (num_exp[0] != '+' || num_exp[1] != '\0')
354 num = parse_and_eval_long (num_exp) - 5;
355 }
356 else
357 {
358 /* "info history" means print the last 10 values. */
359 num = value_history_count - 9;
360 }
361
362 if (num <= 0)
363 num = 1;
364
365 for (i = num; i < num + 10 && i <= value_history_count; i++)
366 {
367 val = access_value_history (i);
368 printf_filtered ("$%d = ", i);
369 value_print (val, gdb_stdout, 0, Val_pretty_default);
370 printf_filtered ("\n");
371 }
372
373 /* The next "info history +" should start after what we just printed. */
374 num += 10;
375
376 /* Hitting just return after this command should do the same thing as
377 "info history +". If num_exp is null, this is unnecessary, since
378 "info history +" is not useful after "info history". */
379 if (from_tty && num_exp)
380 {
381 num_exp[0] = '+';
382 num_exp[1] = '\0';
383 }
384 }
385 \f
386 /* Internal variables. These are variables within the debugger
387 that hold values assigned by debugger commands.
388 The user refers to them with a '$' prefix
389 that does not appear in the variable names stored internally. */
390
391 static struct internalvar *internalvars;
392
393 /* Look up an internal variable with name NAME. NAME should not
394 normally include a dollar sign.
395
396 If the specified internal variable does not exist,
397 one is created, with a void value. */
398
399 struct internalvar *
400 lookup_internalvar (char *name)
401 {
402 register struct internalvar *var;
403
404 for (var = internalvars; var; var = var->next)
405 if (STREQ (var->name, name))
406 return var;
407
408 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
409 var->name = concat (name, NULL);
410 var->value = allocate_value (builtin_type_void);
411 release_value (var->value);
412 var->next = internalvars;
413 internalvars = var;
414 return var;
415 }
416
417 value_ptr
418 value_of_internalvar (struct internalvar *var)
419 {
420 register value_ptr val;
421
422 #ifdef IS_TRAPPED_INTERNALVAR
423 if (IS_TRAPPED_INTERNALVAR (var->name))
424 return VALUE_OF_TRAPPED_INTERNALVAR (var);
425 #endif
426
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val))
429 value_fetch_lazy (val);
430 VALUE_LVAL (val) = lval_internalvar;
431 VALUE_INTERNALVAR (val) = var;
432 return val;
433 }
434
435 void
436 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
437 int bitsize, value_ptr newval)
438 {
439 register char *addr = VALUE_CONTENTS (var->value) + offset;
440
441 #ifdef IS_TRAPPED_INTERNALVAR
442 if (IS_TRAPPED_INTERNALVAR (var->name))
443 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
444 #endif
445
446 if (bitsize)
447 modify_field (addr, value_as_long (newval),
448 bitpos, bitsize);
449 else
450 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
451 }
452
453 void
454 set_internalvar (struct internalvar *var, value_ptr val)
455 {
456 value_ptr newval;
457
458 #ifdef IS_TRAPPED_INTERNALVAR
459 if (IS_TRAPPED_INTERNALVAR (var->name))
460 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
461 #endif
462
463 newval = value_copy (val);
464 newval->modifiable = 1;
465
466 /* Force the value to be fetched from the target now, to avoid problems
467 later when this internalvar is referenced and the target is gone or
468 has changed. */
469 if (VALUE_LAZY (newval))
470 value_fetch_lazy (newval);
471
472 /* Begin code which must not call error(). If var->value points to
473 something free'd, an error() obviously leaves a dangling pointer.
474 But we also get a danling pointer if var->value points to
475 something in the value chain (i.e., before release_value is
476 called), because after the error free_all_values will get called before
477 long. */
478 xfree (var->value);
479 var->value = newval;
480 release_value (newval);
481 /* End code which must not call error(). */
482 }
483
484 char *
485 internalvar_name (struct internalvar *var)
486 {
487 return var->name;
488 }
489
490 /* Free all internalvars. Done when new symtabs are loaded,
491 because that makes the values invalid. */
492
493 void
494 clear_internalvars (void)
495 {
496 register struct internalvar *var;
497
498 while (internalvars)
499 {
500 var = internalvars;
501 internalvars = var->next;
502 xfree (var->name);
503 xfree (var->value);
504 xfree (var);
505 }
506 }
507
508 static void
509 show_convenience (char *ignore, int from_tty)
510 {
511 register struct internalvar *var;
512 int varseen = 0;
513
514 for (var = internalvars; var; var = var->next)
515 {
516 #ifdef IS_TRAPPED_INTERNALVAR
517 if (IS_TRAPPED_INTERNALVAR (var->name))
518 continue;
519 #endif
520 if (!varseen)
521 {
522 varseen = 1;
523 }
524 printf_filtered ("$%s = ", var->name);
525 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
526 printf_filtered ("\n");
527 }
528 if (!varseen)
529 printf_unfiltered ("No debugger convenience variables now defined.\n\
530 Convenience variables have names starting with \"$\";\n\
531 use \"set\" as in \"set $foo = 5\" to define them.\n");
532 }
533 \f
534 /* Extract a value as a C number (either long or double).
535 Knows how to convert fixed values to double, or
536 floating values to long.
537 Does not deallocate the value. */
538
539 LONGEST
540 value_as_long (register value_ptr val)
541 {
542 /* This coerces arrays and functions, which is necessary (e.g.
543 in disassemble_command). It also dereferences references, which
544 I suspect is the most logical thing to do. */
545 COERCE_ARRAY (val);
546 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
547 }
548
549 DOUBLEST
550 value_as_double (register value_ptr val)
551 {
552 DOUBLEST foo;
553 int inv;
554
555 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
556 if (inv)
557 error ("Invalid floating value found in program.");
558 return foo;
559 }
560 /* Extract a value as a C pointer. Does not deallocate the value.
561 Note that val's type may not actually be a pointer; value_as_long
562 handles all the cases. */
563 CORE_ADDR
564 value_as_pointer (value_ptr val)
565 {
566 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
567 whether we want this to be true eventually. */
568 #if 0
569 /* ADDR_BITS_REMOVE is wrong if we are being called for a
570 non-address (e.g. argument to "signal", "info break", etc.), or
571 for pointers to char, in which the low bits *are* significant. */
572 return ADDR_BITS_REMOVE (value_as_long (val));
573 #else
574 COERCE_ARRAY (val);
575 /* In converting VAL to an address (CORE_ADDR), any small integers
576 are first cast to a generic pointer. The function unpack_long
577 will then correctly convert that pointer into a canonical address
578 (using POINTER_TO_ADDRESS).
579
580 Without the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
581 0xa0000000 -> (LONGEST) 0x00000000a0000000
582
583 With the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
584 0xa0000000 -> (void*) 0xa0000000 -> (LONGEST) 0xffffffffa0000000.
585
586 If the user specifies an integer that is larger than the target
587 pointer type, it is assumed that it was intentional and the value
588 is converted directly into an ADDRESS. This ensures that no
589 information is discarded.
590
591 NOTE: The cast operation may eventualy be converted into a TARGET
592 method (see POINTER_TO_ADDRESS() and ADDRESS_TO_POINTER()) so
593 that the TARGET ISA/ABI can apply an arbitrary conversion.
594
595 NOTE: In pure harvard architectures function and data pointers
596 can be different and may require different integer to pointer
597 conversions. */
598 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT
599 && (TYPE_LENGTH (VALUE_TYPE (val))
600 <= TYPE_LENGTH (builtin_type_void_data_ptr)))
601 {
602 val = value_cast (builtin_type_void_data_ptr, val);
603 }
604 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
605 #endif
606 }
607 \f
608 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
609 as a long, or as a double, assuming the raw data is described
610 by type TYPE. Knows how to convert different sizes of values
611 and can convert between fixed and floating point. We don't assume
612 any alignment for the raw data. Return value is in host byte order.
613
614 If you want functions and arrays to be coerced to pointers, and
615 references to be dereferenced, call value_as_long() instead.
616
617 C++: It is assumed that the front-end has taken care of
618 all matters concerning pointers to members. A pointer
619 to member which reaches here is considered to be equivalent
620 to an INT (or some size). After all, it is only an offset. */
621
622 LONGEST
623 unpack_long (struct type *type, char *valaddr)
624 {
625 register enum type_code code = TYPE_CODE (type);
626 register int len = TYPE_LENGTH (type);
627 register int nosign = TYPE_UNSIGNED (type);
628
629 if (current_language->la_language == language_scm
630 && is_scmvalue_type (type))
631 return scm_unpack (type, valaddr, TYPE_CODE_INT);
632
633 switch (code)
634 {
635 case TYPE_CODE_TYPEDEF:
636 return unpack_long (check_typedef (type), valaddr);
637 case TYPE_CODE_ENUM:
638 case TYPE_CODE_BOOL:
639 case TYPE_CODE_INT:
640 case TYPE_CODE_CHAR:
641 case TYPE_CODE_RANGE:
642 if (nosign)
643 return extract_unsigned_integer (valaddr, len);
644 else
645 return extract_signed_integer (valaddr, len);
646
647 case TYPE_CODE_FLT:
648 return extract_typed_floating (valaddr, type);
649
650 case TYPE_CODE_PTR:
651 case TYPE_CODE_REF:
652 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
653 whether we want this to be true eventually. */
654 return extract_typed_address (valaddr, type);
655
656 case TYPE_CODE_MEMBER:
657 error ("not implemented: member types in unpack_long");
658
659 default:
660 error ("Value can't be converted to integer.");
661 }
662 return 0; /* Placate lint. */
663 }
664
665 /* Return a double value from the specified type and address.
666 INVP points to an int which is set to 0 for valid value,
667 1 for invalid value (bad float format). In either case,
668 the returned double is OK to use. Argument is in target
669 format, result is in host format. */
670
671 DOUBLEST
672 unpack_double (struct type *type, char *valaddr, int *invp)
673 {
674 enum type_code code;
675 int len;
676 int nosign;
677
678 *invp = 0; /* Assume valid. */
679 CHECK_TYPEDEF (type);
680 code = TYPE_CODE (type);
681 len = TYPE_LENGTH (type);
682 nosign = TYPE_UNSIGNED (type);
683 if (code == TYPE_CODE_FLT)
684 {
685 #ifdef INVALID_FLOAT
686 if (INVALID_FLOAT (valaddr, len))
687 {
688 *invp = 1;
689 return 1.234567891011121314;
690 }
691 #endif
692 return extract_typed_floating (valaddr, type);
693 }
694 else if (nosign)
695 {
696 /* Unsigned -- be sure we compensate for signed LONGEST. */
697 return (ULONGEST) unpack_long (type, valaddr);
698 }
699 else
700 {
701 /* Signed -- we are OK with unpack_long. */
702 return unpack_long (type, valaddr);
703 }
704 }
705
706 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
707 as a CORE_ADDR, assuming the raw data is described by type TYPE.
708 We don't assume any alignment for the raw data. Return value is in
709 host byte order.
710
711 If you want functions and arrays to be coerced to pointers, and
712 references to be dereferenced, call value_as_pointer() instead.
713
714 C++: It is assumed that the front-end has taken care of
715 all matters concerning pointers to members. A pointer
716 to member which reaches here is considered to be equivalent
717 to an INT (or some size). After all, it is only an offset. */
718
719 CORE_ADDR
720 unpack_pointer (struct type *type, char *valaddr)
721 {
722 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
723 whether we want this to be true eventually. */
724 return unpack_long (type, valaddr);
725 }
726
727 \f
728 /* Get the value of the FIELDN'th field (which must be static) of TYPE. */
729
730 value_ptr
731 value_static_field (struct type *type, int fieldno)
732 {
733 CORE_ADDR addr;
734 asection *sect;
735 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
736 {
737 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
738 sect = NULL;
739 }
740 else
741 {
742 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
743 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
744 if (sym == NULL)
745 {
746 /* With some compilers, e.g. HP aCC, static data members are reported
747 as non-debuggable symbols */
748 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
749 if (!msym)
750 return NULL;
751 else
752 {
753 addr = SYMBOL_VALUE_ADDRESS (msym);
754 sect = SYMBOL_BFD_SECTION (msym);
755 }
756 }
757 else
758 {
759 /* Anything static that isn't a constant, has an address */
760 if (SYMBOL_CLASS (sym) != LOC_CONST)
761 {
762 addr = SYMBOL_VALUE_ADDRESS (sym);
763 sect = SYMBOL_BFD_SECTION (sym);
764 }
765 /* However, static const's do not, the value is already known. */
766 else
767 {
768 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), SYMBOL_VALUE (sym));
769 }
770 }
771 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
772 }
773 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
774 }
775
776 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
777 You have to be careful here, since the size of the data area for the value
778 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
779 than the old enclosing type, you have to allocate more space for the data.
780 The return value is a pointer to the new version of this value structure. */
781
782 value_ptr
783 value_change_enclosing_type (value_ptr val, struct type *new_encl_type)
784 {
785 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
786 {
787 VALUE_ENCLOSING_TYPE (val) = new_encl_type;
788 return val;
789 }
790 else
791 {
792 value_ptr new_val;
793 register value_ptr prev;
794
795 new_val = (value_ptr) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
796
797 /* We have to make sure this ends up in the same place in the value
798 chain as the original copy, so it's clean-up behavior is the same.
799 If the value has been released, this is a waste of time, but there
800 is no way to tell that in advance, so... */
801
802 if (val != all_values)
803 {
804 for (prev = all_values; prev != NULL; prev = prev->next)
805 {
806 if (prev->next == val)
807 {
808 prev->next = new_val;
809 break;
810 }
811 }
812 }
813
814 return new_val;
815 }
816 }
817
818 /* Given a value ARG1 (offset by OFFSET bytes)
819 of a struct or union type ARG_TYPE,
820 extract and return the value of one of its (non-static) fields.
821 FIELDNO says which field. */
822
823 value_ptr
824 value_primitive_field (register value_ptr arg1, int offset,
825 register int fieldno, register struct type *arg_type)
826 {
827 register value_ptr v;
828 register struct type *type;
829
830 CHECK_TYPEDEF (arg_type);
831 type = TYPE_FIELD_TYPE (arg_type, fieldno);
832
833 /* Handle packed fields */
834
835 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
836 {
837 v = value_from_longest (type,
838 unpack_field_as_long (arg_type,
839 VALUE_CONTENTS (arg1)
840 + offset,
841 fieldno));
842 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
843 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
844 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
845 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
846 }
847 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
848 {
849 /* This field is actually a base subobject, so preserve the
850 entire object's contents for later references to virtual
851 bases, etc. */
852 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
853 VALUE_TYPE (v) = type;
854 if (VALUE_LAZY (arg1))
855 VALUE_LAZY (v) = 1;
856 else
857 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
858 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
859 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
860 VALUE_EMBEDDED_OFFSET (v)
861 = offset +
862 VALUE_EMBEDDED_OFFSET (arg1) +
863 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
864 }
865 else
866 {
867 /* Plain old data member */
868 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
869 v = allocate_value (type);
870 if (VALUE_LAZY (arg1))
871 VALUE_LAZY (v) = 1;
872 else
873 memcpy (VALUE_CONTENTS_RAW (v),
874 VALUE_CONTENTS_RAW (arg1) + offset,
875 TYPE_LENGTH (type));
876 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
877 }
878 VALUE_LVAL (v) = VALUE_LVAL (arg1);
879 if (VALUE_LVAL (arg1) == lval_internalvar)
880 VALUE_LVAL (v) = lval_internalvar_component;
881 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
882 VALUE_REGNO (v) = VALUE_REGNO (arg1);
883 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
884 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
885 return v;
886 }
887
888 /* Given a value ARG1 of a struct or union type,
889 extract and return the value of one of its (non-static) fields.
890 FIELDNO says which field. */
891
892 value_ptr
893 value_field (register value_ptr arg1, register int fieldno)
894 {
895 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
896 }
897
898 /* Return a non-virtual function as a value.
899 F is the list of member functions which contains the desired method.
900 J is an index into F which provides the desired method. */
901
902 value_ptr
903 value_fn_field (value_ptr *arg1p, struct fn_field *f, int j, struct type *type,
904 int offset)
905 {
906 register value_ptr v;
907 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
908 struct symbol *sym;
909
910 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
911 0, VAR_NAMESPACE, 0, NULL);
912 if (!sym)
913 return NULL;
914 /*
915 error ("Internal error: could not find physical method named %s",
916 TYPE_FN_FIELD_PHYSNAME (f, j));
917 */
918
919 v = allocate_value (ftype);
920 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
921 VALUE_TYPE (v) = ftype;
922
923 if (arg1p)
924 {
925 if (type != VALUE_TYPE (*arg1p))
926 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
927 value_addr (*arg1p)));
928
929 /* Move the `this' pointer according to the offset.
930 VALUE_OFFSET (*arg1p) += offset;
931 */
932 }
933
934 return v;
935 }
936
937 /* ARG is a pointer to an object we know to be at least
938 a DTYPE. BTYPE is the most derived basetype that has
939 already been searched (and need not be searched again).
940 After looking at the vtables between BTYPE and DTYPE,
941 return the most derived type we find. The caller must
942 be satisfied when the return value == DTYPE.
943
944 FIXME-tiemann: should work with dossier entries as well.
945 NOTICE - djb: I see no good reason at all to keep this function now that
946 we have RTTI support. It's used in literally one place, and it's
947 hard to keep this function up to date when it's purpose is served
948 by value_rtti_type efficiently.
949 Consider it gone for 5.1. */
950
951 static value_ptr
952 value_headof (value_ptr in_arg, struct type *btype, struct type *dtype)
953 {
954 /* First collect the vtables we must look at for this object. */
955 value_ptr arg, vtbl;
956 struct symbol *sym;
957 char *demangled_name;
958 struct minimal_symbol *msymbol;
959
960 btype = TYPE_VPTR_BASETYPE (dtype);
961 CHECK_TYPEDEF (btype);
962 arg = in_arg;
963 if (btype != dtype)
964 arg = value_cast (lookup_pointer_type (btype), arg);
965 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
966 {
967 /*
968 * Copy the value, but change the type from (T&) to (T*).
969 * We keep the same location information, which is efficient,
970 * and allows &(&X) to get the location containing the reference.
971 */
972 arg = value_copy (arg);
973 VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
974 }
975 if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
976 return arg;
977
978 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
979 /* Turn vtable into typeinfo function */
980 VALUE_OFFSET(vtbl)+=4;
981
982 msymbol = lookup_minimal_symbol_by_pc ( value_as_pointer(value_ind(vtbl)) );
983 if (msymbol == NULL
984 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
985 {
986 /* If we expected to find a vtable, but did not, let the user
987 know that we aren't happy, but don't throw an error.
988 FIXME: there has to be a better way to do this. */
989 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
990 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
991 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
992 VALUE_TYPE (in_arg) = error_type;
993 return in_arg;
994 }
995 demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
996 *(strchr (demangled_name, ' ')) = '\0';
997
998 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
999 if (sym == NULL)
1000 error ("could not find type declaration for `%s'", demangled_name);
1001
1002 arg = in_arg;
1003 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1004 return arg;
1005 }
1006
1007 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1008 function tables, probe ARG's tables (including the vtables
1009 of its baseclasses) to figure out the most derived type that ARG
1010 could actually be a pointer to. */
1011
1012 value_ptr
1013 value_from_vtable_info (value_ptr arg, struct type *type)
1014 {
1015 /* Take care of preliminaries. */
1016 if (TYPE_VPTR_FIELDNO (type) < 0)
1017 fill_in_vptr_fieldno (type);
1018 if (TYPE_VPTR_FIELDNO (type) < 0)
1019 return 0;
1020
1021 return value_headof (arg, 0, type);
1022 }
1023
1024 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1025 pointer which is for the base class whose type is BASECLASS. */
1026
1027 static int
1028 vb_match (struct type *type, int index, struct type *basetype)
1029 {
1030 struct type *fieldtype;
1031 char *name = TYPE_FIELD_NAME (type, index);
1032 char *field_class_name = NULL;
1033
1034 if (*name != '_')
1035 return 0;
1036 /* gcc 2.4 uses _vb$. */
1037 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1038 field_class_name = name + 4;
1039 /* gcc 2.5 will use __vb_. */
1040 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1041 field_class_name = name + 5;
1042
1043 if (field_class_name == NULL)
1044 /* This field is not a virtual base class pointer. */
1045 return 0;
1046
1047 /* It's a virtual baseclass pointer, now we just need to find out whether
1048 it is for this baseclass. */
1049 fieldtype = TYPE_FIELD_TYPE (type, index);
1050 if (fieldtype == NULL
1051 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1052 /* "Can't happen". */
1053 return 0;
1054
1055 /* What we check for is that either the types are equal (needed for
1056 nameless types) or have the same name. This is ugly, and a more
1057 elegant solution should be devised (which would probably just push
1058 the ugliness into symbol reading unless we change the stabs format). */
1059 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1060 return 1;
1061
1062 if (TYPE_NAME (basetype) != NULL
1063 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1064 && STREQ (TYPE_NAME (basetype),
1065 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1066 return 1;
1067 return 0;
1068 }
1069
1070 /* Compute the offset of the baseclass which is
1071 the INDEXth baseclass of class TYPE,
1072 for value at VALADDR (in host) at ADDRESS (in target).
1073 The result is the offset of the baseclass value relative
1074 to (the address of)(ARG) + OFFSET.
1075
1076 -1 is returned on error. */
1077
1078 int
1079 baseclass_offset (struct type *type, int index, char *valaddr,
1080 CORE_ADDR address)
1081 {
1082 struct type *basetype = TYPE_BASECLASS (type, index);
1083
1084 if (BASETYPE_VIA_VIRTUAL (type, index))
1085 {
1086 /* Must hunt for the pointer to this virtual baseclass. */
1087 register int i, len = TYPE_NFIELDS (type);
1088 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1089
1090 /* First look for the virtual baseclass pointer
1091 in the fields. */
1092 for (i = n_baseclasses; i < len; i++)
1093 {
1094 if (vb_match (type, i, basetype))
1095 {
1096 CORE_ADDR addr
1097 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1098 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1099
1100 return addr - (LONGEST) address;
1101 }
1102 }
1103 /* Not in the fields, so try looking through the baseclasses. */
1104 for (i = index + 1; i < n_baseclasses; i++)
1105 {
1106 int boffset =
1107 baseclass_offset (type, i, valaddr, address);
1108 if (boffset)
1109 return boffset;
1110 }
1111 /* Not found. */
1112 return -1;
1113 }
1114
1115 /* Baseclass is easily computed. */
1116 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1117 }
1118 \f
1119 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1120 VALADDR.
1121
1122 Extracting bits depends on endianness of the machine. Compute the
1123 number of least significant bits to discard. For big endian machines,
1124 we compute the total number of bits in the anonymous object, subtract
1125 off the bit count from the MSB of the object to the MSB of the
1126 bitfield, then the size of the bitfield, which leaves the LSB discard
1127 count. For little endian machines, the discard count is simply the
1128 number of bits from the LSB of the anonymous object to the LSB of the
1129 bitfield.
1130
1131 If the field is signed, we also do sign extension. */
1132
1133 LONGEST
1134 unpack_field_as_long (struct type *type, char *valaddr, int fieldno)
1135 {
1136 ULONGEST val;
1137 ULONGEST valmask;
1138 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1139 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1140 int lsbcount;
1141 struct type *field_type;
1142
1143 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1144 field_type = TYPE_FIELD_TYPE (type, fieldno);
1145 CHECK_TYPEDEF (field_type);
1146
1147 /* Extract bits. See comment above. */
1148
1149 if (BITS_BIG_ENDIAN)
1150 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1151 else
1152 lsbcount = (bitpos % 8);
1153 val >>= lsbcount;
1154
1155 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1156 If the field is signed, and is negative, then sign extend. */
1157
1158 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1159 {
1160 valmask = (((ULONGEST) 1) << bitsize) - 1;
1161 val &= valmask;
1162 if (!TYPE_UNSIGNED (field_type))
1163 {
1164 if (val & (valmask ^ (valmask >> 1)))
1165 {
1166 val |= ~valmask;
1167 }
1168 }
1169 }
1170 return (val);
1171 }
1172
1173 /* Modify the value of a bitfield. ADDR points to a block of memory in
1174 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1175 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1176 indicate which bits (in target bit order) comprise the bitfield. */
1177
1178 void
1179 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1180 {
1181 LONGEST oword;
1182
1183 /* If a negative fieldval fits in the field in question, chop
1184 off the sign extension bits. */
1185 if (bitsize < (8 * (int) sizeof (fieldval))
1186 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1187 fieldval = fieldval & ((1 << bitsize) - 1);
1188
1189 /* Warn if value is too big to fit in the field in question. */
1190 if (bitsize < (8 * (int) sizeof (fieldval))
1191 && 0 != (fieldval & ~((1 << bitsize) - 1)))
1192 {
1193 /* FIXME: would like to include fieldval in the message, but
1194 we don't have a sprintf_longest. */
1195 warning ("Value does not fit in %d bits.", bitsize);
1196
1197 /* Truncate it, otherwise adjoining fields may be corrupted. */
1198 fieldval = fieldval & ((1 << bitsize) - 1);
1199 }
1200
1201 oword = extract_signed_integer (addr, sizeof oword);
1202
1203 /* Shifting for bit field depends on endianness of the target machine. */
1204 if (BITS_BIG_ENDIAN)
1205 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1206
1207 /* Mask out old value, while avoiding shifts >= size of oword */
1208 if (bitsize < 8 * (int) sizeof (oword))
1209 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
1210 else
1211 oword &= ~((~(ULONGEST) 0) << bitpos);
1212 oword |= fieldval << bitpos;
1213
1214 store_signed_integer (addr, sizeof oword, oword);
1215 }
1216 \f
1217 /* Convert C numbers into newly allocated values */
1218
1219 value_ptr
1220 value_from_longest (struct type *type, register LONGEST num)
1221 {
1222 register value_ptr val = allocate_value (type);
1223 register enum type_code code;
1224 register int len;
1225 retry:
1226 code = TYPE_CODE (type);
1227 len = TYPE_LENGTH (type);
1228
1229 switch (code)
1230 {
1231 case TYPE_CODE_TYPEDEF:
1232 type = check_typedef (type);
1233 goto retry;
1234 case TYPE_CODE_INT:
1235 case TYPE_CODE_CHAR:
1236 case TYPE_CODE_ENUM:
1237 case TYPE_CODE_BOOL:
1238 case TYPE_CODE_RANGE:
1239 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1240 break;
1241
1242 case TYPE_CODE_REF:
1243 case TYPE_CODE_PTR:
1244 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
1245 break;
1246
1247 default:
1248 error ("Unexpected type (%d) encountered for integer constant.", code);
1249 }
1250 return val;
1251 }
1252
1253
1254 /* Create a value representing a pointer of type TYPE to the address
1255 ADDR. */
1256 value_ptr
1257 value_from_pointer (struct type *type, CORE_ADDR addr)
1258 {
1259 value_ptr val = allocate_value (type);
1260 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1261 return val;
1262 }
1263
1264
1265 /* Create a value for a string constant to be stored locally
1266 (not in the inferior's memory space, but in GDB memory).
1267 This is analogous to value_from_longest, which also does not
1268 use inferior memory. String shall NOT contain embedded nulls. */
1269
1270 value_ptr
1271 value_from_string (char *ptr)
1272 {
1273 value_ptr val;
1274 int len = strlen (ptr);
1275 int lowbound = current_language->string_lower_bound;
1276 struct type *rangetype =
1277 create_range_type ((struct type *) NULL,
1278 builtin_type_int,
1279 lowbound, len + lowbound - 1);
1280 struct type *stringtype =
1281 create_array_type ((struct type *) NULL,
1282 *current_language->string_char_type,
1283 rangetype);
1284
1285 val = allocate_value (stringtype);
1286 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1287 return val;
1288 }
1289
1290 value_ptr
1291 value_from_double (struct type *type, DOUBLEST num)
1292 {
1293 register value_ptr val = allocate_value (type);
1294 struct type *base_type = check_typedef (type);
1295 register enum type_code code = TYPE_CODE (base_type);
1296 register int len = TYPE_LENGTH (base_type);
1297
1298 if (code == TYPE_CODE_FLT)
1299 {
1300 store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
1301 }
1302 else
1303 error ("Unexpected type encountered for floating constant.");
1304
1305 return val;
1306 }
1307 \f
1308 /* Deal with the value that is "about to be returned". */
1309
1310 /* Return the value that a function returning now
1311 would be returning to its caller, assuming its type is VALTYPE.
1312 RETBUF is where we look for what ought to be the contents
1313 of the registers (in raw form). This is because it is often
1314 desirable to restore old values to those registers
1315 after saving the contents of interest, and then call
1316 this function using the saved values.
1317 struct_return is non-zero when the function in question is
1318 using the structure return conventions on the machine in question;
1319 0 when it is using the value returning conventions (this often
1320 means returning pointer to where structure is vs. returning value). */
1321
1322 /* ARGSUSED */
1323 value_ptr
1324 value_being_returned (struct type *valtype, char *retbuf, int struct_return)
1325 {
1326 register value_ptr val;
1327 CORE_ADDR addr;
1328
1329 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1330 if (EXTRACT_STRUCT_VALUE_ADDRESS_P ())
1331 if (struct_return)
1332 {
1333 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1334 if (!addr)
1335 error ("Function return value unknown");
1336 return value_at (valtype, addr, NULL);
1337 }
1338
1339 val = allocate_value (valtype);
1340 CHECK_TYPEDEF (valtype);
1341 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1342
1343 return val;
1344 }
1345
1346 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1347 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1348 and TYPE is the type (which is known to be struct, union or array).
1349
1350 On most machines, the struct convention is used unless we are
1351 using gcc and the type is of a special size. */
1352 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1353 native compiler. GCC 2.3.3 was the last release that did it the
1354 old way. Since gcc2_compiled was not changed, we have no
1355 way to correctly win in all cases, so we just do the right thing
1356 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1357 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1358 would cause more chaos than dealing with some struct returns being
1359 handled wrong. */
1360
1361 int
1362 generic_use_struct_convention (int gcc_p, struct type *value_type)
1363 {
1364 return !((gcc_p == 1)
1365 && (TYPE_LENGTH (value_type) == 1
1366 || TYPE_LENGTH (value_type) == 2
1367 || TYPE_LENGTH (value_type) == 4
1368 || TYPE_LENGTH (value_type) == 8));
1369 }
1370
1371 #ifndef USE_STRUCT_CONVENTION
1372 #define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1373 #endif
1374
1375
1376 /* Return true if the function specified is using the structure returning
1377 convention on this machine to return arguments, or 0 if it is using
1378 the value returning convention. FUNCTION is the value representing
1379 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1380 is the type returned by the function. GCC_P is nonzero if compiled
1381 with GCC. */
1382
1383 /* ARGSUSED */
1384 int
1385 using_struct_return (value_ptr function, CORE_ADDR funcaddr,
1386 struct type *value_type, int gcc_p)
1387 {
1388 register enum type_code code = TYPE_CODE (value_type);
1389
1390 if (code == TYPE_CODE_ERROR)
1391 error ("Function return type unknown.");
1392
1393 if (code == TYPE_CODE_STRUCT
1394 || code == TYPE_CODE_UNION
1395 || code == TYPE_CODE_ARRAY
1396 || RETURN_VALUE_ON_STACK (value_type))
1397 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1398
1399 return 0;
1400 }
1401
1402 /* Store VAL so it will be returned if a function returns now.
1403 Does not verify that VAL's type matches what the current
1404 function wants to return. */
1405
1406 void
1407 set_return_value (value_ptr val)
1408 {
1409 struct type *type = check_typedef (VALUE_TYPE (val));
1410 register enum type_code code = TYPE_CODE (type);
1411
1412 if (code == TYPE_CODE_ERROR)
1413 error ("Function return type unknown.");
1414
1415 if (code == TYPE_CODE_STRUCT
1416 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1417 error ("GDB does not support specifying a struct or union return value.");
1418
1419 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1420 }
1421 \f
1422 void
1423 _initialize_values (void)
1424 {
1425 add_cmd ("convenience", no_class, show_convenience,
1426 "Debugger convenience (\"$foo\") variables.\n\
1427 These variables are created when you assign them values;\n\
1428 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1429 A few convenience variables are given values automatically:\n\
1430 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1431 \"$__\" holds the contents of the last address examined with \"x\".",
1432 &showlist);
1433
1434 add_cmd ("values", no_class, show_values,
1435 "Elements of value history around item number IDX (or last ten).",
1436 &showlist);
1437 }
This page took 0.071413 seconds and 4 git commands to generate.