* Makefile.in (diststuff): Make all-doc; diststuff target does not
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33
34 /* Local function prototypes. */
35
36 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
37 struct type *));
38
39 static void show_values PARAMS ((char *, int));
40
41 static void show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value_ptr values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value_ptr all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value_ptr
72 allocate_value (type)
73 struct type *type;
74 {
75 register value_ptr val;
76 struct type *atype = check_typedef (type);
77
78 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
79 VALUE_NEXT (val) = all_values;
80 all_values = val;
81 VALUE_TYPE (val) = type;
82 VALUE_LVAL (val) = not_lval;
83 VALUE_ADDRESS (val) = 0;
84 VALUE_FRAME (val) = 0;
85 VALUE_OFFSET (val) = 0;
86 VALUE_BITPOS (val) = 0;
87 VALUE_BITSIZE (val) = 0;
88 VALUE_REGNO (val) = -1;
89 VALUE_LAZY (val) = 0;
90 VALUE_OPTIMIZED_OUT (val) = 0;
91 val->modifiable = 1;
92 return val;
93 }
94
95 /* Allocate a value that has the correct length
96 for COUNT repetitions type TYPE. */
97
98 value_ptr
99 allocate_repeat_value (type, count)
100 struct type *type;
101 int count;
102 {
103 struct type *element_type = type;
104 int low_bound = current_language->string_lower_bound; /* ??? */
105 /* FIXME-type-allocation: need a way to free this type when we are
106 done with it. */
107 struct type *range_type
108 = create_range_type ((struct type *) NULL, builtin_type_int,
109 low_bound, count + low_bound - 1);
110 /* FIXME-type-allocation: need a way to free this type when we are
111 done with it. */
112 return allocate_value (create_array_type ((struct type *) NULL,
113 type, range_type));
114 }
115
116 /* Return a mark in the value chain. All values allocated after the
117 mark is obtained (except for those released) are subject to being freed
118 if a subsequent value_free_to_mark is passed the mark. */
119 value_ptr
120 value_mark ()
121 {
122 return all_values;
123 }
124
125 /* Free all values allocated since MARK was obtained by value_mark
126 (except for those released). */
127 void
128 value_free_to_mark (mark)
129 value_ptr mark;
130 {
131 value_ptr val, next;
132
133 for (val = all_values; val && val != mark; val = next)
134 {
135 next = VALUE_NEXT (val);
136 value_free (val);
137 }
138 all_values = val;
139 }
140
141 /* Free all the values that have been allocated (except for those released).
142 Called after each command, successful or not. */
143
144 void
145 free_all_values ()
146 {
147 register value_ptr val, next;
148
149 for (val = all_values; val; val = next)
150 {
151 next = VALUE_NEXT (val);
152 value_free (val);
153 }
154
155 all_values = 0;
156 }
157
158 /* Remove VAL from the chain all_values
159 so it will not be freed automatically. */
160
161 void
162 release_value (val)
163 register value_ptr val;
164 {
165 register value_ptr v;
166
167 if (all_values == val)
168 {
169 all_values = val->next;
170 return;
171 }
172
173 for (v = all_values; v; v = v->next)
174 {
175 if (v->next == val)
176 {
177 v->next = val->next;
178 break;
179 }
180 }
181 }
182
183 /* Release all values up to mark */
184 value_ptr
185 value_release_to_mark (mark)
186 value_ptr mark;
187 {
188 value_ptr val, next;
189
190 for (val = next = all_values; next; next = VALUE_NEXT (next))
191 if (VALUE_NEXT (next) == mark)
192 {
193 all_values = VALUE_NEXT (next);
194 VALUE_NEXT (next) = 0;
195 return val;
196 }
197 all_values = 0;
198 return val;
199 }
200
201 /* Return a copy of the value ARG.
202 It contains the same contents, for same memory address,
203 but it's a different block of storage. */
204
205 value_ptr
206 value_copy (arg)
207 value_ptr arg;
208 {
209 register struct type *type = VALUE_TYPE (arg);
210 register value_ptr val = allocate_value (type);
211 VALUE_LVAL (val) = VALUE_LVAL (arg);
212 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
213 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
214 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
215 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
216 VALUE_FRAME (val) = VALUE_FRAME (arg);
217 VALUE_REGNO (val) = VALUE_REGNO (arg);
218 VALUE_LAZY (val) = VALUE_LAZY (arg);
219 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
220 val->modifiable = arg->modifiable;
221 if (!VALUE_LAZY (val))
222 {
223 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
224 TYPE_LENGTH (VALUE_TYPE (arg)));
225 }
226 return val;
227 }
228 \f
229 /* Access to the value history. */
230
231 /* Record a new value in the value history.
232 Returns the absolute history index of the entry.
233 Result of -1 indicates the value was not saved; otherwise it is the
234 value history index of this new item. */
235
236 int
237 record_latest_value (val)
238 value_ptr val;
239 {
240 int i;
241
242 /* Check error now if about to store an invalid float. We return -1
243 to the caller, but allow them to continue, e.g. to print it as "Nan". */
244 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
245 {
246 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
247 if (i) return -1; /* Indicate value not saved in history */
248 }
249
250 /* We don't want this value to have anything to do with the inferior anymore.
251 In particular, "set $1 = 50" should not affect the variable from which
252 the value was taken, and fast watchpoints should be able to assume that
253 a value on the value history never changes. */
254 if (VALUE_LAZY (val))
255 value_fetch_lazy (val);
256 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
257 from. This is a bit dubious, because then *&$1 does not just return $1
258 but the current contents of that location. c'est la vie... */
259 val->modifiable = 0;
260 release_value (val);
261
262 /* Here we treat value_history_count as origin-zero
263 and applying to the value being stored now. */
264
265 i = value_history_count % VALUE_HISTORY_CHUNK;
266 if (i == 0)
267 {
268 register struct value_history_chunk *new
269 = (struct value_history_chunk *)
270 xmalloc (sizeof (struct value_history_chunk));
271 memset (new->values, 0, sizeof new->values);
272 new->next = value_history_chain;
273 value_history_chain = new;
274 }
275
276 value_history_chain->values[i] = val;
277
278 /* Now we regard value_history_count as origin-one
279 and applying to the value just stored. */
280
281 return ++value_history_count;
282 }
283
284 /* Return a copy of the value in the history with sequence number NUM. */
285
286 value_ptr
287 access_value_history (num)
288 int num;
289 {
290 register struct value_history_chunk *chunk;
291 register int i;
292 register int absnum = num;
293
294 if (absnum <= 0)
295 absnum += value_history_count;
296
297 if (absnum <= 0)
298 {
299 if (num == 0)
300 error ("The history is empty.");
301 else if (num == 1)
302 error ("There is only one value in the history.");
303 else
304 error ("History does not go back to $$%d.", -num);
305 }
306 if (absnum > value_history_count)
307 error ("History has not yet reached $%d.", absnum);
308
309 absnum--;
310
311 /* Now absnum is always absolute and origin zero. */
312
313 chunk = value_history_chain;
314 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
315 i > 0; i--)
316 chunk = chunk->next;
317
318 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
319 }
320
321 /* Clear the value history entirely.
322 Must be done when new symbol tables are loaded,
323 because the type pointers become invalid. */
324
325 void
326 clear_value_history ()
327 {
328 register struct value_history_chunk *next;
329 register int i;
330 register value_ptr val;
331
332 while (value_history_chain)
333 {
334 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
335 if ((val = value_history_chain->values[i]) != NULL)
336 free ((PTR)val);
337 next = value_history_chain->next;
338 free ((PTR)value_history_chain);
339 value_history_chain = next;
340 }
341 value_history_count = 0;
342 }
343
344 static void
345 show_values (num_exp, from_tty)
346 char *num_exp;
347 int from_tty;
348 {
349 register int i;
350 register value_ptr val;
351 static int num = 1;
352
353 if (num_exp)
354 {
355 /* "info history +" should print from the stored position.
356 "info history <exp>" should print around value number <exp>. */
357 if (num_exp[0] != '+' || num_exp[1] != '\0')
358 num = parse_and_eval_address (num_exp) - 5;
359 }
360 else
361 {
362 /* "info history" means print the last 10 values. */
363 num = value_history_count - 9;
364 }
365
366 if (num <= 0)
367 num = 1;
368
369 for (i = num; i < num + 10 && i <= value_history_count; i++)
370 {
371 val = access_value_history (i);
372 printf_filtered ("$%d = ", i);
373 value_print (val, gdb_stdout, 0, Val_pretty_default);
374 printf_filtered ("\n");
375 }
376
377 /* The next "info history +" should start after what we just printed. */
378 num += 10;
379
380 /* Hitting just return after this command should do the same thing as
381 "info history +". If num_exp is null, this is unnecessary, since
382 "info history +" is not useful after "info history". */
383 if (from_tty && num_exp)
384 {
385 num_exp[0] = '+';
386 num_exp[1] = '\0';
387 }
388 }
389 \f
390 /* Internal variables. These are variables within the debugger
391 that hold values assigned by debugger commands.
392 The user refers to them with a '$' prefix
393 that does not appear in the variable names stored internally. */
394
395 static struct internalvar *internalvars;
396
397 /* Look up an internal variable with name NAME. NAME should not
398 normally include a dollar sign.
399
400 If the specified internal variable does not exist,
401 one is created, with a void value. */
402
403 struct internalvar *
404 lookup_internalvar (name)
405 char *name;
406 {
407 register struct internalvar *var;
408
409 for (var = internalvars; var; var = var->next)
410 if (STREQ (var->name, name))
411 return var;
412
413 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
414 var->name = concat (name, NULL);
415 var->value = allocate_value (builtin_type_void);
416 release_value (var->value);
417 var->next = internalvars;
418 internalvars = var;
419 return var;
420 }
421
422 value_ptr
423 value_of_internalvar (var)
424 struct internalvar *var;
425 {
426 register value_ptr val;
427
428 #ifdef IS_TRAPPED_INTERNALVAR
429 if (IS_TRAPPED_INTERNALVAR (var->name))
430 return VALUE_OF_TRAPPED_INTERNALVAR (var);
431 #endif
432
433 val = value_copy (var->value);
434 if (VALUE_LAZY (val))
435 value_fetch_lazy (val);
436 VALUE_LVAL (val) = lval_internalvar;
437 VALUE_INTERNALVAR (val) = var;
438 return val;
439 }
440
441 void
442 set_internalvar_component (var, offset, bitpos, bitsize, newval)
443 struct internalvar *var;
444 int offset, bitpos, bitsize;
445 value_ptr newval;
446 {
447 register char *addr = VALUE_CONTENTS (var->value) + offset;
448
449 #ifdef IS_TRAPPED_INTERNALVAR
450 if (IS_TRAPPED_INTERNALVAR (var->name))
451 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
452 #endif
453
454 if (bitsize)
455 modify_field (addr, value_as_long (newval),
456 bitpos, bitsize);
457 else
458 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
459 }
460
461 void
462 set_internalvar (var, val)
463 struct internalvar *var;
464 value_ptr val;
465 {
466 value_ptr newval;
467
468 #ifdef IS_TRAPPED_INTERNALVAR
469 if (IS_TRAPPED_INTERNALVAR (var->name))
470 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
471 #endif
472
473 newval = value_copy (val);
474 newval->modifiable = 1;
475
476 /* Force the value to be fetched from the target now, to avoid problems
477 later when this internalvar is referenced and the target is gone or
478 has changed. */
479 if (VALUE_LAZY (newval))
480 value_fetch_lazy (newval);
481
482 /* Begin code which must not call error(). If var->value points to
483 something free'd, an error() obviously leaves a dangling pointer.
484 But we also get a danling pointer if var->value points to
485 something in the value chain (i.e., before release_value is
486 called), because after the error free_all_values will get called before
487 long. */
488 free ((PTR)var->value);
489 var->value = newval;
490 release_value (newval);
491 /* End code which must not call error(). */
492 }
493
494 char *
495 internalvar_name (var)
496 struct internalvar *var;
497 {
498 return var->name;
499 }
500
501 /* Free all internalvars. Done when new symtabs are loaded,
502 because that makes the values invalid. */
503
504 void
505 clear_internalvars ()
506 {
507 register struct internalvar *var;
508
509 while (internalvars)
510 {
511 var = internalvars;
512 internalvars = var->next;
513 free ((PTR)var->name);
514 free ((PTR)var->value);
515 free ((PTR)var);
516 }
517 }
518
519 static void
520 show_convenience (ignore, from_tty)
521 char *ignore;
522 int from_tty;
523 {
524 register struct internalvar *var;
525 int varseen = 0;
526
527 for (var = internalvars; var; var = var->next)
528 {
529 #ifdef IS_TRAPPED_INTERNALVAR
530 if (IS_TRAPPED_INTERNALVAR (var->name))
531 continue;
532 #endif
533 if (!varseen)
534 {
535 varseen = 1;
536 }
537 printf_filtered ("$%s = ", var->name);
538 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
539 printf_filtered ("\n");
540 }
541 if (!varseen)
542 printf_unfiltered ("No debugger convenience variables now defined.\n\
543 Convenience variables have names starting with \"$\";\n\
544 use \"set\" as in \"set $foo = 5\" to define them.\n");
545 }
546 \f
547 /* Extract a value as a C number (either long or double).
548 Knows how to convert fixed values to double, or
549 floating values to long.
550 Does not deallocate the value. */
551
552 LONGEST
553 value_as_long (val)
554 register value_ptr val;
555 {
556 /* This coerces arrays and functions, which is necessary (e.g.
557 in disassemble_command). It also dereferences references, which
558 I suspect is the most logical thing to do. */
559 COERCE_ARRAY (val);
560 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
561 }
562
563 double
564 value_as_double (val)
565 register value_ptr val;
566 {
567 double foo;
568 int inv;
569
570 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
571 if (inv)
572 error ("Invalid floating value found in program.");
573 return foo;
574 }
575 /* Extract a value as a C pointer.
576 Does not deallocate the value. */
577 CORE_ADDR
578 value_as_pointer (val)
579 value_ptr val;
580 {
581 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
582 whether we want this to be true eventually. */
583 #if 0
584 /* ADDR_BITS_REMOVE is wrong if we are being called for a
585 non-address (e.g. argument to "signal", "info break", etc.), or
586 for pointers to char, in which the low bits *are* significant. */
587 return ADDR_BITS_REMOVE(value_as_long (val));
588 #else
589 return value_as_long (val);
590 #endif
591 }
592 \f
593 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
594 as a long, or as a double, assuming the raw data is described
595 by type TYPE. Knows how to convert different sizes of values
596 and can convert between fixed and floating point. We don't assume
597 any alignment for the raw data. Return value is in host byte order.
598
599 If you want functions and arrays to be coerced to pointers, and
600 references to be dereferenced, call value_as_long() instead.
601
602 C++: It is assumed that the front-end has taken care of
603 all matters concerning pointers to members. A pointer
604 to member which reaches here is considered to be equivalent
605 to an INT (or some size). After all, it is only an offset. */
606
607 LONGEST
608 unpack_long (type, valaddr)
609 struct type *type;
610 char *valaddr;
611 {
612 register enum type_code code = TYPE_CODE (type);
613 register int len = TYPE_LENGTH (type);
614 register int nosign = TYPE_UNSIGNED (type);
615
616 if (current_language->la_language == language_scm
617 && is_scmvalue_type (type))
618 return scm_unpack (type, valaddr, TYPE_CODE_INT);
619
620 switch (code)
621 {
622 case TYPE_CODE_TYPEDEF:
623 return unpack_long (check_typedef (type), valaddr);
624 case TYPE_CODE_ENUM:
625 case TYPE_CODE_BOOL:
626 case TYPE_CODE_INT:
627 case TYPE_CODE_CHAR:
628 case TYPE_CODE_RANGE:
629 if (nosign)
630 return extract_unsigned_integer (valaddr, len);
631 else
632 return extract_signed_integer (valaddr, len);
633
634 case TYPE_CODE_FLT:
635 return extract_floating (valaddr, len);
636
637 case TYPE_CODE_PTR:
638 case TYPE_CODE_REF:
639 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
640 whether we want this to be true eventually. */
641 return extract_address (valaddr, len);
642
643 case TYPE_CODE_MEMBER:
644 error ("not implemented: member types in unpack_long");
645
646 default:
647 error ("Value can't be converted to integer.");
648 }
649 return 0; /* Placate lint. */
650 }
651
652 /* Return a double value from the specified type and address.
653 INVP points to an int which is set to 0 for valid value,
654 1 for invalid value (bad float format). In either case,
655 the returned double is OK to use. Argument is in target
656 format, result is in host format. */
657
658 double
659 unpack_double (type, valaddr, invp)
660 struct type *type;
661 char *valaddr;
662 int *invp;
663 {
664 register enum type_code code = TYPE_CODE (type);
665 register int len = TYPE_LENGTH (type);
666 register int nosign = TYPE_UNSIGNED (type);
667
668 *invp = 0; /* Assume valid. */
669 CHECK_TYPEDEF (type);
670 if (code == TYPE_CODE_FLT)
671 {
672 #ifdef INVALID_FLOAT
673 if (INVALID_FLOAT (valaddr, len))
674 {
675 *invp = 1;
676 return 1.234567891011121314;
677 }
678 #endif
679 return extract_floating (valaddr, len);
680 }
681 else if (nosign)
682 {
683 /* Unsigned -- be sure we compensate for signed LONGEST. */
684 return (unsigned LONGEST) unpack_long (type, valaddr);
685 }
686 else
687 {
688 /* Signed -- we are OK with unpack_long. */
689 return unpack_long (type, valaddr);
690 }
691 }
692
693 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
694 as a CORE_ADDR, assuming the raw data is described by type TYPE.
695 We don't assume any alignment for the raw data. Return value is in
696 host byte order.
697
698 If you want functions and arrays to be coerced to pointers, and
699 references to be dereferenced, call value_as_pointer() instead.
700
701 C++: It is assumed that the front-end has taken care of
702 all matters concerning pointers to members. A pointer
703 to member which reaches here is considered to be equivalent
704 to an INT (or some size). After all, it is only an offset. */
705
706 CORE_ADDR
707 unpack_pointer (type, valaddr)
708 struct type *type;
709 char *valaddr;
710 {
711 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
712 whether we want this to be true eventually. */
713 return unpack_long (type, valaddr);
714 }
715 \f
716 /* Given a value ARG1 (offset by OFFSET bytes)
717 of a struct or union type ARG_TYPE,
718 extract and return the value of one of its fields.
719 FIELDNO says which field.
720
721 For C++, must also be able to return values from static fields */
722
723 value_ptr
724 value_primitive_field (arg1, offset, fieldno, arg_type)
725 register value_ptr arg1;
726 int offset;
727 register int fieldno;
728 register struct type *arg_type;
729 {
730 register value_ptr v;
731 register struct type *type;
732
733 CHECK_TYPEDEF (arg_type);
734 type = TYPE_FIELD_TYPE (arg_type, fieldno);
735
736 /* Handle packed fields */
737
738 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
739 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
740 {
741 v = value_from_longest (type,
742 unpack_field_as_long (arg_type,
743 VALUE_CONTENTS (arg1),
744 fieldno));
745 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
746 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
747 }
748 else
749 {
750 v = allocate_value (type);
751 if (VALUE_LAZY (arg1))
752 VALUE_LAZY (v) = 1;
753 else
754 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
755 TYPE_LENGTH (type));
756 }
757 VALUE_LVAL (v) = VALUE_LVAL (arg1);
758 if (VALUE_LVAL (arg1) == lval_internalvar)
759 VALUE_LVAL (v) = lval_internalvar_component;
760 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
761 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
762 return v;
763 }
764
765 /* Given a value ARG1 of a struct or union type,
766 extract and return the value of one of its fields.
767 FIELDNO says which field.
768
769 For C++, must also be able to return values from static fields */
770
771 value_ptr
772 value_field (arg1, fieldno)
773 register value_ptr arg1;
774 register int fieldno;
775 {
776 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
777 }
778
779 /* Return a non-virtual function as a value.
780 F is the list of member functions which contains the desired method.
781 J is an index into F which provides the desired method. */
782
783 value_ptr
784 value_fn_field (arg1p, f, j, type, offset)
785 value_ptr *arg1p;
786 struct fn_field *f;
787 int j;
788 struct type *type;
789 int offset;
790 {
791 register value_ptr v;
792 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
793 struct symbol *sym;
794
795 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
796 0, VAR_NAMESPACE, 0, NULL);
797 if (! sym)
798 return NULL;
799 /*
800 error ("Internal error: could not find physical method named %s",
801 TYPE_FN_FIELD_PHYSNAME (f, j));
802 */
803
804 v = allocate_value (ftype);
805 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
806 VALUE_TYPE (v) = ftype;
807
808 if (arg1p)
809 {
810 if (type != VALUE_TYPE (*arg1p))
811 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
812 value_addr (*arg1p)));
813
814 /* Move the `this' pointer according to the offset.
815 VALUE_OFFSET (*arg1p) += offset;
816 */
817 }
818
819 return v;
820 }
821
822 /* Return a virtual function as a value.
823 ARG1 is the object which provides the virtual function
824 table pointer. *ARG1P is side-effected in calling this function.
825 F is the list of member functions which contains the desired virtual
826 function.
827 J is an index into F which provides the desired virtual function.
828
829 TYPE is the type in which F is located. */
830 value_ptr
831 value_virtual_fn_field (arg1p, f, j, type, offset)
832 value_ptr *arg1p;
833 struct fn_field *f;
834 int j;
835 struct type *type;
836 int offset;
837 {
838 value_ptr arg1 = *arg1p;
839 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
840 struct type *entry_type;
841 /* First, get the virtual function table pointer. That comes
842 with a strange type, so cast it to type `pointer to long' (which
843 should serve just fine as a function type). Then, index into
844 the table, and convert final value to appropriate function type. */
845 value_ptr entry, vfn, vtbl;
846 value_ptr vi = value_from_longest (builtin_type_int,
847 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
848 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
849 struct type *context;
850 if (fcontext == NULL)
851 /* We don't have an fcontext (e.g. the program was compiled with
852 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
853 This won't work right for multiple inheritance, but at least we
854 should do as well as GDB 3.x did. */
855 fcontext = TYPE_VPTR_BASETYPE (type);
856 context = lookup_pointer_type (fcontext);
857 /* Now context is a pointer to the basetype containing the vtbl. */
858 if (TYPE_TARGET_TYPE (context) != type1)
859 {
860 arg1 = value_ind (value_cast (context, value_addr (arg1)));
861 type1 = check_typedef (VALUE_TYPE (arg1));
862 }
863
864 context = type1;
865 /* Now context is the basetype containing the vtbl. */
866
867 /* This type may have been defined before its virtual function table
868 was. If so, fill in the virtual function table entry for the
869 type now. */
870 if (TYPE_VPTR_FIELDNO (context) < 0)
871 fill_in_vptr_fieldno (context);
872
873 /* The virtual function table is now an array of structures
874 which have the form { int16 offset, delta; void *pfn; }. */
875 vtbl = value_ind (value_primitive_field (arg1, 0,
876 TYPE_VPTR_FIELDNO (context),
877 TYPE_VPTR_BASETYPE (context)));
878
879 /* Index into the virtual function table. This is hard-coded because
880 looking up a field is not cheap, and it may be important to save
881 time, e.g. if the user has set a conditional breakpoint calling
882 a virtual function. */
883 entry = value_subscript (vtbl, vi);
884 entry_type = check_typedef (VALUE_TYPE (entry));
885
886 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
887 {
888 /* Move the `this' pointer according to the virtual function table. */
889 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
890
891 if (! VALUE_LAZY (arg1))
892 {
893 VALUE_LAZY (arg1) = 1;
894 value_fetch_lazy (arg1);
895 }
896
897 vfn = value_field (entry, 2);
898 }
899 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
900 vfn = entry;
901 else
902 error ("I'm confused: virtual function table has bad type");
903 /* Reinstantiate the function pointer with the correct type. */
904 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
905
906 *arg1p = arg1;
907 return vfn;
908 }
909
910 /* ARG is a pointer to an object we know to be at least
911 a DTYPE. BTYPE is the most derived basetype that has
912 already been searched (and need not be searched again).
913 After looking at the vtables between BTYPE and DTYPE,
914 return the most derived type we find. The caller must
915 be satisfied when the return value == DTYPE.
916
917 FIXME-tiemann: should work with dossier entries as well. */
918
919 static value_ptr
920 value_headof (in_arg, btype, dtype)
921 value_ptr in_arg;
922 struct type *btype, *dtype;
923 {
924 /* First collect the vtables we must look at for this object. */
925 /* FIXME-tiemann: right now, just look at top-most vtable. */
926 value_ptr arg, vtbl, entry, best_entry = 0;
927 int i, nelems;
928 int offset, best_offset = 0;
929 struct symbol *sym;
930 CORE_ADDR pc_for_sym;
931 char *demangled_name;
932 struct minimal_symbol *msymbol;
933
934 btype = TYPE_VPTR_BASETYPE (dtype);
935 CHECK_TYPEDEF (btype);
936 arg = in_arg;
937 if (btype != dtype)
938 arg = value_cast (lookup_pointer_type (btype), arg);
939 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
940
941 /* Check that VTBL looks like it points to a virtual function table. */
942 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
943 if (msymbol == NULL
944 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
945 || !VTBL_PREFIX_P (demangled_name))
946 {
947 /* If we expected to find a vtable, but did not, let the user
948 know that we aren't happy, but don't throw an error.
949 FIXME: there has to be a better way to do this. */
950 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
951 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
952 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
953 VALUE_TYPE (in_arg) = error_type;
954 return in_arg;
955 }
956
957 /* Now search through the virtual function table. */
958 entry = value_ind (vtbl);
959 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
960 for (i = 1; i <= nelems; i++)
961 {
962 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
963 (LONGEST) i));
964 /* This won't work if we're using thunks. */
965 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
966 break;
967 offset = longest_to_int (value_as_long (value_field (entry, 0)));
968 /* If we use '<=' we can handle single inheritance
969 * where all offsets are zero - just use the first entry found. */
970 if (offset <= best_offset)
971 {
972 best_offset = offset;
973 best_entry = entry;
974 }
975 }
976 /* Move the pointer according to BEST_ENTRY's offset, and figure
977 out what type we should return as the new pointer. */
978 if (best_entry == 0)
979 {
980 /* An alternative method (which should no longer be necessary).
981 * But we leave it in for future use, when we will hopefully
982 * have optimizes the vtable to use thunks instead of offsets. */
983 /* Use the name of vtable itself to extract a base type. */
984 demangled_name += 4; /* Skip _vt$ prefix. */
985 }
986 else
987 {
988 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
989 sym = find_pc_function (pc_for_sym);
990 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
991 *(strchr (demangled_name, ':')) = '\0';
992 }
993 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
994 if (sym == NULL)
995 error ("could not find type declaration for `%s'", demangled_name);
996 if (best_entry)
997 {
998 free (demangled_name);
999 arg = value_add (value_cast (builtin_type_int, arg),
1000 value_field (best_entry, 0));
1001 }
1002 else arg = in_arg;
1003 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1004 return arg;
1005 }
1006
1007 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1008 function tables, probe ARG's tables (including the vtables
1009 of its baseclasses) to figure out the most derived type that ARG
1010 could actually be a pointer to. */
1011
1012 value_ptr
1013 value_from_vtable_info (arg, type)
1014 value_ptr arg;
1015 struct type *type;
1016 {
1017 /* Take care of preliminaries. */
1018 if (TYPE_VPTR_FIELDNO (type) < 0)
1019 fill_in_vptr_fieldno (type);
1020 if (TYPE_VPTR_FIELDNO (type) < 0)
1021 return 0;
1022
1023 return value_headof (arg, 0, type);
1024 }
1025
1026 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1027 pointer which is for the base class whose type is BASECLASS. */
1028
1029 static int
1030 vb_match (type, index, basetype)
1031 struct type *type;
1032 int index;
1033 struct type *basetype;
1034 {
1035 struct type *fieldtype;
1036 char *name = TYPE_FIELD_NAME (type, index);
1037 char *field_class_name = NULL;
1038
1039 if (*name != '_')
1040 return 0;
1041 /* gcc 2.4 uses _vb$. */
1042 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1043 field_class_name = name + 4;
1044 /* gcc 2.5 will use __vb_. */
1045 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1046 field_class_name = name + 5;
1047
1048 if (field_class_name == NULL)
1049 /* This field is not a virtual base class pointer. */
1050 return 0;
1051
1052 /* It's a virtual baseclass pointer, now we just need to find out whether
1053 it is for this baseclass. */
1054 fieldtype = TYPE_FIELD_TYPE (type, index);
1055 if (fieldtype == NULL
1056 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1057 /* "Can't happen". */
1058 return 0;
1059
1060 /* What we check for is that either the types are equal (needed for
1061 nameless types) or have the same name. This is ugly, and a more
1062 elegant solution should be devised (which would probably just push
1063 the ugliness into symbol reading unless we change the stabs format). */
1064 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1065 return 1;
1066
1067 if (TYPE_NAME (basetype) != NULL
1068 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1069 && STREQ (TYPE_NAME (basetype),
1070 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1071 return 1;
1072 return 0;
1073 }
1074
1075 /* Compute the offset of the baseclass which is
1076 the INDEXth baseclass of class TYPE,
1077 for value at VALADDR (in host) at ADDRESS (in target).
1078 The result is the offset of the baseclass value relative
1079 to (the address of)(ARG) + OFFSET.
1080
1081 -1 is returned on error. */
1082
1083 int
1084 baseclass_offset (type, index, valaddr, address)
1085 struct type *type;
1086 int index;
1087 char *valaddr;
1088 CORE_ADDR address;
1089 {
1090 struct type *basetype = TYPE_BASECLASS (type, index);
1091
1092 if (BASETYPE_VIA_VIRTUAL (type, index))
1093 {
1094 /* Must hunt for the pointer to this virtual baseclass. */
1095 register int i, len = TYPE_NFIELDS (type);
1096 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1097
1098 /* First look for the virtual baseclass pointer
1099 in the fields. */
1100 for (i = n_baseclasses; i < len; i++)
1101 {
1102 if (vb_match (type, i, basetype))
1103 {
1104 CORE_ADDR addr
1105 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1106 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1107
1108 return addr - (LONGEST) address;
1109 }
1110 }
1111 /* Not in the fields, so try looking through the baseclasses. */
1112 for (i = index+1; i < n_baseclasses; i++)
1113 {
1114 int boffset =
1115 baseclass_offset (type, i, valaddr, address);
1116 if (boffset)
1117 return boffset;
1118 }
1119 /* Not found. */
1120 return -1;
1121 }
1122
1123 /* Baseclass is easily computed. */
1124 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1125 }
1126 \f
1127 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1128 VALADDR.
1129
1130 Extracting bits depends on endianness of the machine. Compute the
1131 number of least significant bits to discard. For big endian machines,
1132 we compute the total number of bits in the anonymous object, subtract
1133 off the bit count from the MSB of the object to the MSB of the
1134 bitfield, then the size of the bitfield, which leaves the LSB discard
1135 count. For little endian machines, the discard count is simply the
1136 number of bits from the LSB of the anonymous object to the LSB of the
1137 bitfield.
1138
1139 If the field is signed, we also do sign extension. */
1140
1141 LONGEST
1142 unpack_field_as_long (type, valaddr, fieldno)
1143 struct type *type;
1144 char *valaddr;
1145 int fieldno;
1146 {
1147 unsigned LONGEST val;
1148 unsigned LONGEST valmask;
1149 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1150 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1151 int lsbcount;
1152
1153 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1154
1155 /* Extract bits. See comment above. */
1156
1157 if (BITS_BIG_ENDIAN)
1158 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1159 else
1160 lsbcount = (bitpos % 8);
1161 val >>= lsbcount;
1162
1163 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1164 If the field is signed, and is negative, then sign extend. */
1165
1166 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1167 {
1168 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1169 val &= valmask;
1170 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1171 {
1172 if (val & (valmask ^ (valmask >> 1)))
1173 {
1174 val |= ~valmask;
1175 }
1176 }
1177 }
1178 return (val);
1179 }
1180
1181 /* Modify the value of a bitfield. ADDR points to a block of memory in
1182 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1183 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1184 indicate which bits (in target bit order) comprise the bitfield. */
1185
1186 void
1187 modify_field (addr, fieldval, bitpos, bitsize)
1188 char *addr;
1189 LONGEST fieldval;
1190 int bitpos, bitsize;
1191 {
1192 LONGEST oword;
1193
1194 /* If a negative fieldval fits in the field in question, chop
1195 off the sign extension bits. */
1196 if (bitsize < (8 * sizeof (fieldval))
1197 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1198 fieldval = fieldval & ((1 << bitsize) - 1);
1199
1200 /* Warn if value is too big to fit in the field in question. */
1201 if (bitsize < (8 * sizeof (fieldval))
1202 && 0 != (fieldval & ~((1<<bitsize)-1)))
1203 {
1204 /* FIXME: would like to include fieldval in the message, but
1205 we don't have a sprintf_longest. */
1206 warning ("Value does not fit in %d bits.", bitsize);
1207
1208 /* Truncate it, otherwise adjoining fields may be corrupted. */
1209 fieldval = fieldval & ((1 << bitsize) - 1);
1210 }
1211
1212 oword = extract_signed_integer (addr, sizeof oword);
1213
1214 /* Shifting for bit field depends on endianness of the target machine. */
1215 if (BITS_BIG_ENDIAN)
1216 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1217
1218 /* Mask out old value, while avoiding shifts >= size of oword */
1219 if (bitsize < 8 * sizeof (oword))
1220 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1221 else
1222 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1223 oword |= fieldval << bitpos;
1224
1225 store_signed_integer (addr, sizeof oword, oword);
1226 }
1227 \f
1228 /* Convert C numbers into newly allocated values */
1229
1230 value_ptr
1231 value_from_longest (type, num)
1232 struct type *type;
1233 register LONGEST num;
1234 {
1235 register value_ptr val = allocate_value (type);
1236 register enum type_code code;
1237 register int len;
1238 retry:
1239 code = TYPE_CODE (type);
1240 len = TYPE_LENGTH (type);
1241
1242 switch (code)
1243 {
1244 case TYPE_CODE_TYPEDEF:
1245 type = check_typedef (type);
1246 goto retry;
1247 case TYPE_CODE_INT:
1248 case TYPE_CODE_CHAR:
1249 case TYPE_CODE_ENUM:
1250 case TYPE_CODE_BOOL:
1251 case TYPE_CODE_RANGE:
1252 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1253 break;
1254
1255 case TYPE_CODE_REF:
1256 case TYPE_CODE_PTR:
1257 /* This assumes that all pointers of a given length
1258 have the same form. */
1259 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1260 break;
1261
1262 default:
1263 error ("Unexpected type encountered for integer constant.");
1264 }
1265 return val;
1266 }
1267
1268 value_ptr
1269 value_from_double (type, num)
1270 struct type *type;
1271 double num;
1272 {
1273 register value_ptr val = allocate_value (type);
1274 struct type *base_type = check_typedef (type);
1275 register enum type_code code = TYPE_CODE (base_type);
1276 register int len = TYPE_LENGTH (base_type);
1277
1278 if (code == TYPE_CODE_FLT)
1279 {
1280 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1281 }
1282 else
1283 error ("Unexpected type encountered for floating constant.");
1284
1285 return val;
1286 }
1287 \f
1288 /* Deal with the value that is "about to be returned". */
1289
1290 /* Return the value that a function returning now
1291 would be returning to its caller, assuming its type is VALTYPE.
1292 RETBUF is where we look for what ought to be the contents
1293 of the registers (in raw form). This is because it is often
1294 desirable to restore old values to those registers
1295 after saving the contents of interest, and then call
1296 this function using the saved values.
1297 struct_return is non-zero when the function in question is
1298 using the structure return conventions on the machine in question;
1299 0 when it is using the value returning conventions (this often
1300 means returning pointer to where structure is vs. returning value). */
1301
1302 value_ptr
1303 value_being_returned (valtype, retbuf, struct_return)
1304 register struct type *valtype;
1305 char retbuf[REGISTER_BYTES];
1306 int struct_return;
1307 /*ARGSUSED*/
1308 {
1309 register value_ptr val;
1310 CORE_ADDR addr;
1311
1312 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1313 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1314 if (struct_return) {
1315 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1316 if (!addr)
1317 error ("Function return value unknown");
1318 return value_at (valtype, addr);
1319 }
1320 #endif
1321
1322 val = allocate_value (valtype);
1323 CHECK_TYPEDEF (valtype);
1324 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1325
1326 return val;
1327 }
1328
1329 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1330 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1331 and TYPE is the type (which is known to be struct, union or array).
1332
1333 On most machines, the struct convention is used unless we are
1334 using gcc and the type is of a special size. */
1335 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1336 native compiler. GCC 2.3.3 was the last release that did it the
1337 old way. Since gcc2_compiled was not changed, we have no
1338 way to correctly win in all cases, so we just do the right thing
1339 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1340 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1341 would cause more chaos than dealing with some struct returns being
1342 handled wrong. */
1343 #if !defined (USE_STRUCT_CONVENTION)
1344 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1345 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1346 || TYPE_LENGTH (value_type) == 2 \
1347 || TYPE_LENGTH (value_type) == 4 \
1348 || TYPE_LENGTH (value_type) == 8 \
1349 ) \
1350 ))
1351 #endif
1352
1353 /* Return true if the function specified is using the structure returning
1354 convention on this machine to return arguments, or 0 if it is using
1355 the value returning convention. FUNCTION is the value representing
1356 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1357 is the type returned by the function. GCC_P is nonzero if compiled
1358 with GCC. */
1359
1360 int
1361 using_struct_return (function, funcaddr, value_type, gcc_p)
1362 value_ptr function;
1363 CORE_ADDR funcaddr;
1364 struct type *value_type;
1365 int gcc_p;
1366 /*ARGSUSED*/
1367 {
1368 register enum type_code code = TYPE_CODE (value_type);
1369
1370 if (code == TYPE_CODE_ERROR)
1371 error ("Function return type unknown.");
1372
1373 if (code == TYPE_CODE_STRUCT ||
1374 code == TYPE_CODE_UNION ||
1375 code == TYPE_CODE_ARRAY)
1376 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1377
1378 return 0;
1379 }
1380
1381 /* Store VAL so it will be returned if a function returns now.
1382 Does not verify that VAL's type matches what the current
1383 function wants to return. */
1384
1385 void
1386 set_return_value (val)
1387 value_ptr val;
1388 {
1389 struct type *type = check_typedef (VALUE_TYPE (val));
1390 register enum type_code code = TYPE_CODE (type);
1391
1392 if (code == TYPE_CODE_ERROR)
1393 error ("Function return type unknown.");
1394
1395 if ( code == TYPE_CODE_STRUCT
1396 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1397 error ("GDB does not support specifying a struct or union return value.");
1398
1399 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1400 }
1401 \f
1402 void
1403 _initialize_values ()
1404 {
1405 add_cmd ("convenience", no_class, show_convenience,
1406 "Debugger convenience (\"$foo\") variables.\n\
1407 These variables are created when you assign them values;\n\
1408 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1409 A few convenience variables are given values automatically:\n\
1410 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1411 \"$__\" holds the contents of the last address examined with \"x\".",
1412 &showlist);
1413
1414 add_cmd ("values", no_class, show_values,
1415 "Elements of value history around item number IDX (or last ten).",
1416 &showlist);
1417 }
This page took 0.057437 seconds and 4 git commands to generate.