* gdb.base/nodebug.exp: Don't try to do an inferior function
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "scm-lang.h"
33 #include "demangle.h"
34
35 /* Local function prototypes. */
36
37 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
38 struct type *));
39
40 static void show_values PARAMS ((char *, int));
41
42 static void show_convenience PARAMS ((char *, int));
43
44 static int vb_match PARAMS ((struct type *, int, struct type *));
45
46 /* The value-history records all the values printed
47 by print commands during this session. Each chunk
48 records 60 consecutive values. The first chunk on
49 the chain records the most recent values.
50 The total number of values is in value_history_count. */
51
52 #define VALUE_HISTORY_CHUNK 60
53
54 struct value_history_chunk
55 {
56 struct value_history_chunk *next;
57 value_ptr values[VALUE_HISTORY_CHUNK];
58 };
59
60 /* Chain of chunks now in use. */
61
62 static struct value_history_chunk *value_history_chain;
63
64 static int value_history_count; /* Abs number of last entry stored */
65 \f
66 /* List of all value objects currently allocated
67 (except for those released by calls to release_value)
68 This is so they can be freed after each command. */
69
70 static value_ptr all_values;
71
72 /* Allocate a value that has the correct length for type TYPE. */
73
74 value_ptr
75 allocate_value (type)
76 struct type *type;
77 {
78 register value_ptr val;
79 struct type *atype = check_typedef (type);
80
81 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
82 VALUE_NEXT (val) = all_values;
83 all_values = val;
84 VALUE_TYPE (val) = type;
85 VALUE_LVAL (val) = not_lval;
86 VALUE_ADDRESS (val) = 0;
87 VALUE_FRAME (val) = 0;
88 VALUE_OFFSET (val) = 0;
89 VALUE_BITPOS (val) = 0;
90 VALUE_BITSIZE (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 VALUE_BFD_SECTION (val) = NULL;
95 val->modifiable = 1;
96 return val;
97 }
98
99 /* Allocate a value that has the correct length
100 for COUNT repetitions type TYPE. */
101
102 value_ptr
103 allocate_repeat_value (type, count)
104 struct type *type;
105 int count;
106 {
107 int low_bound = current_language->string_lower_bound; /* ??? */
108 /* FIXME-type-allocation: need a way to free this type when we are
109 done with it. */
110 struct type *range_type
111 = create_range_type ((struct type *) NULL, builtin_type_int,
112 low_bound, count + low_bound - 1);
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 return allocate_value (create_array_type ((struct type *) NULL,
116 type, range_type));
117 }
118
119 /* Return a mark in the value chain. All values allocated after the
120 mark is obtained (except for those released) are subject to being freed
121 if a subsequent value_free_to_mark is passed the mark. */
122 value_ptr
123 value_mark ()
124 {
125 return all_values;
126 }
127
128 /* Free all values allocated since MARK was obtained by value_mark
129 (except for those released). */
130 void
131 value_free_to_mark (mark)
132 value_ptr mark;
133 {
134 value_ptr val, next;
135
136 for (val = all_values; val && val != mark; val = next)
137 {
138 next = VALUE_NEXT (val);
139 value_free (val);
140 }
141 all_values = val;
142 }
143
144 /* Free all the values that have been allocated (except for those released).
145 Called after each command, successful or not. */
146
147 void
148 free_all_values ()
149 {
150 register value_ptr val, next;
151
152 for (val = all_values; val; val = next)
153 {
154 next = VALUE_NEXT (val);
155 value_free (val);
156 }
157
158 all_values = 0;
159 }
160
161 /* Remove VAL from the chain all_values
162 so it will not be freed automatically. */
163
164 void
165 release_value (val)
166 register value_ptr val;
167 {
168 register value_ptr v;
169
170 if (all_values == val)
171 {
172 all_values = val->next;
173 return;
174 }
175
176 for (v = all_values; v; v = v->next)
177 {
178 if (v->next == val)
179 {
180 v->next = val->next;
181 break;
182 }
183 }
184 }
185
186 /* Release all values up to mark */
187 value_ptr
188 value_release_to_mark (mark)
189 value_ptr mark;
190 {
191 value_ptr val, next;
192
193 for (val = next = all_values; next; next = VALUE_NEXT (next))
194 if (VALUE_NEXT (next) == mark)
195 {
196 all_values = VALUE_NEXT (next);
197 VALUE_NEXT (next) = 0;
198 return val;
199 }
200 all_values = 0;
201 return val;
202 }
203
204 /* Return a copy of the value ARG.
205 It contains the same contents, for same memory address,
206 but it's a different block of storage. */
207
208 value_ptr
209 value_copy (arg)
210 value_ptr arg;
211 {
212 register struct type *type = VALUE_TYPE (arg);
213 register value_ptr val = allocate_value (type);
214 VALUE_LVAL (val) = VALUE_LVAL (arg);
215 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
216 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
217 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
218 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
219 VALUE_FRAME (val) = VALUE_FRAME (arg);
220 VALUE_REGNO (val) = VALUE_REGNO (arg);
221 VALUE_LAZY (val) = VALUE_LAZY (arg);
222 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
223 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
224 val->modifiable = arg->modifiable;
225 if (!VALUE_LAZY (val))
226 {
227 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
228 TYPE_LENGTH (VALUE_TYPE (arg)));
229 }
230 return val;
231 }
232 \f
233 /* Access to the value history. */
234
235 /* Record a new value in the value history.
236 Returns the absolute history index of the entry.
237 Result of -1 indicates the value was not saved; otherwise it is the
238 value history index of this new item. */
239
240 int
241 record_latest_value (val)
242 value_ptr val;
243 {
244 int i;
245
246 /* We don't want this value to have anything to do with the inferior anymore.
247 In particular, "set $1 = 50" should not affect the variable from which
248 the value was taken, and fast watchpoints should be able to assume that
249 a value on the value history never changes. */
250 if (VALUE_LAZY (val))
251 value_fetch_lazy (val);
252 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
253 from. This is a bit dubious, because then *&$1 does not just return $1
254 but the current contents of that location. c'est la vie... */
255 val->modifiable = 0;
256 release_value (val);
257
258 /* Here we treat value_history_count as origin-zero
259 and applying to the value being stored now. */
260
261 i = value_history_count % VALUE_HISTORY_CHUNK;
262 if (i == 0)
263 {
264 register struct value_history_chunk *new
265 = (struct value_history_chunk *)
266 xmalloc (sizeof (struct value_history_chunk));
267 memset (new->values, 0, sizeof new->values);
268 new->next = value_history_chain;
269 value_history_chain = new;
270 }
271
272 value_history_chain->values[i] = val;
273
274 /* Now we regard value_history_count as origin-one
275 and applying to the value just stored. */
276
277 return ++value_history_count;
278 }
279
280 /* Return a copy of the value in the history with sequence number NUM. */
281
282 value_ptr
283 access_value_history (num)
284 int num;
285 {
286 register struct value_history_chunk *chunk;
287 register int i;
288 register int absnum = num;
289
290 if (absnum <= 0)
291 absnum += value_history_count;
292
293 if (absnum <= 0)
294 {
295 if (num == 0)
296 error ("The history is empty.");
297 else if (num == 1)
298 error ("There is only one value in the history.");
299 else
300 error ("History does not go back to $$%d.", -num);
301 }
302 if (absnum > value_history_count)
303 error ("History has not yet reached $%d.", absnum);
304
305 absnum--;
306
307 /* Now absnum is always absolute and origin zero. */
308
309 chunk = value_history_chain;
310 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
311 i > 0; i--)
312 chunk = chunk->next;
313
314 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
315 }
316
317 /* Clear the value history entirely.
318 Must be done when new symbol tables are loaded,
319 because the type pointers become invalid. */
320
321 void
322 clear_value_history ()
323 {
324 register struct value_history_chunk *next;
325 register int i;
326 register value_ptr val;
327
328 while (value_history_chain)
329 {
330 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
331 if ((val = value_history_chain->values[i]) != NULL)
332 free ((PTR)val);
333 next = value_history_chain->next;
334 free ((PTR)value_history_chain);
335 value_history_chain = next;
336 }
337 value_history_count = 0;
338 }
339
340 static void
341 show_values (num_exp, from_tty)
342 char *num_exp;
343 int from_tty;
344 {
345 register int i;
346 register value_ptr val;
347 static int num = 1;
348
349 if (num_exp)
350 {
351 /* "info history +" should print from the stored position.
352 "info history <exp>" should print around value number <exp>. */
353 if (num_exp[0] != '+' || num_exp[1] != '\0')
354 num = parse_and_eval_address (num_exp) - 5;
355 }
356 else
357 {
358 /* "info history" means print the last 10 values. */
359 num = value_history_count - 9;
360 }
361
362 if (num <= 0)
363 num = 1;
364
365 for (i = num; i < num + 10 && i <= value_history_count; i++)
366 {
367 val = access_value_history (i);
368 printf_filtered ("$%d = ", i);
369 value_print (val, gdb_stdout, 0, Val_pretty_default);
370 printf_filtered ("\n");
371 }
372
373 /* The next "info history +" should start after what we just printed. */
374 num += 10;
375
376 /* Hitting just return after this command should do the same thing as
377 "info history +". If num_exp is null, this is unnecessary, since
378 "info history +" is not useful after "info history". */
379 if (from_tty && num_exp)
380 {
381 num_exp[0] = '+';
382 num_exp[1] = '\0';
383 }
384 }
385 \f
386 /* Internal variables. These are variables within the debugger
387 that hold values assigned by debugger commands.
388 The user refers to them with a '$' prefix
389 that does not appear in the variable names stored internally. */
390
391 static struct internalvar *internalvars;
392
393 /* Look up an internal variable with name NAME. NAME should not
394 normally include a dollar sign.
395
396 If the specified internal variable does not exist,
397 one is created, with a void value. */
398
399 struct internalvar *
400 lookup_internalvar (name)
401 char *name;
402 {
403 register struct internalvar *var;
404
405 for (var = internalvars; var; var = var->next)
406 if (STREQ (var->name, name))
407 return var;
408
409 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
410 var->name = concat (name, NULL);
411 var->value = allocate_value (builtin_type_void);
412 release_value (var->value);
413 var->next = internalvars;
414 internalvars = var;
415 return var;
416 }
417
418 value_ptr
419 value_of_internalvar (var)
420 struct internalvar *var;
421 {
422 register value_ptr val;
423
424 #ifdef IS_TRAPPED_INTERNALVAR
425 if (IS_TRAPPED_INTERNALVAR (var->name))
426 return VALUE_OF_TRAPPED_INTERNALVAR (var);
427 #endif
428
429 val = value_copy (var->value);
430 if (VALUE_LAZY (val))
431 value_fetch_lazy (val);
432 VALUE_LVAL (val) = lval_internalvar;
433 VALUE_INTERNALVAR (val) = var;
434 return val;
435 }
436
437 void
438 set_internalvar_component (var, offset, bitpos, bitsize, newval)
439 struct internalvar *var;
440 int offset, bitpos, bitsize;
441 value_ptr newval;
442 {
443 register char *addr = VALUE_CONTENTS (var->value) + offset;
444
445 #ifdef IS_TRAPPED_INTERNALVAR
446 if (IS_TRAPPED_INTERNALVAR (var->name))
447 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
448 #endif
449
450 if (bitsize)
451 modify_field (addr, value_as_long (newval),
452 bitpos, bitsize);
453 else
454 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
455 }
456
457 void
458 set_internalvar (var, val)
459 struct internalvar *var;
460 value_ptr val;
461 {
462 value_ptr newval;
463
464 #ifdef IS_TRAPPED_INTERNALVAR
465 if (IS_TRAPPED_INTERNALVAR (var->name))
466 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
467 #endif
468
469 newval = value_copy (val);
470 newval->modifiable = 1;
471
472 /* Force the value to be fetched from the target now, to avoid problems
473 later when this internalvar is referenced and the target is gone or
474 has changed. */
475 if (VALUE_LAZY (newval))
476 value_fetch_lazy (newval);
477
478 /* Begin code which must not call error(). If var->value points to
479 something free'd, an error() obviously leaves a dangling pointer.
480 But we also get a danling pointer if var->value points to
481 something in the value chain (i.e., before release_value is
482 called), because after the error free_all_values will get called before
483 long. */
484 free ((PTR)var->value);
485 var->value = newval;
486 release_value (newval);
487 /* End code which must not call error(). */
488 }
489
490 char *
491 internalvar_name (var)
492 struct internalvar *var;
493 {
494 return var->name;
495 }
496
497 /* Free all internalvars. Done when new symtabs are loaded,
498 because that makes the values invalid. */
499
500 void
501 clear_internalvars ()
502 {
503 register struct internalvar *var;
504
505 while (internalvars)
506 {
507 var = internalvars;
508 internalvars = var->next;
509 free ((PTR)var->name);
510 free ((PTR)var->value);
511 free ((PTR)var);
512 }
513 }
514
515 static void
516 show_convenience (ignore, from_tty)
517 char *ignore;
518 int from_tty;
519 {
520 register struct internalvar *var;
521 int varseen = 0;
522
523 for (var = internalvars; var; var = var->next)
524 {
525 #ifdef IS_TRAPPED_INTERNALVAR
526 if (IS_TRAPPED_INTERNALVAR (var->name))
527 continue;
528 #endif
529 if (!varseen)
530 {
531 varseen = 1;
532 }
533 printf_filtered ("$%s = ", var->name);
534 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
535 printf_filtered ("\n");
536 }
537 if (!varseen)
538 printf_unfiltered ("No debugger convenience variables now defined.\n\
539 Convenience variables have names starting with \"$\";\n\
540 use \"set\" as in \"set $foo = 5\" to define them.\n");
541 }
542 \f
543 /* Extract a value as a C number (either long or double).
544 Knows how to convert fixed values to double, or
545 floating values to long.
546 Does not deallocate the value. */
547
548 LONGEST
549 value_as_long (val)
550 register value_ptr val;
551 {
552 /* This coerces arrays and functions, which is necessary (e.g.
553 in disassemble_command). It also dereferences references, which
554 I suspect is the most logical thing to do. */
555 COERCE_ARRAY (val);
556 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
557 }
558
559 DOUBLEST
560 value_as_double (val)
561 register value_ptr val;
562 {
563 DOUBLEST foo;
564 int inv;
565
566 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
567 if (inv)
568 error ("Invalid floating value found in program.");
569 return foo;
570 }
571 /* Extract a value as a C pointer.
572 Does not deallocate the value. */
573 CORE_ADDR
574 value_as_pointer (val)
575 value_ptr val;
576 {
577 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
578 whether we want this to be true eventually. */
579 #if 0
580 /* ADDR_BITS_REMOVE is wrong if we are being called for a
581 non-address (e.g. argument to "signal", "info break", etc.), or
582 for pointers to char, in which the low bits *are* significant. */
583 return ADDR_BITS_REMOVE(value_as_long (val));
584 #else
585 return value_as_long (val);
586 #endif
587 }
588 \f
589 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
590 as a long, or as a double, assuming the raw data is described
591 by type TYPE. Knows how to convert different sizes of values
592 and can convert between fixed and floating point. We don't assume
593 any alignment for the raw data. Return value is in host byte order.
594
595 If you want functions and arrays to be coerced to pointers, and
596 references to be dereferenced, call value_as_long() instead.
597
598 C++: It is assumed that the front-end has taken care of
599 all matters concerning pointers to members. A pointer
600 to member which reaches here is considered to be equivalent
601 to an INT (or some size). After all, it is only an offset. */
602
603 LONGEST
604 unpack_long (type, valaddr)
605 struct type *type;
606 char *valaddr;
607 {
608 register enum type_code code = TYPE_CODE (type);
609 register int len = TYPE_LENGTH (type);
610 register int nosign = TYPE_UNSIGNED (type);
611
612 if (current_language->la_language == language_scm
613 && is_scmvalue_type (type))
614 return scm_unpack (type, valaddr, TYPE_CODE_INT);
615
616 switch (code)
617 {
618 case TYPE_CODE_TYPEDEF:
619 return unpack_long (check_typedef (type), valaddr);
620 case TYPE_CODE_ENUM:
621 case TYPE_CODE_BOOL:
622 case TYPE_CODE_INT:
623 case TYPE_CODE_CHAR:
624 case TYPE_CODE_RANGE:
625 if (nosign)
626 return extract_unsigned_integer (valaddr, len);
627 else
628 return extract_signed_integer (valaddr, len);
629
630 case TYPE_CODE_FLT:
631 return extract_floating (valaddr, len);
632
633 case TYPE_CODE_PTR:
634 case TYPE_CODE_REF:
635 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
636 whether we want this to be true eventually. */
637 return extract_address (valaddr, len);
638
639 case TYPE_CODE_MEMBER:
640 error ("not implemented: member types in unpack_long");
641
642 default:
643 error ("Value can't be converted to integer.");
644 }
645 return 0; /* Placate lint. */
646 }
647
648 /* Return a double value from the specified type and address.
649 INVP points to an int which is set to 0 for valid value,
650 1 for invalid value (bad float format). In either case,
651 the returned double is OK to use. Argument is in target
652 format, result is in host format. */
653
654 DOUBLEST
655 unpack_double (type, valaddr, invp)
656 struct type *type;
657 char *valaddr;
658 int *invp;
659 {
660 register enum type_code code = TYPE_CODE (type);
661 register int len = TYPE_LENGTH (type);
662 register int nosign = TYPE_UNSIGNED (type);
663
664 *invp = 0; /* Assume valid. */
665 CHECK_TYPEDEF (type);
666 if (code == TYPE_CODE_FLT)
667 {
668 #ifdef INVALID_FLOAT
669 if (INVALID_FLOAT (valaddr, len))
670 {
671 *invp = 1;
672 return 1.234567891011121314;
673 }
674 #endif
675 return extract_floating (valaddr, len);
676 }
677 else if (nosign)
678 {
679 /* Unsigned -- be sure we compensate for signed LONGEST. */
680 #if !defined (_MSC_VER) || (_MSC_VER > 900)
681 return (ULONGEST) unpack_long (type, valaddr);
682 #else
683 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
684 return (LONGEST) unpack_long (type, valaddr);
685 #endif /* _MSC_VER */
686 }
687 else
688 {
689 /* Signed -- we are OK with unpack_long. */
690 return unpack_long (type, valaddr);
691 }
692 }
693
694 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
695 as a CORE_ADDR, assuming the raw data is described by type TYPE.
696 We don't assume any alignment for the raw data. Return value is in
697 host byte order.
698
699 If you want functions and arrays to be coerced to pointers, and
700 references to be dereferenced, call value_as_pointer() instead.
701
702 C++: It is assumed that the front-end has taken care of
703 all matters concerning pointers to members. A pointer
704 to member which reaches here is considered to be equivalent
705 to an INT (or some size). After all, it is only an offset. */
706
707 CORE_ADDR
708 unpack_pointer (type, valaddr)
709 struct type *type;
710 char *valaddr;
711 {
712 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
713 whether we want this to be true eventually. */
714 return unpack_long (type, valaddr);
715 }
716 \f
717 /* Given a value ARG1 (offset by OFFSET bytes)
718 of a struct or union type ARG_TYPE,
719 extract and return the value of one of its fields.
720 FIELDNO says which field.
721
722 For C++, must also be able to return values from static fields */
723
724 value_ptr
725 value_primitive_field (arg1, offset, fieldno, arg_type)
726 register value_ptr arg1;
727 int offset;
728 register int fieldno;
729 register struct type *arg_type;
730 {
731 register value_ptr v;
732 register struct type *type;
733
734 CHECK_TYPEDEF (arg_type);
735 type = TYPE_FIELD_TYPE (arg_type, fieldno);
736
737 /* Handle packed fields */
738
739 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
740 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
741 {
742 v = value_from_longest (type,
743 unpack_field_as_long (arg_type,
744 VALUE_CONTENTS (arg1),
745 fieldno));
746 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
747 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
748 }
749 else
750 {
751 v = allocate_value (type);
752 if (VALUE_LAZY (arg1))
753 VALUE_LAZY (v) = 1;
754 else
755 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
756 TYPE_LENGTH (type));
757 }
758 VALUE_LVAL (v) = VALUE_LVAL (arg1);
759 if (VALUE_LVAL (arg1) == lval_internalvar)
760 VALUE_LVAL (v) = lval_internalvar_component;
761 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
762 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
763 return v;
764 }
765
766 /* Given a value ARG1 of a struct or union type,
767 extract and return the value of one of its fields.
768 FIELDNO says which field.
769
770 For C++, must also be able to return values from static fields */
771
772 value_ptr
773 value_field (arg1, fieldno)
774 register value_ptr arg1;
775 register int fieldno;
776 {
777 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
778 }
779
780 /* Return a non-virtual function as a value.
781 F is the list of member functions which contains the desired method.
782 J is an index into F which provides the desired method. */
783
784 value_ptr
785 value_fn_field (arg1p, f, j, type, offset)
786 value_ptr *arg1p;
787 struct fn_field *f;
788 int j;
789 struct type *type;
790 int offset;
791 {
792 register value_ptr v;
793 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
794 struct symbol *sym;
795
796 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
797 0, VAR_NAMESPACE, 0, NULL);
798 if (! sym)
799 return NULL;
800 /*
801 error ("Internal error: could not find physical method named %s",
802 TYPE_FN_FIELD_PHYSNAME (f, j));
803 */
804
805 v = allocate_value (ftype);
806 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
807 VALUE_TYPE (v) = ftype;
808
809 if (arg1p)
810 {
811 if (type != VALUE_TYPE (*arg1p))
812 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
813 value_addr (*arg1p)));
814
815 /* Move the `this' pointer according to the offset.
816 VALUE_OFFSET (*arg1p) += offset;
817 */
818 }
819
820 return v;
821 }
822
823 /* Return a virtual function as a value.
824 ARG1 is the object which provides the virtual function
825 table pointer. *ARG1P is side-effected in calling this function.
826 F is the list of member functions which contains the desired virtual
827 function.
828 J is an index into F which provides the desired virtual function.
829
830 TYPE is the type in which F is located. */
831 value_ptr
832 value_virtual_fn_field (arg1p, f, j, type, offset)
833 value_ptr *arg1p;
834 struct fn_field *f;
835 int j;
836 struct type *type;
837 int offset;
838 {
839 value_ptr arg1 = *arg1p;
840 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
841 struct type *entry_type;
842 /* First, get the virtual function table pointer. That comes
843 with a strange type, so cast it to type `pointer to long' (which
844 should serve just fine as a function type). Then, index into
845 the table, and convert final value to appropriate function type. */
846 value_ptr entry, vfn, vtbl;
847 value_ptr vi = value_from_longest (builtin_type_int,
848 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
849 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
850 struct type *context;
851 if (fcontext == NULL)
852 /* We don't have an fcontext (e.g. the program was compiled with
853 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
854 This won't work right for multiple inheritance, but at least we
855 should do as well as GDB 3.x did. */
856 fcontext = TYPE_VPTR_BASETYPE (type);
857 context = lookup_pointer_type (fcontext);
858 /* Now context is a pointer to the basetype containing the vtbl. */
859 if (TYPE_TARGET_TYPE (context) != type1)
860 {
861 arg1 = value_ind (value_cast (context, value_addr (arg1)));
862 type1 = check_typedef (VALUE_TYPE (arg1));
863 }
864
865 context = type1;
866 /* Now context is the basetype containing the vtbl. */
867
868 /* This type may have been defined before its virtual function table
869 was. If so, fill in the virtual function table entry for the
870 type now. */
871 if (TYPE_VPTR_FIELDNO (context) < 0)
872 fill_in_vptr_fieldno (context);
873
874 /* The virtual function table is now an array of structures
875 which have the form { int16 offset, delta; void *pfn; }. */
876 vtbl = value_ind (value_primitive_field (arg1, 0,
877 TYPE_VPTR_FIELDNO (context),
878 TYPE_VPTR_BASETYPE (context)));
879
880 /* Index into the virtual function table. This is hard-coded because
881 looking up a field is not cheap, and it may be important to save
882 time, e.g. if the user has set a conditional breakpoint calling
883 a virtual function. */
884 entry = value_subscript (vtbl, vi);
885 entry_type = check_typedef (VALUE_TYPE (entry));
886
887 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
888 {
889 /* Move the `this' pointer according to the virtual function table. */
890 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
891
892 if (! VALUE_LAZY (arg1))
893 {
894 VALUE_LAZY (arg1) = 1;
895 value_fetch_lazy (arg1);
896 }
897
898 vfn = value_field (entry, 2);
899 }
900 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
901 vfn = entry;
902 else
903 error ("I'm confused: virtual function table has bad type");
904 /* Reinstantiate the function pointer with the correct type. */
905 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
906
907 *arg1p = arg1;
908 return vfn;
909 }
910
911 /* ARG is a pointer to an object we know to be at least
912 a DTYPE. BTYPE is the most derived basetype that has
913 already been searched (and need not be searched again).
914 After looking at the vtables between BTYPE and DTYPE,
915 return the most derived type we find. The caller must
916 be satisfied when the return value == DTYPE.
917
918 FIXME-tiemann: should work with dossier entries as well. */
919
920 static value_ptr
921 value_headof (in_arg, btype, dtype)
922 value_ptr in_arg;
923 struct type *btype, *dtype;
924 {
925 /* First collect the vtables we must look at for this object. */
926 /* FIXME-tiemann: right now, just look at top-most vtable. */
927 value_ptr arg, vtbl, entry, best_entry = 0;
928 int i, nelems;
929 int offset, best_offset = 0;
930 struct symbol *sym;
931 CORE_ADDR pc_for_sym;
932 char *demangled_name;
933 struct minimal_symbol *msymbol;
934
935 btype = TYPE_VPTR_BASETYPE (dtype);
936 CHECK_TYPEDEF (btype);
937 arg = in_arg;
938 if (btype != dtype)
939 arg = value_cast (lookup_pointer_type (btype), arg);
940 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
941
942 /* Check that VTBL looks like it points to a virtual function table. */
943 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
944 if (msymbol == NULL
945 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
946 || !VTBL_PREFIX_P (demangled_name))
947 {
948 /* If we expected to find a vtable, but did not, let the user
949 know that we aren't happy, but don't throw an error.
950 FIXME: there has to be a better way to do this. */
951 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
952 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
953 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
954 VALUE_TYPE (in_arg) = error_type;
955 return in_arg;
956 }
957
958 /* Now search through the virtual function table. */
959 entry = value_ind (vtbl);
960 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
961 for (i = 1; i <= nelems; i++)
962 {
963 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
964 (LONGEST) i));
965 /* This won't work if we're using thunks. */
966 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
967 break;
968 offset = longest_to_int (value_as_long (value_field (entry, 0)));
969 /* If we use '<=' we can handle single inheritance
970 * where all offsets are zero - just use the first entry found. */
971 if (offset <= best_offset)
972 {
973 best_offset = offset;
974 best_entry = entry;
975 }
976 }
977 /* Move the pointer according to BEST_ENTRY's offset, and figure
978 out what type we should return as the new pointer. */
979 if (best_entry == 0)
980 {
981 /* An alternative method (which should no longer be necessary).
982 * But we leave it in for future use, when we will hopefully
983 * have optimizes the vtable to use thunks instead of offsets. */
984 /* Use the name of vtable itself to extract a base type. */
985 demangled_name += 4; /* Skip _vt$ prefix. */
986 }
987 else
988 {
989 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
990 sym = find_pc_function (pc_for_sym);
991 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
992 *(strchr (demangled_name, ':')) = '\0';
993 }
994 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
995 if (sym == NULL)
996 error ("could not find type declaration for `%s'", demangled_name);
997 if (best_entry)
998 {
999 free (demangled_name);
1000 arg = value_add (value_cast (builtin_type_int, arg),
1001 value_field (best_entry, 0));
1002 }
1003 else arg = in_arg;
1004 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1005 return arg;
1006 }
1007
1008 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1009 function tables, probe ARG's tables (including the vtables
1010 of its baseclasses) to figure out the most derived type that ARG
1011 could actually be a pointer to. */
1012
1013 value_ptr
1014 value_from_vtable_info (arg, type)
1015 value_ptr arg;
1016 struct type *type;
1017 {
1018 /* Take care of preliminaries. */
1019 if (TYPE_VPTR_FIELDNO (type) < 0)
1020 fill_in_vptr_fieldno (type);
1021 if (TYPE_VPTR_FIELDNO (type) < 0)
1022 return 0;
1023
1024 return value_headof (arg, 0, type);
1025 }
1026
1027 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1028 pointer which is for the base class whose type is BASECLASS. */
1029
1030 static int
1031 vb_match (type, index, basetype)
1032 struct type *type;
1033 int index;
1034 struct type *basetype;
1035 {
1036 struct type *fieldtype;
1037 char *name = TYPE_FIELD_NAME (type, index);
1038 char *field_class_name = NULL;
1039
1040 if (*name != '_')
1041 return 0;
1042 /* gcc 2.4 uses _vb$. */
1043 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1044 field_class_name = name + 4;
1045 /* gcc 2.5 will use __vb_. */
1046 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1047 field_class_name = name + 5;
1048
1049 if (field_class_name == NULL)
1050 /* This field is not a virtual base class pointer. */
1051 return 0;
1052
1053 /* It's a virtual baseclass pointer, now we just need to find out whether
1054 it is for this baseclass. */
1055 fieldtype = TYPE_FIELD_TYPE (type, index);
1056 if (fieldtype == NULL
1057 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1058 /* "Can't happen". */
1059 return 0;
1060
1061 /* What we check for is that either the types are equal (needed for
1062 nameless types) or have the same name. This is ugly, and a more
1063 elegant solution should be devised (which would probably just push
1064 the ugliness into symbol reading unless we change the stabs format). */
1065 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1066 return 1;
1067
1068 if (TYPE_NAME (basetype) != NULL
1069 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1070 && STREQ (TYPE_NAME (basetype),
1071 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1072 return 1;
1073 return 0;
1074 }
1075
1076 /* Compute the offset of the baseclass which is
1077 the INDEXth baseclass of class TYPE,
1078 for value at VALADDR (in host) at ADDRESS (in target).
1079 The result is the offset of the baseclass value relative
1080 to (the address of)(ARG) + OFFSET.
1081
1082 -1 is returned on error. */
1083
1084 int
1085 baseclass_offset (type, index, valaddr, address)
1086 struct type *type;
1087 int index;
1088 char *valaddr;
1089 CORE_ADDR address;
1090 {
1091 struct type *basetype = TYPE_BASECLASS (type, index);
1092
1093 if (BASETYPE_VIA_VIRTUAL (type, index))
1094 {
1095 /* Must hunt for the pointer to this virtual baseclass. */
1096 register int i, len = TYPE_NFIELDS (type);
1097 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1098
1099 /* First look for the virtual baseclass pointer
1100 in the fields. */
1101 for (i = n_baseclasses; i < len; i++)
1102 {
1103 if (vb_match (type, i, basetype))
1104 {
1105 CORE_ADDR addr
1106 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1107 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1108
1109 return addr - (LONGEST) address;
1110 }
1111 }
1112 /* Not in the fields, so try looking through the baseclasses. */
1113 for (i = index+1; i < n_baseclasses; i++)
1114 {
1115 int boffset =
1116 baseclass_offset (type, i, valaddr, address);
1117 if (boffset)
1118 return boffset;
1119 }
1120 /* Not found. */
1121 return -1;
1122 }
1123
1124 /* Baseclass is easily computed. */
1125 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1126 }
1127 \f
1128 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1129 VALADDR.
1130
1131 Extracting bits depends on endianness of the machine. Compute the
1132 number of least significant bits to discard. For big endian machines,
1133 we compute the total number of bits in the anonymous object, subtract
1134 off the bit count from the MSB of the object to the MSB of the
1135 bitfield, then the size of the bitfield, which leaves the LSB discard
1136 count. For little endian machines, the discard count is simply the
1137 number of bits from the LSB of the anonymous object to the LSB of the
1138 bitfield.
1139
1140 If the field is signed, we also do sign extension. */
1141
1142 LONGEST
1143 unpack_field_as_long (type, valaddr, fieldno)
1144 struct type *type;
1145 char *valaddr;
1146 int fieldno;
1147 {
1148 ULONGEST val;
1149 ULONGEST valmask;
1150 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1151 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1152 int lsbcount;
1153
1154 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1155
1156 /* Extract bits. See comment above. */
1157
1158 if (BITS_BIG_ENDIAN)
1159 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1160 else
1161 lsbcount = (bitpos % 8);
1162 val >>= lsbcount;
1163
1164 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1165 If the field is signed, and is negative, then sign extend. */
1166
1167 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1168 {
1169 valmask = (((ULONGEST) 1) << bitsize) - 1;
1170 val &= valmask;
1171 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1172 {
1173 if (val & (valmask ^ (valmask >> 1)))
1174 {
1175 val |= ~valmask;
1176 }
1177 }
1178 }
1179 return (val);
1180 }
1181
1182 /* Modify the value of a bitfield. ADDR points to a block of memory in
1183 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1184 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1185 indicate which bits (in target bit order) comprise the bitfield. */
1186
1187 void
1188 modify_field (addr, fieldval, bitpos, bitsize)
1189 char *addr;
1190 LONGEST fieldval;
1191 int bitpos, bitsize;
1192 {
1193 LONGEST oword;
1194
1195 /* If a negative fieldval fits in the field in question, chop
1196 off the sign extension bits. */
1197 if (bitsize < (8 * (int) sizeof (fieldval))
1198 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1199 fieldval = fieldval & ((1 << bitsize) - 1);
1200
1201 /* Warn if value is too big to fit in the field in question. */
1202 if (bitsize < (8 * (int) sizeof (fieldval))
1203 && 0 != (fieldval & ~((1<<bitsize)-1)))
1204 {
1205 /* FIXME: would like to include fieldval in the message, but
1206 we don't have a sprintf_longest. */
1207 warning ("Value does not fit in %d bits.", bitsize);
1208
1209 /* Truncate it, otherwise adjoining fields may be corrupted. */
1210 fieldval = fieldval & ((1 << bitsize) - 1);
1211 }
1212
1213 oword = extract_signed_integer (addr, sizeof oword);
1214
1215 /* Shifting for bit field depends on endianness of the target machine. */
1216 if (BITS_BIG_ENDIAN)
1217 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1218
1219 /* Mask out old value, while avoiding shifts >= size of oword */
1220 if (bitsize < 8 * (int) sizeof (oword))
1221 oword &= ~(((((ULONGEST)1) << bitsize) - 1) << bitpos);
1222 else
1223 oword &= ~((~(ULONGEST)0) << bitpos);
1224 oword |= fieldval << bitpos;
1225
1226 store_signed_integer (addr, sizeof oword, oword);
1227 }
1228 \f
1229 /* Convert C numbers into newly allocated values */
1230
1231 value_ptr
1232 value_from_longest (type, num)
1233 struct type *type;
1234 register LONGEST num;
1235 {
1236 register value_ptr val = allocate_value (type);
1237 register enum type_code code;
1238 register int len;
1239 retry:
1240 code = TYPE_CODE (type);
1241 len = TYPE_LENGTH (type);
1242
1243 switch (code)
1244 {
1245 case TYPE_CODE_TYPEDEF:
1246 type = check_typedef (type);
1247 goto retry;
1248 case TYPE_CODE_INT:
1249 case TYPE_CODE_CHAR:
1250 case TYPE_CODE_ENUM:
1251 case TYPE_CODE_BOOL:
1252 case TYPE_CODE_RANGE:
1253 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1254 break;
1255
1256 case TYPE_CODE_REF:
1257 case TYPE_CODE_PTR:
1258 /* This assumes that all pointers of a given length
1259 have the same form. */
1260 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1261 break;
1262
1263 default:
1264 error ("Unexpected type encountered for integer constant.");
1265 }
1266 return val;
1267 }
1268
1269 value_ptr
1270 value_from_double (type, num)
1271 struct type *type;
1272 DOUBLEST num;
1273 {
1274 register value_ptr val = allocate_value (type);
1275 struct type *base_type = check_typedef (type);
1276 register enum type_code code = TYPE_CODE (base_type);
1277 register int len = TYPE_LENGTH (base_type);
1278
1279 if (code == TYPE_CODE_FLT)
1280 {
1281 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1282 }
1283 else
1284 error ("Unexpected type encountered for floating constant.");
1285
1286 return val;
1287 }
1288 \f
1289 /* Deal with the value that is "about to be returned". */
1290
1291 /* Return the value that a function returning now
1292 would be returning to its caller, assuming its type is VALTYPE.
1293 RETBUF is where we look for what ought to be the contents
1294 of the registers (in raw form). This is because it is often
1295 desirable to restore old values to those registers
1296 after saving the contents of interest, and then call
1297 this function using the saved values.
1298 struct_return is non-zero when the function in question is
1299 using the structure return conventions on the machine in question;
1300 0 when it is using the value returning conventions (this often
1301 means returning pointer to where structure is vs. returning value). */
1302
1303 value_ptr
1304 value_being_returned (valtype, retbuf, struct_return)
1305 register struct type *valtype;
1306 char retbuf[REGISTER_BYTES];
1307 int struct_return;
1308 /*ARGSUSED*/
1309 {
1310 register value_ptr val;
1311 CORE_ADDR addr;
1312
1313 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1314 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1315 if (struct_return) {
1316 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1317 if (!addr)
1318 error ("Function return value unknown");
1319 return value_at (valtype, addr, NULL);
1320 }
1321 #endif
1322
1323 val = allocate_value (valtype);
1324 CHECK_TYPEDEF (valtype);
1325 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1326
1327 return val;
1328 }
1329
1330 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1331 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1332 and TYPE is the type (which is known to be struct, union or array).
1333
1334 On most machines, the struct convention is used unless we are
1335 using gcc and the type is of a special size. */
1336 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1337 native compiler. GCC 2.3.3 was the last release that did it the
1338 old way. Since gcc2_compiled was not changed, we have no
1339 way to correctly win in all cases, so we just do the right thing
1340 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1341 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1342 would cause more chaos than dealing with some struct returns being
1343 handled wrong. */
1344 #if !defined (USE_STRUCT_CONVENTION)
1345 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1346 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1347 || TYPE_LENGTH (value_type) == 2 \
1348 || TYPE_LENGTH (value_type) == 4 \
1349 || TYPE_LENGTH (value_type) == 8 \
1350 ) \
1351 ))
1352 #endif
1353
1354 /* Some fundamental types (such as long double) are returned on the stack for
1355 certain architectures. This macro should return true for any type besides
1356 struct, union or array that gets returned on the stack. */
1357
1358 #ifndef RETURN_VALUE_ON_STACK
1359 #define RETURN_VALUE_ON_STACK(TYPE) 0
1360 #endif
1361
1362 /* Return true if the function specified is using the structure returning
1363 convention on this machine to return arguments, or 0 if it is using
1364 the value returning convention. FUNCTION is the value representing
1365 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1366 is the type returned by the function. GCC_P is nonzero if compiled
1367 with GCC. */
1368
1369 int
1370 using_struct_return (function, funcaddr, value_type, gcc_p)
1371 value_ptr function;
1372 CORE_ADDR funcaddr;
1373 struct type *value_type;
1374 int gcc_p;
1375 /*ARGSUSED*/
1376 {
1377 register enum type_code code = TYPE_CODE (value_type);
1378
1379 if (code == TYPE_CODE_ERROR)
1380 error ("Function return type unknown.");
1381
1382 if (code == TYPE_CODE_STRUCT
1383 || code == TYPE_CODE_UNION
1384 || code == TYPE_CODE_ARRAY
1385 || RETURN_VALUE_ON_STACK (value_type))
1386 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1387
1388 return 0;
1389 }
1390
1391 /* Store VAL so it will be returned if a function returns now.
1392 Does not verify that VAL's type matches what the current
1393 function wants to return. */
1394
1395 void
1396 set_return_value (val)
1397 value_ptr val;
1398 {
1399 struct type *type = check_typedef (VALUE_TYPE (val));
1400 register enum type_code code = TYPE_CODE (type);
1401
1402 if (code == TYPE_CODE_ERROR)
1403 error ("Function return type unknown.");
1404
1405 if ( code == TYPE_CODE_STRUCT
1406 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1407 error ("GDB does not support specifying a struct or union return value.");
1408
1409 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1410 }
1411 \f
1412 void
1413 _initialize_values ()
1414 {
1415 add_cmd ("convenience", no_class, show_convenience,
1416 "Debugger convenience (\"$foo\") variables.\n\
1417 These variables are created when you assign them values;\n\
1418 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1419 A few convenience variables are given values automatically:\n\
1420 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1421 \"$__\" holds the contents of the last address examined with \"x\".",
1422 &showlist);
1423
1424 add_cmd ("values", no_class, show_values,
1425 "Elements of value history around item number IDX (or last ten).",
1426 &showlist);
1427 }
This page took 0.074097 seconds and 4 git commands to generate.