Add partial support for g++ code compiled with -fvtable-thunks.
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "demangle.h"
31
32 /* Local function prototypes. */
33
34 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
35 struct type *));
36
37 static void show_values PARAMS ((char *, int));
38
39 static void show_convenience PARAMS ((char *, int));
40
41 /* The value-history records all the values printed
42 by print commands during this session. Each chunk
43 records 60 consecutive values. The first chunk on
44 the chain records the most recent values.
45 The total number of values is in value_history_count. */
46
47 #define VALUE_HISTORY_CHUNK 60
48
49 struct value_history_chunk
50 {
51 struct value_history_chunk *next;
52 value_ptr values[VALUE_HISTORY_CHUNK];
53 };
54
55 /* Chain of chunks now in use. */
56
57 static struct value_history_chunk *value_history_chain;
58
59 static int value_history_count; /* Abs number of last entry stored */
60 \f
61 /* List of all value objects currently allocated
62 (except for those released by calls to release_value)
63 This is so they can be freed after each command. */
64
65 static value_ptr all_values;
66
67 /* Allocate a value that has the correct length for type TYPE. */
68
69 value_ptr
70 allocate_value (type)
71 struct type *type;
72 {
73 register value_ptr val;
74
75 check_stub_type (type);
76
77 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
78 VALUE_NEXT (val) = all_values;
79 all_values = val;
80 VALUE_TYPE (val) = type;
81 VALUE_LVAL (val) = not_lval;
82 VALUE_ADDRESS (val) = 0;
83 VALUE_FRAME (val) = 0;
84 VALUE_OFFSET (val) = 0;
85 VALUE_BITPOS (val) = 0;
86 VALUE_BITSIZE (val) = 0;
87 VALUE_REPEATED (val) = 0;
88 VALUE_REPETITIONS (val) = 0;
89 VALUE_REGNO (val) = -1;
90 VALUE_LAZY (val) = 0;
91 VALUE_OPTIMIZED_OUT (val) = 0;
92 val->modifiable = 1;
93 return val;
94 }
95
96 /* Allocate a value that has the correct length
97 for COUNT repetitions type TYPE. */
98
99 value_ptr
100 allocate_repeat_value (type, count)
101 struct type *type;
102 int count;
103 {
104 register value_ptr val;
105
106 val =
107 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
109 all_values = val;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
122 return val;
123 }
124
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
128 value_ptr
129 value_mark ()
130 {
131 return all_values;
132 }
133
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136 void
137 value_free_to_mark (mark)
138 value_ptr mark;
139 {
140 value_ptr val, next;
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val);
145 value_free (val);
146 }
147 all_values = val;
148 }
149
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153 void
154 free_all_values ()
155 {
156 register value_ptr val, next;
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165 }
166
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170 void
171 release_value (val)
172 register value_ptr val;
173 {
174 register value_ptr v;
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190 }
191
192 /* Release all values up to mark */
193 value_ptr
194 value_release_to_mark (mark)
195 value_ptr mark;
196 {
197 value_ptr val, next;
198
199 for (val = next = all_values; next; next = VALUE_NEXT (next))
200 if (VALUE_NEXT (next) == mark)
201 {
202 all_values = VALUE_NEXT (next);
203 VALUE_NEXT (next) = 0;
204 return val;
205 }
206 all_values = 0;
207 return val;
208 }
209
210 /* Return a copy of the value ARG.
211 It contains the same contents, for same memory address,
212 but it's a different block of storage. */
213
214 value_ptr
215 value_copy (arg)
216 value_ptr arg;
217 {
218 register value_ptr val;
219 register struct type *type = VALUE_TYPE (arg);
220 if (VALUE_REPEATED (arg))
221 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
222 else
223 val = allocate_value (type);
224 VALUE_LVAL (val) = VALUE_LVAL (arg);
225 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
226 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
227 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
228 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
229 VALUE_REGNO (val) = VALUE_REGNO (arg);
230 VALUE_LAZY (val) = VALUE_LAZY (arg);
231 val->modifiable = arg->modifiable;
232 if (!VALUE_LAZY (val))
233 {
234 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
235 TYPE_LENGTH (VALUE_TYPE (arg))
236 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
237 }
238 return val;
239 }
240 \f
241 /* Access to the value history. */
242
243 /* Record a new value in the value history.
244 Returns the absolute history index of the entry.
245 Result of -1 indicates the value was not saved; otherwise it is the
246 value history index of this new item. */
247
248 int
249 record_latest_value (val)
250 value_ptr val;
251 {
252 int i;
253
254 /* Check error now if about to store an invalid float. We return -1
255 to the caller, but allow them to continue, e.g. to print it as "Nan". */
256 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
257 {
258 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
259 if (i) return -1; /* Indicate value not saved in history */
260 }
261
262 /* Here we treat value_history_count as origin-zero
263 and applying to the value being stored now. */
264
265 i = value_history_count % VALUE_HISTORY_CHUNK;
266 if (i == 0)
267 {
268 register struct value_history_chunk *new
269 = (struct value_history_chunk *)
270 xmalloc (sizeof (struct value_history_chunk));
271 memset (new->values, 0, sizeof new->values);
272 new->next = value_history_chain;
273 value_history_chain = new;
274 }
275
276 value_history_chain->values[i] = val;
277
278 /* We don't want this value to have anything to do with the inferior anymore.
279 In particular, "set $1 = 50" should not affect the variable from which
280 the value was taken, and fast watchpoints should be able to assume that
281 a value on the value history never changes. */
282 if (VALUE_LAZY (val))
283 value_fetch_lazy (val);
284 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
285 from. This is a bit dubious, because then *&$1 does not just return $1
286 but the current contents of that location. c'est la vie... */
287 val->modifiable = 0;
288 release_value (val);
289
290 /* Now we regard value_history_count as origin-one
291 and applying to the value just stored. */
292
293 return ++value_history_count;
294 }
295
296 /* Return a copy of the value in the history with sequence number NUM. */
297
298 value_ptr
299 access_value_history (num)
300 int num;
301 {
302 register struct value_history_chunk *chunk;
303 register int i;
304 register int absnum = num;
305
306 if (absnum <= 0)
307 absnum += value_history_count;
308
309 if (absnum <= 0)
310 {
311 if (num == 0)
312 error ("The history is empty.");
313 else if (num == 1)
314 error ("There is only one value in the history.");
315 else
316 error ("History does not go back to $$%d.", -num);
317 }
318 if (absnum > value_history_count)
319 error ("History has not yet reached $%d.", absnum);
320
321 absnum--;
322
323 /* Now absnum is always absolute and origin zero. */
324
325 chunk = value_history_chain;
326 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
327 i > 0; i--)
328 chunk = chunk->next;
329
330 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
331 }
332
333 /* Clear the value history entirely.
334 Must be done when new symbol tables are loaded,
335 because the type pointers become invalid. */
336
337 void
338 clear_value_history ()
339 {
340 register struct value_history_chunk *next;
341 register int i;
342 register value_ptr val;
343
344 while (value_history_chain)
345 {
346 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
347 if ((val = value_history_chain->values[i]) != NULL)
348 free ((PTR)val);
349 next = value_history_chain->next;
350 free ((PTR)value_history_chain);
351 value_history_chain = next;
352 }
353 value_history_count = 0;
354 }
355
356 static void
357 show_values (num_exp, from_tty)
358 char *num_exp;
359 int from_tty;
360 {
361 register int i;
362 register value_ptr val;
363 static int num = 1;
364
365 if (num_exp)
366 {
367 /* "info history +" should print from the stored position.
368 "info history <exp>" should print around value number <exp>. */
369 if (num_exp[0] != '+' || num_exp[1] != '\0')
370 num = parse_and_eval_address (num_exp) - 5;
371 }
372 else
373 {
374 /* "info history" means print the last 10 values. */
375 num = value_history_count - 9;
376 }
377
378 if (num <= 0)
379 num = 1;
380
381 for (i = num; i < num + 10 && i <= value_history_count; i++)
382 {
383 val = access_value_history (i);
384 printf_filtered ("$%d = ", i);
385 value_print (val, gdb_stdout, 0, Val_pretty_default);
386 printf_filtered ("\n");
387 }
388
389 /* The next "info history +" should start after what we just printed. */
390 num += 10;
391
392 /* Hitting just return after this command should do the same thing as
393 "info history +". If num_exp is null, this is unnecessary, since
394 "info history +" is not useful after "info history". */
395 if (from_tty && num_exp)
396 {
397 num_exp[0] = '+';
398 num_exp[1] = '\0';
399 }
400 }
401 \f
402 /* Internal variables. These are variables within the debugger
403 that hold values assigned by debugger commands.
404 The user refers to them with a '$' prefix
405 that does not appear in the variable names stored internally. */
406
407 static struct internalvar *internalvars;
408
409 /* Look up an internal variable with name NAME. NAME should not
410 normally include a dollar sign.
411
412 If the specified internal variable does not exist,
413 one is created, with a void value. */
414
415 struct internalvar *
416 lookup_internalvar (name)
417 char *name;
418 {
419 register struct internalvar *var;
420
421 for (var = internalvars; var; var = var->next)
422 if (STREQ (var->name, name))
423 return var;
424
425 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
426 var->name = concat (name, NULL);
427 var->value = allocate_value (builtin_type_void);
428 release_value (var->value);
429 var->next = internalvars;
430 internalvars = var;
431 return var;
432 }
433
434 value_ptr
435 value_of_internalvar (var)
436 struct internalvar *var;
437 {
438 register value_ptr val;
439
440 #ifdef IS_TRAPPED_INTERNALVAR
441 if (IS_TRAPPED_INTERNALVAR (var->name))
442 return VALUE_OF_TRAPPED_INTERNALVAR (var);
443 #endif
444
445 val = value_copy (var->value);
446 if (VALUE_LAZY (val))
447 value_fetch_lazy (val);
448 VALUE_LVAL (val) = lval_internalvar;
449 VALUE_INTERNALVAR (val) = var;
450 return val;
451 }
452
453 void
454 set_internalvar_component (var, offset, bitpos, bitsize, newval)
455 struct internalvar *var;
456 int offset, bitpos, bitsize;
457 value_ptr newval;
458 {
459 register char *addr = VALUE_CONTENTS (var->value) + offset;
460
461 #ifdef IS_TRAPPED_INTERNALVAR
462 if (IS_TRAPPED_INTERNALVAR (var->name))
463 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
464 #endif
465
466 if (bitsize)
467 modify_field (addr, value_as_long (newval),
468 bitpos, bitsize);
469 else
470 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
471 }
472
473 void
474 set_internalvar (var, val)
475 struct internalvar *var;
476 value_ptr val;
477 {
478 value_ptr newval;
479
480 #ifdef IS_TRAPPED_INTERNALVAR
481 if (IS_TRAPPED_INTERNALVAR (var->name))
482 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
483 #endif
484
485 newval = value_copy (val);
486
487 /* Force the value to be fetched from the target now, to avoid problems
488 later when this internalvar is referenced and the target is gone or
489 has changed. */
490 if (VALUE_LAZY (newval))
491 value_fetch_lazy (newval);
492
493 /* Begin code which must not call error(). If var->value points to
494 something free'd, an error() obviously leaves a dangling pointer.
495 But we also get a danling pointer if var->value points to
496 something in the value chain (i.e., before release_value is
497 called), because after the error free_all_values will get called before
498 long. */
499 free ((PTR)var->value);
500 var->value = newval;
501 release_value (newval);
502 /* End code which must not call error(). */
503 }
504
505 char *
506 internalvar_name (var)
507 struct internalvar *var;
508 {
509 return var->name;
510 }
511
512 /* Free all internalvars. Done when new symtabs are loaded,
513 because that makes the values invalid. */
514
515 void
516 clear_internalvars ()
517 {
518 register struct internalvar *var;
519
520 while (internalvars)
521 {
522 var = internalvars;
523 internalvars = var->next;
524 free ((PTR)var->name);
525 free ((PTR)var->value);
526 free ((PTR)var);
527 }
528 }
529
530 static void
531 show_convenience (ignore, from_tty)
532 char *ignore;
533 int from_tty;
534 {
535 register struct internalvar *var;
536 int varseen = 0;
537
538 for (var = internalvars; var; var = var->next)
539 {
540 #ifdef IS_TRAPPED_INTERNALVAR
541 if (IS_TRAPPED_INTERNALVAR (var->name))
542 continue;
543 #endif
544 if (!varseen)
545 {
546 varseen = 1;
547 }
548 printf_filtered ("$%s = ", var->name);
549 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
550 printf_filtered ("\n");
551 }
552 if (!varseen)
553 printf_unfiltered ("No debugger convenience variables now defined.\n\
554 Convenience variables have names starting with \"$\";\n\
555 use \"set\" as in \"set $foo = 5\" to define them.\n");
556 }
557 \f
558 /* Extract a value as a C number (either long or double).
559 Knows how to convert fixed values to double, or
560 floating values to long.
561 Does not deallocate the value. */
562
563 LONGEST
564 value_as_long (val)
565 register value_ptr val;
566 {
567 /* This coerces arrays and functions, which is necessary (e.g.
568 in disassemble_command). It also dereferences references, which
569 I suspect is the most logical thing to do. */
570 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
571 COERCE_ARRAY (val);
572 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
573 }
574
575 double
576 value_as_double (val)
577 register value_ptr val;
578 {
579 double foo;
580 int inv;
581
582 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
583 if (inv)
584 error ("Invalid floating value found in program.");
585 return foo;
586 }
587 /* Extract a value as a C pointer.
588 Does not deallocate the value. */
589 CORE_ADDR
590 value_as_pointer (val)
591 value_ptr val;
592 {
593 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
594 whether we want this to be true eventually. */
595 #if 0
596 /* ADDR_BITS_REMOVE is wrong if we are being called for a
597 non-address (e.g. argument to "signal", "info break", etc.), or
598 for pointers to char, in which the low bits *are* significant. */
599 return ADDR_BITS_REMOVE(value_as_long (val));
600 #else
601 return value_as_long (val);
602 #endif
603 }
604 \f
605 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
606 as a long, or as a double, assuming the raw data is described
607 by type TYPE. Knows how to convert different sizes of values
608 and can convert between fixed and floating point. We don't assume
609 any alignment for the raw data. Return value is in host byte order.
610
611 If you want functions and arrays to be coerced to pointers, and
612 references to be dereferenced, call value_as_long() instead.
613
614 C++: It is assumed that the front-end has taken care of
615 all matters concerning pointers to members. A pointer
616 to member which reaches here is considered to be equivalent
617 to an INT (or some size). After all, it is only an offset. */
618
619 LONGEST
620 unpack_long (type, valaddr)
621 struct type *type;
622 char *valaddr;
623 {
624 register enum type_code code = TYPE_CODE (type);
625 register int len = TYPE_LENGTH (type);
626 register int nosign = TYPE_UNSIGNED (type);
627
628 switch (code)
629 {
630 case TYPE_CODE_ENUM:
631 case TYPE_CODE_BOOL:
632 case TYPE_CODE_INT:
633 case TYPE_CODE_CHAR:
634 case TYPE_CODE_RANGE:
635 if (nosign)
636 return extract_unsigned_integer (valaddr, len);
637 else
638 return extract_signed_integer (valaddr, len);
639
640 case TYPE_CODE_FLT:
641 return extract_floating (valaddr, len);
642
643 case TYPE_CODE_PTR:
644 case TYPE_CODE_REF:
645 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
646 whether we want this to be true eventually. */
647 return extract_address (valaddr, len);
648
649 case TYPE_CODE_MEMBER:
650 error ("not implemented: member types in unpack_long");
651
652 default:
653 error ("Value can't be converted to integer.");
654 }
655 return 0; /* Placate lint. */
656 }
657
658 /* Return a double value from the specified type and address.
659 INVP points to an int which is set to 0 for valid value,
660 1 for invalid value (bad float format). In either case,
661 the returned double is OK to use. Argument is in target
662 format, result is in host format. */
663
664 double
665 unpack_double (type, valaddr, invp)
666 struct type *type;
667 char *valaddr;
668 int *invp;
669 {
670 register enum type_code code = TYPE_CODE (type);
671 register int len = TYPE_LENGTH (type);
672 register int nosign = TYPE_UNSIGNED (type);
673
674 *invp = 0; /* Assume valid. */
675 if (code == TYPE_CODE_FLT)
676 {
677 if (INVALID_FLOAT (valaddr, len))
678 {
679 *invp = 1;
680 return 1.234567891011121314;
681 }
682 return extract_floating (valaddr, len);
683 }
684 else if (nosign)
685 {
686 /* Unsigned -- be sure we compensate for signed LONGEST. */
687 return (unsigned LONGEST) unpack_long (type, valaddr);
688 }
689 else
690 {
691 /* Signed -- we are OK with unpack_long. */
692 return unpack_long (type, valaddr);
693 }
694 }
695
696 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
697 as a CORE_ADDR, assuming the raw data is described by type TYPE.
698 We don't assume any alignment for the raw data. Return value is in
699 host byte order.
700
701 If you want functions and arrays to be coerced to pointers, and
702 references to be dereferenced, call value_as_pointer() instead.
703
704 C++: It is assumed that the front-end has taken care of
705 all matters concerning pointers to members. A pointer
706 to member which reaches here is considered to be equivalent
707 to an INT (or some size). After all, it is only an offset. */
708
709 CORE_ADDR
710 unpack_pointer (type, valaddr)
711 struct type *type;
712 char *valaddr;
713 {
714 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
715 whether we want this to be true eventually. */
716 return unpack_long (type, valaddr);
717 }
718 \f
719 /* Given a value ARG1 (offset by OFFSET bytes)
720 of a struct or union type ARG_TYPE,
721 extract and return the value of one of its fields.
722 FIELDNO says which field.
723
724 For C++, must also be able to return values from static fields */
725
726 value_ptr
727 value_primitive_field (arg1, offset, fieldno, arg_type)
728 register value_ptr arg1;
729 int offset;
730 register int fieldno;
731 register struct type *arg_type;
732 {
733 register value_ptr v;
734 register struct type *type;
735
736 check_stub_type (arg_type);
737 type = TYPE_FIELD_TYPE (arg_type, fieldno);
738
739 /* Handle packed fields */
740
741 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
742 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
743 {
744 v = value_from_longest (type,
745 unpack_field_as_long (arg_type,
746 VALUE_CONTENTS (arg1),
747 fieldno));
748 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
749 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
750 }
751 else
752 {
753 v = allocate_value (type);
754 if (VALUE_LAZY (arg1))
755 VALUE_LAZY (v) = 1;
756 else
757 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
758 TYPE_LENGTH (type));
759 }
760 VALUE_LVAL (v) = VALUE_LVAL (arg1);
761 if (VALUE_LVAL (arg1) == lval_internalvar)
762 VALUE_LVAL (v) = lval_internalvar_component;
763 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
764 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
765 return v;
766 }
767
768 /* Given a value ARG1 of a struct or union type,
769 extract and return the value of one of its fields.
770 FIELDNO says which field.
771
772 For C++, must also be able to return values from static fields */
773
774 value_ptr
775 value_field (arg1, fieldno)
776 register value_ptr arg1;
777 register int fieldno;
778 {
779 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
780 }
781
782 /* Return a non-virtual function as a value.
783 F is the list of member functions which contains the desired method.
784 J is an index into F which provides the desired method. */
785
786 value_ptr
787 value_fn_field (arg1p, f, j, type, offset)
788 value_ptr *arg1p;
789 struct fn_field *f;
790 int j;
791 struct type *type;
792 int offset;
793 {
794 register value_ptr v;
795 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
796 struct symbol *sym;
797
798 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
799 0, VAR_NAMESPACE, 0, NULL);
800 if (! sym)
801 return NULL;
802 /*
803 error ("Internal error: could not find physical method named %s",
804 TYPE_FN_FIELD_PHYSNAME (f, j));
805 */
806
807 v = allocate_value (ftype);
808 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
809 VALUE_TYPE (v) = ftype;
810
811 if (arg1p)
812 {
813 if (type != VALUE_TYPE (*arg1p))
814 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
815 value_addr (*arg1p)));
816
817 /* Move the `this' pointer according to the offset.
818 VALUE_OFFSET (*arg1p) += offset;
819 */
820 }
821
822 return v;
823 }
824
825 /* Return a virtual function as a value.
826 ARG1 is the object which provides the virtual function
827 table pointer. *ARG1P is side-effected in calling this function.
828 F is the list of member functions which contains the desired virtual
829 function.
830 J is an index into F which provides the desired virtual function.
831
832 TYPE is the type in which F is located. */
833 value_ptr
834 value_virtual_fn_field (arg1p, f, j, type, offset)
835 value_ptr *arg1p;
836 struct fn_field *f;
837 int j;
838 struct type *type;
839 int offset;
840 {
841 value_ptr arg1 = *arg1p;
842 /* First, get the virtual function table pointer. That comes
843 with a strange type, so cast it to type `pointer to long' (which
844 should serve just fine as a function type). Then, index into
845 the table, and convert final value to appropriate function type. */
846 value_ptr entry, vfn, vtbl;
847 value_ptr vi = value_from_longest (builtin_type_int,
848 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
849 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
850 struct type *context;
851 if (fcontext == NULL)
852 /* We don't have an fcontext (e.g. the program was compiled with
853 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
854 This won't work right for multiple inheritance, but at least we
855 should do as well as GDB 3.x did. */
856 fcontext = TYPE_VPTR_BASETYPE (type);
857 context = lookup_pointer_type (fcontext);
858 /* Now context is a pointer to the basetype containing the vtbl. */
859 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
860 arg1 = value_ind (value_cast (context, value_addr (arg1)));
861
862 context = VALUE_TYPE (arg1);
863 /* Now context is the basetype containing the vtbl. */
864
865 /* This type may have been defined before its virtual function table
866 was. If so, fill in the virtual function table entry for the
867 type now. */
868 if (TYPE_VPTR_FIELDNO (context) < 0)
869 fill_in_vptr_fieldno (context);
870
871 /* The virtual function table is now an array of structures
872 which have the form { int16 offset, delta; void *pfn; }. */
873 vtbl = value_ind (value_primitive_field (arg1, 0,
874 TYPE_VPTR_FIELDNO (context),
875 TYPE_VPTR_BASETYPE (context)));
876
877 /* Index into the virtual function table. This is hard-coded because
878 looking up a field is not cheap, and it may be important to save
879 time, e.g. if the user has set a conditional breakpoint calling
880 a virtual function. */
881 entry = value_subscript (vtbl, vi);
882
883 if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT)
884 {
885 /* Move the `this' pointer according to the virtual function table. */
886 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
887
888 if (! VALUE_LAZY (arg1))
889 {
890 VALUE_LAZY (arg1) = 1;
891 value_fetch_lazy (arg1);
892 }
893
894 vfn = value_field (entry, 2);
895 }
896 else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR)
897 vfn = entry;
898 else
899 error ("I'm confused: virtual function table has bad type");
900 /* Reinstantiate the function pointer with the correct type. */
901 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
902
903 *arg1p = arg1;
904 return vfn;
905 }
906
907 /* ARG is a pointer to an object we know to be at least
908 a DTYPE. BTYPE is the most derived basetype that has
909 already been searched (and need not be searched again).
910 After looking at the vtables between BTYPE and DTYPE,
911 return the most derived type we find. The caller must
912 be satisfied when the return value == DTYPE.
913
914 FIXME-tiemann: should work with dossier entries as well. */
915
916 static value_ptr
917 value_headof (in_arg, btype, dtype)
918 value_ptr in_arg;
919 struct type *btype, *dtype;
920 {
921 /* First collect the vtables we must look at for this object. */
922 /* FIXME-tiemann: right now, just look at top-most vtable. */
923 value_ptr arg, vtbl, entry, best_entry = 0;
924 int i, nelems;
925 int offset, best_offset = 0;
926 struct symbol *sym;
927 CORE_ADDR pc_for_sym;
928 char *demangled_name;
929 struct minimal_symbol *msymbol;
930
931 btype = TYPE_VPTR_BASETYPE (dtype);
932 check_stub_type (btype);
933 arg = in_arg;
934 if (btype != dtype)
935 arg = value_cast (lookup_pointer_type (btype), arg);
936 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
937
938 /* Check that VTBL looks like it points to a virtual function table. */
939 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
940 if (msymbol == NULL
941 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
942 || !VTBL_PREFIX_P (demangled_name))
943 {
944 /* If we expected to find a vtable, but did not, let the user
945 know that we aren't happy, but don't throw an error.
946 FIXME: there has to be a better way to do this. */
947 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
948 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
949 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
950 VALUE_TYPE (in_arg) = error_type;
951 return in_arg;
952 }
953
954 /* Now search through the virtual function table. */
955 entry = value_ind (vtbl);
956 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
957 for (i = 1; i <= nelems; i++)
958 {
959 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
960 (LONGEST) i));
961 /* This won't work if we're using thunks. */
962 if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT)
963 break;
964 offset = longest_to_int (value_as_long (value_field (entry, 0)));
965 /* If we use '<=' we can handle single inheritance
966 * where all offsets are zero - just use the first entry found. */
967 if (offset <= best_offset)
968 {
969 best_offset = offset;
970 best_entry = entry;
971 }
972 }
973 /* Move the pointer according to BEST_ENTRY's offset, and figure
974 out what type we should return as the new pointer. */
975 if (best_entry == 0)
976 {
977 /* An alternative method (which should no longer be necessary).
978 * But we leave it in for future use, when we will hopefully
979 * have optimizes the vtable to use thunks instead of offsets. */
980 /* Use the name of vtable itself to extract a base type. */
981 demangled_name += 4; /* Skip _vt$ prefix. */
982 }
983 else
984 {
985 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
986 sym = find_pc_function (pc_for_sym);
987 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
988 *(strchr (demangled_name, ':')) = '\0';
989 }
990 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
991 if (sym == NULL)
992 error ("could not find type declaration for `%s'", demangled_name);
993 if (best_entry)
994 {
995 free (demangled_name);
996 arg = value_add (value_cast (builtin_type_int, arg),
997 value_field (best_entry, 0));
998 }
999 else arg = in_arg;
1000 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1001 return arg;
1002 }
1003
1004 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1005 function tables, probe ARG's tables (including the vtables
1006 of its baseclasses) to figure out the most derived type that ARG
1007 could actually be a pointer to. */
1008
1009 value_ptr
1010 value_from_vtable_info (arg, type)
1011 value_ptr arg;
1012 struct type *type;
1013 {
1014 /* Take care of preliminaries. */
1015 if (TYPE_VPTR_FIELDNO (type) < 0)
1016 fill_in_vptr_fieldno (type);
1017 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1018 return 0;
1019
1020 return value_headof (arg, 0, type);
1021 }
1022
1023 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1024 pointer which is for the base class whose type is BASECLASS. */
1025
1026 static int
1027 vb_match (type, index, basetype)
1028 struct type *type;
1029 int index;
1030 struct type *basetype;
1031 {
1032 struct type *fieldtype;
1033 char *name = TYPE_FIELD_NAME (type, index);
1034 char *field_class_name = NULL;
1035
1036 if (*name != '_')
1037 return 0;
1038 /* gcc 2.4 uses _vb$. */
1039 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1040 field_class_name = name + 4;
1041 /* gcc 2.5 will use __vb_. */
1042 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1043 field_class_name = name + 5;
1044
1045 if (field_class_name == NULL)
1046 /* This field is not a virtual base class pointer. */
1047 return 0;
1048
1049 /* It's a virtual baseclass pointer, now we just need to find out whether
1050 it is for this baseclass. */
1051 fieldtype = TYPE_FIELD_TYPE (type, index);
1052 if (fieldtype == NULL
1053 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1054 /* "Can't happen". */
1055 return 0;
1056
1057 /* What we check for is that either the types are equal (needed for
1058 nameless types) or have the same name. This is ugly, and a more
1059 elegant solution should be devised (which would probably just push
1060 the ugliness into symbol reading unless we change the stabs format). */
1061 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1062 return 1;
1063
1064 if (TYPE_NAME (basetype) != NULL
1065 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1066 && STREQ (TYPE_NAME (basetype),
1067 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1068 return 1;
1069 return 0;
1070 }
1071
1072 /* Compute the offset of the baseclass which is
1073 the INDEXth baseclass of class TYPE, for a value ARG,
1074 wih extra offset of OFFSET.
1075 The result is the offste of the baseclass value relative
1076 to (the address of)(ARG) + OFFSET.
1077
1078 -1 is returned on error. */
1079
1080 int
1081 baseclass_offset (type, index, arg, offset)
1082 struct type *type;
1083 int index;
1084 value_ptr arg;
1085 int offset;
1086 {
1087 struct type *basetype = TYPE_BASECLASS (type, index);
1088
1089 if (BASETYPE_VIA_VIRTUAL (type, index))
1090 {
1091 /* Must hunt for the pointer to this virtual baseclass. */
1092 register int i, len = TYPE_NFIELDS (type);
1093 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1094
1095 /* First look for the virtual baseclass pointer
1096 in the fields. */
1097 for (i = n_baseclasses; i < len; i++)
1098 {
1099 if (vb_match (type, i, basetype))
1100 {
1101 CORE_ADDR addr
1102 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1103 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1104 + offset
1105 + (TYPE_FIELD_BITPOS (type, i) / 8));
1106
1107 if (VALUE_LVAL (arg) != lval_memory)
1108 return -1;
1109
1110 return addr -
1111 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1112 }
1113 }
1114 /* Not in the fields, so try looking through the baseclasses. */
1115 for (i = index+1; i < n_baseclasses; i++)
1116 {
1117 int boffset =
1118 baseclass_offset (type, i, arg, offset);
1119 if (boffset)
1120 return boffset;
1121 }
1122 /* Not found. */
1123 return -1;
1124 }
1125
1126 /* Baseclass is easily computed. */
1127 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1128 }
1129
1130 /* Compute the address of the baseclass which is
1131 the INDEXth baseclass of class TYPE. The TYPE base
1132 of the object is at VALADDR.
1133
1134 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1135 or 0 if no error. In that case the return value is not the address
1136 of the baseclasss, but the address which could not be read
1137 successfully. */
1138
1139 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1140
1141 char *
1142 baseclass_addr (type, index, valaddr, valuep, errp)
1143 struct type *type;
1144 int index;
1145 char *valaddr;
1146 value_ptr *valuep;
1147 int *errp;
1148 {
1149 struct type *basetype = TYPE_BASECLASS (type, index);
1150
1151 if (errp)
1152 *errp = 0;
1153
1154 if (BASETYPE_VIA_VIRTUAL (type, index))
1155 {
1156 /* Must hunt for the pointer to this virtual baseclass. */
1157 register int i, len = TYPE_NFIELDS (type);
1158 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1159
1160 /* First look for the virtual baseclass pointer
1161 in the fields. */
1162 for (i = n_baseclasses; i < len; i++)
1163 {
1164 if (vb_match (type, i, basetype))
1165 {
1166 value_ptr val = allocate_value (basetype);
1167 CORE_ADDR addr;
1168 int status;
1169
1170 addr
1171 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1172 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1173
1174 status = target_read_memory (addr,
1175 VALUE_CONTENTS_RAW (val),
1176 TYPE_LENGTH (basetype));
1177 VALUE_LVAL (val) = lval_memory;
1178 VALUE_ADDRESS (val) = addr;
1179
1180 if (status != 0)
1181 {
1182 if (valuep)
1183 *valuep = NULL;
1184 release_value (val);
1185 value_free (val);
1186 if (errp)
1187 *errp = status;
1188 return (char *)addr;
1189 }
1190 else
1191 {
1192 if (valuep)
1193 *valuep = val;
1194 return (char *) VALUE_CONTENTS (val);
1195 }
1196 }
1197 }
1198 /* Not in the fields, so try looking through the baseclasses. */
1199 for (i = index+1; i < n_baseclasses; i++)
1200 {
1201 char *baddr;
1202
1203 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1204 if (baddr)
1205 return baddr;
1206 }
1207 /* Not found. */
1208 if (valuep)
1209 *valuep = 0;
1210 return 0;
1211 }
1212
1213 /* Baseclass is easily computed. */
1214 if (valuep)
1215 *valuep = 0;
1216 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1217 }
1218 \f
1219 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1220 VALADDR.
1221
1222 Extracting bits depends on endianness of the machine. Compute the
1223 number of least significant bits to discard. For big endian machines,
1224 we compute the total number of bits in the anonymous object, subtract
1225 off the bit count from the MSB of the object to the MSB of the
1226 bitfield, then the size of the bitfield, which leaves the LSB discard
1227 count. For little endian machines, the discard count is simply the
1228 number of bits from the LSB of the anonymous object to the LSB of the
1229 bitfield.
1230
1231 If the field is signed, we also do sign extension. */
1232
1233 LONGEST
1234 unpack_field_as_long (type, valaddr, fieldno)
1235 struct type *type;
1236 char *valaddr;
1237 int fieldno;
1238 {
1239 unsigned LONGEST val;
1240 unsigned LONGEST valmask;
1241 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1242 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1243 int lsbcount;
1244
1245 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1246
1247 /* Extract bits. See comment above. */
1248
1249 #if BITS_BIG_ENDIAN
1250 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1251 #else
1252 lsbcount = (bitpos % 8);
1253 #endif
1254 val >>= lsbcount;
1255
1256 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1257 If the field is signed, and is negative, then sign extend. */
1258
1259 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1260 {
1261 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1262 val &= valmask;
1263 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1264 {
1265 if (val & (valmask ^ (valmask >> 1)))
1266 {
1267 val |= ~valmask;
1268 }
1269 }
1270 }
1271 return (val);
1272 }
1273
1274 /* Modify the value of a bitfield. ADDR points to a block of memory in
1275 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1276 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1277 indicate which bits (in target bit order) comprise the bitfield. */
1278
1279 void
1280 modify_field (addr, fieldval, bitpos, bitsize)
1281 char *addr;
1282 LONGEST fieldval;
1283 int bitpos, bitsize;
1284 {
1285 LONGEST oword;
1286
1287 /* Reject values too big to fit in the field in question,
1288 otherwise adjoining fields may be corrupted. */
1289 if (bitsize < (8 * sizeof (fieldval))
1290 && 0 != (fieldval & ~((1<<bitsize)-1)))
1291 {
1292 /* FIXME: would like to include fieldval in the message, but
1293 we don't have a sprintf_longest. */
1294 error ("Value does not fit in %d bits.", bitsize);
1295 }
1296
1297 oword = extract_signed_integer (addr, sizeof oword);
1298
1299 /* Shifting for bit field depends on endianness of the target machine. */
1300 #if BITS_BIG_ENDIAN
1301 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1302 #endif
1303
1304 /* Mask out old value, while avoiding shifts >= size of oword */
1305 if (bitsize < 8 * sizeof (oword))
1306 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1307 else
1308 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1309 oword |= fieldval << bitpos;
1310
1311 store_signed_integer (addr, sizeof oword, oword);
1312 }
1313 \f
1314 /* Convert C numbers into newly allocated values */
1315
1316 value_ptr
1317 value_from_longest (type, num)
1318 struct type *type;
1319 register LONGEST num;
1320 {
1321 register value_ptr val = allocate_value (type);
1322 register enum type_code code = TYPE_CODE (type);
1323 register int len = TYPE_LENGTH (type);
1324
1325 switch (code)
1326 {
1327 case TYPE_CODE_INT:
1328 case TYPE_CODE_CHAR:
1329 case TYPE_CODE_ENUM:
1330 case TYPE_CODE_BOOL:
1331 case TYPE_CODE_RANGE:
1332 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1333 break;
1334
1335 case TYPE_CODE_REF:
1336 case TYPE_CODE_PTR:
1337 /* This assumes that all pointers of a given length
1338 have the same form. */
1339 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1340 break;
1341
1342 default:
1343 error ("Unexpected type encountered for integer constant.");
1344 }
1345 return val;
1346 }
1347
1348 value_ptr
1349 value_from_double (type, num)
1350 struct type *type;
1351 double num;
1352 {
1353 register value_ptr val = allocate_value (type);
1354 register enum type_code code = TYPE_CODE (type);
1355 register int len = TYPE_LENGTH (type);
1356
1357 if (code == TYPE_CODE_FLT)
1358 {
1359 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1360 }
1361 else
1362 error ("Unexpected type encountered for floating constant.");
1363
1364 return val;
1365 }
1366 \f
1367 /* Deal with the value that is "about to be returned". */
1368
1369 /* Return the value that a function returning now
1370 would be returning to its caller, assuming its type is VALTYPE.
1371 RETBUF is where we look for what ought to be the contents
1372 of the registers (in raw form). This is because it is often
1373 desirable to restore old values to those registers
1374 after saving the contents of interest, and then call
1375 this function using the saved values.
1376 struct_return is non-zero when the function in question is
1377 using the structure return conventions on the machine in question;
1378 0 when it is using the value returning conventions (this often
1379 means returning pointer to where structure is vs. returning value). */
1380
1381 value_ptr
1382 value_being_returned (valtype, retbuf, struct_return)
1383 register struct type *valtype;
1384 char retbuf[REGISTER_BYTES];
1385 int struct_return;
1386 /*ARGSUSED*/
1387 {
1388 register value_ptr val;
1389 CORE_ADDR addr;
1390
1391 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1392 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1393 if (struct_return) {
1394 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1395 if (!addr)
1396 error ("Function return value unknown");
1397 return value_at (valtype, addr);
1398 }
1399 #endif
1400
1401 val = allocate_value (valtype);
1402 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1403
1404 return val;
1405 }
1406
1407 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1408 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1409 and TYPE is the type (which is known to be struct, union or array).
1410
1411 On most machines, the struct convention is used unless we are
1412 using gcc and the type is of a special size. */
1413 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1414 native compiler. GCC 2.3.3 was the last release that did it the
1415 old way. Since gcc2_compiled was not changed, we have no
1416 way to correctly win in all cases, so we just do the right thing
1417 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1418 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1419 would cause more chaos than dealing with some struct returns being
1420 handled wrong. */
1421 #if !defined (USE_STRUCT_CONVENTION)
1422 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1423 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1424 || TYPE_LENGTH (value_type) == 2 \
1425 || TYPE_LENGTH (value_type) == 4 \
1426 || TYPE_LENGTH (value_type) == 8 \
1427 ) \
1428 ))
1429 #endif
1430
1431 /* Return true if the function specified is using the structure returning
1432 convention on this machine to return arguments, or 0 if it is using
1433 the value returning convention. FUNCTION is the value representing
1434 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1435 is the type returned by the function. GCC_P is nonzero if compiled
1436 with GCC. */
1437
1438 int
1439 using_struct_return (function, funcaddr, value_type, gcc_p)
1440 value_ptr function;
1441 CORE_ADDR funcaddr;
1442 struct type *value_type;
1443 int gcc_p;
1444 /*ARGSUSED*/
1445 {
1446 register enum type_code code = TYPE_CODE (value_type);
1447
1448 if (code == TYPE_CODE_ERROR)
1449 error ("Function return type unknown.");
1450
1451 if (code == TYPE_CODE_STRUCT ||
1452 code == TYPE_CODE_UNION ||
1453 code == TYPE_CODE_ARRAY)
1454 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1455
1456 return 0;
1457 }
1458
1459 /* Store VAL so it will be returned if a function returns now.
1460 Does not verify that VAL's type matches what the current
1461 function wants to return. */
1462
1463 void
1464 set_return_value (val)
1465 value_ptr val;
1466 {
1467 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1468 double dbuf;
1469 LONGEST lbuf;
1470
1471 if (code == TYPE_CODE_ERROR)
1472 error ("Function return type unknown.");
1473
1474 if ( code == TYPE_CODE_STRUCT
1475 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1476 error ("GDB does not support specifying a struct or union return value.");
1477
1478 /* FIXME, this is bogus. We don't know what the return conventions
1479 are, or how values should be promoted.... */
1480 if (code == TYPE_CODE_FLT)
1481 {
1482 dbuf = value_as_double (val);
1483
1484 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1485 }
1486 else
1487 {
1488 lbuf = value_as_long (val);
1489 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1490 }
1491 }
1492 \f
1493 void
1494 _initialize_values ()
1495 {
1496 add_cmd ("convenience", no_class, show_convenience,
1497 "Debugger convenience (\"$foo\") variables.\n\
1498 These variables are created when you assign them values;\n\
1499 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1500 A few convenience variables are given values automatically:\n\
1501 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1502 \"$__\" holds the contents of the last address examined with \"x\".",
1503 &showlist);
1504
1505 add_cmd ("values", no_class, show_values,
1506 "Elements of value history around item number IDX (or last ten).",
1507 &showlist);
1508 }
This page took 0.080561 seconds and 5 git commands to generate.