* expression.h (enum exp_code): Added OP_NAME.
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33
34 /* Local function prototypes. */
35
36 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
37 struct type *));
38
39 static void show_values PARAMS ((char *, int));
40
41 static void show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value_ptr values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value_ptr all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value_ptr
72 allocate_value (type)
73 struct type *type;
74 {
75 register value_ptr val;
76
77 check_stub_type (type);
78
79 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 val->modifiable = 1;
95 return val;
96 }
97
98 /* Allocate a value that has the correct length
99 for COUNT repetitions type TYPE. */
100
101 value_ptr
102 allocate_repeat_value (type, count)
103 struct type *type;
104 int count;
105 {
106 register value_ptr val;
107
108 val =
109 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
110 VALUE_NEXT (val) = all_values;
111 all_values = val;
112 VALUE_TYPE (val) = type;
113 VALUE_LVAL (val) = not_lval;
114 VALUE_ADDRESS (val) = 0;
115 VALUE_FRAME (val) = 0;
116 VALUE_OFFSET (val) = 0;
117 VALUE_BITPOS (val) = 0;
118 VALUE_BITSIZE (val) = 0;
119 VALUE_REPEATED (val) = 1;
120 VALUE_REPETITIONS (val) = count;
121 VALUE_REGNO (val) = -1;
122 VALUE_LAZY (val) = 0;
123 VALUE_OPTIMIZED_OUT (val) = 0;
124 return val;
125 }
126
127 /* Return a mark in the value chain. All values allocated after the
128 mark is obtained (except for those released) are subject to being freed
129 if a subsequent value_free_to_mark is passed the mark. */
130 value_ptr
131 value_mark ()
132 {
133 return all_values;
134 }
135
136 /* Free all values allocated since MARK was obtained by value_mark
137 (except for those released). */
138 void
139 value_free_to_mark (mark)
140 value_ptr mark;
141 {
142 value_ptr val, next;
143
144 for (val = all_values; val && val != mark; val = next)
145 {
146 next = VALUE_NEXT (val);
147 value_free (val);
148 }
149 all_values = val;
150 }
151
152 /* Free all the values that have been allocated (except for those released).
153 Called after each command, successful or not. */
154
155 void
156 free_all_values ()
157 {
158 register value_ptr val, next;
159
160 for (val = all_values; val; val = next)
161 {
162 next = VALUE_NEXT (val);
163 value_free (val);
164 }
165
166 all_values = 0;
167 }
168
169 /* Remove VAL from the chain all_values
170 so it will not be freed automatically. */
171
172 void
173 release_value (val)
174 register value_ptr val;
175 {
176 register value_ptr v;
177
178 if (all_values == val)
179 {
180 all_values = val->next;
181 return;
182 }
183
184 for (v = all_values; v; v = v->next)
185 {
186 if (v->next == val)
187 {
188 v->next = val->next;
189 break;
190 }
191 }
192 }
193
194 /* Release all values up to mark */
195 value_ptr
196 value_release_to_mark (mark)
197 value_ptr mark;
198 {
199 value_ptr val, next;
200
201 for (val = next = all_values; next; next = VALUE_NEXT (next))
202 if (VALUE_NEXT (next) == mark)
203 {
204 all_values = VALUE_NEXT (next);
205 VALUE_NEXT (next) = 0;
206 return val;
207 }
208 all_values = 0;
209 return val;
210 }
211
212 /* Return a copy of the value ARG.
213 It contains the same contents, for same memory address,
214 but it's a different block of storage. */
215
216 value_ptr
217 value_copy (arg)
218 value_ptr arg;
219 {
220 register value_ptr val;
221 register struct type *type = VALUE_TYPE (arg);
222 if (VALUE_REPEATED (arg))
223 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
224 else
225 val = allocate_value (type);
226 VALUE_LVAL (val) = VALUE_LVAL (arg);
227 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
228 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
229 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
230 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
231 VALUE_FRAME (val) = VALUE_FRAME (arg);
232 VALUE_REGNO (val) = VALUE_REGNO (arg);
233 VALUE_LAZY (val) = VALUE_LAZY (arg);
234 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
235 val->modifiable = arg->modifiable;
236 if (!VALUE_LAZY (val))
237 {
238 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
239 TYPE_LENGTH (VALUE_TYPE (arg))
240 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
241 }
242 return val;
243 }
244 \f
245 /* Access to the value history. */
246
247 /* Record a new value in the value history.
248 Returns the absolute history index of the entry.
249 Result of -1 indicates the value was not saved; otherwise it is the
250 value history index of this new item. */
251
252 int
253 record_latest_value (val)
254 value_ptr val;
255 {
256 int i;
257
258 /* Check error now if about to store an invalid float. We return -1
259 to the caller, but allow them to continue, e.g. to print it as "Nan". */
260 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
261 {
262 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
263 if (i) return -1; /* Indicate value not saved in history */
264 }
265
266 /* We don't want this value to have anything to do with the inferior anymore.
267 In particular, "set $1 = 50" should not affect the variable from which
268 the value was taken, and fast watchpoints should be able to assume that
269 a value on the value history never changes. */
270 if (VALUE_LAZY (val))
271 value_fetch_lazy (val);
272 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
273 from. This is a bit dubious, because then *&$1 does not just return $1
274 but the current contents of that location. c'est la vie... */
275 val->modifiable = 0;
276 release_value (val);
277
278 /* Here we treat value_history_count as origin-zero
279 and applying to the value being stored now. */
280
281 i = value_history_count % VALUE_HISTORY_CHUNK;
282 if (i == 0)
283 {
284 register struct value_history_chunk *new
285 = (struct value_history_chunk *)
286 xmalloc (sizeof (struct value_history_chunk));
287 memset (new->values, 0, sizeof new->values);
288 new->next = value_history_chain;
289 value_history_chain = new;
290 }
291
292 value_history_chain->values[i] = val;
293
294 /* Now we regard value_history_count as origin-one
295 and applying to the value just stored. */
296
297 return ++value_history_count;
298 }
299
300 /* Return a copy of the value in the history with sequence number NUM. */
301
302 value_ptr
303 access_value_history (num)
304 int num;
305 {
306 register struct value_history_chunk *chunk;
307 register int i;
308 register int absnum = num;
309
310 if (absnum <= 0)
311 absnum += value_history_count;
312
313 if (absnum <= 0)
314 {
315 if (num == 0)
316 error ("The history is empty.");
317 else if (num == 1)
318 error ("There is only one value in the history.");
319 else
320 error ("History does not go back to $$%d.", -num);
321 }
322 if (absnum > value_history_count)
323 error ("History has not yet reached $%d.", absnum);
324
325 absnum--;
326
327 /* Now absnum is always absolute and origin zero. */
328
329 chunk = value_history_chain;
330 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
331 i > 0; i--)
332 chunk = chunk->next;
333
334 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
335 }
336
337 /* Clear the value history entirely.
338 Must be done when new symbol tables are loaded,
339 because the type pointers become invalid. */
340
341 void
342 clear_value_history ()
343 {
344 register struct value_history_chunk *next;
345 register int i;
346 register value_ptr val;
347
348 while (value_history_chain)
349 {
350 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
351 if ((val = value_history_chain->values[i]) != NULL)
352 free ((PTR)val);
353 next = value_history_chain->next;
354 free ((PTR)value_history_chain);
355 value_history_chain = next;
356 }
357 value_history_count = 0;
358 }
359
360 static void
361 show_values (num_exp, from_tty)
362 char *num_exp;
363 int from_tty;
364 {
365 register int i;
366 register value_ptr val;
367 static int num = 1;
368
369 if (num_exp)
370 {
371 /* "info history +" should print from the stored position.
372 "info history <exp>" should print around value number <exp>. */
373 if (num_exp[0] != '+' || num_exp[1] != '\0')
374 num = parse_and_eval_address (num_exp) - 5;
375 }
376 else
377 {
378 /* "info history" means print the last 10 values. */
379 num = value_history_count - 9;
380 }
381
382 if (num <= 0)
383 num = 1;
384
385 for (i = num; i < num + 10 && i <= value_history_count; i++)
386 {
387 val = access_value_history (i);
388 printf_filtered ("$%d = ", i);
389 value_print (val, gdb_stdout, 0, Val_pretty_default);
390 printf_filtered ("\n");
391 }
392
393 /* The next "info history +" should start after what we just printed. */
394 num += 10;
395
396 /* Hitting just return after this command should do the same thing as
397 "info history +". If num_exp is null, this is unnecessary, since
398 "info history +" is not useful after "info history". */
399 if (from_tty && num_exp)
400 {
401 num_exp[0] = '+';
402 num_exp[1] = '\0';
403 }
404 }
405 \f
406 /* Internal variables. These are variables within the debugger
407 that hold values assigned by debugger commands.
408 The user refers to them with a '$' prefix
409 that does not appear in the variable names stored internally. */
410
411 static struct internalvar *internalvars;
412
413 /* Look up an internal variable with name NAME. NAME should not
414 normally include a dollar sign.
415
416 If the specified internal variable does not exist,
417 one is created, with a void value. */
418
419 struct internalvar *
420 lookup_internalvar (name)
421 char *name;
422 {
423 register struct internalvar *var;
424
425 for (var = internalvars; var; var = var->next)
426 if (STREQ (var->name, name))
427 return var;
428
429 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
430 var->name = concat (name, NULL);
431 var->value = allocate_value (builtin_type_void);
432 release_value (var->value);
433 var->next = internalvars;
434 internalvars = var;
435 return var;
436 }
437
438 value_ptr
439 value_of_internalvar (var)
440 struct internalvar *var;
441 {
442 register value_ptr val;
443
444 #ifdef IS_TRAPPED_INTERNALVAR
445 if (IS_TRAPPED_INTERNALVAR (var->name))
446 return VALUE_OF_TRAPPED_INTERNALVAR (var);
447 #endif
448
449 val = value_copy (var->value);
450 if (VALUE_LAZY (val))
451 value_fetch_lazy (val);
452 VALUE_LVAL (val) = lval_internalvar;
453 VALUE_INTERNALVAR (val) = var;
454 return val;
455 }
456
457 void
458 set_internalvar_component (var, offset, bitpos, bitsize, newval)
459 struct internalvar *var;
460 int offset, bitpos, bitsize;
461 value_ptr newval;
462 {
463 register char *addr = VALUE_CONTENTS (var->value) + offset;
464
465 #ifdef IS_TRAPPED_INTERNALVAR
466 if (IS_TRAPPED_INTERNALVAR (var->name))
467 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
468 #endif
469
470 if (bitsize)
471 modify_field (addr, value_as_long (newval),
472 bitpos, bitsize);
473 else
474 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
475 }
476
477 void
478 set_internalvar (var, val)
479 struct internalvar *var;
480 value_ptr val;
481 {
482 value_ptr newval;
483
484 #ifdef IS_TRAPPED_INTERNALVAR
485 if (IS_TRAPPED_INTERNALVAR (var->name))
486 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
487 #endif
488
489 newval = value_copy (val);
490 newval->modifiable = 1;
491
492 /* Force the value to be fetched from the target now, to avoid problems
493 later when this internalvar is referenced and the target is gone or
494 has changed. */
495 if (VALUE_LAZY (newval))
496 value_fetch_lazy (newval);
497
498 /* Begin code which must not call error(). If var->value points to
499 something free'd, an error() obviously leaves a dangling pointer.
500 But we also get a danling pointer if var->value points to
501 something in the value chain (i.e., before release_value is
502 called), because after the error free_all_values will get called before
503 long. */
504 free ((PTR)var->value);
505 var->value = newval;
506 release_value (newval);
507 /* End code which must not call error(). */
508 }
509
510 char *
511 internalvar_name (var)
512 struct internalvar *var;
513 {
514 return var->name;
515 }
516
517 /* Free all internalvars. Done when new symtabs are loaded,
518 because that makes the values invalid. */
519
520 void
521 clear_internalvars ()
522 {
523 register struct internalvar *var;
524
525 while (internalvars)
526 {
527 var = internalvars;
528 internalvars = var->next;
529 free ((PTR)var->name);
530 free ((PTR)var->value);
531 free ((PTR)var);
532 }
533 }
534
535 static void
536 show_convenience (ignore, from_tty)
537 char *ignore;
538 int from_tty;
539 {
540 register struct internalvar *var;
541 int varseen = 0;
542
543 for (var = internalvars; var; var = var->next)
544 {
545 #ifdef IS_TRAPPED_INTERNALVAR
546 if (IS_TRAPPED_INTERNALVAR (var->name))
547 continue;
548 #endif
549 if (!varseen)
550 {
551 varseen = 1;
552 }
553 printf_filtered ("$%s = ", var->name);
554 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
555 printf_filtered ("\n");
556 }
557 if (!varseen)
558 printf_unfiltered ("No debugger convenience variables now defined.\n\
559 Convenience variables have names starting with \"$\";\n\
560 use \"set\" as in \"set $foo = 5\" to define them.\n");
561 }
562 \f
563 /* Extract a value as a C number (either long or double).
564 Knows how to convert fixed values to double, or
565 floating values to long.
566 Does not deallocate the value. */
567
568 LONGEST
569 value_as_long (val)
570 register value_ptr val;
571 {
572 /* This coerces arrays and functions, which is necessary (e.g.
573 in disassemble_command). It also dereferences references, which
574 I suspect is the most logical thing to do. */
575 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
576 COERCE_ARRAY (val);
577 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
578 }
579
580 double
581 value_as_double (val)
582 register value_ptr val;
583 {
584 double foo;
585 int inv;
586
587 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
588 if (inv)
589 error ("Invalid floating value found in program.");
590 return foo;
591 }
592 /* Extract a value as a C pointer.
593 Does not deallocate the value. */
594 CORE_ADDR
595 value_as_pointer (val)
596 value_ptr val;
597 {
598 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
599 whether we want this to be true eventually. */
600 #if 0
601 /* ADDR_BITS_REMOVE is wrong if we are being called for a
602 non-address (e.g. argument to "signal", "info break", etc.), or
603 for pointers to char, in which the low bits *are* significant. */
604 return ADDR_BITS_REMOVE(value_as_long (val));
605 #else
606 return value_as_long (val);
607 #endif
608 }
609 \f
610 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
611 as a long, or as a double, assuming the raw data is described
612 by type TYPE. Knows how to convert different sizes of values
613 and can convert between fixed and floating point. We don't assume
614 any alignment for the raw data. Return value is in host byte order.
615
616 If you want functions and arrays to be coerced to pointers, and
617 references to be dereferenced, call value_as_long() instead.
618
619 C++: It is assumed that the front-end has taken care of
620 all matters concerning pointers to members. A pointer
621 to member which reaches here is considered to be equivalent
622 to an INT (or some size). After all, it is only an offset. */
623
624 LONGEST
625 unpack_long (type, valaddr)
626 struct type *type;
627 char *valaddr;
628 {
629 register enum type_code code = TYPE_CODE (type);
630 register int len = TYPE_LENGTH (type);
631 register int nosign = TYPE_UNSIGNED (type);
632
633 if (current_language->la_language == language_scm
634 && is_scmvalue_type (type))
635 return scm_unpack (type, valaddr, TYPE_CODE_INT);
636
637 switch (code)
638 {
639 case TYPE_CODE_ENUM:
640 case TYPE_CODE_BOOL:
641 case TYPE_CODE_INT:
642 case TYPE_CODE_CHAR:
643 case TYPE_CODE_RANGE:
644 if (nosign)
645 return extract_unsigned_integer (valaddr, len);
646 else
647 return extract_signed_integer (valaddr, len);
648
649 case TYPE_CODE_FLT:
650 return extract_floating (valaddr, len);
651
652 case TYPE_CODE_PTR:
653 case TYPE_CODE_REF:
654 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
655 whether we want this to be true eventually. */
656 return extract_address (valaddr, len);
657
658 case TYPE_CODE_MEMBER:
659 error ("not implemented: member types in unpack_long");
660
661 default:
662 error ("Value can't be converted to integer.");
663 }
664 return 0; /* Placate lint. */
665 }
666
667 /* Return a double value from the specified type and address.
668 INVP points to an int which is set to 0 for valid value,
669 1 for invalid value (bad float format). In either case,
670 the returned double is OK to use. Argument is in target
671 format, result is in host format. */
672
673 double
674 unpack_double (type, valaddr, invp)
675 struct type *type;
676 char *valaddr;
677 int *invp;
678 {
679 register enum type_code code = TYPE_CODE (type);
680 register int len = TYPE_LENGTH (type);
681 register int nosign = TYPE_UNSIGNED (type);
682
683 *invp = 0; /* Assume valid. */
684 if (code == TYPE_CODE_FLT)
685 {
686 #ifdef INVALID_FLOAT
687 if (INVALID_FLOAT (valaddr, len))
688 {
689 *invp = 1;
690 return 1.234567891011121314;
691 }
692 #endif
693 return extract_floating (valaddr, len);
694 }
695 else if (nosign)
696 {
697 /* Unsigned -- be sure we compensate for signed LONGEST. */
698 return (unsigned LONGEST) unpack_long (type, valaddr);
699 }
700 else
701 {
702 /* Signed -- we are OK with unpack_long. */
703 return unpack_long (type, valaddr);
704 }
705 }
706
707 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
708 as a CORE_ADDR, assuming the raw data is described by type TYPE.
709 We don't assume any alignment for the raw data. Return value is in
710 host byte order.
711
712 If you want functions and arrays to be coerced to pointers, and
713 references to be dereferenced, call value_as_pointer() instead.
714
715 C++: It is assumed that the front-end has taken care of
716 all matters concerning pointers to members. A pointer
717 to member which reaches here is considered to be equivalent
718 to an INT (or some size). After all, it is only an offset. */
719
720 CORE_ADDR
721 unpack_pointer (type, valaddr)
722 struct type *type;
723 char *valaddr;
724 {
725 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
726 whether we want this to be true eventually. */
727 return unpack_long (type, valaddr);
728 }
729 \f
730 /* Given a value ARG1 (offset by OFFSET bytes)
731 of a struct or union type ARG_TYPE,
732 extract and return the value of one of its fields.
733 FIELDNO says which field.
734
735 For C++, must also be able to return values from static fields */
736
737 value_ptr
738 value_primitive_field (arg1, offset, fieldno, arg_type)
739 register value_ptr arg1;
740 int offset;
741 register int fieldno;
742 register struct type *arg_type;
743 {
744 register value_ptr v;
745 register struct type *type;
746
747 check_stub_type (arg_type);
748 type = TYPE_FIELD_TYPE (arg_type, fieldno);
749
750 /* Handle packed fields */
751
752 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
753 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
754 {
755 v = value_from_longest (type,
756 unpack_field_as_long (arg_type,
757 VALUE_CONTENTS (arg1),
758 fieldno));
759 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
760 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
761 }
762 else
763 {
764 v = allocate_value (type);
765 if (VALUE_LAZY (arg1))
766 VALUE_LAZY (v) = 1;
767 else
768 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
769 TYPE_LENGTH (type));
770 }
771 VALUE_LVAL (v) = VALUE_LVAL (arg1);
772 if (VALUE_LVAL (arg1) == lval_internalvar)
773 VALUE_LVAL (v) = lval_internalvar_component;
774 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
775 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
776 return v;
777 }
778
779 /* Given a value ARG1 of a struct or union type,
780 extract and return the value of one of its fields.
781 FIELDNO says which field.
782
783 For C++, must also be able to return values from static fields */
784
785 value_ptr
786 value_field (arg1, fieldno)
787 register value_ptr arg1;
788 register int fieldno;
789 {
790 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
791 }
792
793 /* Return a non-virtual function as a value.
794 F is the list of member functions which contains the desired method.
795 J is an index into F which provides the desired method. */
796
797 value_ptr
798 value_fn_field (arg1p, f, j, type, offset)
799 value_ptr *arg1p;
800 struct fn_field *f;
801 int j;
802 struct type *type;
803 int offset;
804 {
805 register value_ptr v;
806 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
807 struct symbol *sym;
808
809 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
810 0, VAR_NAMESPACE, 0, NULL);
811 if (! sym)
812 return NULL;
813 /*
814 error ("Internal error: could not find physical method named %s",
815 TYPE_FN_FIELD_PHYSNAME (f, j));
816 */
817
818 v = allocate_value (ftype);
819 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
820 VALUE_TYPE (v) = ftype;
821
822 if (arg1p)
823 {
824 if (type != VALUE_TYPE (*arg1p))
825 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
826 value_addr (*arg1p)));
827
828 /* Move the `this' pointer according to the offset.
829 VALUE_OFFSET (*arg1p) += offset;
830 */
831 }
832
833 return v;
834 }
835
836 /* Return a virtual function as a value.
837 ARG1 is the object which provides the virtual function
838 table pointer. *ARG1P is side-effected in calling this function.
839 F is the list of member functions which contains the desired virtual
840 function.
841 J is an index into F which provides the desired virtual function.
842
843 TYPE is the type in which F is located. */
844 value_ptr
845 value_virtual_fn_field (arg1p, f, j, type, offset)
846 value_ptr *arg1p;
847 struct fn_field *f;
848 int j;
849 struct type *type;
850 int offset;
851 {
852 value_ptr arg1 = *arg1p;
853 /* First, get the virtual function table pointer. That comes
854 with a strange type, so cast it to type `pointer to long' (which
855 should serve just fine as a function type). Then, index into
856 the table, and convert final value to appropriate function type. */
857 value_ptr entry, vfn, vtbl;
858 value_ptr vi = value_from_longest (builtin_type_int,
859 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
860 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
861 struct type *context;
862 if (fcontext == NULL)
863 /* We don't have an fcontext (e.g. the program was compiled with
864 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
865 This won't work right for multiple inheritance, but at least we
866 should do as well as GDB 3.x did. */
867 fcontext = TYPE_VPTR_BASETYPE (type);
868 context = lookup_pointer_type (fcontext);
869 /* Now context is a pointer to the basetype containing the vtbl. */
870 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
871 arg1 = value_ind (value_cast (context, value_addr (arg1)));
872
873 context = VALUE_TYPE (arg1);
874 /* Now context is the basetype containing the vtbl. */
875
876 /* This type may have been defined before its virtual function table
877 was. If so, fill in the virtual function table entry for the
878 type now. */
879 if (TYPE_VPTR_FIELDNO (context) < 0)
880 fill_in_vptr_fieldno (context);
881
882 /* The virtual function table is now an array of structures
883 which have the form { int16 offset, delta; void *pfn; }. */
884 vtbl = value_ind (value_primitive_field (arg1, 0,
885 TYPE_VPTR_FIELDNO (context),
886 TYPE_VPTR_BASETYPE (context)));
887
888 /* Index into the virtual function table. This is hard-coded because
889 looking up a field is not cheap, and it may be important to save
890 time, e.g. if the user has set a conditional breakpoint calling
891 a virtual function. */
892 entry = value_subscript (vtbl, vi);
893
894 if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT)
895 {
896 /* Move the `this' pointer according to the virtual function table. */
897 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
898
899 if (! VALUE_LAZY (arg1))
900 {
901 VALUE_LAZY (arg1) = 1;
902 value_fetch_lazy (arg1);
903 }
904
905 vfn = value_field (entry, 2);
906 }
907 else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR)
908 vfn = entry;
909 else
910 error ("I'm confused: virtual function table has bad type");
911 /* Reinstantiate the function pointer with the correct type. */
912 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
913
914 *arg1p = arg1;
915 return vfn;
916 }
917
918 /* ARG is a pointer to an object we know to be at least
919 a DTYPE. BTYPE is the most derived basetype that has
920 already been searched (and need not be searched again).
921 After looking at the vtables between BTYPE and DTYPE,
922 return the most derived type we find. The caller must
923 be satisfied when the return value == DTYPE.
924
925 FIXME-tiemann: should work with dossier entries as well. */
926
927 static value_ptr
928 value_headof (in_arg, btype, dtype)
929 value_ptr in_arg;
930 struct type *btype, *dtype;
931 {
932 /* First collect the vtables we must look at for this object. */
933 /* FIXME-tiemann: right now, just look at top-most vtable. */
934 value_ptr arg, vtbl, entry, best_entry = 0;
935 int i, nelems;
936 int offset, best_offset = 0;
937 struct symbol *sym;
938 CORE_ADDR pc_for_sym;
939 char *demangled_name;
940 struct minimal_symbol *msymbol;
941
942 btype = TYPE_VPTR_BASETYPE (dtype);
943 check_stub_type (btype);
944 arg = in_arg;
945 if (btype != dtype)
946 arg = value_cast (lookup_pointer_type (btype), arg);
947 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
948
949 /* Check that VTBL looks like it points to a virtual function table. */
950 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
951 if (msymbol == NULL
952 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
953 || !VTBL_PREFIX_P (demangled_name))
954 {
955 /* If we expected to find a vtable, but did not, let the user
956 know that we aren't happy, but don't throw an error.
957 FIXME: there has to be a better way to do this. */
958 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
959 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
960 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
961 VALUE_TYPE (in_arg) = error_type;
962 return in_arg;
963 }
964
965 /* Now search through the virtual function table. */
966 entry = value_ind (vtbl);
967 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
968 for (i = 1; i <= nelems; i++)
969 {
970 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
971 (LONGEST) i));
972 /* This won't work if we're using thunks. */
973 if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT)
974 break;
975 offset = longest_to_int (value_as_long (value_field (entry, 0)));
976 /* If we use '<=' we can handle single inheritance
977 * where all offsets are zero - just use the first entry found. */
978 if (offset <= best_offset)
979 {
980 best_offset = offset;
981 best_entry = entry;
982 }
983 }
984 /* Move the pointer according to BEST_ENTRY's offset, and figure
985 out what type we should return as the new pointer. */
986 if (best_entry == 0)
987 {
988 /* An alternative method (which should no longer be necessary).
989 * But we leave it in for future use, when we will hopefully
990 * have optimizes the vtable to use thunks instead of offsets. */
991 /* Use the name of vtable itself to extract a base type. */
992 demangled_name += 4; /* Skip _vt$ prefix. */
993 }
994 else
995 {
996 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
997 sym = find_pc_function (pc_for_sym);
998 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
999 *(strchr (demangled_name, ':')) = '\0';
1000 }
1001 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1002 if (sym == NULL)
1003 error ("could not find type declaration for `%s'", demangled_name);
1004 if (best_entry)
1005 {
1006 free (demangled_name);
1007 arg = value_add (value_cast (builtin_type_int, arg),
1008 value_field (best_entry, 0));
1009 }
1010 else arg = in_arg;
1011 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1012 return arg;
1013 }
1014
1015 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1016 function tables, probe ARG's tables (including the vtables
1017 of its baseclasses) to figure out the most derived type that ARG
1018 could actually be a pointer to. */
1019
1020 value_ptr
1021 value_from_vtable_info (arg, type)
1022 value_ptr arg;
1023 struct type *type;
1024 {
1025 /* Take care of preliminaries. */
1026 if (TYPE_VPTR_FIELDNO (type) < 0)
1027 fill_in_vptr_fieldno (type);
1028 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1029 return 0;
1030
1031 return value_headof (arg, 0, type);
1032 }
1033
1034 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1035 pointer which is for the base class whose type is BASECLASS. */
1036
1037 static int
1038 vb_match (type, index, basetype)
1039 struct type *type;
1040 int index;
1041 struct type *basetype;
1042 {
1043 struct type *fieldtype;
1044 char *name = TYPE_FIELD_NAME (type, index);
1045 char *field_class_name = NULL;
1046
1047 if (*name != '_')
1048 return 0;
1049 /* gcc 2.4 uses _vb$. */
1050 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1051 field_class_name = name + 4;
1052 /* gcc 2.5 will use __vb_. */
1053 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1054 field_class_name = name + 5;
1055
1056 if (field_class_name == NULL)
1057 /* This field is not a virtual base class pointer. */
1058 return 0;
1059
1060 /* It's a virtual baseclass pointer, now we just need to find out whether
1061 it is for this baseclass. */
1062 fieldtype = TYPE_FIELD_TYPE (type, index);
1063 if (fieldtype == NULL
1064 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1065 /* "Can't happen". */
1066 return 0;
1067
1068 /* What we check for is that either the types are equal (needed for
1069 nameless types) or have the same name. This is ugly, and a more
1070 elegant solution should be devised (which would probably just push
1071 the ugliness into symbol reading unless we change the stabs format). */
1072 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1073 return 1;
1074
1075 if (TYPE_NAME (basetype) != NULL
1076 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1077 && STREQ (TYPE_NAME (basetype),
1078 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1079 return 1;
1080 return 0;
1081 }
1082
1083 /* Compute the offset of the baseclass which is
1084 the INDEXth baseclass of class TYPE, for a value ARG,
1085 wih extra offset of OFFSET.
1086 The result is the offste of the baseclass value relative
1087 to (the address of)(ARG) + OFFSET.
1088
1089 -1 is returned on error. */
1090
1091 int
1092 baseclass_offset (type, index, arg, offset)
1093 struct type *type;
1094 int index;
1095 value_ptr arg;
1096 int offset;
1097 {
1098 struct type *basetype = TYPE_BASECLASS (type, index);
1099
1100 if (BASETYPE_VIA_VIRTUAL (type, index))
1101 {
1102 /* Must hunt for the pointer to this virtual baseclass. */
1103 register int i, len = TYPE_NFIELDS (type);
1104 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1105
1106 /* First look for the virtual baseclass pointer
1107 in the fields. */
1108 for (i = n_baseclasses; i < len; i++)
1109 {
1110 if (vb_match (type, i, basetype))
1111 {
1112 CORE_ADDR addr
1113 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1114 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1115 + offset
1116 + (TYPE_FIELD_BITPOS (type, i) / 8));
1117
1118 if (VALUE_LVAL (arg) != lval_memory)
1119 return -1;
1120
1121 return addr -
1122 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1123 }
1124 }
1125 /* Not in the fields, so try looking through the baseclasses. */
1126 for (i = index+1; i < n_baseclasses; i++)
1127 {
1128 int boffset =
1129 baseclass_offset (type, i, arg, offset);
1130 if (boffset)
1131 return boffset;
1132 }
1133 /* Not found. */
1134 return -1;
1135 }
1136
1137 /* Baseclass is easily computed. */
1138 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1139 }
1140
1141 /* Compute the address of the baseclass which is
1142 the INDEXth baseclass of class TYPE. The TYPE base
1143 of the object is at VALADDR.
1144
1145 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1146 or 0 if no error. In that case the return value is not the address
1147 of the baseclasss, but the address which could not be read
1148 successfully. */
1149
1150 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1151
1152 char *
1153 baseclass_addr (type, index, valaddr, valuep, errp)
1154 struct type *type;
1155 int index;
1156 char *valaddr;
1157 value_ptr *valuep;
1158 int *errp;
1159 {
1160 struct type *basetype = TYPE_BASECLASS (type, index);
1161
1162 if (errp)
1163 *errp = 0;
1164
1165 if (BASETYPE_VIA_VIRTUAL (type, index))
1166 {
1167 /* Must hunt for the pointer to this virtual baseclass. */
1168 register int i, len = TYPE_NFIELDS (type);
1169 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1170
1171 /* First look for the virtual baseclass pointer
1172 in the fields. */
1173 for (i = n_baseclasses; i < len; i++)
1174 {
1175 if (vb_match (type, i, basetype))
1176 {
1177 value_ptr val = allocate_value (basetype);
1178 CORE_ADDR addr;
1179 int status;
1180
1181 addr
1182 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1183 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1184
1185 status = target_read_memory (addr,
1186 VALUE_CONTENTS_RAW (val),
1187 TYPE_LENGTH (basetype));
1188 VALUE_LVAL (val) = lval_memory;
1189 VALUE_ADDRESS (val) = addr;
1190
1191 if (status != 0)
1192 {
1193 if (valuep)
1194 *valuep = NULL;
1195 release_value (val);
1196 value_free (val);
1197 if (errp)
1198 *errp = status;
1199 return (char *)addr;
1200 }
1201 else
1202 {
1203 if (valuep)
1204 *valuep = val;
1205 return (char *) VALUE_CONTENTS (val);
1206 }
1207 }
1208 }
1209 /* Not in the fields, so try looking through the baseclasses. */
1210 for (i = index+1; i < n_baseclasses; i++)
1211 {
1212 char *baddr;
1213
1214 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1215 if (baddr)
1216 return baddr;
1217 }
1218 /* Not found. */
1219 if (valuep)
1220 *valuep = 0;
1221 return 0;
1222 }
1223
1224 /* Baseclass is easily computed. */
1225 if (valuep)
1226 *valuep = 0;
1227 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1228 }
1229 \f
1230 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1231 VALADDR.
1232
1233 Extracting bits depends on endianness of the machine. Compute the
1234 number of least significant bits to discard. For big endian machines,
1235 we compute the total number of bits in the anonymous object, subtract
1236 off the bit count from the MSB of the object to the MSB of the
1237 bitfield, then the size of the bitfield, which leaves the LSB discard
1238 count. For little endian machines, the discard count is simply the
1239 number of bits from the LSB of the anonymous object to the LSB of the
1240 bitfield.
1241
1242 If the field is signed, we also do sign extension. */
1243
1244 LONGEST
1245 unpack_field_as_long (type, valaddr, fieldno)
1246 struct type *type;
1247 char *valaddr;
1248 int fieldno;
1249 {
1250 unsigned LONGEST val;
1251 unsigned LONGEST valmask;
1252 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1253 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1254 int lsbcount;
1255
1256 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1257
1258 /* Extract bits. See comment above. */
1259
1260 if (BITS_BIG_ENDIAN)
1261 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1262 else
1263 lsbcount = (bitpos % 8);
1264 val >>= lsbcount;
1265
1266 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1267 If the field is signed, and is negative, then sign extend. */
1268
1269 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1270 {
1271 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1272 val &= valmask;
1273 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1274 {
1275 if (val & (valmask ^ (valmask >> 1)))
1276 {
1277 val |= ~valmask;
1278 }
1279 }
1280 }
1281 return (val);
1282 }
1283
1284 /* Modify the value of a bitfield. ADDR points to a block of memory in
1285 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1286 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1287 indicate which bits (in target bit order) comprise the bitfield. */
1288
1289 void
1290 modify_field (addr, fieldval, bitpos, bitsize)
1291 char *addr;
1292 LONGEST fieldval;
1293 int bitpos, bitsize;
1294 {
1295 LONGEST oword;
1296
1297 /* If a negative fieldval fits in the field in question, chop
1298 off the sign extension bits. */
1299 if (bitsize < (8 * sizeof (fieldval))
1300 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1301 fieldval = fieldval & ((1 << bitsize) - 1);
1302
1303 /* Warn if value is too big to fit in the field in question. */
1304 if (bitsize < (8 * sizeof (fieldval))
1305 && 0 != (fieldval & ~((1<<bitsize)-1)))
1306 {
1307 /* FIXME: would like to include fieldval in the message, but
1308 we don't have a sprintf_longest. */
1309 warning ("Value does not fit in %d bits.", bitsize);
1310
1311 /* Truncate it, otherwise adjoining fields may be corrupted. */
1312 fieldval = fieldval & ((1 << bitsize) - 1);
1313 }
1314
1315 oword = extract_signed_integer (addr, sizeof oword);
1316
1317 /* Shifting for bit field depends on endianness of the target machine. */
1318 if (BITS_BIG_ENDIAN)
1319 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1320
1321 /* Mask out old value, while avoiding shifts >= size of oword */
1322 if (bitsize < 8 * sizeof (oword))
1323 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1324 else
1325 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1326 oword |= fieldval << bitpos;
1327
1328 store_signed_integer (addr, sizeof oword, oword);
1329 }
1330 \f
1331 /* Convert C numbers into newly allocated values */
1332
1333 value_ptr
1334 value_from_longest (type, num)
1335 struct type *type;
1336 register LONGEST num;
1337 {
1338 register value_ptr val = allocate_value (type);
1339 register enum type_code code = TYPE_CODE (type);
1340 register int len = TYPE_LENGTH (type);
1341
1342 switch (code)
1343 {
1344 case TYPE_CODE_INT:
1345 case TYPE_CODE_CHAR:
1346 case TYPE_CODE_ENUM:
1347 case TYPE_CODE_BOOL:
1348 case TYPE_CODE_RANGE:
1349 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1350 break;
1351
1352 case TYPE_CODE_REF:
1353 case TYPE_CODE_PTR:
1354 /* This assumes that all pointers of a given length
1355 have the same form. */
1356 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1357 break;
1358
1359 default:
1360 error ("Unexpected type encountered for integer constant.");
1361 }
1362 return val;
1363 }
1364
1365 value_ptr
1366 value_from_double (type, num)
1367 struct type *type;
1368 double num;
1369 {
1370 register value_ptr val = allocate_value (type);
1371 register enum type_code code = TYPE_CODE (type);
1372 register int len = TYPE_LENGTH (type);
1373
1374 if (code == TYPE_CODE_FLT)
1375 {
1376 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1377 }
1378 else
1379 error ("Unexpected type encountered for floating constant.");
1380
1381 return val;
1382 }
1383 \f
1384 /* Deal with the value that is "about to be returned". */
1385
1386 /* Return the value that a function returning now
1387 would be returning to its caller, assuming its type is VALTYPE.
1388 RETBUF is where we look for what ought to be the contents
1389 of the registers (in raw form). This is because it is often
1390 desirable to restore old values to those registers
1391 after saving the contents of interest, and then call
1392 this function using the saved values.
1393 struct_return is non-zero when the function in question is
1394 using the structure return conventions on the machine in question;
1395 0 when it is using the value returning conventions (this often
1396 means returning pointer to where structure is vs. returning value). */
1397
1398 value_ptr
1399 value_being_returned (valtype, retbuf, struct_return)
1400 register struct type *valtype;
1401 char retbuf[REGISTER_BYTES];
1402 int struct_return;
1403 /*ARGSUSED*/
1404 {
1405 register value_ptr val;
1406 CORE_ADDR addr;
1407
1408 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1409 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1410 if (struct_return) {
1411 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1412 if (!addr)
1413 error ("Function return value unknown");
1414 return value_at (valtype, addr);
1415 }
1416 #endif
1417
1418 val = allocate_value (valtype);
1419 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1420
1421 return val;
1422 }
1423
1424 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1425 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1426 and TYPE is the type (which is known to be struct, union or array).
1427
1428 On most machines, the struct convention is used unless we are
1429 using gcc and the type is of a special size. */
1430 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1431 native compiler. GCC 2.3.3 was the last release that did it the
1432 old way. Since gcc2_compiled was not changed, we have no
1433 way to correctly win in all cases, so we just do the right thing
1434 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1435 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1436 would cause more chaos than dealing with some struct returns being
1437 handled wrong. */
1438 #if !defined (USE_STRUCT_CONVENTION)
1439 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1440 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1441 || TYPE_LENGTH (value_type) == 2 \
1442 || TYPE_LENGTH (value_type) == 4 \
1443 || TYPE_LENGTH (value_type) == 8 \
1444 ) \
1445 ))
1446 #endif
1447
1448 /* Return true if the function specified is using the structure returning
1449 convention on this machine to return arguments, or 0 if it is using
1450 the value returning convention. FUNCTION is the value representing
1451 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1452 is the type returned by the function. GCC_P is nonzero if compiled
1453 with GCC. */
1454
1455 int
1456 using_struct_return (function, funcaddr, value_type, gcc_p)
1457 value_ptr function;
1458 CORE_ADDR funcaddr;
1459 struct type *value_type;
1460 int gcc_p;
1461 /*ARGSUSED*/
1462 {
1463 register enum type_code code = TYPE_CODE (value_type);
1464
1465 if (code == TYPE_CODE_ERROR)
1466 error ("Function return type unknown.");
1467
1468 if (code == TYPE_CODE_STRUCT ||
1469 code == TYPE_CODE_UNION ||
1470 code == TYPE_CODE_ARRAY)
1471 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1472
1473 return 0;
1474 }
1475
1476 /* Store VAL so it will be returned if a function returns now.
1477 Does not verify that VAL's type matches what the current
1478 function wants to return. */
1479
1480 void
1481 set_return_value (val)
1482 value_ptr val;
1483 {
1484 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1485
1486 if (code == TYPE_CODE_ERROR)
1487 error ("Function return type unknown.");
1488
1489 if ( code == TYPE_CODE_STRUCT
1490 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1491 error ("GDB does not support specifying a struct or union return value.");
1492
1493 STORE_RETURN_VALUE (VALUE_TYPE (val), VALUE_CONTENTS (val));
1494 }
1495 \f
1496 void
1497 _initialize_values ()
1498 {
1499 add_cmd ("convenience", no_class, show_convenience,
1500 "Debugger convenience (\"$foo\") variables.\n\
1501 These variables are created when you assign them values;\n\
1502 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1503 A few convenience variables are given values automatically:\n\
1504 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1505 \"$__\" holds the contents of the last address examined with \"x\".",
1506 &showlist);
1507
1508 add_cmd ("values", no_class, show_values,
1509 "Elements of value history around item number IDX (or last ten).",
1510 &showlist);
1511 }
This page took 0.061123 seconds and 5 git commands to generate.