* values.c (set_internalvar): Don't set var->value until we are
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "demangle.h"
31
32 /* Local function prototypes. */
33
34 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
35 struct type *));
36
37 static void show_values PARAMS ((char *, int));
38
39 static void show_convenience PARAMS ((char *, int));
40
41 /* The value-history records all the values printed
42 by print commands during this session. Each chunk
43 records 60 consecutive values. The first chunk on
44 the chain records the most recent values.
45 The total number of values is in value_history_count. */
46
47 #define VALUE_HISTORY_CHUNK 60
48
49 struct value_history_chunk
50 {
51 struct value_history_chunk *next;
52 value_ptr values[VALUE_HISTORY_CHUNK];
53 };
54
55 /* Chain of chunks now in use. */
56
57 static struct value_history_chunk *value_history_chain;
58
59 static int value_history_count; /* Abs number of last entry stored */
60 \f
61 /* List of all value objects currently allocated
62 (except for those released by calls to release_value)
63 This is so they can be freed after each command. */
64
65 static value_ptr all_values;
66
67 /* Allocate a value that has the correct length for type TYPE. */
68
69 value_ptr
70 allocate_value (type)
71 struct type *type;
72 {
73 register value_ptr val;
74
75 check_stub_type (type);
76
77 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
78 VALUE_NEXT (val) = all_values;
79 all_values = val;
80 VALUE_TYPE (val) = type;
81 VALUE_LVAL (val) = not_lval;
82 VALUE_ADDRESS (val) = 0;
83 VALUE_FRAME (val) = 0;
84 VALUE_OFFSET (val) = 0;
85 VALUE_BITPOS (val) = 0;
86 VALUE_BITSIZE (val) = 0;
87 VALUE_REPEATED (val) = 0;
88 VALUE_REPETITIONS (val) = 0;
89 VALUE_REGNO (val) = -1;
90 VALUE_LAZY (val) = 0;
91 VALUE_OPTIMIZED_OUT (val) = 0;
92 val->modifiable = 1;
93 return val;
94 }
95
96 /* Allocate a value that has the correct length
97 for COUNT repetitions type TYPE. */
98
99 value_ptr
100 allocate_repeat_value (type, count)
101 struct type *type;
102 int count;
103 {
104 register value_ptr val;
105
106 val =
107 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
109 all_values = val;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
122 return val;
123 }
124
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
128 value_ptr
129 value_mark ()
130 {
131 return all_values;
132 }
133
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136 void
137 value_free_to_mark (mark)
138 value_ptr mark;
139 {
140 value_ptr val, next;
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val);
145 value_free (val);
146 }
147 all_values = val;
148 }
149
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153 void
154 free_all_values ()
155 {
156 register value_ptr val, next;
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165 }
166
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170 void
171 release_value (val)
172 register value_ptr val;
173 {
174 register value_ptr v;
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190 }
191
192 /* Return a copy of the value ARG.
193 It contains the same contents, for same memory address,
194 but it's a different block of storage. */
195
196 value_ptr
197 value_copy (arg)
198 value_ptr arg;
199 {
200 register value_ptr val;
201 register struct type *type = VALUE_TYPE (arg);
202 if (VALUE_REPEATED (arg))
203 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
204 else
205 val = allocate_value (type);
206 VALUE_LVAL (val) = VALUE_LVAL (arg);
207 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
208 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
209 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
210 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
211 VALUE_REGNO (val) = VALUE_REGNO (arg);
212 VALUE_LAZY (val) = VALUE_LAZY (arg);
213 val->modifiable = arg->modifiable;
214 if (!VALUE_LAZY (val))
215 {
216 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
217 TYPE_LENGTH (VALUE_TYPE (arg))
218 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
219 }
220 return val;
221 }
222 \f
223 /* Access to the value history. */
224
225 /* Record a new value in the value history.
226 Returns the absolute history index of the entry.
227 Result of -1 indicates the value was not saved; otherwise it is the
228 value history index of this new item. */
229
230 int
231 record_latest_value (val)
232 value_ptr val;
233 {
234 int i;
235
236 /* Check error now if about to store an invalid float. We return -1
237 to the caller, but allow them to continue, e.g. to print it as "Nan". */
238 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
239 {
240 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
241 if (i) return -1; /* Indicate value not saved in history */
242 }
243
244 /* Here we treat value_history_count as origin-zero
245 and applying to the value being stored now. */
246
247 i = value_history_count % VALUE_HISTORY_CHUNK;
248 if (i == 0)
249 {
250 register struct value_history_chunk *new
251 = (struct value_history_chunk *)
252 xmalloc (sizeof (struct value_history_chunk));
253 memset (new->values, 0, sizeof new->values);
254 new->next = value_history_chain;
255 value_history_chain = new;
256 }
257
258 value_history_chain->values[i] = val;
259
260 /* We don't want this value to have anything to do with the inferior anymore.
261 In particular, "set $1 = 50" should not affect the variable from which
262 the value was taken, and fast watchpoints should be able to assume that
263 a value on the value history never changes. */
264 if (VALUE_LAZY (val))
265 value_fetch_lazy (val);
266 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
267 from. This is a bit dubious, because then *&$1 does not just return $1
268 but the current contents of that location. c'est la vie... */
269 val->modifiable = 0;
270 release_value (val);
271
272 /* Now we regard value_history_count as origin-one
273 and applying to the value just stored. */
274
275 return ++value_history_count;
276 }
277
278 /* Return a copy of the value in the history with sequence number NUM. */
279
280 value_ptr
281 access_value_history (num)
282 int num;
283 {
284 register struct value_history_chunk *chunk;
285 register int i;
286 register int absnum = num;
287
288 if (absnum <= 0)
289 absnum += value_history_count;
290
291 if (absnum <= 0)
292 {
293 if (num == 0)
294 error ("The history is empty.");
295 else if (num == 1)
296 error ("There is only one value in the history.");
297 else
298 error ("History does not go back to $$%d.", -num);
299 }
300 if (absnum > value_history_count)
301 error ("History has not yet reached $%d.", absnum);
302
303 absnum--;
304
305 /* Now absnum is always absolute and origin zero. */
306
307 chunk = value_history_chain;
308 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
309 i > 0; i--)
310 chunk = chunk->next;
311
312 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
313 }
314
315 /* Clear the value history entirely.
316 Must be done when new symbol tables are loaded,
317 because the type pointers become invalid. */
318
319 void
320 clear_value_history ()
321 {
322 register struct value_history_chunk *next;
323 register int i;
324 register value_ptr val;
325
326 while (value_history_chain)
327 {
328 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
329 if ((val = value_history_chain->values[i]) != NULL)
330 free ((PTR)val);
331 next = value_history_chain->next;
332 free ((PTR)value_history_chain);
333 value_history_chain = next;
334 }
335 value_history_count = 0;
336 }
337
338 static void
339 show_values (num_exp, from_tty)
340 char *num_exp;
341 int from_tty;
342 {
343 register int i;
344 register value_ptr val;
345 static int num = 1;
346
347 if (num_exp)
348 {
349 /* "info history +" should print from the stored position.
350 "info history <exp>" should print around value number <exp>. */
351 if (num_exp[0] != '+' || num_exp[1] != '\0')
352 num = parse_and_eval_address (num_exp) - 5;
353 }
354 else
355 {
356 /* "info history" means print the last 10 values. */
357 num = value_history_count - 9;
358 }
359
360 if (num <= 0)
361 num = 1;
362
363 for (i = num; i < num + 10 && i <= value_history_count; i++)
364 {
365 val = access_value_history (i);
366 printf_filtered ("$%d = ", i);
367 value_print (val, gdb_stdout, 0, Val_pretty_default);
368 printf_filtered ("\n");
369 }
370
371 /* The next "info history +" should start after what we just printed. */
372 num += 10;
373
374 /* Hitting just return after this command should do the same thing as
375 "info history +". If num_exp is null, this is unnecessary, since
376 "info history +" is not useful after "info history". */
377 if (from_tty && num_exp)
378 {
379 num_exp[0] = '+';
380 num_exp[1] = '\0';
381 }
382 }
383 \f
384 /* Internal variables. These are variables within the debugger
385 that hold values assigned by debugger commands.
386 The user refers to them with a '$' prefix
387 that does not appear in the variable names stored internally. */
388
389 static struct internalvar *internalvars;
390
391 /* Look up an internal variable with name NAME. NAME should not
392 normally include a dollar sign.
393
394 If the specified internal variable does not exist,
395 one is created, with a void value. */
396
397 struct internalvar *
398 lookup_internalvar (name)
399 char *name;
400 {
401 register struct internalvar *var;
402
403 for (var = internalvars; var; var = var->next)
404 if (STREQ (var->name, name))
405 return var;
406
407 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
408 var->name = concat (name, NULL);
409 var->value = allocate_value (builtin_type_void);
410 release_value (var->value);
411 var->next = internalvars;
412 internalvars = var;
413 return var;
414 }
415
416 value_ptr
417 value_of_internalvar (var)
418 struct internalvar *var;
419 {
420 register value_ptr val;
421
422 #ifdef IS_TRAPPED_INTERNALVAR
423 if (IS_TRAPPED_INTERNALVAR (var->name))
424 return VALUE_OF_TRAPPED_INTERNALVAR (var);
425 #endif
426
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val))
429 value_fetch_lazy (val);
430 VALUE_LVAL (val) = lval_internalvar;
431 VALUE_INTERNALVAR (val) = var;
432 return val;
433 }
434
435 void
436 set_internalvar_component (var, offset, bitpos, bitsize, newval)
437 struct internalvar *var;
438 int offset, bitpos, bitsize;
439 value_ptr newval;
440 {
441 register char *addr = VALUE_CONTENTS (var->value) + offset;
442
443 #ifdef IS_TRAPPED_INTERNALVAR
444 if (IS_TRAPPED_INTERNALVAR (var->name))
445 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
446 #endif
447
448 if (bitsize)
449 modify_field (addr, value_as_long (newval),
450 bitpos, bitsize);
451 else
452 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
453 }
454
455 void
456 set_internalvar (var, val)
457 struct internalvar *var;
458 value_ptr val;
459 {
460 value_ptr newval;
461
462 #ifdef IS_TRAPPED_INTERNALVAR
463 if (IS_TRAPPED_INTERNALVAR (var->name))
464 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
465 #endif
466
467 newval = value_copy (val);
468
469 /* Force the value to be fetched from the target now, to avoid problems
470 later when this internalvar is referenced and the target is gone or
471 has changed. */
472 if (VALUE_LAZY (newval))
473 value_fetch_lazy (newval);
474
475 /* Begin code which must not call error(). If var->value points to
476 something free'd, an error() obviously leaves a dangling pointer.
477 But we also get a danling pointer if var->value points to
478 something in the value chain (i.e., before release_value is
479 called), because after the error free_all_values will get called before
480 long. */
481 free ((PTR)var->value);
482 var->value = newval;
483 release_value (newval);
484 /* End code which must not call error(). */
485 }
486
487 char *
488 internalvar_name (var)
489 struct internalvar *var;
490 {
491 return var->name;
492 }
493
494 /* Free all internalvars. Done when new symtabs are loaded,
495 because that makes the values invalid. */
496
497 void
498 clear_internalvars ()
499 {
500 register struct internalvar *var;
501
502 while (internalvars)
503 {
504 var = internalvars;
505 internalvars = var->next;
506 free ((PTR)var->name);
507 free ((PTR)var->value);
508 free ((PTR)var);
509 }
510 }
511
512 static void
513 show_convenience (ignore, from_tty)
514 char *ignore;
515 int from_tty;
516 {
517 register struct internalvar *var;
518 int varseen = 0;
519
520 for (var = internalvars; var; var = var->next)
521 {
522 #ifdef IS_TRAPPED_INTERNALVAR
523 if (IS_TRAPPED_INTERNALVAR (var->name))
524 continue;
525 #endif
526 if (!varseen)
527 {
528 varseen = 1;
529 }
530 printf_filtered ("$%s = ", var->name);
531 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
532 printf_filtered ("\n");
533 }
534 if (!varseen)
535 printf_unfiltered ("No debugger convenience variables now defined.\n\
536 Convenience variables have names starting with \"$\";\n\
537 use \"set\" as in \"set $foo = 5\" to define them.\n");
538 }
539 \f
540 /* Extract a value as a C number (either long or double).
541 Knows how to convert fixed values to double, or
542 floating values to long.
543 Does not deallocate the value. */
544
545 LONGEST
546 value_as_long (val)
547 register value_ptr val;
548 {
549 /* This coerces arrays and functions, which is necessary (e.g.
550 in disassemble_command). It also dereferences references, which
551 I suspect is the most logical thing to do. */
552 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
553 COERCE_ARRAY (val);
554 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
555 }
556
557 double
558 value_as_double (val)
559 register value_ptr val;
560 {
561 double foo;
562 int inv;
563
564 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
565 if (inv)
566 error ("Invalid floating value found in program.");
567 return foo;
568 }
569 /* Extract a value as a C pointer.
570 Does not deallocate the value. */
571 CORE_ADDR
572 value_as_pointer (val)
573 value_ptr val;
574 {
575 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
576 whether we want this to be true eventually. */
577 #if 0
578 /* ADDR_BITS_REMOVE is wrong if we are being called for a
579 non-address (e.g. argument to "signal", "info break", etc.), or
580 for pointers to char, in which the low bits *are* significant. */
581 return ADDR_BITS_REMOVE(value_as_long (val));
582 #else
583 return value_as_long (val);
584 #endif
585 }
586 \f
587 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
588 as a long, or as a double, assuming the raw data is described
589 by type TYPE. Knows how to convert different sizes of values
590 and can convert between fixed and floating point. We don't assume
591 any alignment for the raw data. Return value is in host byte order.
592
593 If you want functions and arrays to be coerced to pointers, and
594 references to be dereferenced, call value_as_long() instead.
595
596 C++: It is assumed that the front-end has taken care of
597 all matters concerning pointers to members. A pointer
598 to member which reaches here is considered to be equivalent
599 to an INT (or some size). After all, it is only an offset. */
600
601 /* FIXME: This should be rewritten as a switch statement for speed and
602 ease of comprehension. */
603
604 LONGEST
605 unpack_long (type, valaddr)
606 struct type *type;
607 char *valaddr;
608 {
609 register enum type_code code = TYPE_CODE (type);
610 register int len = TYPE_LENGTH (type);
611 register int nosign = TYPE_UNSIGNED (type);
612
613 switch (code)
614 {
615 case TYPE_CODE_ENUM:
616 case TYPE_CODE_BOOL:
617 case TYPE_CODE_INT:
618 case TYPE_CODE_CHAR:
619 if (nosign)
620 return extract_unsigned_integer (valaddr, len);
621 else
622 return extract_signed_integer (valaddr, len);
623
624 case TYPE_CODE_FLT:
625 return extract_floating (valaddr, len);
626
627 case TYPE_CODE_PTR:
628 case TYPE_CODE_REF:
629 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
630 whether we want this to be true eventually. */
631 return extract_address (valaddr, len);
632
633 case TYPE_CODE_MEMBER:
634 error ("not implemented: member types in unpack_long");
635
636 default:
637 error ("Value can't be converted to integer.");
638 }
639 return 0; /* Placate lint. */
640 }
641
642 /* Return a double value from the specified type and address.
643 INVP points to an int which is set to 0 for valid value,
644 1 for invalid value (bad float format). In either case,
645 the returned double is OK to use. Argument is in target
646 format, result is in host format. */
647
648 double
649 unpack_double (type, valaddr, invp)
650 struct type *type;
651 char *valaddr;
652 int *invp;
653 {
654 register enum type_code code = TYPE_CODE (type);
655 register int len = TYPE_LENGTH (type);
656 register int nosign = TYPE_UNSIGNED (type);
657
658 *invp = 0; /* Assume valid. */
659 if (code == TYPE_CODE_FLT)
660 {
661 if (INVALID_FLOAT (valaddr, len))
662 {
663 *invp = 1;
664 return 1.234567891011121314;
665 }
666 return extract_floating (valaddr, len);
667 }
668 else if (nosign)
669 {
670 /* Unsigned -- be sure we compensate for signed LONGEST. */
671 return (unsigned LONGEST) unpack_long (type, valaddr);
672 }
673 else
674 {
675 /* Signed -- we are OK with unpack_long. */
676 return unpack_long (type, valaddr);
677 }
678 }
679
680 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
681 as a CORE_ADDR, assuming the raw data is described by type TYPE.
682 We don't assume any alignment for the raw data. Return value is in
683 host byte order.
684
685 If you want functions and arrays to be coerced to pointers, and
686 references to be dereferenced, call value_as_pointer() instead.
687
688 C++: It is assumed that the front-end has taken care of
689 all matters concerning pointers to members. A pointer
690 to member which reaches here is considered to be equivalent
691 to an INT (or some size). After all, it is only an offset. */
692
693 CORE_ADDR
694 unpack_pointer (type, valaddr)
695 struct type *type;
696 char *valaddr;
697 {
698 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
699 whether we want this to be true eventually. */
700 return unpack_long (type, valaddr);
701 }
702 \f
703 /* Given a value ARG1 (offset by OFFSET bytes)
704 of a struct or union type ARG_TYPE,
705 extract and return the value of one of its fields.
706 FIELDNO says which field.
707
708 For C++, must also be able to return values from static fields */
709
710 value_ptr
711 value_primitive_field (arg1, offset, fieldno, arg_type)
712 register value_ptr arg1;
713 int offset;
714 register int fieldno;
715 register struct type *arg_type;
716 {
717 register value_ptr v;
718 register struct type *type;
719
720 check_stub_type (arg_type);
721 type = TYPE_FIELD_TYPE (arg_type, fieldno);
722
723 /* Handle packed fields */
724
725 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
726 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
727 {
728 v = value_from_longest (type,
729 unpack_field_as_long (arg_type,
730 VALUE_CONTENTS (arg1),
731 fieldno));
732 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
733 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
734 }
735 else
736 {
737 v = allocate_value (type);
738 if (VALUE_LAZY (arg1))
739 VALUE_LAZY (v) = 1;
740 else
741 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
742 TYPE_LENGTH (type));
743 }
744 VALUE_LVAL (v) = VALUE_LVAL (arg1);
745 if (VALUE_LVAL (arg1) == lval_internalvar)
746 VALUE_LVAL (v) = lval_internalvar_component;
747 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
748 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
749 return v;
750 }
751
752 /* Given a value ARG1 of a struct or union type,
753 extract and return the value of one of its fields.
754 FIELDNO says which field.
755
756 For C++, must also be able to return values from static fields */
757
758 value_ptr
759 value_field (arg1, fieldno)
760 register value_ptr arg1;
761 register int fieldno;
762 {
763 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
764 }
765
766 /* Return a non-virtual function as a value.
767 F is the list of member functions which contains the desired method.
768 J is an index into F which provides the desired method. */
769
770 value_ptr
771 value_fn_field (arg1p, f, j, type, offset)
772 value_ptr *arg1p;
773 struct fn_field *f;
774 int j;
775 struct type *type;
776 int offset;
777 {
778 register value_ptr v;
779 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
780 struct symbol *sym;
781
782 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
783 0, VAR_NAMESPACE, 0, NULL);
784 if (! sym)
785 return NULL;
786 /*
787 error ("Internal error: could not find physical method named %s",
788 TYPE_FN_FIELD_PHYSNAME (f, j));
789 */
790
791 v = allocate_value (ftype);
792 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
793 VALUE_TYPE (v) = ftype;
794
795 if (arg1p)
796 {
797 if (type != VALUE_TYPE (*arg1p))
798 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
799 value_addr (*arg1p)));
800
801 /* Move the `this' pointer according to the offset.
802 VALUE_OFFSET (*arg1p) += offset;
803 */
804 }
805
806 return v;
807 }
808
809 /* Return a virtual function as a value.
810 ARG1 is the object which provides the virtual function
811 table pointer. *ARG1P is side-effected in calling this function.
812 F is the list of member functions which contains the desired virtual
813 function.
814 J is an index into F which provides the desired virtual function.
815
816 TYPE is the type in which F is located. */
817 value_ptr
818 value_virtual_fn_field (arg1p, f, j, type, offset)
819 value_ptr *arg1p;
820 struct fn_field *f;
821 int j;
822 struct type *type;
823 int offset;
824 {
825 value_ptr arg1 = *arg1p;
826 /* First, get the virtual function table pointer. That comes
827 with a strange type, so cast it to type `pointer to long' (which
828 should serve just fine as a function type). Then, index into
829 the table, and convert final value to appropriate function type. */
830 value_ptr entry, vfn, vtbl;
831 value_ptr vi = value_from_longest (builtin_type_int,
832 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
833 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
834 struct type *context;
835 if (fcontext == NULL)
836 /* We don't have an fcontext (e.g. the program was compiled with
837 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
838 This won't work right for multiple inheritance, but at least we
839 should do as well as GDB 3.x did. */
840 fcontext = TYPE_VPTR_BASETYPE (type);
841 context = lookup_pointer_type (fcontext);
842 /* Now context is a pointer to the basetype containing the vtbl. */
843 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
844 arg1 = value_ind (value_cast (context, value_addr (arg1)));
845
846 context = VALUE_TYPE (arg1);
847 /* Now context is the basetype containing the vtbl. */
848
849 /* This type may have been defined before its virtual function table
850 was. If so, fill in the virtual function table entry for the
851 type now. */
852 if (TYPE_VPTR_FIELDNO (context) < 0)
853 fill_in_vptr_fieldno (context);
854
855 /* The virtual function table is now an array of structures
856 which have the form { int16 offset, delta; void *pfn; }. */
857 vtbl = value_ind (value_primitive_field (arg1, 0,
858 TYPE_VPTR_FIELDNO (context),
859 TYPE_VPTR_BASETYPE (context)));
860
861 /* Index into the virtual function table. This is hard-coded because
862 looking up a field is not cheap, and it may be important to save
863 time, e.g. if the user has set a conditional breakpoint calling
864 a virtual function. */
865 entry = value_subscript (vtbl, vi);
866
867 /* Move the `this' pointer according to the virtual function table. */
868 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0))/* + offset*/;
869
870 if (! VALUE_LAZY (arg1))
871 {
872 VALUE_LAZY (arg1) = 1;
873 value_fetch_lazy (arg1);
874 }
875
876 vfn = value_field (entry, 2);
877 /* Reinstantiate the function pointer with the correct type. */
878 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
879
880 *arg1p = arg1;
881 return vfn;
882 }
883
884 /* ARG is a pointer to an object we know to be at least
885 a DTYPE. BTYPE is the most derived basetype that has
886 already been searched (and need not be searched again).
887 After looking at the vtables between BTYPE and DTYPE,
888 return the most derived type we find. The caller must
889 be satisfied when the return value == DTYPE.
890
891 FIXME-tiemann: should work with dossier entries as well. */
892
893 static value_ptr
894 value_headof (in_arg, btype, dtype)
895 value_ptr in_arg;
896 struct type *btype, *dtype;
897 {
898 /* First collect the vtables we must look at for this object. */
899 /* FIXME-tiemann: right now, just look at top-most vtable. */
900 value_ptr arg, vtbl, entry, best_entry = 0;
901 int i, nelems;
902 int offset, best_offset = 0;
903 struct symbol *sym;
904 CORE_ADDR pc_for_sym;
905 char *demangled_name;
906 struct minimal_symbol *msymbol;
907
908 btype = TYPE_VPTR_BASETYPE (dtype);
909 check_stub_type (btype);
910 arg = in_arg;
911 if (btype != dtype)
912 arg = value_cast (lookup_pointer_type (btype), arg);
913 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
914
915 /* Check that VTBL looks like it points to a virtual function table. */
916 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
917 if (msymbol == NULL
918 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
919 {
920 /* If we expected to find a vtable, but did not, let the user
921 know that we aren't happy, but don't throw an error.
922 FIXME: there has to be a better way to do this. */
923 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
924 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
925 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
926 VALUE_TYPE (in_arg) = error_type;
927 return in_arg;
928 }
929
930 /* Now search through the virtual function table. */
931 entry = value_ind (vtbl);
932 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
933 for (i = 1; i <= nelems; i++)
934 {
935 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
936 (LONGEST) i));
937 offset = longest_to_int (value_as_long (value_field (entry, 0)));
938 /* If we use '<=' we can handle single inheritance
939 * where all offsets are zero - just use the first entry found. */
940 if (offset <= best_offset)
941 {
942 best_offset = offset;
943 best_entry = entry;
944 }
945 }
946 /* Move the pointer according to BEST_ENTRY's offset, and figure
947 out what type we should return as the new pointer. */
948 if (best_entry == 0)
949 {
950 /* An alternative method (which should no longer be necessary).
951 * But we leave it in for future use, when we will hopefully
952 * have optimizes the vtable to use thunks instead of offsets. */
953 /* Use the name of vtable itself to extract a base type. */
954 demangled_name += 4; /* Skip _vt$ prefix. */
955 }
956 else
957 {
958 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
959 sym = find_pc_function (pc_for_sym);
960 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
961 *(strchr (demangled_name, ':')) = '\0';
962 }
963 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
964 if (sym == NULL)
965 error ("could not find type declaration for `%s'", demangled_name);
966 if (best_entry)
967 {
968 free (demangled_name);
969 arg = value_add (value_cast (builtin_type_int, arg),
970 value_field (best_entry, 0));
971 }
972 else arg = in_arg;
973 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
974 return arg;
975 }
976
977 /* ARG is a pointer object of type TYPE. If TYPE has virtual
978 function tables, probe ARG's tables (including the vtables
979 of its baseclasses) to figure out the most derived type that ARG
980 could actually be a pointer to. */
981
982 value_ptr
983 value_from_vtable_info (arg, type)
984 value_ptr arg;
985 struct type *type;
986 {
987 /* Take care of preliminaries. */
988 if (TYPE_VPTR_FIELDNO (type) < 0)
989 fill_in_vptr_fieldno (type);
990 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
991 return 0;
992
993 return value_headof (arg, 0, type);
994 }
995
996 /* Return true if the INDEXth field of TYPE is a virtual baseclass
997 pointer which is for the base class whose type is BASECLASS. */
998
999 static int
1000 vb_match (type, index, basetype)
1001 struct type *type;
1002 int index;
1003 struct type *basetype;
1004 {
1005 struct type *fieldtype;
1006 char *name = TYPE_FIELD_NAME (type, index);
1007 char *field_class_name = NULL;
1008
1009 if (*name != '_')
1010 return 0;
1011 /* gcc 2.4 uses _vb$. */
1012 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1013 field_class_name = name + 4;
1014 /* gcc 2.5 will use __vb_. */
1015 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1016 field_class_name = name + 5;
1017
1018 if (field_class_name == NULL)
1019 /* This field is not a virtual base class pointer. */
1020 return 0;
1021
1022 /* It's a virtual baseclass pointer, now we just need to find out whether
1023 it is for this baseclass. */
1024 fieldtype = TYPE_FIELD_TYPE (type, index);
1025 if (fieldtype == NULL
1026 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1027 /* "Can't happen". */
1028 return 0;
1029
1030 /* What we check for is that either the types are equal (needed for
1031 nameless types) or have the same name. This is ugly, and a more
1032 elegant solution should be devised (which would probably just push
1033 the ugliness into symbol reading unless we change the stabs format). */
1034 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1035 return 1;
1036
1037 if (TYPE_NAME (basetype) != NULL
1038 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1039 && STREQ (TYPE_NAME (basetype),
1040 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1041 return 1;
1042 return 0;
1043 }
1044
1045 /* Compute the offset of the baseclass which is
1046 the INDEXth baseclass of class TYPE, for a value ARG,
1047 wih extra offset of OFFSET.
1048 The result is the offste of the baseclass value relative
1049 to (the address of)(ARG) + OFFSET.
1050
1051 -1 is returned on error. */
1052
1053 int
1054 baseclass_offset (type, index, arg, offset)
1055 struct type *type;
1056 int index;
1057 value_ptr arg;
1058 int offset;
1059 {
1060 struct type *basetype = TYPE_BASECLASS (type, index);
1061
1062 if (BASETYPE_VIA_VIRTUAL (type, index))
1063 {
1064 /* Must hunt for the pointer to this virtual baseclass. */
1065 register int i, len = TYPE_NFIELDS (type);
1066 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1067
1068 /* First look for the virtual baseclass pointer
1069 in the fields. */
1070 for (i = n_baseclasses; i < len; i++)
1071 {
1072 if (vb_match (type, i, basetype))
1073 {
1074 CORE_ADDR addr
1075 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1076 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1077 + offset
1078 + (TYPE_FIELD_BITPOS (type, i) / 8));
1079
1080 if (VALUE_LVAL (arg) != lval_memory)
1081 return -1;
1082
1083 return addr -
1084 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1085 }
1086 }
1087 /* Not in the fields, so try looking through the baseclasses. */
1088 for (i = index+1; i < n_baseclasses; i++)
1089 {
1090 int boffset =
1091 baseclass_offset (type, i, arg, offset);
1092 if (boffset)
1093 return boffset;
1094 }
1095 /* Not found. */
1096 return -1;
1097 }
1098
1099 /* Baseclass is easily computed. */
1100 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1101 }
1102
1103 /* Compute the address of the baseclass which is
1104 the INDEXth baseclass of class TYPE. The TYPE base
1105 of the object is at VALADDR.
1106
1107 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1108 or 0 if no error. In that case the return value is not the address
1109 of the baseclasss, but the address which could not be read
1110 successfully. */
1111
1112 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1113
1114 char *
1115 baseclass_addr (type, index, valaddr, valuep, errp)
1116 struct type *type;
1117 int index;
1118 char *valaddr;
1119 value_ptr *valuep;
1120 int *errp;
1121 {
1122 struct type *basetype = TYPE_BASECLASS (type, index);
1123
1124 if (errp)
1125 *errp = 0;
1126
1127 if (BASETYPE_VIA_VIRTUAL (type, index))
1128 {
1129 /* Must hunt for the pointer to this virtual baseclass. */
1130 register int i, len = TYPE_NFIELDS (type);
1131 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1132
1133 /* First look for the virtual baseclass pointer
1134 in the fields. */
1135 for (i = n_baseclasses; i < len; i++)
1136 {
1137 if (vb_match (type, i, basetype))
1138 {
1139 value_ptr val = allocate_value (basetype);
1140 CORE_ADDR addr;
1141 int status;
1142
1143 addr
1144 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1145 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1146
1147 status = target_read_memory (addr,
1148 VALUE_CONTENTS_RAW (val),
1149 TYPE_LENGTH (basetype));
1150 VALUE_LVAL (val) = lval_memory;
1151 VALUE_ADDRESS (val) = addr;
1152
1153 if (status != 0)
1154 {
1155 if (valuep)
1156 *valuep = NULL;
1157 release_value (val);
1158 value_free (val);
1159 if (errp)
1160 *errp = status;
1161 return (char *)addr;
1162 }
1163 else
1164 {
1165 if (valuep)
1166 *valuep = val;
1167 return (char *) VALUE_CONTENTS (val);
1168 }
1169 }
1170 }
1171 /* Not in the fields, so try looking through the baseclasses. */
1172 for (i = index+1; i < n_baseclasses; i++)
1173 {
1174 char *baddr;
1175
1176 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1177 if (baddr)
1178 return baddr;
1179 }
1180 /* Not found. */
1181 if (valuep)
1182 *valuep = 0;
1183 return 0;
1184 }
1185
1186 /* Baseclass is easily computed. */
1187 if (valuep)
1188 *valuep = 0;
1189 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1190 }
1191 \f
1192 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1193 VALADDR.
1194
1195 Extracting bits depends on endianness of the machine. Compute the
1196 number of least significant bits to discard. For big endian machines,
1197 we compute the total number of bits in the anonymous object, subtract
1198 off the bit count from the MSB of the object to the MSB of the
1199 bitfield, then the size of the bitfield, which leaves the LSB discard
1200 count. For little endian machines, the discard count is simply the
1201 number of bits from the LSB of the anonymous object to the LSB of the
1202 bitfield.
1203
1204 If the field is signed, we also do sign extension. */
1205
1206 LONGEST
1207 unpack_field_as_long (type, valaddr, fieldno)
1208 struct type *type;
1209 char *valaddr;
1210 int fieldno;
1211 {
1212 unsigned LONGEST val;
1213 unsigned LONGEST valmask;
1214 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1215 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1216 int lsbcount;
1217
1218 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1219
1220 /* Extract bits. See comment above. */
1221
1222 #if BITS_BIG_ENDIAN
1223 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1224 #else
1225 lsbcount = (bitpos % 8);
1226 #endif
1227 val >>= lsbcount;
1228
1229 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1230 If the field is signed, and is negative, then sign extend. */
1231
1232 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1233 {
1234 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1235 val &= valmask;
1236 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1237 {
1238 if (val & (valmask ^ (valmask >> 1)))
1239 {
1240 val |= ~valmask;
1241 }
1242 }
1243 }
1244 return (val);
1245 }
1246
1247 /* Modify the value of a bitfield. ADDR points to a block of memory in
1248 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1249 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1250 indicate which bits (in target bit order) comprise the bitfield. */
1251
1252 void
1253 modify_field (addr, fieldval, bitpos, bitsize)
1254 char *addr;
1255 LONGEST fieldval;
1256 int bitpos, bitsize;
1257 {
1258 LONGEST oword;
1259
1260 /* Reject values too big to fit in the field in question,
1261 otherwise adjoining fields may be corrupted. */
1262 if (bitsize < (8 * sizeof (fieldval))
1263 && 0 != (fieldval & ~((1<<bitsize)-1)))
1264 {
1265 /* FIXME: would like to include fieldval in the message, but
1266 we don't have a sprintf_longest. */
1267 error ("Value does not fit in %d bits.", bitsize);
1268 }
1269
1270 oword = extract_signed_integer (addr, sizeof oword);
1271
1272 /* Shifting for bit field depends on endianness of the target machine. */
1273 #if BITS_BIG_ENDIAN
1274 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1275 #endif
1276
1277 /* Mask out old value, while avoiding shifts >= size of oword */
1278 if (bitsize < 8 * sizeof (oword))
1279 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1280 else
1281 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1282 oword |= fieldval << bitpos;
1283
1284 store_signed_integer (addr, sizeof oword, oword);
1285 }
1286 \f
1287 /* Convert C numbers into newly allocated values */
1288
1289 value_ptr
1290 value_from_longest (type, num)
1291 struct type *type;
1292 register LONGEST num;
1293 {
1294 register value_ptr val = allocate_value (type);
1295 register enum type_code code = TYPE_CODE (type);
1296 register int len = TYPE_LENGTH (type);
1297
1298 switch (code)
1299 {
1300 case TYPE_CODE_INT:
1301 case TYPE_CODE_CHAR:
1302 case TYPE_CODE_ENUM:
1303 case TYPE_CODE_BOOL:
1304 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1305 break;
1306
1307 case TYPE_CODE_REF:
1308 case TYPE_CODE_PTR:
1309 /* This assumes that all pointers of a given length
1310 have the same form. */
1311 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1312 break;
1313
1314 default:
1315 error ("Unexpected type encountered for integer constant.");
1316 }
1317 return val;
1318 }
1319
1320 value_ptr
1321 value_from_double (type, num)
1322 struct type *type;
1323 double num;
1324 {
1325 register value_ptr val = allocate_value (type);
1326 register enum type_code code = TYPE_CODE (type);
1327 register int len = TYPE_LENGTH (type);
1328
1329 if (code == TYPE_CODE_FLT)
1330 {
1331 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1332 }
1333 else
1334 error ("Unexpected type encountered for floating constant.");
1335
1336 return val;
1337 }
1338 \f
1339 /* Deal with the value that is "about to be returned". */
1340
1341 /* Return the value that a function returning now
1342 would be returning to its caller, assuming its type is VALTYPE.
1343 RETBUF is where we look for what ought to be the contents
1344 of the registers (in raw form). This is because it is often
1345 desirable to restore old values to those registers
1346 after saving the contents of interest, and then call
1347 this function using the saved values.
1348 struct_return is non-zero when the function in question is
1349 using the structure return conventions on the machine in question;
1350 0 when it is using the value returning conventions (this often
1351 means returning pointer to where structure is vs. returning value). */
1352
1353 value_ptr
1354 value_being_returned (valtype, retbuf, struct_return)
1355 register struct type *valtype;
1356 char retbuf[REGISTER_BYTES];
1357 int struct_return;
1358 /*ARGSUSED*/
1359 {
1360 register value_ptr val;
1361 CORE_ADDR addr;
1362
1363 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1364 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1365 if (struct_return) {
1366 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1367 if (!addr)
1368 error ("Function return value unknown");
1369 return value_at (valtype, addr);
1370 }
1371 #endif
1372
1373 val = allocate_value (valtype);
1374 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1375
1376 return val;
1377 }
1378
1379 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1380 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1381 and TYPE is the type (which is known to be struct, union or array).
1382
1383 On most machines, the struct convention is used unless we are
1384 using gcc and the type is of a special size. */
1385 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1386 native compiler. GCC 2.3.3 was the last release that did it the
1387 old way. Since gcc2_compiled was not changed, we have no
1388 way to correctly win in all cases, so we just do the right thing
1389 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1390 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1391 would cause more chaos than dealing with some struct returns being
1392 handled wrong. */
1393 #if !defined (USE_STRUCT_CONVENTION)
1394 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1395 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1396 || TYPE_LENGTH (value_type) == 2 \
1397 || TYPE_LENGTH (value_type) == 4 \
1398 || TYPE_LENGTH (value_type) == 8 \
1399 ) \
1400 ))
1401 #endif
1402
1403 /* Return true if the function specified is using the structure returning
1404 convention on this machine to return arguments, or 0 if it is using
1405 the value returning convention. FUNCTION is the value representing
1406 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1407 is the type returned by the function. GCC_P is nonzero if compiled
1408 with GCC. */
1409
1410 int
1411 using_struct_return (function, funcaddr, value_type, gcc_p)
1412 value_ptr function;
1413 CORE_ADDR funcaddr;
1414 struct type *value_type;
1415 int gcc_p;
1416 /*ARGSUSED*/
1417 {
1418 register enum type_code code = TYPE_CODE (value_type);
1419
1420 if (code == TYPE_CODE_ERROR)
1421 error ("Function return type unknown.");
1422
1423 if (code == TYPE_CODE_STRUCT ||
1424 code == TYPE_CODE_UNION ||
1425 code == TYPE_CODE_ARRAY)
1426 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1427
1428 return 0;
1429 }
1430
1431 /* Store VAL so it will be returned if a function returns now.
1432 Does not verify that VAL's type matches what the current
1433 function wants to return. */
1434
1435 void
1436 set_return_value (val)
1437 value_ptr val;
1438 {
1439 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1440 double dbuf;
1441 LONGEST lbuf;
1442
1443 if (code == TYPE_CODE_ERROR)
1444 error ("Function return type unknown.");
1445
1446 if ( code == TYPE_CODE_STRUCT
1447 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1448 error ("GDB does not support specifying a struct or union return value.");
1449
1450 /* FIXME, this is bogus. We don't know what the return conventions
1451 are, or how values should be promoted.... */
1452 if (code == TYPE_CODE_FLT)
1453 {
1454 dbuf = value_as_double (val);
1455
1456 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1457 }
1458 else
1459 {
1460 lbuf = value_as_long (val);
1461 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1462 }
1463 }
1464 \f
1465 void
1466 _initialize_values ()
1467 {
1468 add_cmd ("convenience", no_class, show_convenience,
1469 "Debugger convenience (\"$foo\") variables.\n\
1470 These variables are created when you assign them values;\n\
1471 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1472 A few convenience variables are given values automatically:\n\
1473 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1474 \"$__\" holds the contents of the last address examined with \"x\".",
1475 &showlist);
1476
1477 add_cmd ("values", no_class, show_values,
1478 "Elements of value history around item number IDX (or last ten).",
1479 &showlist);
1480 }
This page took 0.064471 seconds and 5 git commands to generate.