* language.h (struct language_defn): New field c_style_arrays.
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33
34 /* Local function prototypes. */
35
36 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
37 struct type *));
38
39 static void show_values PARAMS ((char *, int));
40
41 static void show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value_ptr values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value_ptr all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value_ptr
72 allocate_value (type)
73 struct type *type;
74 {
75 register value_ptr val;
76
77 check_stub_type (type);
78
79 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 val->modifiable = 1;
95 return val;
96 }
97
98 /* Allocate a value that has the correct length
99 for COUNT repetitions type TYPE. */
100
101 value_ptr
102 allocate_repeat_value (type, count)
103 struct type *type;
104 int count;
105 {
106 register value_ptr val;
107
108 val =
109 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
110 VALUE_NEXT (val) = all_values;
111 all_values = val;
112 VALUE_TYPE (val) = type;
113 VALUE_LVAL (val) = not_lval;
114 VALUE_ADDRESS (val) = 0;
115 VALUE_FRAME (val) = 0;
116 VALUE_OFFSET (val) = 0;
117 VALUE_BITPOS (val) = 0;
118 VALUE_BITSIZE (val) = 0;
119 VALUE_REPEATED (val) = 1;
120 VALUE_REPETITIONS (val) = count;
121 VALUE_REGNO (val) = -1;
122 VALUE_LAZY (val) = 0;
123 VALUE_OPTIMIZED_OUT (val) = 0;
124 return val;
125 }
126
127 /* Return a mark in the value chain. All values allocated after the
128 mark is obtained (except for those released) are subject to being freed
129 if a subsequent value_free_to_mark is passed the mark. */
130 value_ptr
131 value_mark ()
132 {
133 return all_values;
134 }
135
136 /* Free all values allocated since MARK was obtained by value_mark
137 (except for those released). */
138 void
139 value_free_to_mark (mark)
140 value_ptr mark;
141 {
142 value_ptr val, next;
143
144 for (val = all_values; val && val != mark; val = next)
145 {
146 next = VALUE_NEXT (val);
147 value_free (val);
148 }
149 all_values = val;
150 }
151
152 /* Free all the values that have been allocated (except for those released).
153 Called after each command, successful or not. */
154
155 void
156 free_all_values ()
157 {
158 register value_ptr val, next;
159
160 for (val = all_values; val; val = next)
161 {
162 next = VALUE_NEXT (val);
163 value_free (val);
164 }
165
166 all_values = 0;
167 }
168
169 /* Remove VAL from the chain all_values
170 so it will not be freed automatically. */
171
172 void
173 release_value (val)
174 register value_ptr val;
175 {
176 register value_ptr v;
177
178 if (all_values == val)
179 {
180 all_values = val->next;
181 return;
182 }
183
184 for (v = all_values; v; v = v->next)
185 {
186 if (v->next == val)
187 {
188 v->next = val->next;
189 break;
190 }
191 }
192 }
193
194 /* Release all values up to mark */
195 value_ptr
196 value_release_to_mark (mark)
197 value_ptr mark;
198 {
199 value_ptr val, next;
200
201 for (val = next = all_values; next; next = VALUE_NEXT (next))
202 if (VALUE_NEXT (next) == mark)
203 {
204 all_values = VALUE_NEXT (next);
205 VALUE_NEXT (next) = 0;
206 return val;
207 }
208 all_values = 0;
209 return val;
210 }
211
212 /* Return a copy of the value ARG.
213 It contains the same contents, for same memory address,
214 but it's a different block of storage. */
215
216 value_ptr
217 value_copy (arg)
218 value_ptr arg;
219 {
220 register value_ptr val;
221 register struct type *type = VALUE_TYPE (arg);
222 if (VALUE_REPEATED (arg))
223 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
224 else
225 val = allocate_value (type);
226 VALUE_LVAL (val) = VALUE_LVAL (arg);
227 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
228 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
229 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
230 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
231 VALUE_REGNO (val) = VALUE_REGNO (arg);
232 VALUE_LAZY (val) = VALUE_LAZY (arg);
233 val->modifiable = arg->modifiable;
234 if (!VALUE_LAZY (val))
235 {
236 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
237 TYPE_LENGTH (VALUE_TYPE (arg))
238 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
239 }
240 return val;
241 }
242 \f
243 /* Access to the value history. */
244
245 /* Record a new value in the value history.
246 Returns the absolute history index of the entry.
247 Result of -1 indicates the value was not saved; otherwise it is the
248 value history index of this new item. */
249
250 int
251 record_latest_value (val)
252 value_ptr val;
253 {
254 int i;
255
256 /* Check error now if about to store an invalid float. We return -1
257 to the caller, but allow them to continue, e.g. to print it as "Nan". */
258 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
259 {
260 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
261 if (i) return -1; /* Indicate value not saved in history */
262 }
263
264 /* We don't want this value to have anything to do with the inferior anymore.
265 In particular, "set $1 = 50" should not affect the variable from which
266 the value was taken, and fast watchpoints should be able to assume that
267 a value on the value history never changes. */
268 if (VALUE_LAZY (val))
269 value_fetch_lazy (val);
270 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
271 from. This is a bit dubious, because then *&$1 does not just return $1
272 but the current contents of that location. c'est la vie... */
273 val->modifiable = 0;
274 release_value (val);
275
276 /* Here we treat value_history_count as origin-zero
277 and applying to the value being stored now. */
278
279 i = value_history_count % VALUE_HISTORY_CHUNK;
280 if (i == 0)
281 {
282 register struct value_history_chunk *new
283 = (struct value_history_chunk *)
284 xmalloc (sizeof (struct value_history_chunk));
285 memset (new->values, 0, sizeof new->values);
286 new->next = value_history_chain;
287 value_history_chain = new;
288 }
289
290 value_history_chain->values[i] = val;
291
292 /* Now we regard value_history_count as origin-one
293 and applying to the value just stored. */
294
295 return ++value_history_count;
296 }
297
298 /* Return a copy of the value in the history with sequence number NUM. */
299
300 value_ptr
301 access_value_history (num)
302 int num;
303 {
304 register struct value_history_chunk *chunk;
305 register int i;
306 register int absnum = num;
307
308 if (absnum <= 0)
309 absnum += value_history_count;
310
311 if (absnum <= 0)
312 {
313 if (num == 0)
314 error ("The history is empty.");
315 else if (num == 1)
316 error ("There is only one value in the history.");
317 else
318 error ("History does not go back to $$%d.", -num);
319 }
320 if (absnum > value_history_count)
321 error ("History has not yet reached $%d.", absnum);
322
323 absnum--;
324
325 /* Now absnum is always absolute and origin zero. */
326
327 chunk = value_history_chain;
328 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
329 i > 0; i--)
330 chunk = chunk->next;
331
332 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
333 }
334
335 /* Clear the value history entirely.
336 Must be done when new symbol tables are loaded,
337 because the type pointers become invalid. */
338
339 void
340 clear_value_history ()
341 {
342 register struct value_history_chunk *next;
343 register int i;
344 register value_ptr val;
345
346 while (value_history_chain)
347 {
348 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
349 if ((val = value_history_chain->values[i]) != NULL)
350 free ((PTR)val);
351 next = value_history_chain->next;
352 free ((PTR)value_history_chain);
353 value_history_chain = next;
354 }
355 value_history_count = 0;
356 }
357
358 static void
359 show_values (num_exp, from_tty)
360 char *num_exp;
361 int from_tty;
362 {
363 register int i;
364 register value_ptr val;
365 static int num = 1;
366
367 if (num_exp)
368 {
369 /* "info history +" should print from the stored position.
370 "info history <exp>" should print around value number <exp>. */
371 if (num_exp[0] != '+' || num_exp[1] != '\0')
372 num = parse_and_eval_address (num_exp) - 5;
373 }
374 else
375 {
376 /* "info history" means print the last 10 values. */
377 num = value_history_count - 9;
378 }
379
380 if (num <= 0)
381 num = 1;
382
383 for (i = num; i < num + 10 && i <= value_history_count; i++)
384 {
385 val = access_value_history (i);
386 printf_filtered ("$%d = ", i);
387 value_print (val, gdb_stdout, 0, Val_pretty_default);
388 printf_filtered ("\n");
389 }
390
391 /* The next "info history +" should start after what we just printed. */
392 num += 10;
393
394 /* Hitting just return after this command should do the same thing as
395 "info history +". If num_exp is null, this is unnecessary, since
396 "info history +" is not useful after "info history". */
397 if (from_tty && num_exp)
398 {
399 num_exp[0] = '+';
400 num_exp[1] = '\0';
401 }
402 }
403 \f
404 /* Internal variables. These are variables within the debugger
405 that hold values assigned by debugger commands.
406 The user refers to them with a '$' prefix
407 that does not appear in the variable names stored internally. */
408
409 static struct internalvar *internalvars;
410
411 /* Look up an internal variable with name NAME. NAME should not
412 normally include a dollar sign.
413
414 If the specified internal variable does not exist,
415 one is created, with a void value. */
416
417 struct internalvar *
418 lookup_internalvar (name)
419 char *name;
420 {
421 register struct internalvar *var;
422
423 for (var = internalvars; var; var = var->next)
424 if (STREQ (var->name, name))
425 return var;
426
427 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
428 var->name = concat (name, NULL);
429 var->value = allocate_value (builtin_type_void);
430 release_value (var->value);
431 var->next = internalvars;
432 internalvars = var;
433 return var;
434 }
435
436 value_ptr
437 value_of_internalvar (var)
438 struct internalvar *var;
439 {
440 register value_ptr val;
441
442 #ifdef IS_TRAPPED_INTERNALVAR
443 if (IS_TRAPPED_INTERNALVAR (var->name))
444 return VALUE_OF_TRAPPED_INTERNALVAR (var);
445 #endif
446
447 val = value_copy (var->value);
448 if (VALUE_LAZY (val))
449 value_fetch_lazy (val);
450 VALUE_LVAL (val) = lval_internalvar;
451 VALUE_INTERNALVAR (val) = var;
452 return val;
453 }
454
455 void
456 set_internalvar_component (var, offset, bitpos, bitsize, newval)
457 struct internalvar *var;
458 int offset, bitpos, bitsize;
459 value_ptr newval;
460 {
461 register char *addr = VALUE_CONTENTS (var->value) + offset;
462
463 #ifdef IS_TRAPPED_INTERNALVAR
464 if (IS_TRAPPED_INTERNALVAR (var->name))
465 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
466 #endif
467
468 if (bitsize)
469 modify_field (addr, value_as_long (newval),
470 bitpos, bitsize);
471 else
472 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
473 }
474
475 void
476 set_internalvar (var, val)
477 struct internalvar *var;
478 value_ptr val;
479 {
480 value_ptr newval;
481
482 #ifdef IS_TRAPPED_INTERNALVAR
483 if (IS_TRAPPED_INTERNALVAR (var->name))
484 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
485 #endif
486
487 newval = value_copy (val);
488
489 /* Force the value to be fetched from the target now, to avoid problems
490 later when this internalvar is referenced and the target is gone or
491 has changed. */
492 if (VALUE_LAZY (newval))
493 value_fetch_lazy (newval);
494
495 /* Begin code which must not call error(). If var->value points to
496 something free'd, an error() obviously leaves a dangling pointer.
497 But we also get a danling pointer if var->value points to
498 something in the value chain (i.e., before release_value is
499 called), because after the error free_all_values will get called before
500 long. */
501 free ((PTR)var->value);
502 var->value = newval;
503 release_value (newval);
504 /* End code which must not call error(). */
505 }
506
507 char *
508 internalvar_name (var)
509 struct internalvar *var;
510 {
511 return var->name;
512 }
513
514 /* Free all internalvars. Done when new symtabs are loaded,
515 because that makes the values invalid. */
516
517 void
518 clear_internalvars ()
519 {
520 register struct internalvar *var;
521
522 while (internalvars)
523 {
524 var = internalvars;
525 internalvars = var->next;
526 free ((PTR)var->name);
527 free ((PTR)var->value);
528 free ((PTR)var);
529 }
530 }
531
532 static void
533 show_convenience (ignore, from_tty)
534 char *ignore;
535 int from_tty;
536 {
537 register struct internalvar *var;
538 int varseen = 0;
539
540 for (var = internalvars; var; var = var->next)
541 {
542 #ifdef IS_TRAPPED_INTERNALVAR
543 if (IS_TRAPPED_INTERNALVAR (var->name))
544 continue;
545 #endif
546 if (!varseen)
547 {
548 varseen = 1;
549 }
550 printf_filtered ("$%s = ", var->name);
551 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
552 printf_filtered ("\n");
553 }
554 if (!varseen)
555 printf_unfiltered ("No debugger convenience variables now defined.\n\
556 Convenience variables have names starting with \"$\";\n\
557 use \"set\" as in \"set $foo = 5\" to define them.\n");
558 }
559 \f
560 /* Extract a value as a C number (either long or double).
561 Knows how to convert fixed values to double, or
562 floating values to long.
563 Does not deallocate the value. */
564
565 LONGEST
566 value_as_long (val)
567 register value_ptr val;
568 {
569 /* This coerces arrays and functions, which is necessary (e.g.
570 in disassemble_command). It also dereferences references, which
571 I suspect is the most logical thing to do. */
572 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
573 COERCE_ARRAY (val);
574 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
575 }
576
577 double
578 value_as_double (val)
579 register value_ptr val;
580 {
581 double foo;
582 int inv;
583
584 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
585 if (inv)
586 error ("Invalid floating value found in program.");
587 return foo;
588 }
589 /* Extract a value as a C pointer.
590 Does not deallocate the value. */
591 CORE_ADDR
592 value_as_pointer (val)
593 value_ptr val;
594 {
595 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
596 whether we want this to be true eventually. */
597 #if 0
598 /* ADDR_BITS_REMOVE is wrong if we are being called for a
599 non-address (e.g. argument to "signal", "info break", etc.), or
600 for pointers to char, in which the low bits *are* significant. */
601 return ADDR_BITS_REMOVE(value_as_long (val));
602 #else
603 return value_as_long (val);
604 #endif
605 }
606 \f
607 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
608 as a long, or as a double, assuming the raw data is described
609 by type TYPE. Knows how to convert different sizes of values
610 and can convert between fixed and floating point. We don't assume
611 any alignment for the raw data. Return value is in host byte order.
612
613 If you want functions and arrays to be coerced to pointers, and
614 references to be dereferenced, call value_as_long() instead.
615
616 C++: It is assumed that the front-end has taken care of
617 all matters concerning pointers to members. A pointer
618 to member which reaches here is considered to be equivalent
619 to an INT (or some size). After all, it is only an offset. */
620
621 LONGEST
622 unpack_long (type, valaddr)
623 struct type *type;
624 char *valaddr;
625 {
626 register enum type_code code = TYPE_CODE (type);
627 register int len = TYPE_LENGTH (type);
628 register int nosign = TYPE_UNSIGNED (type);
629
630 switch (code)
631 {
632 case TYPE_CODE_ENUM:
633 case TYPE_CODE_BOOL:
634 case TYPE_CODE_INT:
635 case TYPE_CODE_CHAR:
636 case TYPE_CODE_RANGE:
637 if (nosign)
638 return extract_unsigned_integer (valaddr, len);
639 else
640 return extract_signed_integer (valaddr, len);
641
642 case TYPE_CODE_FLT:
643 return extract_floating (valaddr, len);
644
645 case TYPE_CODE_PTR:
646 case TYPE_CODE_REF:
647 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
648 whether we want this to be true eventually. */
649 return extract_address (valaddr, len);
650
651 case TYPE_CODE_MEMBER:
652 error ("not implemented: member types in unpack_long");
653
654 default:
655 error ("Value can't be converted to integer.");
656 }
657 return 0; /* Placate lint. */
658 }
659
660 /* Return a double value from the specified type and address.
661 INVP points to an int which is set to 0 for valid value,
662 1 for invalid value (bad float format). In either case,
663 the returned double is OK to use. Argument is in target
664 format, result is in host format. */
665
666 double
667 unpack_double (type, valaddr, invp)
668 struct type *type;
669 char *valaddr;
670 int *invp;
671 {
672 register enum type_code code = TYPE_CODE (type);
673 register int len = TYPE_LENGTH (type);
674 register int nosign = TYPE_UNSIGNED (type);
675
676 *invp = 0; /* Assume valid. */
677 if (code == TYPE_CODE_FLT)
678 {
679 #ifdef INVALID_FLOAT
680 if (INVALID_FLOAT (valaddr, len))
681 {
682 *invp = 1;
683 return 1.234567891011121314;
684 }
685 #endif
686 return extract_floating (valaddr, len);
687 }
688 else if (nosign)
689 {
690 /* Unsigned -- be sure we compensate for signed LONGEST. */
691 return (unsigned LONGEST) unpack_long (type, valaddr);
692 }
693 else
694 {
695 /* Signed -- we are OK with unpack_long. */
696 return unpack_long (type, valaddr);
697 }
698 }
699
700 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
701 as a CORE_ADDR, assuming the raw data is described by type TYPE.
702 We don't assume any alignment for the raw data. Return value is in
703 host byte order.
704
705 If you want functions and arrays to be coerced to pointers, and
706 references to be dereferenced, call value_as_pointer() instead.
707
708 C++: It is assumed that the front-end has taken care of
709 all matters concerning pointers to members. A pointer
710 to member which reaches here is considered to be equivalent
711 to an INT (or some size). After all, it is only an offset. */
712
713 CORE_ADDR
714 unpack_pointer (type, valaddr)
715 struct type *type;
716 char *valaddr;
717 {
718 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
719 whether we want this to be true eventually. */
720 return unpack_long (type, valaddr);
721 }
722 \f
723 /* Given a value ARG1 (offset by OFFSET bytes)
724 of a struct or union type ARG_TYPE,
725 extract and return the value of one of its fields.
726 FIELDNO says which field.
727
728 For C++, must also be able to return values from static fields */
729
730 value_ptr
731 value_primitive_field (arg1, offset, fieldno, arg_type)
732 register value_ptr arg1;
733 int offset;
734 register int fieldno;
735 register struct type *arg_type;
736 {
737 register value_ptr v;
738 register struct type *type;
739
740 check_stub_type (arg_type);
741 type = TYPE_FIELD_TYPE (arg_type, fieldno);
742
743 /* Handle packed fields */
744
745 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
746 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
747 {
748 v = value_from_longest (type,
749 unpack_field_as_long (arg_type,
750 VALUE_CONTENTS (arg1),
751 fieldno));
752 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
753 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
754 }
755 else
756 {
757 v = allocate_value (type);
758 if (VALUE_LAZY (arg1))
759 VALUE_LAZY (v) = 1;
760 else
761 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
762 TYPE_LENGTH (type));
763 }
764 VALUE_LVAL (v) = VALUE_LVAL (arg1);
765 if (VALUE_LVAL (arg1) == lval_internalvar)
766 VALUE_LVAL (v) = lval_internalvar_component;
767 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
768 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
769 return v;
770 }
771
772 /* Given a value ARG1 of a struct or union type,
773 extract and return the value of one of its fields.
774 FIELDNO says which field.
775
776 For C++, must also be able to return values from static fields */
777
778 value_ptr
779 value_field (arg1, fieldno)
780 register value_ptr arg1;
781 register int fieldno;
782 {
783 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
784 }
785
786 /* Return a non-virtual function as a value.
787 F is the list of member functions which contains the desired method.
788 J is an index into F which provides the desired method. */
789
790 value_ptr
791 value_fn_field (arg1p, f, j, type, offset)
792 value_ptr *arg1p;
793 struct fn_field *f;
794 int j;
795 struct type *type;
796 int offset;
797 {
798 register value_ptr v;
799 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
800 struct symbol *sym;
801
802 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
803 0, VAR_NAMESPACE, 0, NULL);
804 if (! sym)
805 return NULL;
806 /*
807 error ("Internal error: could not find physical method named %s",
808 TYPE_FN_FIELD_PHYSNAME (f, j));
809 */
810
811 v = allocate_value (ftype);
812 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
813 VALUE_TYPE (v) = ftype;
814
815 if (arg1p)
816 {
817 if (type != VALUE_TYPE (*arg1p))
818 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
819 value_addr (*arg1p)));
820
821 /* Move the `this' pointer according to the offset.
822 VALUE_OFFSET (*arg1p) += offset;
823 */
824 }
825
826 return v;
827 }
828
829 /* Return a virtual function as a value.
830 ARG1 is the object which provides the virtual function
831 table pointer. *ARG1P is side-effected in calling this function.
832 F is the list of member functions which contains the desired virtual
833 function.
834 J is an index into F which provides the desired virtual function.
835
836 TYPE is the type in which F is located. */
837 value_ptr
838 value_virtual_fn_field (arg1p, f, j, type, offset)
839 value_ptr *arg1p;
840 struct fn_field *f;
841 int j;
842 struct type *type;
843 int offset;
844 {
845 value_ptr arg1 = *arg1p;
846 /* First, get the virtual function table pointer. That comes
847 with a strange type, so cast it to type `pointer to long' (which
848 should serve just fine as a function type). Then, index into
849 the table, and convert final value to appropriate function type. */
850 value_ptr entry, vfn, vtbl;
851 value_ptr vi = value_from_longest (builtin_type_int,
852 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
853 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
854 struct type *context;
855 if (fcontext == NULL)
856 /* We don't have an fcontext (e.g. the program was compiled with
857 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
858 This won't work right for multiple inheritance, but at least we
859 should do as well as GDB 3.x did. */
860 fcontext = TYPE_VPTR_BASETYPE (type);
861 context = lookup_pointer_type (fcontext);
862 /* Now context is a pointer to the basetype containing the vtbl. */
863 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
864 arg1 = value_ind (value_cast (context, value_addr (arg1)));
865
866 context = VALUE_TYPE (arg1);
867 /* Now context is the basetype containing the vtbl. */
868
869 /* This type may have been defined before its virtual function table
870 was. If so, fill in the virtual function table entry for the
871 type now. */
872 if (TYPE_VPTR_FIELDNO (context) < 0)
873 fill_in_vptr_fieldno (context);
874
875 /* The virtual function table is now an array of structures
876 which have the form { int16 offset, delta; void *pfn; }. */
877 vtbl = value_ind (value_primitive_field (arg1, 0,
878 TYPE_VPTR_FIELDNO (context),
879 TYPE_VPTR_BASETYPE (context)));
880
881 /* Index into the virtual function table. This is hard-coded because
882 looking up a field is not cheap, and it may be important to save
883 time, e.g. if the user has set a conditional breakpoint calling
884 a virtual function. */
885 entry = value_subscript (vtbl, vi);
886
887 if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT)
888 {
889 /* Move the `this' pointer according to the virtual function table. */
890 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
891
892 if (! VALUE_LAZY (arg1))
893 {
894 VALUE_LAZY (arg1) = 1;
895 value_fetch_lazy (arg1);
896 }
897
898 vfn = value_field (entry, 2);
899 }
900 else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR)
901 vfn = entry;
902 else
903 error ("I'm confused: virtual function table has bad type");
904 /* Reinstantiate the function pointer with the correct type. */
905 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
906
907 *arg1p = arg1;
908 return vfn;
909 }
910
911 /* ARG is a pointer to an object we know to be at least
912 a DTYPE. BTYPE is the most derived basetype that has
913 already been searched (and need not be searched again).
914 After looking at the vtables between BTYPE and DTYPE,
915 return the most derived type we find. The caller must
916 be satisfied when the return value == DTYPE.
917
918 FIXME-tiemann: should work with dossier entries as well. */
919
920 static value_ptr
921 value_headof (in_arg, btype, dtype)
922 value_ptr in_arg;
923 struct type *btype, *dtype;
924 {
925 /* First collect the vtables we must look at for this object. */
926 /* FIXME-tiemann: right now, just look at top-most vtable. */
927 value_ptr arg, vtbl, entry, best_entry = 0;
928 int i, nelems;
929 int offset, best_offset = 0;
930 struct symbol *sym;
931 CORE_ADDR pc_for_sym;
932 char *demangled_name;
933 struct minimal_symbol *msymbol;
934
935 btype = TYPE_VPTR_BASETYPE (dtype);
936 check_stub_type (btype);
937 arg = in_arg;
938 if (btype != dtype)
939 arg = value_cast (lookup_pointer_type (btype), arg);
940 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
941
942 /* Check that VTBL looks like it points to a virtual function table. */
943 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
944 if (msymbol == NULL
945 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
946 || !VTBL_PREFIX_P (demangled_name))
947 {
948 /* If we expected to find a vtable, but did not, let the user
949 know that we aren't happy, but don't throw an error.
950 FIXME: there has to be a better way to do this. */
951 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
952 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
953 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
954 VALUE_TYPE (in_arg) = error_type;
955 return in_arg;
956 }
957
958 /* Now search through the virtual function table. */
959 entry = value_ind (vtbl);
960 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
961 for (i = 1; i <= nelems; i++)
962 {
963 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
964 (LONGEST) i));
965 /* This won't work if we're using thunks. */
966 if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT)
967 break;
968 offset = longest_to_int (value_as_long (value_field (entry, 0)));
969 /* If we use '<=' we can handle single inheritance
970 * where all offsets are zero - just use the first entry found. */
971 if (offset <= best_offset)
972 {
973 best_offset = offset;
974 best_entry = entry;
975 }
976 }
977 /* Move the pointer according to BEST_ENTRY's offset, and figure
978 out what type we should return as the new pointer. */
979 if (best_entry == 0)
980 {
981 /* An alternative method (which should no longer be necessary).
982 * But we leave it in for future use, when we will hopefully
983 * have optimizes the vtable to use thunks instead of offsets. */
984 /* Use the name of vtable itself to extract a base type. */
985 demangled_name += 4; /* Skip _vt$ prefix. */
986 }
987 else
988 {
989 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
990 sym = find_pc_function (pc_for_sym);
991 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
992 *(strchr (demangled_name, ':')) = '\0';
993 }
994 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
995 if (sym == NULL)
996 error ("could not find type declaration for `%s'", demangled_name);
997 if (best_entry)
998 {
999 free (demangled_name);
1000 arg = value_add (value_cast (builtin_type_int, arg),
1001 value_field (best_entry, 0));
1002 }
1003 else arg = in_arg;
1004 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1005 return arg;
1006 }
1007
1008 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1009 function tables, probe ARG's tables (including the vtables
1010 of its baseclasses) to figure out the most derived type that ARG
1011 could actually be a pointer to. */
1012
1013 value_ptr
1014 value_from_vtable_info (arg, type)
1015 value_ptr arg;
1016 struct type *type;
1017 {
1018 /* Take care of preliminaries. */
1019 if (TYPE_VPTR_FIELDNO (type) < 0)
1020 fill_in_vptr_fieldno (type);
1021 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1022 return 0;
1023
1024 return value_headof (arg, 0, type);
1025 }
1026
1027 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1028 pointer which is for the base class whose type is BASECLASS. */
1029
1030 static int
1031 vb_match (type, index, basetype)
1032 struct type *type;
1033 int index;
1034 struct type *basetype;
1035 {
1036 struct type *fieldtype;
1037 char *name = TYPE_FIELD_NAME (type, index);
1038 char *field_class_name = NULL;
1039
1040 if (*name != '_')
1041 return 0;
1042 /* gcc 2.4 uses _vb$. */
1043 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1044 field_class_name = name + 4;
1045 /* gcc 2.5 will use __vb_. */
1046 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1047 field_class_name = name + 5;
1048
1049 if (field_class_name == NULL)
1050 /* This field is not a virtual base class pointer. */
1051 return 0;
1052
1053 /* It's a virtual baseclass pointer, now we just need to find out whether
1054 it is for this baseclass. */
1055 fieldtype = TYPE_FIELD_TYPE (type, index);
1056 if (fieldtype == NULL
1057 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1058 /* "Can't happen". */
1059 return 0;
1060
1061 /* What we check for is that either the types are equal (needed for
1062 nameless types) or have the same name. This is ugly, and a more
1063 elegant solution should be devised (which would probably just push
1064 the ugliness into symbol reading unless we change the stabs format). */
1065 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1066 return 1;
1067
1068 if (TYPE_NAME (basetype) != NULL
1069 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1070 && STREQ (TYPE_NAME (basetype),
1071 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1072 return 1;
1073 return 0;
1074 }
1075
1076 /* Compute the offset of the baseclass which is
1077 the INDEXth baseclass of class TYPE, for a value ARG,
1078 wih extra offset of OFFSET.
1079 The result is the offste of the baseclass value relative
1080 to (the address of)(ARG) + OFFSET.
1081
1082 -1 is returned on error. */
1083
1084 int
1085 baseclass_offset (type, index, arg, offset)
1086 struct type *type;
1087 int index;
1088 value_ptr arg;
1089 int offset;
1090 {
1091 struct type *basetype = TYPE_BASECLASS (type, index);
1092
1093 if (BASETYPE_VIA_VIRTUAL (type, index))
1094 {
1095 /* Must hunt for the pointer to this virtual baseclass. */
1096 register int i, len = TYPE_NFIELDS (type);
1097 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1098
1099 /* First look for the virtual baseclass pointer
1100 in the fields. */
1101 for (i = n_baseclasses; i < len; i++)
1102 {
1103 if (vb_match (type, i, basetype))
1104 {
1105 CORE_ADDR addr
1106 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1107 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1108 + offset
1109 + (TYPE_FIELD_BITPOS (type, i) / 8));
1110
1111 if (VALUE_LVAL (arg) != lval_memory)
1112 return -1;
1113
1114 return addr -
1115 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1116 }
1117 }
1118 /* Not in the fields, so try looking through the baseclasses. */
1119 for (i = index+1; i < n_baseclasses; i++)
1120 {
1121 int boffset =
1122 baseclass_offset (type, i, arg, offset);
1123 if (boffset)
1124 return boffset;
1125 }
1126 /* Not found. */
1127 return -1;
1128 }
1129
1130 /* Baseclass is easily computed. */
1131 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1132 }
1133
1134 /* Compute the address of the baseclass which is
1135 the INDEXth baseclass of class TYPE. The TYPE base
1136 of the object is at VALADDR.
1137
1138 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1139 or 0 if no error. In that case the return value is not the address
1140 of the baseclasss, but the address which could not be read
1141 successfully. */
1142
1143 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1144
1145 char *
1146 baseclass_addr (type, index, valaddr, valuep, errp)
1147 struct type *type;
1148 int index;
1149 char *valaddr;
1150 value_ptr *valuep;
1151 int *errp;
1152 {
1153 struct type *basetype = TYPE_BASECLASS (type, index);
1154
1155 if (errp)
1156 *errp = 0;
1157
1158 if (BASETYPE_VIA_VIRTUAL (type, index))
1159 {
1160 /* Must hunt for the pointer to this virtual baseclass. */
1161 register int i, len = TYPE_NFIELDS (type);
1162 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1163
1164 /* First look for the virtual baseclass pointer
1165 in the fields. */
1166 for (i = n_baseclasses; i < len; i++)
1167 {
1168 if (vb_match (type, i, basetype))
1169 {
1170 value_ptr val = allocate_value (basetype);
1171 CORE_ADDR addr;
1172 int status;
1173
1174 addr
1175 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1176 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1177
1178 status = target_read_memory (addr,
1179 VALUE_CONTENTS_RAW (val),
1180 TYPE_LENGTH (basetype));
1181 VALUE_LVAL (val) = lval_memory;
1182 VALUE_ADDRESS (val) = addr;
1183
1184 if (status != 0)
1185 {
1186 if (valuep)
1187 *valuep = NULL;
1188 release_value (val);
1189 value_free (val);
1190 if (errp)
1191 *errp = status;
1192 return (char *)addr;
1193 }
1194 else
1195 {
1196 if (valuep)
1197 *valuep = val;
1198 return (char *) VALUE_CONTENTS (val);
1199 }
1200 }
1201 }
1202 /* Not in the fields, so try looking through the baseclasses. */
1203 for (i = index+1; i < n_baseclasses; i++)
1204 {
1205 char *baddr;
1206
1207 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1208 if (baddr)
1209 return baddr;
1210 }
1211 /* Not found. */
1212 if (valuep)
1213 *valuep = 0;
1214 return 0;
1215 }
1216
1217 /* Baseclass is easily computed. */
1218 if (valuep)
1219 *valuep = 0;
1220 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1221 }
1222 \f
1223 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1224 VALADDR.
1225
1226 Extracting bits depends on endianness of the machine. Compute the
1227 number of least significant bits to discard. For big endian machines,
1228 we compute the total number of bits in the anonymous object, subtract
1229 off the bit count from the MSB of the object to the MSB of the
1230 bitfield, then the size of the bitfield, which leaves the LSB discard
1231 count. For little endian machines, the discard count is simply the
1232 number of bits from the LSB of the anonymous object to the LSB of the
1233 bitfield.
1234
1235 If the field is signed, we also do sign extension. */
1236
1237 LONGEST
1238 unpack_field_as_long (type, valaddr, fieldno)
1239 struct type *type;
1240 char *valaddr;
1241 int fieldno;
1242 {
1243 unsigned LONGEST val;
1244 unsigned LONGEST valmask;
1245 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1246 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1247 int lsbcount;
1248
1249 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1250
1251 /* Extract bits. See comment above. */
1252
1253 if (BITS_BIG_ENDIAN)
1254 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1255 else
1256 lsbcount = (bitpos % 8);
1257 val >>= lsbcount;
1258
1259 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1260 If the field is signed, and is negative, then sign extend. */
1261
1262 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1263 {
1264 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1265 val &= valmask;
1266 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1267 {
1268 if (val & (valmask ^ (valmask >> 1)))
1269 {
1270 val |= ~valmask;
1271 }
1272 }
1273 }
1274 return (val);
1275 }
1276
1277 /* Modify the value of a bitfield. ADDR points to a block of memory in
1278 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1279 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1280 indicate which bits (in target bit order) comprise the bitfield. */
1281
1282 void
1283 modify_field (addr, fieldval, bitpos, bitsize)
1284 char *addr;
1285 LONGEST fieldval;
1286 int bitpos, bitsize;
1287 {
1288 LONGEST oword;
1289
1290 /* Reject values too big to fit in the field in question,
1291 otherwise adjoining fields may be corrupted. */
1292 if (bitsize < (8 * sizeof (fieldval))
1293 && 0 != (fieldval & ~((1<<bitsize)-1)))
1294 {
1295 /* FIXME: would like to include fieldval in the message, but
1296 we don't have a sprintf_longest. */
1297 error ("Value does not fit in %d bits.", bitsize);
1298 }
1299
1300 oword = extract_signed_integer (addr, sizeof oword);
1301
1302 /* Shifting for bit field depends on endianness of the target machine. */
1303 if (BITS_BIG_ENDIAN)
1304 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1305
1306 /* Mask out old value, while avoiding shifts >= size of oword */
1307 if (bitsize < 8 * sizeof (oword))
1308 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1309 else
1310 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1311 oword |= fieldval << bitpos;
1312
1313 store_signed_integer (addr, sizeof oword, oword);
1314 }
1315 \f
1316 /* Convert C numbers into newly allocated values */
1317
1318 value_ptr
1319 value_from_longest (type, num)
1320 struct type *type;
1321 register LONGEST num;
1322 {
1323 register value_ptr val = allocate_value (type);
1324 register enum type_code code = TYPE_CODE (type);
1325 register int len = TYPE_LENGTH (type);
1326
1327 switch (code)
1328 {
1329 case TYPE_CODE_INT:
1330 case TYPE_CODE_CHAR:
1331 case TYPE_CODE_ENUM:
1332 case TYPE_CODE_BOOL:
1333 case TYPE_CODE_RANGE:
1334 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1335 break;
1336
1337 case TYPE_CODE_REF:
1338 case TYPE_CODE_PTR:
1339 /* This assumes that all pointers of a given length
1340 have the same form. */
1341 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1342 break;
1343
1344 default:
1345 error ("Unexpected type encountered for integer constant.");
1346 }
1347 return val;
1348 }
1349
1350 value_ptr
1351 value_from_double (type, num)
1352 struct type *type;
1353 double num;
1354 {
1355 register value_ptr val = allocate_value (type);
1356 register enum type_code code = TYPE_CODE (type);
1357 register int len = TYPE_LENGTH (type);
1358
1359 if (code == TYPE_CODE_FLT)
1360 {
1361 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1362 }
1363 else
1364 error ("Unexpected type encountered for floating constant.");
1365
1366 return val;
1367 }
1368 \f
1369 /* Deal with the value that is "about to be returned". */
1370
1371 /* Return the value that a function returning now
1372 would be returning to its caller, assuming its type is VALTYPE.
1373 RETBUF is where we look for what ought to be the contents
1374 of the registers (in raw form). This is because it is often
1375 desirable to restore old values to those registers
1376 after saving the contents of interest, and then call
1377 this function using the saved values.
1378 struct_return is non-zero when the function in question is
1379 using the structure return conventions on the machine in question;
1380 0 when it is using the value returning conventions (this often
1381 means returning pointer to where structure is vs. returning value). */
1382
1383 value_ptr
1384 value_being_returned (valtype, retbuf, struct_return)
1385 register struct type *valtype;
1386 char retbuf[REGISTER_BYTES];
1387 int struct_return;
1388 /*ARGSUSED*/
1389 {
1390 register value_ptr val;
1391 CORE_ADDR addr;
1392
1393 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1394 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1395 if (struct_return) {
1396 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1397 if (!addr)
1398 error ("Function return value unknown");
1399 return value_at (valtype, addr);
1400 }
1401 #endif
1402
1403 val = allocate_value (valtype);
1404 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1405
1406 return val;
1407 }
1408
1409 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1410 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1411 and TYPE is the type (which is known to be struct, union or array).
1412
1413 On most machines, the struct convention is used unless we are
1414 using gcc and the type is of a special size. */
1415 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1416 native compiler. GCC 2.3.3 was the last release that did it the
1417 old way. Since gcc2_compiled was not changed, we have no
1418 way to correctly win in all cases, so we just do the right thing
1419 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1420 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1421 would cause more chaos than dealing with some struct returns being
1422 handled wrong. */
1423 #if !defined (USE_STRUCT_CONVENTION)
1424 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1425 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1426 || TYPE_LENGTH (value_type) == 2 \
1427 || TYPE_LENGTH (value_type) == 4 \
1428 || TYPE_LENGTH (value_type) == 8 \
1429 ) \
1430 ))
1431 #endif
1432
1433 /* Return true if the function specified is using the structure returning
1434 convention on this machine to return arguments, or 0 if it is using
1435 the value returning convention. FUNCTION is the value representing
1436 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1437 is the type returned by the function. GCC_P is nonzero if compiled
1438 with GCC. */
1439
1440 int
1441 using_struct_return (function, funcaddr, value_type, gcc_p)
1442 value_ptr function;
1443 CORE_ADDR funcaddr;
1444 struct type *value_type;
1445 int gcc_p;
1446 /*ARGSUSED*/
1447 {
1448 register enum type_code code = TYPE_CODE (value_type);
1449
1450 if (code == TYPE_CODE_ERROR)
1451 error ("Function return type unknown.");
1452
1453 if (code == TYPE_CODE_STRUCT ||
1454 code == TYPE_CODE_UNION ||
1455 code == TYPE_CODE_ARRAY)
1456 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1457
1458 return 0;
1459 }
1460
1461 /* Store VAL so it will be returned if a function returns now.
1462 Does not verify that VAL's type matches what the current
1463 function wants to return. */
1464
1465 void
1466 set_return_value (val)
1467 value_ptr val;
1468 {
1469 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1470
1471 if (code == TYPE_CODE_ERROR)
1472 error ("Function return type unknown.");
1473
1474 if ( code == TYPE_CODE_STRUCT
1475 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1476 error ("GDB does not support specifying a struct or union return value.");
1477
1478 STORE_RETURN_VALUE (VALUE_TYPE (val), VALUE_CONTENTS (val));
1479 }
1480 \f
1481 void
1482 _initialize_values ()
1483 {
1484 add_cmd ("convenience", no_class, show_convenience,
1485 "Debugger convenience (\"$foo\") variables.\n\
1486 These variables are created when you assign them values;\n\
1487 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1488 A few convenience variables are given values automatically:\n\
1489 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1490 \"$__\" holds the contents of the last address examined with \"x\".",
1491 &showlist);
1492
1493 add_cmd ("values", no_class, show_values,
1494 "Elements of value history around item number IDX (or last ten).",
1495 &showlist);
1496 }
This page took 0.062511 seconds and 5 git commands to generate.