* values.c (unpack_long, value_from_longest),
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "demangle.h"
31
32 /* Local function prototypes. */
33
34 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
35 struct type *));
36
37 static void show_values PARAMS ((char *, int));
38
39 static void show_convenience PARAMS ((char *, int));
40
41 /* The value-history records all the values printed
42 by print commands during this session. Each chunk
43 records 60 consecutive values. The first chunk on
44 the chain records the most recent values.
45 The total number of values is in value_history_count. */
46
47 #define VALUE_HISTORY_CHUNK 60
48
49 struct value_history_chunk
50 {
51 struct value_history_chunk *next;
52 value_ptr values[VALUE_HISTORY_CHUNK];
53 };
54
55 /* Chain of chunks now in use. */
56
57 static struct value_history_chunk *value_history_chain;
58
59 static int value_history_count; /* Abs number of last entry stored */
60 \f
61 /* List of all value objects currently allocated
62 (except for those released by calls to release_value)
63 This is so they can be freed after each command. */
64
65 static value_ptr all_values;
66
67 /* Allocate a value that has the correct length for type TYPE. */
68
69 value_ptr
70 allocate_value (type)
71 struct type *type;
72 {
73 register value_ptr val;
74
75 check_stub_type (type);
76
77 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
78 VALUE_NEXT (val) = all_values;
79 all_values = val;
80 VALUE_TYPE (val) = type;
81 VALUE_LVAL (val) = not_lval;
82 VALUE_ADDRESS (val) = 0;
83 VALUE_FRAME (val) = 0;
84 VALUE_OFFSET (val) = 0;
85 VALUE_BITPOS (val) = 0;
86 VALUE_BITSIZE (val) = 0;
87 VALUE_REPEATED (val) = 0;
88 VALUE_REPETITIONS (val) = 0;
89 VALUE_REGNO (val) = -1;
90 VALUE_LAZY (val) = 0;
91 VALUE_OPTIMIZED_OUT (val) = 0;
92 val->modifiable = 1;
93 return val;
94 }
95
96 /* Allocate a value that has the correct length
97 for COUNT repetitions type TYPE. */
98
99 value_ptr
100 allocate_repeat_value (type, count)
101 struct type *type;
102 int count;
103 {
104 register value_ptr val;
105
106 val =
107 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
109 all_values = val;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
122 return val;
123 }
124
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
128 value_ptr
129 value_mark ()
130 {
131 return all_values;
132 }
133
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136 void
137 value_free_to_mark (mark)
138 value_ptr mark;
139 {
140 value_ptr val, next;
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val);
145 value_free (val);
146 }
147 all_values = val;
148 }
149
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153 void
154 free_all_values ()
155 {
156 register value_ptr val, next;
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165 }
166
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170 void
171 release_value (val)
172 register value_ptr val;
173 {
174 register value_ptr v;
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190 }
191
192 /* Return a copy of the value ARG.
193 It contains the same contents, for same memory address,
194 but it's a different block of storage. */
195
196 value_ptr
197 value_copy (arg)
198 value_ptr arg;
199 {
200 register value_ptr val;
201 register struct type *type = VALUE_TYPE (arg);
202 if (VALUE_REPEATED (arg))
203 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
204 else
205 val = allocate_value (type);
206 VALUE_LVAL (val) = VALUE_LVAL (arg);
207 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
208 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
209 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
210 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
211 VALUE_REGNO (val) = VALUE_REGNO (arg);
212 VALUE_LAZY (val) = VALUE_LAZY (arg);
213 val->modifiable = arg->modifiable;
214 if (!VALUE_LAZY (val))
215 {
216 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
217 TYPE_LENGTH (VALUE_TYPE (arg))
218 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
219 }
220 return val;
221 }
222 \f
223 /* Access to the value history. */
224
225 /* Record a new value in the value history.
226 Returns the absolute history index of the entry.
227 Result of -1 indicates the value was not saved; otherwise it is the
228 value history index of this new item. */
229
230 int
231 record_latest_value (val)
232 value_ptr val;
233 {
234 int i;
235
236 /* Check error now if about to store an invalid float. We return -1
237 to the caller, but allow them to continue, e.g. to print it as "Nan". */
238 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
239 {
240 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
241 if (i) return -1; /* Indicate value not saved in history */
242 }
243
244 /* Here we treat value_history_count as origin-zero
245 and applying to the value being stored now. */
246
247 i = value_history_count % VALUE_HISTORY_CHUNK;
248 if (i == 0)
249 {
250 register struct value_history_chunk *new
251 = (struct value_history_chunk *)
252 xmalloc (sizeof (struct value_history_chunk));
253 memset (new->values, 0, sizeof new->values);
254 new->next = value_history_chain;
255 value_history_chain = new;
256 }
257
258 value_history_chain->values[i] = val;
259
260 /* We don't want this value to have anything to do with the inferior anymore.
261 In particular, "set $1 = 50" should not affect the variable from which
262 the value was taken, and fast watchpoints should be able to assume that
263 a value on the value history never changes. */
264 if (VALUE_LAZY (val))
265 value_fetch_lazy (val);
266 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
267 from. This is a bit dubious, because then *&$1 does not just return $1
268 but the current contents of that location. c'est la vie... */
269 val->modifiable = 0;
270 release_value (val);
271
272 /* Now we regard value_history_count as origin-one
273 and applying to the value just stored. */
274
275 return ++value_history_count;
276 }
277
278 /* Return a copy of the value in the history with sequence number NUM. */
279
280 value_ptr
281 access_value_history (num)
282 int num;
283 {
284 register struct value_history_chunk *chunk;
285 register int i;
286 register int absnum = num;
287
288 if (absnum <= 0)
289 absnum += value_history_count;
290
291 if (absnum <= 0)
292 {
293 if (num == 0)
294 error ("The history is empty.");
295 else if (num == 1)
296 error ("There is only one value in the history.");
297 else
298 error ("History does not go back to $$%d.", -num);
299 }
300 if (absnum > value_history_count)
301 error ("History has not yet reached $%d.", absnum);
302
303 absnum--;
304
305 /* Now absnum is always absolute and origin zero. */
306
307 chunk = value_history_chain;
308 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
309 i > 0; i--)
310 chunk = chunk->next;
311
312 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
313 }
314
315 /* Clear the value history entirely.
316 Must be done when new symbol tables are loaded,
317 because the type pointers become invalid. */
318
319 void
320 clear_value_history ()
321 {
322 register struct value_history_chunk *next;
323 register int i;
324 register value_ptr val;
325
326 while (value_history_chain)
327 {
328 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
329 if ((val = value_history_chain->values[i]) != NULL)
330 free ((PTR)val);
331 next = value_history_chain->next;
332 free ((PTR)value_history_chain);
333 value_history_chain = next;
334 }
335 value_history_count = 0;
336 }
337
338 static void
339 show_values (num_exp, from_tty)
340 char *num_exp;
341 int from_tty;
342 {
343 register int i;
344 register value_ptr val;
345 static int num = 1;
346
347 if (num_exp)
348 {
349 /* "info history +" should print from the stored position.
350 "info history <exp>" should print around value number <exp>. */
351 if (num_exp[0] != '+' || num_exp[1] != '\0')
352 num = parse_and_eval_address (num_exp) - 5;
353 }
354 else
355 {
356 /* "info history" means print the last 10 values. */
357 num = value_history_count - 9;
358 }
359
360 if (num <= 0)
361 num = 1;
362
363 for (i = num; i < num + 10 && i <= value_history_count; i++)
364 {
365 val = access_value_history (i);
366 printf_filtered ("$%d = ", i);
367 value_print (val, gdb_stdout, 0, Val_pretty_default);
368 printf_filtered ("\n");
369 }
370
371 /* The next "info history +" should start after what we just printed. */
372 num += 10;
373
374 /* Hitting just return after this command should do the same thing as
375 "info history +". If num_exp is null, this is unnecessary, since
376 "info history +" is not useful after "info history". */
377 if (from_tty && num_exp)
378 {
379 num_exp[0] = '+';
380 num_exp[1] = '\0';
381 }
382 }
383 \f
384 /* Internal variables. These are variables within the debugger
385 that hold values assigned by debugger commands.
386 The user refers to them with a '$' prefix
387 that does not appear in the variable names stored internally. */
388
389 static struct internalvar *internalvars;
390
391 /* Look up an internal variable with name NAME. NAME should not
392 normally include a dollar sign.
393
394 If the specified internal variable does not exist,
395 one is created, with a void value. */
396
397 struct internalvar *
398 lookup_internalvar (name)
399 char *name;
400 {
401 register struct internalvar *var;
402
403 for (var = internalvars; var; var = var->next)
404 if (STREQ (var->name, name))
405 return var;
406
407 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
408 var->name = concat (name, NULL);
409 var->value = allocate_value (builtin_type_void);
410 release_value (var->value);
411 var->next = internalvars;
412 internalvars = var;
413 return var;
414 }
415
416 value_ptr
417 value_of_internalvar (var)
418 struct internalvar *var;
419 {
420 register value_ptr val;
421
422 #ifdef IS_TRAPPED_INTERNALVAR
423 if (IS_TRAPPED_INTERNALVAR (var->name))
424 return VALUE_OF_TRAPPED_INTERNALVAR (var);
425 #endif
426
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val))
429 value_fetch_lazy (val);
430 VALUE_LVAL (val) = lval_internalvar;
431 VALUE_INTERNALVAR (val) = var;
432 return val;
433 }
434
435 void
436 set_internalvar_component (var, offset, bitpos, bitsize, newval)
437 struct internalvar *var;
438 int offset, bitpos, bitsize;
439 value_ptr newval;
440 {
441 register char *addr = VALUE_CONTENTS (var->value) + offset;
442
443 #ifdef IS_TRAPPED_INTERNALVAR
444 if (IS_TRAPPED_INTERNALVAR (var->name))
445 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
446 #endif
447
448 if (bitsize)
449 modify_field (addr, value_as_long (newval),
450 bitpos, bitsize);
451 else
452 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
453 }
454
455 void
456 set_internalvar (var, val)
457 struct internalvar *var;
458 value_ptr val;
459 {
460 value_ptr newval;
461
462 #ifdef IS_TRAPPED_INTERNALVAR
463 if (IS_TRAPPED_INTERNALVAR (var->name))
464 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
465 #endif
466
467 newval = value_copy (val);
468
469 /* Force the value to be fetched from the target now, to avoid problems
470 later when this internalvar is referenced and the target is gone or
471 has changed. */
472 if (VALUE_LAZY (newval))
473 value_fetch_lazy (newval);
474
475 /* Begin code which must not call error(). If var->value points to
476 something free'd, an error() obviously leaves a dangling pointer.
477 But we also get a danling pointer if var->value points to
478 something in the value chain (i.e., before release_value is
479 called), because after the error free_all_values will get called before
480 long. */
481 free ((PTR)var->value);
482 var->value = newval;
483 release_value (newval);
484 /* End code which must not call error(). */
485 }
486
487 char *
488 internalvar_name (var)
489 struct internalvar *var;
490 {
491 return var->name;
492 }
493
494 /* Free all internalvars. Done when new symtabs are loaded,
495 because that makes the values invalid. */
496
497 void
498 clear_internalvars ()
499 {
500 register struct internalvar *var;
501
502 while (internalvars)
503 {
504 var = internalvars;
505 internalvars = var->next;
506 free ((PTR)var->name);
507 free ((PTR)var->value);
508 free ((PTR)var);
509 }
510 }
511
512 static void
513 show_convenience (ignore, from_tty)
514 char *ignore;
515 int from_tty;
516 {
517 register struct internalvar *var;
518 int varseen = 0;
519
520 for (var = internalvars; var; var = var->next)
521 {
522 #ifdef IS_TRAPPED_INTERNALVAR
523 if (IS_TRAPPED_INTERNALVAR (var->name))
524 continue;
525 #endif
526 if (!varseen)
527 {
528 varseen = 1;
529 }
530 printf_filtered ("$%s = ", var->name);
531 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
532 printf_filtered ("\n");
533 }
534 if (!varseen)
535 printf_unfiltered ("No debugger convenience variables now defined.\n\
536 Convenience variables have names starting with \"$\";\n\
537 use \"set\" as in \"set $foo = 5\" to define them.\n");
538 }
539 \f
540 /* Extract a value as a C number (either long or double).
541 Knows how to convert fixed values to double, or
542 floating values to long.
543 Does not deallocate the value. */
544
545 LONGEST
546 value_as_long (val)
547 register value_ptr val;
548 {
549 /* This coerces arrays and functions, which is necessary (e.g.
550 in disassemble_command). It also dereferences references, which
551 I suspect is the most logical thing to do. */
552 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
553 COERCE_ARRAY (val);
554 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
555 }
556
557 double
558 value_as_double (val)
559 register value_ptr val;
560 {
561 double foo;
562 int inv;
563
564 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
565 if (inv)
566 error ("Invalid floating value found in program.");
567 return foo;
568 }
569 /* Extract a value as a C pointer.
570 Does not deallocate the value. */
571 CORE_ADDR
572 value_as_pointer (val)
573 value_ptr val;
574 {
575 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
576 whether we want this to be true eventually. */
577 #if 0
578 /* ADDR_BITS_REMOVE is wrong if we are being called for a
579 non-address (e.g. argument to "signal", "info break", etc.), or
580 for pointers to char, in which the low bits *are* significant. */
581 return ADDR_BITS_REMOVE(value_as_long (val));
582 #else
583 return value_as_long (val);
584 #endif
585 }
586 \f
587 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
588 as a long, or as a double, assuming the raw data is described
589 by type TYPE. Knows how to convert different sizes of values
590 and can convert between fixed and floating point. We don't assume
591 any alignment for the raw data. Return value is in host byte order.
592
593 If you want functions and arrays to be coerced to pointers, and
594 references to be dereferenced, call value_as_long() instead.
595
596 C++: It is assumed that the front-end has taken care of
597 all matters concerning pointers to members. A pointer
598 to member which reaches here is considered to be equivalent
599 to an INT (or some size). After all, it is only an offset. */
600
601 /* FIXME: This should be rewritten as a switch statement for speed and
602 ease of comprehension. */
603
604 LONGEST
605 unpack_long (type, valaddr)
606 struct type *type;
607 char *valaddr;
608 {
609 register enum type_code code = TYPE_CODE (type);
610 register int len = TYPE_LENGTH (type);
611 register int nosign = TYPE_UNSIGNED (type);
612
613 switch (code)
614 {
615 case TYPE_CODE_ENUM:
616 case TYPE_CODE_BOOL:
617 case TYPE_CODE_INT:
618 case TYPE_CODE_CHAR:
619 case TYPE_CODE_RANGE:
620 if (nosign)
621 return extract_unsigned_integer (valaddr, len);
622 else
623 return extract_signed_integer (valaddr, len);
624
625 case TYPE_CODE_FLT:
626 return extract_floating (valaddr, len);
627
628 case TYPE_CODE_PTR:
629 case TYPE_CODE_REF:
630 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
631 whether we want this to be true eventually. */
632 return extract_address (valaddr, len);
633
634 case TYPE_CODE_MEMBER:
635 error ("not implemented: member types in unpack_long");
636
637 default:
638 error ("Value can't be converted to integer.");
639 }
640 return 0; /* Placate lint. */
641 }
642
643 /* Return a double value from the specified type and address.
644 INVP points to an int which is set to 0 for valid value,
645 1 for invalid value (bad float format). In either case,
646 the returned double is OK to use. Argument is in target
647 format, result is in host format. */
648
649 double
650 unpack_double (type, valaddr, invp)
651 struct type *type;
652 char *valaddr;
653 int *invp;
654 {
655 register enum type_code code = TYPE_CODE (type);
656 register int len = TYPE_LENGTH (type);
657 register int nosign = TYPE_UNSIGNED (type);
658
659 *invp = 0; /* Assume valid. */
660 if (code == TYPE_CODE_FLT)
661 {
662 if (INVALID_FLOAT (valaddr, len))
663 {
664 *invp = 1;
665 return 1.234567891011121314;
666 }
667 return extract_floating (valaddr, len);
668 }
669 else if (nosign)
670 {
671 /* Unsigned -- be sure we compensate for signed LONGEST. */
672 return (unsigned LONGEST) unpack_long (type, valaddr);
673 }
674 else
675 {
676 /* Signed -- we are OK with unpack_long. */
677 return unpack_long (type, valaddr);
678 }
679 }
680
681 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
682 as a CORE_ADDR, assuming the raw data is described by type TYPE.
683 We don't assume any alignment for the raw data. Return value is in
684 host byte order.
685
686 If you want functions and arrays to be coerced to pointers, and
687 references to be dereferenced, call value_as_pointer() instead.
688
689 C++: It is assumed that the front-end has taken care of
690 all matters concerning pointers to members. A pointer
691 to member which reaches here is considered to be equivalent
692 to an INT (or some size). After all, it is only an offset. */
693
694 CORE_ADDR
695 unpack_pointer (type, valaddr)
696 struct type *type;
697 char *valaddr;
698 {
699 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
700 whether we want this to be true eventually. */
701 return unpack_long (type, valaddr);
702 }
703 \f
704 /* Given a value ARG1 (offset by OFFSET bytes)
705 of a struct or union type ARG_TYPE,
706 extract and return the value of one of its fields.
707 FIELDNO says which field.
708
709 For C++, must also be able to return values from static fields */
710
711 value_ptr
712 value_primitive_field (arg1, offset, fieldno, arg_type)
713 register value_ptr arg1;
714 int offset;
715 register int fieldno;
716 register struct type *arg_type;
717 {
718 register value_ptr v;
719 register struct type *type;
720
721 check_stub_type (arg_type);
722 type = TYPE_FIELD_TYPE (arg_type, fieldno);
723
724 /* Handle packed fields */
725
726 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
727 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
728 {
729 v = value_from_longest (type,
730 unpack_field_as_long (arg_type,
731 VALUE_CONTENTS (arg1),
732 fieldno));
733 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
734 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
735 }
736 else
737 {
738 v = allocate_value (type);
739 if (VALUE_LAZY (arg1))
740 VALUE_LAZY (v) = 1;
741 else
742 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
743 TYPE_LENGTH (type));
744 }
745 VALUE_LVAL (v) = VALUE_LVAL (arg1);
746 if (VALUE_LVAL (arg1) == lval_internalvar)
747 VALUE_LVAL (v) = lval_internalvar_component;
748 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
749 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
750 return v;
751 }
752
753 /* Given a value ARG1 of a struct or union type,
754 extract and return the value of one of its fields.
755 FIELDNO says which field.
756
757 For C++, must also be able to return values from static fields */
758
759 value_ptr
760 value_field (arg1, fieldno)
761 register value_ptr arg1;
762 register int fieldno;
763 {
764 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
765 }
766
767 /* Return a non-virtual function as a value.
768 F is the list of member functions which contains the desired method.
769 J is an index into F which provides the desired method. */
770
771 value_ptr
772 value_fn_field (arg1p, f, j, type, offset)
773 value_ptr *arg1p;
774 struct fn_field *f;
775 int j;
776 struct type *type;
777 int offset;
778 {
779 register value_ptr v;
780 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
781 struct symbol *sym;
782
783 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
784 0, VAR_NAMESPACE, 0, NULL);
785 if (! sym)
786 return NULL;
787 /*
788 error ("Internal error: could not find physical method named %s",
789 TYPE_FN_FIELD_PHYSNAME (f, j));
790 */
791
792 v = allocate_value (ftype);
793 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
794 VALUE_TYPE (v) = ftype;
795
796 if (arg1p)
797 {
798 if (type != VALUE_TYPE (*arg1p))
799 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
800 value_addr (*arg1p)));
801
802 /* Move the `this' pointer according to the offset.
803 VALUE_OFFSET (*arg1p) += offset;
804 */
805 }
806
807 return v;
808 }
809
810 /* Return a virtual function as a value.
811 ARG1 is the object which provides the virtual function
812 table pointer. *ARG1P is side-effected in calling this function.
813 F is the list of member functions which contains the desired virtual
814 function.
815 J is an index into F which provides the desired virtual function.
816
817 TYPE is the type in which F is located. */
818 value_ptr
819 value_virtual_fn_field (arg1p, f, j, type, offset)
820 value_ptr *arg1p;
821 struct fn_field *f;
822 int j;
823 struct type *type;
824 int offset;
825 {
826 value_ptr arg1 = *arg1p;
827 /* First, get the virtual function table pointer. That comes
828 with a strange type, so cast it to type `pointer to long' (which
829 should serve just fine as a function type). Then, index into
830 the table, and convert final value to appropriate function type. */
831 value_ptr entry, vfn, vtbl;
832 value_ptr vi = value_from_longest (builtin_type_int,
833 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
834 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
835 struct type *context;
836 if (fcontext == NULL)
837 /* We don't have an fcontext (e.g. the program was compiled with
838 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
839 This won't work right for multiple inheritance, but at least we
840 should do as well as GDB 3.x did. */
841 fcontext = TYPE_VPTR_BASETYPE (type);
842 context = lookup_pointer_type (fcontext);
843 /* Now context is a pointer to the basetype containing the vtbl. */
844 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
845 arg1 = value_ind (value_cast (context, value_addr (arg1)));
846
847 context = VALUE_TYPE (arg1);
848 /* Now context is the basetype containing the vtbl. */
849
850 /* This type may have been defined before its virtual function table
851 was. If so, fill in the virtual function table entry for the
852 type now. */
853 if (TYPE_VPTR_FIELDNO (context) < 0)
854 fill_in_vptr_fieldno (context);
855
856 /* The virtual function table is now an array of structures
857 which have the form { int16 offset, delta; void *pfn; }. */
858 vtbl = value_ind (value_primitive_field (arg1, 0,
859 TYPE_VPTR_FIELDNO (context),
860 TYPE_VPTR_BASETYPE (context)));
861
862 /* Index into the virtual function table. This is hard-coded because
863 looking up a field is not cheap, and it may be important to save
864 time, e.g. if the user has set a conditional breakpoint calling
865 a virtual function. */
866 entry = value_subscript (vtbl, vi);
867
868 /* Move the `this' pointer according to the virtual function table. */
869 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0))/* + offset*/;
870
871 if (! VALUE_LAZY (arg1))
872 {
873 VALUE_LAZY (arg1) = 1;
874 value_fetch_lazy (arg1);
875 }
876
877 vfn = value_field (entry, 2);
878 /* Reinstantiate the function pointer with the correct type. */
879 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
880
881 *arg1p = arg1;
882 return vfn;
883 }
884
885 /* ARG is a pointer to an object we know to be at least
886 a DTYPE. BTYPE is the most derived basetype that has
887 already been searched (and need not be searched again).
888 After looking at the vtables between BTYPE and DTYPE,
889 return the most derived type we find. The caller must
890 be satisfied when the return value == DTYPE.
891
892 FIXME-tiemann: should work with dossier entries as well. */
893
894 static value_ptr
895 value_headof (in_arg, btype, dtype)
896 value_ptr in_arg;
897 struct type *btype, *dtype;
898 {
899 /* First collect the vtables we must look at for this object. */
900 /* FIXME-tiemann: right now, just look at top-most vtable. */
901 value_ptr arg, vtbl, entry, best_entry = 0;
902 int i, nelems;
903 int offset, best_offset = 0;
904 struct symbol *sym;
905 CORE_ADDR pc_for_sym;
906 char *demangled_name;
907 struct minimal_symbol *msymbol;
908
909 btype = TYPE_VPTR_BASETYPE (dtype);
910 check_stub_type (btype);
911 arg = in_arg;
912 if (btype != dtype)
913 arg = value_cast (lookup_pointer_type (btype), arg);
914 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
915
916 /* Check that VTBL looks like it points to a virtual function table. */
917 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
918 if (msymbol == NULL
919 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
920 {
921 /* If we expected to find a vtable, but did not, let the user
922 know that we aren't happy, but don't throw an error.
923 FIXME: there has to be a better way to do this. */
924 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
925 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
926 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
927 VALUE_TYPE (in_arg) = error_type;
928 return in_arg;
929 }
930
931 /* Now search through the virtual function table. */
932 entry = value_ind (vtbl);
933 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
934 for (i = 1; i <= nelems; i++)
935 {
936 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
937 (LONGEST) i));
938 offset = longest_to_int (value_as_long (value_field (entry, 0)));
939 /* If we use '<=' we can handle single inheritance
940 * where all offsets are zero - just use the first entry found. */
941 if (offset <= best_offset)
942 {
943 best_offset = offset;
944 best_entry = entry;
945 }
946 }
947 /* Move the pointer according to BEST_ENTRY's offset, and figure
948 out what type we should return as the new pointer. */
949 if (best_entry == 0)
950 {
951 /* An alternative method (which should no longer be necessary).
952 * But we leave it in for future use, when we will hopefully
953 * have optimizes the vtable to use thunks instead of offsets. */
954 /* Use the name of vtable itself to extract a base type. */
955 demangled_name += 4; /* Skip _vt$ prefix. */
956 }
957 else
958 {
959 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
960 sym = find_pc_function (pc_for_sym);
961 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
962 *(strchr (demangled_name, ':')) = '\0';
963 }
964 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
965 if (sym == NULL)
966 error ("could not find type declaration for `%s'", demangled_name);
967 if (best_entry)
968 {
969 free (demangled_name);
970 arg = value_add (value_cast (builtin_type_int, arg),
971 value_field (best_entry, 0));
972 }
973 else arg = in_arg;
974 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
975 return arg;
976 }
977
978 /* ARG is a pointer object of type TYPE. If TYPE has virtual
979 function tables, probe ARG's tables (including the vtables
980 of its baseclasses) to figure out the most derived type that ARG
981 could actually be a pointer to. */
982
983 value_ptr
984 value_from_vtable_info (arg, type)
985 value_ptr arg;
986 struct type *type;
987 {
988 /* Take care of preliminaries. */
989 if (TYPE_VPTR_FIELDNO (type) < 0)
990 fill_in_vptr_fieldno (type);
991 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
992 return 0;
993
994 return value_headof (arg, 0, type);
995 }
996
997 /* Return true if the INDEXth field of TYPE is a virtual baseclass
998 pointer which is for the base class whose type is BASECLASS. */
999
1000 static int
1001 vb_match (type, index, basetype)
1002 struct type *type;
1003 int index;
1004 struct type *basetype;
1005 {
1006 struct type *fieldtype;
1007 char *name = TYPE_FIELD_NAME (type, index);
1008 char *field_class_name = NULL;
1009
1010 if (*name != '_')
1011 return 0;
1012 /* gcc 2.4 uses _vb$. */
1013 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1014 field_class_name = name + 4;
1015 /* gcc 2.5 will use __vb_. */
1016 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1017 field_class_name = name + 5;
1018
1019 if (field_class_name == NULL)
1020 /* This field is not a virtual base class pointer. */
1021 return 0;
1022
1023 /* It's a virtual baseclass pointer, now we just need to find out whether
1024 it is for this baseclass. */
1025 fieldtype = TYPE_FIELD_TYPE (type, index);
1026 if (fieldtype == NULL
1027 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1028 /* "Can't happen". */
1029 return 0;
1030
1031 /* What we check for is that either the types are equal (needed for
1032 nameless types) or have the same name. This is ugly, and a more
1033 elegant solution should be devised (which would probably just push
1034 the ugliness into symbol reading unless we change the stabs format). */
1035 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1036 return 1;
1037
1038 if (TYPE_NAME (basetype) != NULL
1039 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1040 && STREQ (TYPE_NAME (basetype),
1041 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1042 return 1;
1043 return 0;
1044 }
1045
1046 /* Compute the offset of the baseclass which is
1047 the INDEXth baseclass of class TYPE, for a value ARG,
1048 wih extra offset of OFFSET.
1049 The result is the offste of the baseclass value relative
1050 to (the address of)(ARG) + OFFSET.
1051
1052 -1 is returned on error. */
1053
1054 int
1055 baseclass_offset (type, index, arg, offset)
1056 struct type *type;
1057 int index;
1058 value_ptr arg;
1059 int offset;
1060 {
1061 struct type *basetype = TYPE_BASECLASS (type, index);
1062
1063 if (BASETYPE_VIA_VIRTUAL (type, index))
1064 {
1065 /* Must hunt for the pointer to this virtual baseclass. */
1066 register int i, len = TYPE_NFIELDS (type);
1067 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1068
1069 /* First look for the virtual baseclass pointer
1070 in the fields. */
1071 for (i = n_baseclasses; i < len; i++)
1072 {
1073 if (vb_match (type, i, basetype))
1074 {
1075 CORE_ADDR addr
1076 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1077 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1078 + offset
1079 + (TYPE_FIELD_BITPOS (type, i) / 8));
1080
1081 if (VALUE_LVAL (arg) != lval_memory)
1082 return -1;
1083
1084 return addr -
1085 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1086 }
1087 }
1088 /* Not in the fields, so try looking through the baseclasses. */
1089 for (i = index+1; i < n_baseclasses; i++)
1090 {
1091 int boffset =
1092 baseclass_offset (type, i, arg, offset);
1093 if (boffset)
1094 return boffset;
1095 }
1096 /* Not found. */
1097 return -1;
1098 }
1099
1100 /* Baseclass is easily computed. */
1101 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1102 }
1103
1104 /* Compute the address of the baseclass which is
1105 the INDEXth baseclass of class TYPE. The TYPE base
1106 of the object is at VALADDR.
1107
1108 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1109 or 0 if no error. In that case the return value is not the address
1110 of the baseclasss, but the address which could not be read
1111 successfully. */
1112
1113 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1114
1115 char *
1116 baseclass_addr (type, index, valaddr, valuep, errp)
1117 struct type *type;
1118 int index;
1119 char *valaddr;
1120 value_ptr *valuep;
1121 int *errp;
1122 {
1123 struct type *basetype = TYPE_BASECLASS (type, index);
1124
1125 if (errp)
1126 *errp = 0;
1127
1128 if (BASETYPE_VIA_VIRTUAL (type, index))
1129 {
1130 /* Must hunt for the pointer to this virtual baseclass. */
1131 register int i, len = TYPE_NFIELDS (type);
1132 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1133
1134 /* First look for the virtual baseclass pointer
1135 in the fields. */
1136 for (i = n_baseclasses; i < len; i++)
1137 {
1138 if (vb_match (type, i, basetype))
1139 {
1140 value_ptr val = allocate_value (basetype);
1141 CORE_ADDR addr;
1142 int status;
1143
1144 addr
1145 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1146 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1147
1148 status = target_read_memory (addr,
1149 VALUE_CONTENTS_RAW (val),
1150 TYPE_LENGTH (basetype));
1151 VALUE_LVAL (val) = lval_memory;
1152 VALUE_ADDRESS (val) = addr;
1153
1154 if (status != 0)
1155 {
1156 if (valuep)
1157 *valuep = NULL;
1158 release_value (val);
1159 value_free (val);
1160 if (errp)
1161 *errp = status;
1162 return (char *)addr;
1163 }
1164 else
1165 {
1166 if (valuep)
1167 *valuep = val;
1168 return (char *) VALUE_CONTENTS (val);
1169 }
1170 }
1171 }
1172 /* Not in the fields, so try looking through the baseclasses. */
1173 for (i = index+1; i < n_baseclasses; i++)
1174 {
1175 char *baddr;
1176
1177 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1178 if (baddr)
1179 return baddr;
1180 }
1181 /* Not found. */
1182 if (valuep)
1183 *valuep = 0;
1184 return 0;
1185 }
1186
1187 /* Baseclass is easily computed. */
1188 if (valuep)
1189 *valuep = 0;
1190 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1191 }
1192 \f
1193 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1194 VALADDR.
1195
1196 Extracting bits depends on endianness of the machine. Compute the
1197 number of least significant bits to discard. For big endian machines,
1198 we compute the total number of bits in the anonymous object, subtract
1199 off the bit count from the MSB of the object to the MSB of the
1200 bitfield, then the size of the bitfield, which leaves the LSB discard
1201 count. For little endian machines, the discard count is simply the
1202 number of bits from the LSB of the anonymous object to the LSB of the
1203 bitfield.
1204
1205 If the field is signed, we also do sign extension. */
1206
1207 LONGEST
1208 unpack_field_as_long (type, valaddr, fieldno)
1209 struct type *type;
1210 char *valaddr;
1211 int fieldno;
1212 {
1213 unsigned LONGEST val;
1214 unsigned LONGEST valmask;
1215 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1216 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1217 int lsbcount;
1218
1219 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1220
1221 /* Extract bits. See comment above. */
1222
1223 #if BITS_BIG_ENDIAN
1224 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1225 #else
1226 lsbcount = (bitpos % 8);
1227 #endif
1228 val >>= lsbcount;
1229
1230 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1231 If the field is signed, and is negative, then sign extend. */
1232
1233 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1234 {
1235 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1236 val &= valmask;
1237 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1238 {
1239 if (val & (valmask ^ (valmask >> 1)))
1240 {
1241 val |= ~valmask;
1242 }
1243 }
1244 }
1245 return (val);
1246 }
1247
1248 /* Modify the value of a bitfield. ADDR points to a block of memory in
1249 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1250 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1251 indicate which bits (in target bit order) comprise the bitfield. */
1252
1253 void
1254 modify_field (addr, fieldval, bitpos, bitsize)
1255 char *addr;
1256 LONGEST fieldval;
1257 int bitpos, bitsize;
1258 {
1259 LONGEST oword;
1260
1261 /* Reject values too big to fit in the field in question,
1262 otherwise adjoining fields may be corrupted. */
1263 if (bitsize < (8 * sizeof (fieldval))
1264 && 0 != (fieldval & ~((1<<bitsize)-1)))
1265 {
1266 /* FIXME: would like to include fieldval in the message, but
1267 we don't have a sprintf_longest. */
1268 error ("Value does not fit in %d bits.", bitsize);
1269 }
1270
1271 oword = extract_signed_integer (addr, sizeof oword);
1272
1273 /* Shifting for bit field depends on endianness of the target machine. */
1274 #if BITS_BIG_ENDIAN
1275 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1276 #endif
1277
1278 /* Mask out old value, while avoiding shifts >= size of oword */
1279 if (bitsize < 8 * sizeof (oword))
1280 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1281 else
1282 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1283 oword |= fieldval << bitpos;
1284
1285 store_signed_integer (addr, sizeof oword, oword);
1286 }
1287 \f
1288 /* Convert C numbers into newly allocated values */
1289
1290 value_ptr
1291 value_from_longest (type, num)
1292 struct type *type;
1293 register LONGEST num;
1294 {
1295 register value_ptr val = allocate_value (type);
1296 register enum type_code code = TYPE_CODE (type);
1297 register int len = TYPE_LENGTH (type);
1298
1299 switch (code)
1300 {
1301 case TYPE_CODE_INT:
1302 case TYPE_CODE_CHAR:
1303 case TYPE_CODE_ENUM:
1304 case TYPE_CODE_BOOL:
1305 case TYPE_CODE_RANGE:
1306 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1307 break;
1308
1309 case TYPE_CODE_REF:
1310 case TYPE_CODE_PTR:
1311 /* This assumes that all pointers of a given length
1312 have the same form. */
1313 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1314 break;
1315
1316 default:
1317 error ("Unexpected type encountered for integer constant.");
1318 }
1319 return val;
1320 }
1321
1322 value_ptr
1323 value_from_double (type, num)
1324 struct type *type;
1325 double num;
1326 {
1327 register value_ptr val = allocate_value (type);
1328 register enum type_code code = TYPE_CODE (type);
1329 register int len = TYPE_LENGTH (type);
1330
1331 if (code == TYPE_CODE_FLT)
1332 {
1333 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1334 }
1335 else
1336 error ("Unexpected type encountered for floating constant.");
1337
1338 return val;
1339 }
1340 \f
1341 /* Deal with the value that is "about to be returned". */
1342
1343 /* Return the value that a function returning now
1344 would be returning to its caller, assuming its type is VALTYPE.
1345 RETBUF is where we look for what ought to be the contents
1346 of the registers (in raw form). This is because it is often
1347 desirable to restore old values to those registers
1348 after saving the contents of interest, and then call
1349 this function using the saved values.
1350 struct_return is non-zero when the function in question is
1351 using the structure return conventions on the machine in question;
1352 0 when it is using the value returning conventions (this often
1353 means returning pointer to where structure is vs. returning value). */
1354
1355 value_ptr
1356 value_being_returned (valtype, retbuf, struct_return)
1357 register struct type *valtype;
1358 char retbuf[REGISTER_BYTES];
1359 int struct_return;
1360 /*ARGSUSED*/
1361 {
1362 register value_ptr val;
1363 CORE_ADDR addr;
1364
1365 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1366 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1367 if (struct_return) {
1368 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1369 if (!addr)
1370 error ("Function return value unknown");
1371 return value_at (valtype, addr);
1372 }
1373 #endif
1374
1375 val = allocate_value (valtype);
1376 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1377
1378 return val;
1379 }
1380
1381 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1382 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1383 and TYPE is the type (which is known to be struct, union or array).
1384
1385 On most machines, the struct convention is used unless we are
1386 using gcc and the type is of a special size. */
1387 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1388 native compiler. GCC 2.3.3 was the last release that did it the
1389 old way. Since gcc2_compiled was not changed, we have no
1390 way to correctly win in all cases, so we just do the right thing
1391 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1392 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1393 would cause more chaos than dealing with some struct returns being
1394 handled wrong. */
1395 #if !defined (USE_STRUCT_CONVENTION)
1396 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1397 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1398 || TYPE_LENGTH (value_type) == 2 \
1399 || TYPE_LENGTH (value_type) == 4 \
1400 || TYPE_LENGTH (value_type) == 8 \
1401 ) \
1402 ))
1403 #endif
1404
1405 /* Return true if the function specified is using the structure returning
1406 convention on this machine to return arguments, or 0 if it is using
1407 the value returning convention. FUNCTION is the value representing
1408 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1409 is the type returned by the function. GCC_P is nonzero if compiled
1410 with GCC. */
1411
1412 int
1413 using_struct_return (function, funcaddr, value_type, gcc_p)
1414 value_ptr function;
1415 CORE_ADDR funcaddr;
1416 struct type *value_type;
1417 int gcc_p;
1418 /*ARGSUSED*/
1419 {
1420 register enum type_code code = TYPE_CODE (value_type);
1421
1422 if (code == TYPE_CODE_ERROR)
1423 error ("Function return type unknown.");
1424
1425 if (code == TYPE_CODE_STRUCT ||
1426 code == TYPE_CODE_UNION ||
1427 code == TYPE_CODE_ARRAY)
1428 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1429
1430 return 0;
1431 }
1432
1433 /* Store VAL so it will be returned if a function returns now.
1434 Does not verify that VAL's type matches what the current
1435 function wants to return. */
1436
1437 void
1438 set_return_value (val)
1439 value_ptr val;
1440 {
1441 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1442 double dbuf;
1443 LONGEST lbuf;
1444
1445 if (code == TYPE_CODE_ERROR)
1446 error ("Function return type unknown.");
1447
1448 if ( code == TYPE_CODE_STRUCT
1449 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1450 error ("GDB does not support specifying a struct or union return value.");
1451
1452 /* FIXME, this is bogus. We don't know what the return conventions
1453 are, or how values should be promoted.... */
1454 if (code == TYPE_CODE_FLT)
1455 {
1456 dbuf = value_as_double (val);
1457
1458 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1459 }
1460 else
1461 {
1462 lbuf = value_as_long (val);
1463 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1464 }
1465 }
1466 \f
1467 void
1468 _initialize_values ()
1469 {
1470 add_cmd ("convenience", no_class, show_convenience,
1471 "Debugger convenience (\"$foo\") variables.\n\
1472 These variables are created when you assign them values;\n\
1473 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1474 A few convenience variables are given values automatically:\n\
1475 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1476 \"$__\" holds the contents of the last address examined with \"x\".",
1477 &showlist);
1478
1479 add_cmd ("values", no_class, show_values,
1480 "Elements of value history around item number IDX (or last ten).",
1481 &showlist);
1482 }
This page took 0.086031 seconds and 5 git commands to generate.