This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "scm-lang.h"
34 #include "demangle.h"
35
36 /* Prototypes for exported functions. */
37
38 void _initialize_values (void);
39
40 /* Prototypes for local functions. */
41
42 static value_ptr value_headof (value_ptr, struct type *, struct type *);
43
44 static void show_values (char *, int);
45
46 static void show_convenience (char *, int);
47
48 static int vb_match (struct type *, int, struct type *);
49
50 /* The value-history records all the values printed
51 by print commands during this session. Each chunk
52 records 60 consecutive values. The first chunk on
53 the chain records the most recent values.
54 The total number of values is in value_history_count. */
55
56 #define VALUE_HISTORY_CHUNK 60
57
58 struct value_history_chunk
59 {
60 struct value_history_chunk *next;
61 value_ptr values[VALUE_HISTORY_CHUNK];
62 };
63
64 /* Chain of chunks now in use. */
65
66 static struct value_history_chunk *value_history_chain;
67
68 static int value_history_count; /* Abs number of last entry stored */
69 \f
70 /* List of all value objects currently allocated
71 (except for those released by calls to release_value)
72 This is so they can be freed after each command. */
73
74 static value_ptr all_values;
75
76 /* Allocate a value that has the correct length for type TYPE. */
77
78 value_ptr
79 allocate_value (type)
80 struct type *type;
81 {
82 register value_ptr val;
83 struct type *atype = check_typedef (type);
84
85 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
86 VALUE_NEXT (val) = all_values;
87 all_values = val;
88 VALUE_TYPE (val) = type;
89 VALUE_ENCLOSING_TYPE (val) = type;
90 VALUE_LVAL (val) = not_lval;
91 VALUE_ADDRESS (val) = 0;
92 VALUE_FRAME (val) = 0;
93 VALUE_OFFSET (val) = 0;
94 VALUE_BITPOS (val) = 0;
95 VALUE_BITSIZE (val) = 0;
96 VALUE_REGNO (val) = -1;
97 VALUE_LAZY (val) = 0;
98 VALUE_OPTIMIZED_OUT (val) = 0;
99 VALUE_BFD_SECTION (val) = NULL;
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104 }
105
106 /* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
109 value_ptr
110 allocate_repeat_value (type, count)
111 struct type *type;
112 int count;
113 {
114 int low_bound = current_language->string_lower_bound; /* ??? */
115 /* FIXME-type-allocation: need a way to free this type when we are
116 done with it. */
117 struct type *range_type
118 = create_range_type ((struct type *) NULL, builtin_type_int,
119 low_bound, count + low_bound - 1);
120 /* FIXME-type-allocation: need a way to free this type when we are
121 done with it. */
122 return allocate_value (create_array_type ((struct type *) NULL,
123 type, range_type));
124 }
125
126 /* Return a mark in the value chain. All values allocated after the
127 mark is obtained (except for those released) are subject to being freed
128 if a subsequent value_free_to_mark is passed the mark. */
129 value_ptr
130 value_mark ()
131 {
132 return all_values;
133 }
134
135 /* Free all values allocated since MARK was obtained by value_mark
136 (except for those released). */
137 void
138 value_free_to_mark (mark)
139 value_ptr mark;
140 {
141 value_ptr val, next;
142
143 for (val = all_values; val && val != mark; val = next)
144 {
145 next = VALUE_NEXT (val);
146 value_free (val);
147 }
148 all_values = val;
149 }
150
151 /* Free all the values that have been allocated (except for those released).
152 Called after each command, successful or not. */
153
154 void
155 free_all_values ()
156 {
157 register value_ptr val, next;
158
159 for (val = all_values; val; val = next)
160 {
161 next = VALUE_NEXT (val);
162 value_free (val);
163 }
164
165 all_values = 0;
166 }
167
168 /* Remove VAL from the chain all_values
169 so it will not be freed automatically. */
170
171 void
172 release_value (val)
173 register value_ptr val;
174 {
175 register value_ptr v;
176
177 if (all_values == val)
178 {
179 all_values = val->next;
180 return;
181 }
182
183 for (v = all_values; v; v = v->next)
184 {
185 if (v->next == val)
186 {
187 v->next = val->next;
188 break;
189 }
190 }
191 }
192
193 /* Release all values up to mark */
194 value_ptr
195 value_release_to_mark (mark)
196 value_ptr mark;
197 {
198 value_ptr val, next;
199
200 for (val = next = all_values; next; next = VALUE_NEXT (next))
201 if (VALUE_NEXT (next) == mark)
202 {
203 all_values = VALUE_NEXT (next);
204 VALUE_NEXT (next) = 0;
205 return val;
206 }
207 all_values = 0;
208 return val;
209 }
210
211 /* Return a copy of the value ARG.
212 It contains the same contents, for same memory address,
213 but it's a different block of storage. */
214
215 value_ptr
216 value_copy (arg)
217 value_ptr arg;
218 {
219 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
220 register value_ptr val = allocate_value (encl_type);
221 VALUE_TYPE (val) = VALUE_TYPE (arg);
222 VALUE_LVAL (val) = VALUE_LVAL (arg);
223 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
224 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
225 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
226 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
227 VALUE_FRAME (val) = VALUE_FRAME (arg);
228 VALUE_REGNO (val) = VALUE_REGNO (arg);
229 VALUE_LAZY (val) = VALUE_LAZY (arg);
230 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
231 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
232 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
233 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
234 val->modifiable = arg->modifiable;
235 if (!VALUE_LAZY (val))
236 {
237 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
238 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
239
240 }
241 return val;
242 }
243 \f
244 /* Access to the value history. */
245
246 /* Record a new value in the value history.
247 Returns the absolute history index of the entry.
248 Result of -1 indicates the value was not saved; otherwise it is the
249 value history index of this new item. */
250
251 int
252 record_latest_value (val)
253 value_ptr val;
254 {
255 int i;
256
257 /* We don't want this value to have anything to do with the inferior anymore.
258 In particular, "set $1 = 50" should not affect the variable from which
259 the value was taken, and fast watchpoints should be able to assume that
260 a value on the value history never changes. */
261 if (VALUE_LAZY (val))
262 value_fetch_lazy (val);
263 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
264 from. This is a bit dubious, because then *&$1 does not just return $1
265 but the current contents of that location. c'est la vie... */
266 val->modifiable = 0;
267 release_value (val);
268
269 /* Here we treat value_history_count as origin-zero
270 and applying to the value being stored now. */
271
272 i = value_history_count % VALUE_HISTORY_CHUNK;
273 if (i == 0)
274 {
275 register struct value_history_chunk *new
276 = (struct value_history_chunk *)
277 xmalloc (sizeof (struct value_history_chunk));
278 memset (new->values, 0, sizeof new->values);
279 new->next = value_history_chain;
280 value_history_chain = new;
281 }
282
283 value_history_chain->values[i] = val;
284
285 /* Now we regard value_history_count as origin-one
286 and applying to the value just stored. */
287
288 return ++value_history_count;
289 }
290
291 /* Return a copy of the value in the history with sequence number NUM. */
292
293 value_ptr
294 access_value_history (num)
295 int num;
296 {
297 register struct value_history_chunk *chunk;
298 register int i;
299 register int absnum = num;
300
301 if (absnum <= 0)
302 absnum += value_history_count;
303
304 if (absnum <= 0)
305 {
306 if (num == 0)
307 error ("The history is empty.");
308 else if (num == 1)
309 error ("There is only one value in the history.");
310 else
311 error ("History does not go back to $$%d.", -num);
312 }
313 if (absnum > value_history_count)
314 error ("History has not yet reached $%d.", absnum);
315
316 absnum--;
317
318 /* Now absnum is always absolute and origin zero. */
319
320 chunk = value_history_chain;
321 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
322 i > 0; i--)
323 chunk = chunk->next;
324
325 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
326 }
327
328 /* Clear the value history entirely.
329 Must be done when new symbol tables are loaded,
330 because the type pointers become invalid. */
331
332 void
333 clear_value_history ()
334 {
335 register struct value_history_chunk *next;
336 register int i;
337 register value_ptr val;
338
339 while (value_history_chain)
340 {
341 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
342 if ((val = value_history_chain->values[i]) != NULL)
343 free ((PTR) val);
344 next = value_history_chain->next;
345 free ((PTR) value_history_chain);
346 value_history_chain = next;
347 }
348 value_history_count = 0;
349 }
350
351 static void
352 show_values (num_exp, from_tty)
353 char *num_exp;
354 int from_tty;
355 {
356 register int i;
357 register value_ptr val;
358 static int num = 1;
359
360 if (num_exp)
361 {
362 /* "info history +" should print from the stored position.
363 "info history <exp>" should print around value number <exp>. */
364 if (num_exp[0] != '+' || num_exp[1] != '\0')
365 num = parse_and_eval_address (num_exp) - 5;
366 }
367 else
368 {
369 /* "info history" means print the last 10 values. */
370 num = value_history_count - 9;
371 }
372
373 if (num <= 0)
374 num = 1;
375
376 for (i = num; i < num + 10 && i <= value_history_count; i++)
377 {
378 val = access_value_history (i);
379 printf_filtered ("$%d = ", i);
380 value_print (val, gdb_stdout, 0, Val_pretty_default);
381 printf_filtered ("\n");
382 }
383
384 /* The next "info history +" should start after what we just printed. */
385 num += 10;
386
387 /* Hitting just return after this command should do the same thing as
388 "info history +". If num_exp is null, this is unnecessary, since
389 "info history +" is not useful after "info history". */
390 if (from_tty && num_exp)
391 {
392 num_exp[0] = '+';
393 num_exp[1] = '\0';
394 }
395 }
396 \f
397 /* Internal variables. These are variables within the debugger
398 that hold values assigned by debugger commands.
399 The user refers to them with a '$' prefix
400 that does not appear in the variable names stored internally. */
401
402 static struct internalvar *internalvars;
403
404 /* Look up an internal variable with name NAME. NAME should not
405 normally include a dollar sign.
406
407 If the specified internal variable does not exist,
408 one is created, with a void value. */
409
410 struct internalvar *
411 lookup_internalvar (name)
412 char *name;
413 {
414 register struct internalvar *var;
415
416 for (var = internalvars; var; var = var->next)
417 if (STREQ (var->name, name))
418 return var;
419
420 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
421 var->name = concat (name, NULL);
422 var->value = allocate_value (builtin_type_void);
423 release_value (var->value);
424 var->next = internalvars;
425 internalvars = var;
426 return var;
427 }
428
429 value_ptr
430 value_of_internalvar (var)
431 struct internalvar *var;
432 {
433 register value_ptr val;
434
435 #ifdef IS_TRAPPED_INTERNALVAR
436 if (IS_TRAPPED_INTERNALVAR (var->name))
437 return VALUE_OF_TRAPPED_INTERNALVAR (var);
438 #endif
439
440 val = value_copy (var->value);
441 if (VALUE_LAZY (val))
442 value_fetch_lazy (val);
443 VALUE_LVAL (val) = lval_internalvar;
444 VALUE_INTERNALVAR (val) = var;
445 return val;
446 }
447
448 void
449 set_internalvar_component (var, offset, bitpos, bitsize, newval)
450 struct internalvar *var;
451 int offset, bitpos, bitsize;
452 value_ptr newval;
453 {
454 register char *addr = VALUE_CONTENTS (var->value) + offset;
455
456 #ifdef IS_TRAPPED_INTERNALVAR
457 if (IS_TRAPPED_INTERNALVAR (var->name))
458 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
459 #endif
460
461 if (bitsize)
462 modify_field (addr, value_as_long (newval),
463 bitpos, bitsize);
464 else
465 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
466 }
467
468 void
469 set_internalvar (var, val)
470 struct internalvar *var;
471 value_ptr val;
472 {
473 value_ptr newval;
474
475 #ifdef IS_TRAPPED_INTERNALVAR
476 if (IS_TRAPPED_INTERNALVAR (var->name))
477 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
478 #endif
479
480 newval = value_copy (val);
481 newval->modifiable = 1;
482
483 /* Force the value to be fetched from the target now, to avoid problems
484 later when this internalvar is referenced and the target is gone or
485 has changed. */
486 if (VALUE_LAZY (newval))
487 value_fetch_lazy (newval);
488
489 /* Begin code which must not call error(). If var->value points to
490 something free'd, an error() obviously leaves a dangling pointer.
491 But we also get a danling pointer if var->value points to
492 something in the value chain (i.e., before release_value is
493 called), because after the error free_all_values will get called before
494 long. */
495 free ((PTR) var->value);
496 var->value = newval;
497 release_value (newval);
498 /* End code which must not call error(). */
499 }
500
501 char *
502 internalvar_name (var)
503 struct internalvar *var;
504 {
505 return var->name;
506 }
507
508 /* Free all internalvars. Done when new symtabs are loaded,
509 because that makes the values invalid. */
510
511 void
512 clear_internalvars ()
513 {
514 register struct internalvar *var;
515
516 while (internalvars)
517 {
518 var = internalvars;
519 internalvars = var->next;
520 free ((PTR) var->name);
521 free ((PTR) var->value);
522 free ((PTR) var);
523 }
524 }
525
526 static void
527 show_convenience (ignore, from_tty)
528 char *ignore;
529 int from_tty;
530 {
531 register struct internalvar *var;
532 int varseen = 0;
533
534 for (var = internalvars; var; var = var->next)
535 {
536 #ifdef IS_TRAPPED_INTERNALVAR
537 if (IS_TRAPPED_INTERNALVAR (var->name))
538 continue;
539 #endif
540 if (!varseen)
541 {
542 varseen = 1;
543 }
544 printf_filtered ("$%s = ", var->name);
545 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
546 printf_filtered ("\n");
547 }
548 if (!varseen)
549 printf_unfiltered ("No debugger convenience variables now defined.\n\
550 Convenience variables have names starting with \"$\";\n\
551 use \"set\" as in \"set $foo = 5\" to define them.\n");
552 }
553 \f
554 /* Extract a value as a C number (either long or double).
555 Knows how to convert fixed values to double, or
556 floating values to long.
557 Does not deallocate the value. */
558
559 LONGEST
560 value_as_long (val)
561 register value_ptr val;
562 {
563 /* This coerces arrays and functions, which is necessary (e.g.
564 in disassemble_command). It also dereferences references, which
565 I suspect is the most logical thing to do. */
566 COERCE_ARRAY (val);
567 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
568 }
569
570 DOUBLEST
571 value_as_double (val)
572 register value_ptr val;
573 {
574 DOUBLEST foo;
575 int inv;
576
577 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
578 if (inv)
579 error ("Invalid floating value found in program.");
580 return foo;
581 }
582 /* Extract a value as a C pointer. Does not deallocate the value.
583 Note that val's type may not actually be a pointer; value_as_long
584 handles all the cases. */
585 CORE_ADDR
586 value_as_pointer (val)
587 value_ptr val;
588 {
589 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
590 whether we want this to be true eventually. */
591 #if 0
592 /* ADDR_BITS_REMOVE is wrong if we are being called for a
593 non-address (e.g. argument to "signal", "info break", etc.), or
594 for pointers to char, in which the low bits *are* significant. */
595 return ADDR_BITS_REMOVE (value_as_long (val));
596 #else
597 return value_as_long (val);
598 #endif
599 }
600 \f
601 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
602 as a long, or as a double, assuming the raw data is described
603 by type TYPE. Knows how to convert different sizes of values
604 and can convert between fixed and floating point. We don't assume
605 any alignment for the raw data. Return value is in host byte order.
606
607 If you want functions and arrays to be coerced to pointers, and
608 references to be dereferenced, call value_as_long() instead.
609
610 C++: It is assumed that the front-end has taken care of
611 all matters concerning pointers to members. A pointer
612 to member which reaches here is considered to be equivalent
613 to an INT (or some size). After all, it is only an offset. */
614
615 LONGEST
616 unpack_long (type, valaddr)
617 struct type *type;
618 char *valaddr;
619 {
620 register enum type_code code = TYPE_CODE (type);
621 register int len = TYPE_LENGTH (type);
622 register int nosign = TYPE_UNSIGNED (type);
623
624 if (current_language->la_language == language_scm
625 && is_scmvalue_type (type))
626 return scm_unpack (type, valaddr, TYPE_CODE_INT);
627
628 switch (code)
629 {
630 case TYPE_CODE_TYPEDEF:
631 return unpack_long (check_typedef (type), valaddr);
632 case TYPE_CODE_ENUM:
633 case TYPE_CODE_BOOL:
634 case TYPE_CODE_INT:
635 case TYPE_CODE_CHAR:
636 case TYPE_CODE_RANGE:
637 if (nosign)
638 return extract_unsigned_integer (valaddr, len);
639 else
640 return extract_signed_integer (valaddr, len);
641
642 case TYPE_CODE_FLT:
643 return extract_floating (valaddr, len);
644
645 case TYPE_CODE_PTR:
646 case TYPE_CODE_REF:
647 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
648 whether we want this to be true eventually. */
649 if (GDB_TARGET_IS_D10V
650 && len == 2)
651 return D10V_MAKE_DADDR (extract_address (valaddr, len));
652 return extract_typed_address (valaddr, type);
653
654 case TYPE_CODE_MEMBER:
655 error ("not implemented: member types in unpack_long");
656
657 default:
658 error ("Value can't be converted to integer.");
659 }
660 return 0; /* Placate lint. */
661 }
662
663 /* Return a double value from the specified type and address.
664 INVP points to an int which is set to 0 for valid value,
665 1 for invalid value (bad float format). In either case,
666 the returned double is OK to use. Argument is in target
667 format, result is in host format. */
668
669 DOUBLEST
670 unpack_double (type, valaddr, invp)
671 struct type *type;
672 char *valaddr;
673 int *invp;
674 {
675 enum type_code code;
676 int len;
677 int nosign;
678
679 *invp = 0; /* Assume valid. */
680 CHECK_TYPEDEF (type);
681 code = TYPE_CODE (type);
682 len = TYPE_LENGTH (type);
683 nosign = TYPE_UNSIGNED (type);
684 if (code == TYPE_CODE_FLT)
685 {
686 #ifdef INVALID_FLOAT
687 if (INVALID_FLOAT (valaddr, len))
688 {
689 *invp = 1;
690 return 1.234567891011121314;
691 }
692 #endif
693 return extract_floating (valaddr, len);
694 }
695 else if (nosign)
696 {
697 /* Unsigned -- be sure we compensate for signed LONGEST. */
698 #if !defined (_MSC_VER) || (_MSC_VER > 900)
699 return (ULONGEST) unpack_long (type, valaddr);
700 #else
701 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
702 return (LONGEST) unpack_long (type, valaddr);
703 #endif /* _MSC_VER */
704 }
705 else
706 {
707 /* Signed -- we are OK with unpack_long. */
708 return unpack_long (type, valaddr);
709 }
710 }
711
712 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
713 as a CORE_ADDR, assuming the raw data is described by type TYPE.
714 We don't assume any alignment for the raw data. Return value is in
715 host byte order.
716
717 If you want functions and arrays to be coerced to pointers, and
718 references to be dereferenced, call value_as_pointer() instead.
719
720 C++: It is assumed that the front-end has taken care of
721 all matters concerning pointers to members. A pointer
722 to member which reaches here is considered to be equivalent
723 to an INT (or some size). After all, it is only an offset. */
724
725 CORE_ADDR
726 unpack_pointer (type, valaddr)
727 struct type *type;
728 char *valaddr;
729 {
730 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
731 whether we want this to be true eventually. */
732 return unpack_long (type, valaddr);
733 }
734
735 \f
736 /* Get the value of the FIELDN'th field (which must be static) of TYPE. */
737
738 value_ptr
739 value_static_field (type, fieldno)
740 struct type *type;
741 int fieldno;
742 {
743 CORE_ADDR addr;
744 asection *sect;
745 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
746 {
747 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
748 sect = NULL;
749 }
750 else
751 {
752 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
753 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
754 if (sym == NULL)
755 {
756 /* With some compilers, e.g. HP aCC, static data members are reported
757 as non-debuggable symbols */
758 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
759 if (!msym)
760 return NULL;
761 else
762 {
763 addr = SYMBOL_VALUE_ADDRESS (msym);
764 sect = SYMBOL_BFD_SECTION (msym);
765 }
766 }
767 else
768 {
769 addr = SYMBOL_VALUE_ADDRESS (sym);
770 sect = SYMBOL_BFD_SECTION (sym);
771 }
772 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
773 }
774 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
775 }
776
777 /* Given a value ARG1 (offset by OFFSET bytes)
778 of a struct or union type ARG_TYPE,
779 extract and return the value of one of its (non-static) fields.
780 FIELDNO says which field. */
781
782 value_ptr
783 value_primitive_field (arg1, offset, fieldno, arg_type)
784 register value_ptr arg1;
785 int offset;
786 register int fieldno;
787 register struct type *arg_type;
788 {
789 register value_ptr v;
790 register struct type *type;
791
792 CHECK_TYPEDEF (arg_type);
793 type = TYPE_FIELD_TYPE (arg_type, fieldno);
794
795 /* Handle packed fields */
796
797 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
798 {
799 v = value_from_longest (type,
800 unpack_field_as_long (arg_type,
801 VALUE_CONTENTS (arg1)
802 + offset,
803 fieldno));
804 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
805 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
806 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
807 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
808 }
809 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
810 {
811 /* This field is actually a base subobject, so preserve the
812 entire object's contents for later references to virtual
813 bases, etc. */
814 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
815 VALUE_TYPE (v) = arg_type;
816 if (VALUE_LAZY (arg1))
817 VALUE_LAZY (v) = 1;
818 else
819 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
820 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
821 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
822 VALUE_EMBEDDED_OFFSET (v)
823 = offset +
824 VALUE_EMBEDDED_OFFSET (arg1) +
825 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
826 }
827 else
828 {
829 /* Plain old data member */
830 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
831 v = allocate_value (type);
832 if (VALUE_LAZY (arg1))
833 VALUE_LAZY (v) = 1;
834 else
835 memcpy (VALUE_CONTENTS_RAW (v),
836 VALUE_CONTENTS_RAW (arg1) + offset,
837 TYPE_LENGTH (type));
838 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
839 }
840 VALUE_LVAL (v) = VALUE_LVAL (arg1);
841 if (VALUE_LVAL (arg1) == lval_internalvar)
842 VALUE_LVAL (v) = lval_internalvar_component;
843 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
844 VALUE_REGNO (v) = VALUE_REGNO (arg1);
845 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
846 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
847 return v;
848 }
849
850 /* Given a value ARG1 of a struct or union type,
851 extract and return the value of one of its (non-static) fields.
852 FIELDNO says which field. */
853
854 value_ptr
855 value_field (arg1, fieldno)
856 register value_ptr arg1;
857 register int fieldno;
858 {
859 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
860 }
861
862 /* Return a non-virtual function as a value.
863 F is the list of member functions which contains the desired method.
864 J is an index into F which provides the desired method. */
865
866 value_ptr
867 value_fn_field (arg1p, f, j, type, offset)
868 value_ptr *arg1p;
869 struct fn_field *f;
870 int j;
871 struct type *type;
872 int offset;
873 {
874 register value_ptr v;
875 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
876 struct symbol *sym;
877
878 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
879 0, VAR_NAMESPACE, 0, NULL);
880 if (!sym)
881 return NULL;
882 /*
883 error ("Internal error: could not find physical method named %s",
884 TYPE_FN_FIELD_PHYSNAME (f, j));
885 */
886
887 v = allocate_value (ftype);
888 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
889 VALUE_TYPE (v) = ftype;
890
891 if (arg1p)
892 {
893 if (type != VALUE_TYPE (*arg1p))
894 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
895 value_addr (*arg1p)));
896
897 /* Move the `this' pointer according to the offset.
898 VALUE_OFFSET (*arg1p) += offset;
899 */
900 }
901
902 return v;
903 }
904
905 /* Return a virtual function as a value.
906 ARG1 is the object which provides the virtual function
907 table pointer. *ARG1P is side-effected in calling this function.
908 F is the list of member functions which contains the desired virtual
909 function.
910 J is an index into F which provides the desired virtual function.
911
912 TYPE is the type in which F is located. */
913 value_ptr
914 value_virtual_fn_field (arg1p, f, j, type, offset)
915 value_ptr *arg1p;
916 struct fn_field *f;
917 int j;
918 struct type *type;
919 int offset;
920 {
921 value_ptr arg1 = *arg1p;
922 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
923
924 if (TYPE_HAS_VTABLE (type))
925 {
926 /* Deal with HP/Taligent runtime model for virtual functions */
927 value_ptr vp;
928 value_ptr argp; /* arg1 cast to base */
929 CORE_ADDR coreptr; /* pointer to target address */
930 int class_index; /* which class segment pointer to use */
931 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
932
933 argp = value_cast (type, *arg1p);
934
935 if (VALUE_ADDRESS (argp) == 0)
936 error ("Address of object is null; object may not have been created.");
937
938 /* pai: FIXME -- 32x64 possible problem? */
939 /* First word (4 bytes) in object layout is the vtable pointer */
940 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
941 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
942
943 if (!coreptr)
944 error ("Virtual table pointer is null for object; object may not have been created.");
945
946 /* pai/1997-05-09
947 * FIXME: The code here currently handles only
948 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
949 * is introduced, the condition for the "if" below will have to
950 * be changed to be a test for the RRBC case. */
951
952 if (1)
953 {
954 /* Non-RRBC case; the virtual function pointers are stored at fixed
955 * offsets in the virtual table. */
956
957 /* Retrieve the offset in the virtual table from the debug
958 * info. The offset of the vfunc's entry is in words from
959 * the beginning of the vtable; but first we have to adjust
960 * by HP_ACC_VFUNC_START to account for other entries */
961
962 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
963 * which case the multiplier should be 8 and values should be long */
964 vp = value_at (builtin_type_int,
965 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
966
967 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
968 /* coreptr now contains the address of the virtual function */
969 /* (Actually, it contains the pointer to the plabel for the function. */
970 }
971 else
972 {
973 /* RRBC case; the virtual function pointers are found by double
974 * indirection through the class segment tables. */
975
976 /* Choose class segment depending on type we were passed */
977 class_index = class_index_in_primary_list (type);
978
979 /* Find class segment pointer. These are in the vtable slots after
980 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
981 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
982 * the multiplier below has to be 8 and value should be long. */
983 vp = value_at (builtin_type_int,
984 coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
985 /* Indirect once more, offset by function index */
986 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
987 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
988 vp = value_at (builtin_type_int, coreptr, NULL);
989 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
990
991 /* coreptr now contains the address of the virtual function */
992 /* (Actually, it contains the pointer to the plabel for the function.) */
993
994 }
995
996 if (!coreptr)
997 error ("Address of virtual function is null; error in virtual table?");
998
999 /* Wrap this addr in a value and return pointer */
1000 vp = allocate_value (ftype);
1001 VALUE_TYPE (vp) = ftype;
1002 VALUE_ADDRESS (vp) = coreptr;
1003
1004 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
1005 return vp;
1006 }
1007 else
1008 { /* Not using HP/Taligent runtime conventions; so try to
1009 * use g++ conventions for virtual table */
1010
1011 struct type *entry_type;
1012 /* First, get the virtual function table pointer. That comes
1013 with a strange type, so cast it to type `pointer to long' (which
1014 should serve just fine as a function type). Then, index into
1015 the table, and convert final value to appropriate function type. */
1016 value_ptr entry, vfn, vtbl;
1017 value_ptr vi = value_from_longest (builtin_type_int,
1018 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
1019 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
1020 struct type *context;
1021 if (fcontext == NULL)
1022 /* We don't have an fcontext (e.g. the program was compiled with
1023 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1024 This won't work right for multiple inheritance, but at least we
1025 should do as well as GDB 3.x did. */
1026 fcontext = TYPE_VPTR_BASETYPE (type);
1027 context = lookup_pointer_type (fcontext);
1028 /* Now context is a pointer to the basetype containing the vtbl. */
1029 if (TYPE_TARGET_TYPE (context) != type1)
1030 {
1031 value_ptr tmp = value_cast (context, value_addr (arg1));
1032 VALUE_POINTED_TO_OFFSET (tmp) = 0;
1033 arg1 = value_ind (tmp);
1034 type1 = check_typedef (VALUE_TYPE (arg1));
1035 }
1036
1037 context = type1;
1038 /* Now context is the basetype containing the vtbl. */
1039
1040 /* This type may have been defined before its virtual function table
1041 was. If so, fill in the virtual function table entry for the
1042 type now. */
1043 if (TYPE_VPTR_FIELDNO (context) < 0)
1044 fill_in_vptr_fieldno (context);
1045
1046 /* The virtual function table is now an array of structures
1047 which have the form { int16 offset, delta; void *pfn; }. */
1048 vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
1049 TYPE_VPTR_BASETYPE (context));
1050
1051 /* With older versions of g++, the vtbl field pointed to an array
1052 of structures. Nowadays it points directly to the structure. */
1053 if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
1054 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
1055 {
1056 /* Handle the case where the vtbl field points to an
1057 array of structures. */
1058 vtbl = value_ind (vtbl);
1059
1060 /* Index into the virtual function table. This is hard-coded because
1061 looking up a field is not cheap, and it may be important to save
1062 time, e.g. if the user has set a conditional breakpoint calling
1063 a virtual function. */
1064 entry = value_subscript (vtbl, vi);
1065 }
1066 else
1067 {
1068 /* Handle the case where the vtbl field points directly to a structure. */
1069 vtbl = value_add (vtbl, vi);
1070 entry = value_ind (vtbl);
1071 }
1072
1073 entry_type = check_typedef (VALUE_TYPE (entry));
1074
1075 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
1076 {
1077 /* Move the `this' pointer according to the virtual function table. */
1078 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
1079
1080 if (!VALUE_LAZY (arg1))
1081 {
1082 VALUE_LAZY (arg1) = 1;
1083 value_fetch_lazy (arg1);
1084 }
1085
1086 vfn = value_field (entry, 2);
1087 }
1088 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
1089 vfn = entry;
1090 else
1091 error ("I'm confused: virtual function table has bad type");
1092 /* Reinstantiate the function pointer with the correct type. */
1093 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1094
1095 *arg1p = arg1;
1096 return vfn;
1097 }
1098 }
1099
1100 /* ARG is a pointer to an object we know to be at least
1101 a DTYPE. BTYPE is the most derived basetype that has
1102 already been searched (and need not be searched again).
1103 After looking at the vtables between BTYPE and DTYPE,
1104 return the most derived type we find. The caller must
1105 be satisfied when the return value == DTYPE.
1106
1107 FIXME-tiemann: should work with dossier entries as well.
1108 NOTICE - djb: I see no good reason at all to keep this function now that
1109 we have RTTI support. It's used in literally one place, and it's
1110 hard to keep this function up to date when it's purpose is served
1111 by value_rtti_type efficiently.
1112 Consider it gone for 5.1. */
1113
1114 static value_ptr
1115 value_headof (in_arg, btype, dtype)
1116 value_ptr in_arg;
1117 struct type *btype, *dtype;
1118 {
1119 /* First collect the vtables we must look at for this object. */
1120 value_ptr arg, vtbl;
1121 struct symbol *sym;
1122 char *demangled_name;
1123 struct minimal_symbol *msymbol;
1124
1125 btype = TYPE_VPTR_BASETYPE (dtype);
1126 CHECK_TYPEDEF (btype);
1127 arg = in_arg;
1128 if (btype != dtype)
1129 arg = value_cast (lookup_pointer_type (btype), arg);
1130 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
1131 {
1132 /*
1133 * Copy the value, but change the type from (T&) to (T*).
1134 * We keep the same location information, which is efficient,
1135 * and allows &(&X) to get the location containing the reference.
1136 */
1137 arg = value_copy (arg);
1138 VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
1139 }
1140 if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
1141 return arg;
1142
1143 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
1144 /* Turn vtable into typeinfo function */
1145 VALUE_OFFSET(vtbl)+=4;
1146
1147 msymbol = lookup_minimal_symbol_by_pc ( value_as_pointer(value_ind(vtbl)) );
1148 if (msymbol == NULL
1149 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
1150 {
1151 /* If we expected to find a vtable, but did not, let the user
1152 know that we aren't happy, but don't throw an error.
1153 FIXME: there has to be a better way to do this. */
1154 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
1155 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1156 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1157 VALUE_TYPE (in_arg) = error_type;
1158 return in_arg;
1159 }
1160 demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
1161 *(strchr (demangled_name, ' ')) = '\0';
1162
1163 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1164 if (sym == NULL)
1165 error ("could not find type declaration for `%s'", demangled_name);
1166
1167 arg = in_arg;
1168 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1169 return arg;
1170 }
1171
1172 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1173 function tables, probe ARG's tables (including the vtables
1174 of its baseclasses) to figure out the most derived type that ARG
1175 could actually be a pointer to. */
1176
1177 value_ptr
1178 value_from_vtable_info (arg, type)
1179 value_ptr arg;
1180 struct type *type;
1181 {
1182 /* Take care of preliminaries. */
1183 if (TYPE_VPTR_FIELDNO (type) < 0)
1184 fill_in_vptr_fieldno (type);
1185 if (TYPE_VPTR_FIELDNO (type) < 0)
1186 return 0;
1187
1188 return value_headof (arg, 0, type);
1189 }
1190
1191 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1192 pointer which is for the base class whose type is BASECLASS. */
1193
1194 static int
1195 vb_match (type, index, basetype)
1196 struct type *type;
1197 int index;
1198 struct type *basetype;
1199 {
1200 struct type *fieldtype;
1201 char *name = TYPE_FIELD_NAME (type, index);
1202 char *field_class_name = NULL;
1203
1204 if (*name != '_')
1205 return 0;
1206 /* gcc 2.4 uses _vb$. */
1207 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1208 field_class_name = name + 4;
1209 /* gcc 2.5 will use __vb_. */
1210 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1211 field_class_name = name + 5;
1212
1213 if (field_class_name == NULL)
1214 /* This field is not a virtual base class pointer. */
1215 return 0;
1216
1217 /* It's a virtual baseclass pointer, now we just need to find out whether
1218 it is for this baseclass. */
1219 fieldtype = TYPE_FIELD_TYPE (type, index);
1220 if (fieldtype == NULL
1221 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1222 /* "Can't happen". */
1223 return 0;
1224
1225 /* What we check for is that either the types are equal (needed for
1226 nameless types) or have the same name. This is ugly, and a more
1227 elegant solution should be devised (which would probably just push
1228 the ugliness into symbol reading unless we change the stabs format). */
1229 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1230 return 1;
1231
1232 if (TYPE_NAME (basetype) != NULL
1233 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1234 && STREQ (TYPE_NAME (basetype),
1235 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1236 return 1;
1237 return 0;
1238 }
1239
1240 /* Compute the offset of the baseclass which is
1241 the INDEXth baseclass of class TYPE,
1242 for value at VALADDR (in host) at ADDRESS (in target).
1243 The result is the offset of the baseclass value relative
1244 to (the address of)(ARG) + OFFSET.
1245
1246 -1 is returned on error. */
1247
1248 int
1249 baseclass_offset (type, index, valaddr, address)
1250 struct type *type;
1251 int index;
1252 char *valaddr;
1253 CORE_ADDR address;
1254 {
1255 struct type *basetype = TYPE_BASECLASS (type, index);
1256
1257 if (BASETYPE_VIA_VIRTUAL (type, index))
1258 {
1259 /* Must hunt for the pointer to this virtual baseclass. */
1260 register int i, len = TYPE_NFIELDS (type);
1261 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1262
1263 /* First look for the virtual baseclass pointer
1264 in the fields. */
1265 for (i = n_baseclasses; i < len; i++)
1266 {
1267 if (vb_match (type, i, basetype))
1268 {
1269 CORE_ADDR addr
1270 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1271 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1272
1273 return addr - (LONGEST) address;
1274 }
1275 }
1276 /* Not in the fields, so try looking through the baseclasses. */
1277 for (i = index + 1; i < n_baseclasses; i++)
1278 {
1279 int boffset =
1280 baseclass_offset (type, i, valaddr, address);
1281 if (boffset)
1282 return boffset;
1283 }
1284 /* Not found. */
1285 return -1;
1286 }
1287
1288 /* Baseclass is easily computed. */
1289 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1290 }
1291 \f
1292 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1293 VALADDR.
1294
1295 Extracting bits depends on endianness of the machine. Compute the
1296 number of least significant bits to discard. For big endian machines,
1297 we compute the total number of bits in the anonymous object, subtract
1298 off the bit count from the MSB of the object to the MSB of the
1299 bitfield, then the size of the bitfield, which leaves the LSB discard
1300 count. For little endian machines, the discard count is simply the
1301 number of bits from the LSB of the anonymous object to the LSB of the
1302 bitfield.
1303
1304 If the field is signed, we also do sign extension. */
1305
1306 LONGEST
1307 unpack_field_as_long (type, valaddr, fieldno)
1308 struct type *type;
1309 char *valaddr;
1310 int fieldno;
1311 {
1312 ULONGEST val;
1313 ULONGEST valmask;
1314 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1315 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1316 int lsbcount;
1317 struct type *field_type;
1318
1319 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1320 field_type = TYPE_FIELD_TYPE (type, fieldno);
1321 CHECK_TYPEDEF (field_type);
1322
1323 /* Extract bits. See comment above. */
1324
1325 if (BITS_BIG_ENDIAN)
1326 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1327 else
1328 lsbcount = (bitpos % 8);
1329 val >>= lsbcount;
1330
1331 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1332 If the field is signed, and is negative, then sign extend. */
1333
1334 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1335 {
1336 valmask = (((ULONGEST) 1) << bitsize) - 1;
1337 val &= valmask;
1338 if (!TYPE_UNSIGNED (field_type))
1339 {
1340 if (val & (valmask ^ (valmask >> 1)))
1341 {
1342 val |= ~valmask;
1343 }
1344 }
1345 }
1346 return (val);
1347 }
1348
1349 /* Modify the value of a bitfield. ADDR points to a block of memory in
1350 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1351 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1352 indicate which bits (in target bit order) comprise the bitfield. */
1353
1354 void
1355 modify_field (addr, fieldval, bitpos, bitsize)
1356 char *addr;
1357 LONGEST fieldval;
1358 int bitpos, bitsize;
1359 {
1360 LONGEST oword;
1361
1362 /* If a negative fieldval fits in the field in question, chop
1363 off the sign extension bits. */
1364 if (bitsize < (8 * (int) sizeof (fieldval))
1365 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1366 fieldval = fieldval & ((1 << bitsize) - 1);
1367
1368 /* Warn if value is too big to fit in the field in question. */
1369 if (bitsize < (8 * (int) sizeof (fieldval))
1370 && 0 != (fieldval & ~((1 << bitsize) - 1)))
1371 {
1372 /* FIXME: would like to include fieldval in the message, but
1373 we don't have a sprintf_longest. */
1374 warning ("Value does not fit in %d bits.", bitsize);
1375
1376 /* Truncate it, otherwise adjoining fields may be corrupted. */
1377 fieldval = fieldval & ((1 << bitsize) - 1);
1378 }
1379
1380 oword = extract_signed_integer (addr, sizeof oword);
1381
1382 /* Shifting for bit field depends on endianness of the target machine. */
1383 if (BITS_BIG_ENDIAN)
1384 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1385
1386 /* Mask out old value, while avoiding shifts >= size of oword */
1387 if (bitsize < 8 * (int) sizeof (oword))
1388 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
1389 else
1390 oword &= ~((~(ULONGEST) 0) << bitpos);
1391 oword |= fieldval << bitpos;
1392
1393 store_signed_integer (addr, sizeof oword, oword);
1394 }
1395 \f
1396 /* Convert C numbers into newly allocated values */
1397
1398 value_ptr
1399 value_from_longest (type, num)
1400 struct type *type;
1401 register LONGEST num;
1402 {
1403 register value_ptr val = allocate_value (type);
1404 register enum type_code code;
1405 register int len;
1406 retry:
1407 code = TYPE_CODE (type);
1408 len = TYPE_LENGTH (type);
1409
1410 switch (code)
1411 {
1412 case TYPE_CODE_TYPEDEF:
1413 type = check_typedef (type);
1414 goto retry;
1415 case TYPE_CODE_INT:
1416 case TYPE_CODE_CHAR:
1417 case TYPE_CODE_ENUM:
1418 case TYPE_CODE_BOOL:
1419 case TYPE_CODE_RANGE:
1420 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1421 break;
1422
1423 case TYPE_CODE_REF:
1424 case TYPE_CODE_PTR:
1425 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
1426 break;
1427
1428 default:
1429 error ("Unexpected type (%d) encountered for integer constant.", code);
1430 }
1431 return val;
1432 }
1433
1434
1435 /* Create a value representing a pointer of type TYPE to the address
1436 ADDR. */
1437 value_ptr
1438 value_from_pointer (struct type *type, CORE_ADDR addr)
1439 {
1440 value_ptr val = allocate_value (type);
1441 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1442 return val;
1443 }
1444
1445
1446 /* Create a value for a string constant to be stored locally
1447 (not in the inferior's memory space, but in GDB memory).
1448 This is analogous to value_from_longest, which also does not
1449 use inferior memory. String shall NOT contain embedded nulls. */
1450
1451 value_ptr
1452 value_from_string (ptr)
1453 char *ptr;
1454 {
1455 value_ptr val;
1456 int len = strlen (ptr);
1457 int lowbound = current_language->string_lower_bound;
1458 struct type *rangetype =
1459 create_range_type ((struct type *) NULL,
1460 builtin_type_int,
1461 lowbound, len + lowbound - 1);
1462 struct type *stringtype =
1463 create_array_type ((struct type *) NULL,
1464 *current_language->string_char_type,
1465 rangetype);
1466
1467 val = allocate_value (stringtype);
1468 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1469 return val;
1470 }
1471
1472 value_ptr
1473 value_from_double (type, num)
1474 struct type *type;
1475 DOUBLEST num;
1476 {
1477 register value_ptr val = allocate_value (type);
1478 struct type *base_type = check_typedef (type);
1479 register enum type_code code = TYPE_CODE (base_type);
1480 register int len = TYPE_LENGTH (base_type);
1481
1482 if (code == TYPE_CODE_FLT)
1483 {
1484 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1485 }
1486 else
1487 error ("Unexpected type encountered for floating constant.");
1488
1489 return val;
1490 }
1491 \f
1492 /* Deal with the value that is "about to be returned". */
1493
1494 /* Return the value that a function returning now
1495 would be returning to its caller, assuming its type is VALTYPE.
1496 RETBUF is where we look for what ought to be the contents
1497 of the registers (in raw form). This is because it is often
1498 desirable to restore old values to those registers
1499 after saving the contents of interest, and then call
1500 this function using the saved values.
1501 struct_return is non-zero when the function in question is
1502 using the structure return conventions on the machine in question;
1503 0 when it is using the value returning conventions (this often
1504 means returning pointer to where structure is vs. returning value). */
1505
1506 value_ptr
1507 value_being_returned (valtype, retbuf, struct_return)
1508 register struct type *valtype;
1509 char *retbuf;
1510 int struct_return;
1511 /*ARGSUSED */
1512 {
1513 register value_ptr val;
1514 CORE_ADDR addr;
1515
1516 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1517 if (EXTRACT_STRUCT_VALUE_ADDRESS_P)
1518 if (struct_return)
1519 {
1520 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1521 if (!addr)
1522 error ("Function return value unknown");
1523 return value_at (valtype, addr, NULL);
1524 }
1525
1526 val = allocate_value (valtype);
1527 CHECK_TYPEDEF (valtype);
1528 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1529
1530 return val;
1531 }
1532
1533 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1534 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1535 and TYPE is the type (which is known to be struct, union or array).
1536
1537 On most machines, the struct convention is used unless we are
1538 using gcc and the type is of a special size. */
1539 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1540 native compiler. GCC 2.3.3 was the last release that did it the
1541 old way. Since gcc2_compiled was not changed, we have no
1542 way to correctly win in all cases, so we just do the right thing
1543 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1544 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1545 would cause more chaos than dealing with some struct returns being
1546 handled wrong. */
1547
1548 int
1549 generic_use_struct_convention (gcc_p, value_type)
1550 int gcc_p;
1551 struct type *value_type;
1552 {
1553 return !((gcc_p == 1)
1554 && (TYPE_LENGTH (value_type) == 1
1555 || TYPE_LENGTH (value_type) == 2
1556 || TYPE_LENGTH (value_type) == 4
1557 || TYPE_LENGTH (value_type) == 8));
1558 }
1559
1560 #ifndef USE_STRUCT_CONVENTION
1561 #define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1562 #endif
1563
1564
1565 /* Return true if the function specified is using the structure returning
1566 convention on this machine to return arguments, or 0 if it is using
1567 the value returning convention. FUNCTION is the value representing
1568 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1569 is the type returned by the function. GCC_P is nonzero if compiled
1570 with GCC. */
1571
1572 int
1573 using_struct_return (function, funcaddr, value_type, gcc_p)
1574 value_ptr function;
1575 CORE_ADDR funcaddr;
1576 struct type *value_type;
1577 int gcc_p;
1578 /*ARGSUSED */
1579 {
1580 register enum type_code code = TYPE_CODE (value_type);
1581
1582 if (code == TYPE_CODE_ERROR)
1583 error ("Function return type unknown.");
1584
1585 if (code == TYPE_CODE_STRUCT
1586 || code == TYPE_CODE_UNION
1587 || code == TYPE_CODE_ARRAY
1588 || RETURN_VALUE_ON_STACK (value_type))
1589 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1590
1591 return 0;
1592 }
1593
1594 /* Store VAL so it will be returned if a function returns now.
1595 Does not verify that VAL's type matches what the current
1596 function wants to return. */
1597
1598 void
1599 set_return_value (val)
1600 value_ptr val;
1601 {
1602 struct type *type = check_typedef (VALUE_TYPE (val));
1603 register enum type_code code = TYPE_CODE (type);
1604
1605 if (code == TYPE_CODE_ERROR)
1606 error ("Function return type unknown.");
1607
1608 if (code == TYPE_CODE_STRUCT
1609 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1610 error ("GDB does not support specifying a struct or union return value.");
1611
1612 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1613 }
1614 \f
1615 void
1616 _initialize_values ()
1617 {
1618 add_cmd ("convenience", no_class, show_convenience,
1619 "Debugger convenience (\"$foo\") variables.\n\
1620 These variables are created when you assign them values;\n\
1621 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1622 A few convenience variables are given values automatically:\n\
1623 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1624 \"$__\" holds the contents of the last address examined with \"x\".",
1625 &showlist);
1626
1627 add_cmd ("values", no_class, show_values,
1628 "Elements of value history around item number IDX (or last ten).",
1629 &showlist);
1630 }
This page took 0.086296 seconds and 5 git commands to generate.