Fix SBO bit in disassembly mask for ldrah on AArch64.
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33 #include "parser-defs.h"
34
35 #if HAVE_PYTHON
36 #include "python/python.h"
37 #include "python/python-internal.h"
38 #include "python/py-ref.h"
39 #else
40 typedef int PyObject;
41 #endif
42
43 /* Non-zero if we want to see trace of varobj level stuff. */
44
45 unsigned int varobjdebug = 0;
46 static void
47 show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
49 {
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51 }
52
53 /* String representations of gdb's format codes. */
54 const char *varobj_format_string[] =
55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
56
57 /* True if we want to allow Python-based pretty-printing. */
58 static bool pretty_printing = false;
59
60 void
61 varobj_enable_pretty_printing (void)
62 {
63 pretty_printing = true;
64 }
65
66 /* Data structures */
67
68 /* Every root variable has one of these structures saved in its
69 varobj. */
70 struct varobj_root
71 {
72 /* The expression for this parent. */
73 expression_up exp;
74
75 /* Block for which this expression is valid. */
76 const struct block *valid_block = NULL;
77
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
80 struct frame_id frame = null_frame_id;
81
82 /* The global thread ID that this varobj_root belongs to. This field
83 is only valid if valid_block is not NULL.
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
87 int thread_id = 0;
88
89 /* If true, the -var-update always recomputes the value in the
90 current thread and frame. Otherwise, variable object is
91 always updated in the specific scope/thread/frame. */
92 bool floating = false;
93
94 /* Flag that indicates validity: set to false when this varobj_root refers
95 to symbols that do not exist anymore. */
96 bool is_valid = true;
97
98 /* Language-related operations for this variable and its
99 children. */
100 const struct lang_varobj_ops *lang_ops = NULL;
101
102 /* The varobj for this root node. */
103 struct varobj *rootvar = NULL;
104
105 /* Next root variable */
106 struct varobj_root *next = NULL;
107 };
108
109 /* Dynamic part of varobj. */
110
111 struct varobj_dynamic
112 {
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
116 can avoid that. */
117 bool children_requested = false;
118
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
122 PyObject *constructor = NULL;
123
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
126 PyObject *pretty_printer = NULL;
127
128 /* The iterator returned by the printer's 'children' method, or NULL
129 if not available. */
130 struct varobj_iter *child_iter = NULL;
131
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
137 varobj_item *saved_item = NULL;
138 };
139
140 /* A list of varobjs */
141
142 struct vlist
143 {
144 struct varobj *var;
145 struct vlist *next;
146 };
147
148 /* Private function prototypes */
149
150 /* Helper functions for the above subcommands. */
151
152 static int delete_variable (struct varobj *, bool);
153
154 static void delete_variable_1 (int *, struct varobj *, bool, bool);
155
156 static bool install_variable (struct varobj *);
157
158 static void uninstall_variable (struct varobj *);
159
160 static struct varobj *create_child (struct varobj *, int, std::string &);
161
162 static struct varobj *
163 create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
165
166 /* Utility routines */
167
168 static enum varobj_display_formats variable_default_display (struct varobj *);
169
170 static bool update_type_if_necessary (struct varobj *var,
171 struct value *new_value);
172
173 static bool install_new_value (struct varobj *var, struct value *value,
174 bool initial);
175
176 /* Language-specific routines. */
177
178 static int number_of_children (const struct varobj *);
179
180 static std::string name_of_variable (const struct varobj *);
181
182 static std::string name_of_child (struct varobj *, int);
183
184 static struct value *value_of_root (struct varobj **var_handle, bool *);
185
186 static struct value *value_of_child (const struct varobj *parent, int index);
187
188 static std::string my_value_of_variable (struct varobj *var,
189 enum varobj_display_formats format);
190
191 static bool is_root_p (const struct varobj *var);
192
193 static struct varobj *varobj_add_child (struct varobj *var,
194 struct varobj_item *item);
195
196 /* Private data */
197
198 /* Mappings of varobj_display_formats enums to gdb's format codes. */
199 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
200
201 /* Header of the list of root variable objects. */
202 static struct varobj_root *rootlist;
203
204 /* Prime number indicating the number of buckets in the hash table. */
205 /* A prime large enough to avoid too many collisions. */
206 #define VAROBJ_TABLE_SIZE 227
207
208 /* Pointer to the varobj hash table (built at run time). */
209 static struct vlist **varobj_table;
210
211 \f
212
213 /* API Implementation */
214 static bool
215 is_root_p (const struct varobj *var)
216 {
217 return (var->root->rootvar == var);
218 }
219
220 #ifdef HAVE_PYTHON
221
222 /* See python-internal.h. */
223 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
224 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
225 {
226 }
227
228 #endif
229
230 /* Return the full FRAME which corresponds to the given CORE_ADDR
231 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
232
233 static struct frame_info *
234 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
235 {
236 struct frame_info *frame = NULL;
237
238 if (frame_addr == (CORE_ADDR) 0)
239 return NULL;
240
241 for (frame = get_current_frame ();
242 frame != NULL;
243 frame = get_prev_frame (frame))
244 {
245 /* The CORE_ADDR we get as argument was parsed from a string GDB
246 output as $fp. This output got truncated to gdbarch_addr_bit.
247 Truncate the frame base address in the same manner before
248 comparing it against our argument. */
249 CORE_ADDR frame_base = get_frame_base_address (frame);
250 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
251
252 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
253 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
254
255 if (frame_base == frame_addr)
256 return frame;
257 }
258
259 return NULL;
260 }
261
262 /* Creates a varobj (not its children). */
263
264 struct varobj *
265 varobj_create (const char *objname,
266 const char *expression, CORE_ADDR frame, enum varobj_type type)
267 {
268 /* Fill out a varobj structure for the (root) variable being constructed. */
269 std::unique_ptr<varobj> var (new varobj (new varobj_root));
270
271 if (expression != NULL)
272 {
273 struct frame_info *fi;
274 struct frame_id old_id = null_frame_id;
275 const struct block *block;
276 const char *p;
277 struct value *value = NULL;
278 CORE_ADDR pc;
279
280 /* Parse and evaluate the expression, filling in as much of the
281 variable's data as possible. */
282
283 if (has_stack_frames ())
284 {
285 /* Allow creator to specify context of variable. */
286 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
287 fi = get_selected_frame (NULL);
288 else
289 /* FIXME: cagney/2002-11-23: This code should be doing a
290 lookup using the frame ID and not just the frame's
291 ``address''. This, of course, means an interface
292 change. However, with out that interface change ISAs,
293 such as the ia64 with its two stacks, won't work.
294 Similar goes for the case where there is a frameless
295 function. */
296 fi = find_frame_addr_in_frame_chain (frame);
297 }
298 else
299 fi = NULL;
300
301 if (type == USE_SELECTED_FRAME)
302 var->root->floating = true;
303
304 pc = 0;
305 block = NULL;
306 if (fi != NULL)
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
311
312 p = expression;
313 innermost_block.reset (INNERMOST_BLOCK_FOR_SYMBOLS
314 | INNERMOST_BLOCK_FOR_REGISTERS);
315 /* Wrap the call to parse expression, so we can
316 return a sensible error. */
317 TRY
318 {
319 var->root->exp = parse_exp_1 (&p, pc, block, 0);
320 }
321
322 CATCH (except, RETURN_MASK_ERROR)
323 {
324 return NULL;
325 }
326 END_CATCH
327
328 /* Don't allow variables to be created for types. */
329 if (var->root->exp->elts[0].opcode == OP_TYPE
330 || var->root->exp->elts[0].opcode == OP_TYPEOF
331 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
332 {
333 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
334 " as an expression.\n");
335 return NULL;
336 }
337
338 var->format = variable_default_display (var.get ());
339 var->root->valid_block =
340 var->root->floating ? NULL : innermost_block.block ();
341 var->name = expression;
342 /* For a root var, the name and the expr are the same. */
343 var->path_expr = expression;
344
345 /* When the frame is different from the current frame,
346 we must select the appropriate frame before parsing
347 the expression, otherwise the value will not be current.
348 Since select_frame is so benign, just call it for all cases. */
349 if (var->root->valid_block)
350 {
351 /* User could specify explicit FRAME-ADDR which was not found but
352 EXPRESSION is frame specific and we would not be able to evaluate
353 it correctly next time. With VALID_BLOCK set we must also set
354 FRAME and THREAD_ID. */
355 if (fi == NULL)
356 error (_("Failed to find the specified frame"));
357
358 var->root->frame = get_frame_id (fi);
359 var->root->thread_id = inferior_thread ()->global_num;
360 old_id = get_frame_id (get_selected_frame (NULL));
361 select_frame (fi);
362 }
363
364 /* We definitely need to catch errors here.
365 If evaluate_expression succeeds we got the value we wanted.
366 But if it fails, we still go on with a call to evaluate_type(). */
367 TRY
368 {
369 value = evaluate_expression (var->root->exp.get ());
370 }
371 CATCH (except, RETURN_MASK_ERROR)
372 {
373 /* Error getting the value. Try to at least get the
374 right type. */
375 struct value *type_only_value = evaluate_type (var->root->exp.get ());
376
377 var->type = value_type (type_only_value);
378 }
379 END_CATCH
380
381 if (value != NULL)
382 {
383 int real_type_found = 0;
384
385 var->type = value_actual_type (value, 0, &real_type_found);
386 if (real_type_found)
387 value = value_cast (var->type, value);
388 }
389
390 /* Set language info */
391 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
392
393 install_new_value (var.get (), value, 1 /* Initial assignment */);
394
395 /* Set ourselves as our root. */
396 var->root->rootvar = var.get ();
397
398 /* Reset the selected frame. */
399 if (frame_id_p (old_id))
400 select_frame (frame_find_by_id (old_id));
401 }
402
403 /* If the variable object name is null, that means this
404 is a temporary variable, so don't install it. */
405
406 if ((var != NULL) && (objname != NULL))
407 {
408 var->obj_name = objname;
409
410 /* If a varobj name is duplicated, the install will fail so
411 we must cleanup. */
412 if (!install_variable (var.get ()))
413 return NULL;
414 }
415
416 return var.release ();
417 }
418
419 /* Generates an unique name that can be used for a varobj. */
420
421 std::string
422 varobj_gen_name (void)
423 {
424 static int id = 0;
425
426 /* Generate a name for this object. */
427 id++;
428 return string_printf ("var%d", id);
429 }
430
431 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
432 error if OBJNAME cannot be found. */
433
434 struct varobj *
435 varobj_get_handle (const char *objname)
436 {
437 struct vlist *cv;
438 const char *chp;
439 unsigned int index = 0;
440 unsigned int i = 1;
441
442 for (chp = objname; *chp; chp++)
443 {
444 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
445 }
446
447 cv = *(varobj_table + index);
448 while (cv != NULL && cv->var->obj_name != objname)
449 cv = cv->next;
450
451 if (cv == NULL)
452 error (_("Variable object not found"));
453
454 return cv->var;
455 }
456
457 /* Given the handle, return the name of the object. */
458
459 const char *
460 varobj_get_objname (const struct varobj *var)
461 {
462 return var->obj_name.c_str ();
463 }
464
465 /* Given the handle, return the expression represented by the
466 object. */
467
468 std::string
469 varobj_get_expression (const struct varobj *var)
470 {
471 return name_of_variable (var);
472 }
473
474 /* See varobj.h. */
475
476 int
477 varobj_delete (struct varobj *var, bool only_children)
478 {
479 return delete_variable (var, only_children);
480 }
481
482 #if HAVE_PYTHON
483
484 /* Convenience function for varobj_set_visualizer. Instantiate a
485 pretty-printer for a given value. */
486 static PyObject *
487 instantiate_pretty_printer (PyObject *constructor, struct value *value)
488 {
489 PyObject *val_obj = NULL;
490 PyObject *printer;
491
492 val_obj = value_to_value_object (value);
493 if (! val_obj)
494 return NULL;
495
496 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
497 Py_DECREF (val_obj);
498 return printer;
499 }
500
501 #endif
502
503 /* Set/Get variable object display format. */
504
505 enum varobj_display_formats
506 varobj_set_display_format (struct varobj *var,
507 enum varobj_display_formats format)
508 {
509 switch (format)
510 {
511 case FORMAT_NATURAL:
512 case FORMAT_BINARY:
513 case FORMAT_DECIMAL:
514 case FORMAT_HEXADECIMAL:
515 case FORMAT_OCTAL:
516 case FORMAT_ZHEXADECIMAL:
517 var->format = format;
518 break;
519
520 default:
521 var->format = variable_default_display (var);
522 }
523
524 if (varobj_value_is_changeable_p (var)
525 && var->value != nullptr && !value_lazy (var->value.get ()))
526 {
527 var->print_value = varobj_value_get_print_value (var->value.get (),
528 var->format, var);
529 }
530
531 return var->format;
532 }
533
534 enum varobj_display_formats
535 varobj_get_display_format (const struct varobj *var)
536 {
537 return var->format;
538 }
539
540 gdb::unique_xmalloc_ptr<char>
541 varobj_get_display_hint (const struct varobj *var)
542 {
543 gdb::unique_xmalloc_ptr<char> result;
544
545 #if HAVE_PYTHON
546 if (!gdb_python_initialized)
547 return NULL;
548
549 gdbpy_enter_varobj enter_py (var);
550
551 if (var->dynamic->pretty_printer != NULL)
552 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
553 #endif
554
555 return result;
556 }
557
558 /* Return true if the varobj has items after TO, false otherwise. */
559
560 bool
561 varobj_has_more (const struct varobj *var, int to)
562 {
563 if (var->children.size () > to)
564 return true;
565
566 return ((to == -1 || var->children.size () == to)
567 && (var->dynamic->saved_item != NULL));
568 }
569
570 /* If the variable object is bound to a specific thread, that
571 is its evaluation can always be done in context of a frame
572 inside that thread, returns GDB id of the thread -- which
573 is always positive. Otherwise, returns -1. */
574 int
575 varobj_get_thread_id (const struct varobj *var)
576 {
577 if (var->root->valid_block && var->root->thread_id > 0)
578 return var->root->thread_id;
579 else
580 return -1;
581 }
582
583 void
584 varobj_set_frozen (struct varobj *var, bool frozen)
585 {
586 /* When a variable is unfrozen, we don't fetch its value.
587 The 'not_fetched' flag remains set, so next -var-update
588 won't complain.
589
590 We don't fetch the value, because for structures the client
591 should do -var-update anyway. It would be bad to have different
592 client-size logic for structure and other types. */
593 var->frozen = frozen;
594 }
595
596 bool
597 varobj_get_frozen (const struct varobj *var)
598 {
599 return var->frozen;
600 }
601
602 /* A helper function that restricts a range to what is actually
603 available in a VEC. This follows the usual rules for the meaning
604 of FROM and TO -- if either is negative, the entire range is
605 used. */
606
607 void
608 varobj_restrict_range (const std::vector<varobj *> &children,
609 int *from, int *to)
610 {
611 int len = children.size ();
612
613 if (*from < 0 || *to < 0)
614 {
615 *from = 0;
616 *to = len;
617 }
618 else
619 {
620 if (*from > len)
621 *from = len;
622 if (*to > len)
623 *to = len;
624 if (*from > *to)
625 *from = *to;
626 }
627 }
628
629 /* A helper for update_dynamic_varobj_children that installs a new
630 child when needed. */
631
632 static void
633 install_dynamic_child (struct varobj *var,
634 std::vector<varobj *> *changed,
635 std::vector<varobj *> *type_changed,
636 std::vector<varobj *> *newobj,
637 std::vector<varobj *> *unchanged,
638 bool *cchanged,
639 int index,
640 struct varobj_item *item)
641 {
642 if (var->children.size () < index + 1)
643 {
644 /* There's no child yet. */
645 struct varobj *child = varobj_add_child (var, item);
646
647 if (newobj != NULL)
648 {
649 newobj->push_back (child);
650 *cchanged = true;
651 }
652 }
653 else
654 {
655 varobj *existing = var->children[index];
656 bool type_updated = update_type_if_necessary (existing, item->value);
657
658 if (type_updated)
659 {
660 if (type_changed != NULL)
661 type_changed->push_back (existing);
662 }
663 if (install_new_value (existing, item->value, 0))
664 {
665 if (!type_updated && changed != NULL)
666 changed->push_back (existing);
667 }
668 else if (!type_updated && unchanged != NULL)
669 unchanged->push_back (existing);
670 }
671 }
672
673 #if HAVE_PYTHON
674
675 static bool
676 dynamic_varobj_has_child_method (const struct varobj *var)
677 {
678 PyObject *printer = var->dynamic->pretty_printer;
679
680 if (!gdb_python_initialized)
681 return false;
682
683 gdbpy_enter_varobj enter_py (var);
684 return PyObject_HasAttr (printer, gdbpy_children_cst);
685 }
686 #endif
687
688 /* A factory for creating dynamic varobj's iterators. Returns an
689 iterator object suitable for iterating over VAR's children. */
690
691 static struct varobj_iter *
692 varobj_get_iterator (struct varobj *var)
693 {
694 #if HAVE_PYTHON
695 if (var->dynamic->pretty_printer)
696 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
697 #endif
698
699 gdb_assert_not_reached (_("\
700 requested an iterator from a non-dynamic varobj"));
701 }
702
703 /* Release and clear VAR's saved item, if any. */
704
705 static void
706 varobj_clear_saved_item (struct varobj_dynamic *var)
707 {
708 if (var->saved_item != NULL)
709 {
710 value_decref (var->saved_item->value);
711 delete var->saved_item;
712 var->saved_item = NULL;
713 }
714 }
715
716 static bool
717 update_dynamic_varobj_children (struct varobj *var,
718 std::vector<varobj *> *changed,
719 std::vector<varobj *> *type_changed,
720 std::vector<varobj *> *newobj,
721 std::vector<varobj *> *unchanged,
722 bool *cchanged,
723 bool update_children,
724 int from,
725 int to)
726 {
727 int i;
728
729 *cchanged = false;
730
731 if (update_children || var->dynamic->child_iter == NULL)
732 {
733 varobj_iter_delete (var->dynamic->child_iter);
734 var->dynamic->child_iter = varobj_get_iterator (var);
735
736 varobj_clear_saved_item (var->dynamic);
737
738 i = 0;
739
740 if (var->dynamic->child_iter == NULL)
741 return false;
742 }
743 else
744 i = var->children.size ();
745
746 /* We ask for one extra child, so that MI can report whether there
747 are more children. */
748 for (; to < 0 || i < to + 1; ++i)
749 {
750 varobj_item *item;
751
752 /* See if there was a leftover from last time. */
753 if (var->dynamic->saved_item != NULL)
754 {
755 item = var->dynamic->saved_item;
756 var->dynamic->saved_item = NULL;
757 }
758 else
759 {
760 item = varobj_iter_next (var->dynamic->child_iter);
761 /* Release vitem->value so its lifetime is not bound to the
762 execution of a command. */
763 if (item != NULL && item->value != NULL)
764 release_value (item->value).release ();
765 }
766
767 if (item == NULL)
768 {
769 /* Iteration is done. Remove iterator from VAR. */
770 varobj_iter_delete (var->dynamic->child_iter);
771 var->dynamic->child_iter = NULL;
772 break;
773 }
774 /* We don't want to push the extra child on any report list. */
775 if (to < 0 || i < to)
776 {
777 bool can_mention = from < 0 || i >= from;
778
779 install_dynamic_child (var, can_mention ? changed : NULL,
780 can_mention ? type_changed : NULL,
781 can_mention ? newobj : NULL,
782 can_mention ? unchanged : NULL,
783 can_mention ? cchanged : NULL, i,
784 item);
785
786 delete item;
787 }
788 else
789 {
790 var->dynamic->saved_item = item;
791
792 /* We want to truncate the child list just before this
793 element. */
794 break;
795 }
796 }
797
798 if (i < var->children.size ())
799 {
800 *cchanged = true;
801 for (int j = i; j < var->children.size (); ++j)
802 varobj_delete (var->children[j], 0);
803
804 var->children.resize (i);
805 }
806
807 /* If there are fewer children than requested, note that the list of
808 children changed. */
809 if (to >= 0 && var->children.size () < to)
810 *cchanged = true;
811
812 var->num_children = var->children.size ();
813
814 return true;
815 }
816
817 int
818 varobj_get_num_children (struct varobj *var)
819 {
820 if (var->num_children == -1)
821 {
822 if (varobj_is_dynamic_p (var))
823 {
824 bool dummy;
825
826 /* If we have a dynamic varobj, don't report -1 children.
827 So, try to fetch some children first. */
828 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
829 false, 0, 0);
830 }
831 else
832 var->num_children = number_of_children (var);
833 }
834
835 return var->num_children >= 0 ? var->num_children : 0;
836 }
837
838 /* Creates a list of the immediate children of a variable object;
839 the return code is the number of such children or -1 on error. */
840
841 const std::vector<varobj *> &
842 varobj_list_children (struct varobj *var, int *from, int *to)
843 {
844 var->dynamic->children_requested = true;
845
846 if (varobj_is_dynamic_p (var))
847 {
848 bool children_changed;
849
850 /* This, in theory, can result in the number of children changing without
851 frontend noticing. But well, calling -var-list-children on the same
852 varobj twice is not something a sane frontend would do. */
853 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
854 &children_changed, false, 0, *to);
855 varobj_restrict_range (var->children, from, to);
856 return var->children;
857 }
858
859 if (var->num_children == -1)
860 var->num_children = number_of_children (var);
861
862 /* If that failed, give up. */
863 if (var->num_children == -1)
864 return var->children;
865
866 /* If we're called when the list of children is not yet initialized,
867 allocate enough elements in it. */
868 while (var->children.size () < var->num_children)
869 var->children.push_back (NULL);
870
871 for (int i = 0; i < var->num_children; i++)
872 {
873 if (var->children[i] == NULL)
874 {
875 /* Either it's the first call to varobj_list_children for
876 this variable object, and the child was never created,
877 or it was explicitly deleted by the client. */
878 std::string name = name_of_child (var, i);
879 var->children[i] = create_child (var, i, name);
880 }
881 }
882
883 varobj_restrict_range (var->children, from, to);
884 return var->children;
885 }
886
887 static struct varobj *
888 varobj_add_child (struct varobj *var, struct varobj_item *item)
889 {
890 varobj *v = create_child_with_value (var, var->children.size (), item);
891
892 var->children.push_back (v);
893
894 return v;
895 }
896
897 /* Obtain the type of an object Variable as a string similar to the one gdb
898 prints on the console. The caller is responsible for freeing the string.
899 */
900
901 std::string
902 varobj_get_type (struct varobj *var)
903 {
904 /* For the "fake" variables, do not return a type. (Its type is
905 NULL, too.)
906 Do not return a type for invalid variables as well. */
907 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
908 return std::string ();
909
910 return type_to_string (var->type);
911 }
912
913 /* Obtain the type of an object variable. */
914
915 struct type *
916 varobj_get_gdb_type (const struct varobj *var)
917 {
918 return var->type;
919 }
920
921 /* Is VAR a path expression parent, i.e., can it be used to construct
922 a valid path expression? */
923
924 static bool
925 is_path_expr_parent (const struct varobj *var)
926 {
927 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
928 return var->root->lang_ops->is_path_expr_parent (var);
929 }
930
931 /* Is VAR a path expression parent, i.e., can it be used to construct
932 a valid path expression? By default we assume any VAR can be a path
933 parent. */
934
935 bool
936 varobj_default_is_path_expr_parent (const struct varobj *var)
937 {
938 return true;
939 }
940
941 /* Return the path expression parent for VAR. */
942
943 const struct varobj *
944 varobj_get_path_expr_parent (const struct varobj *var)
945 {
946 const struct varobj *parent = var;
947
948 while (!is_root_p (parent) && !is_path_expr_parent (parent))
949 parent = parent->parent;
950
951 return parent;
952 }
953
954 /* Return a pointer to the full rooted expression of varobj VAR.
955 If it has not been computed yet, compute it. */
956
957 const char *
958 varobj_get_path_expr (const struct varobj *var)
959 {
960 if (var->path_expr.empty ())
961 {
962 /* For root varobjs, we initialize path_expr
963 when creating varobj, so here it should be
964 child varobj. */
965 struct varobj *mutable_var = (struct varobj *) var;
966 gdb_assert (!is_root_p (var));
967
968 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
969 }
970
971 return var->path_expr.c_str ();
972 }
973
974 const struct language_defn *
975 varobj_get_language (const struct varobj *var)
976 {
977 return var->root->exp->language_defn;
978 }
979
980 int
981 varobj_get_attributes (const struct varobj *var)
982 {
983 int attributes = 0;
984
985 if (varobj_editable_p (var))
986 /* FIXME: define masks for attributes. */
987 attributes |= 0x00000001; /* Editable */
988
989 return attributes;
990 }
991
992 /* Return true if VAR is a dynamic varobj. */
993
994 bool
995 varobj_is_dynamic_p (const struct varobj *var)
996 {
997 return var->dynamic->pretty_printer != NULL;
998 }
999
1000 std::string
1001 varobj_get_formatted_value (struct varobj *var,
1002 enum varobj_display_formats format)
1003 {
1004 return my_value_of_variable (var, format);
1005 }
1006
1007 std::string
1008 varobj_get_value (struct varobj *var)
1009 {
1010 return my_value_of_variable (var, var->format);
1011 }
1012
1013 /* Set the value of an object variable (if it is editable) to the
1014 value of the given expression. */
1015 /* Note: Invokes functions that can call error(). */
1016
1017 bool
1018 varobj_set_value (struct varobj *var, const char *expression)
1019 {
1020 struct value *val = NULL; /* Initialize to keep gcc happy. */
1021 /* The argument "expression" contains the variable's new value.
1022 We need to first construct a legal expression for this -- ugh! */
1023 /* Does this cover all the bases? */
1024 struct value *value = NULL; /* Initialize to keep gcc happy. */
1025 int saved_input_radix = input_radix;
1026 const char *s = expression;
1027
1028 gdb_assert (varobj_editable_p (var));
1029
1030 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1031 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1032 TRY
1033 {
1034 value = evaluate_expression (exp.get ());
1035 }
1036
1037 CATCH (except, RETURN_MASK_ERROR)
1038 {
1039 /* We cannot proceed without a valid expression. */
1040 return false;
1041 }
1042 END_CATCH
1043
1044 /* All types that are editable must also be changeable. */
1045 gdb_assert (varobj_value_is_changeable_p (var));
1046
1047 /* The value of a changeable variable object must not be lazy. */
1048 gdb_assert (!value_lazy (var->value.get ()));
1049
1050 /* Need to coerce the input. We want to check if the
1051 value of the variable object will be different
1052 after assignment, and the first thing value_assign
1053 does is coerce the input.
1054 For example, if we are assigning an array to a pointer variable we
1055 should compare the pointer with the array's address, not with the
1056 array's content. */
1057 value = coerce_array (value);
1058
1059 /* The new value may be lazy. value_assign, or
1060 rather value_contents, will take care of this. */
1061 TRY
1062 {
1063 val = value_assign (var->value.get (), value);
1064 }
1065
1066 CATCH (except, RETURN_MASK_ERROR)
1067 {
1068 return false;
1069 }
1070 END_CATCH
1071
1072 /* If the value has changed, record it, so that next -var-update can
1073 report this change. If a variable had a value of '1', we've set it
1074 to '333' and then set again to '1', when -var-update will report this
1075 variable as changed -- because the first assignment has set the
1076 'updated' flag. There's no need to optimize that, because return value
1077 of -var-update should be considered an approximation. */
1078 var->updated = install_new_value (var, val, false /* Compare values. */);
1079 input_radix = saved_input_radix;
1080 return true;
1081 }
1082
1083 #if HAVE_PYTHON
1084
1085 /* A helper function to install a constructor function and visualizer
1086 in a varobj_dynamic. */
1087
1088 static void
1089 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1090 PyObject *visualizer)
1091 {
1092 Py_XDECREF (var->constructor);
1093 var->constructor = constructor;
1094
1095 Py_XDECREF (var->pretty_printer);
1096 var->pretty_printer = visualizer;
1097
1098 varobj_iter_delete (var->child_iter);
1099 var->child_iter = NULL;
1100 }
1101
1102 /* Install the default visualizer for VAR. */
1103
1104 static void
1105 install_default_visualizer (struct varobj *var)
1106 {
1107 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1108 if (CPLUS_FAKE_CHILD (var))
1109 return;
1110
1111 if (pretty_printing)
1112 {
1113 PyObject *pretty_printer = NULL;
1114
1115 if (var->value != nullptr)
1116 {
1117 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
1118 if (! pretty_printer)
1119 {
1120 gdbpy_print_stack ();
1121 error (_("Cannot instantiate printer for default visualizer"));
1122 }
1123 }
1124
1125 if (pretty_printer == Py_None)
1126 {
1127 Py_DECREF (pretty_printer);
1128 pretty_printer = NULL;
1129 }
1130
1131 install_visualizer (var->dynamic, NULL, pretty_printer);
1132 }
1133 }
1134
1135 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1136 make a new object. */
1137
1138 static void
1139 construct_visualizer (struct varobj *var, PyObject *constructor)
1140 {
1141 PyObject *pretty_printer;
1142
1143 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1144 if (CPLUS_FAKE_CHILD (var))
1145 return;
1146
1147 Py_INCREF (constructor);
1148 if (constructor == Py_None)
1149 pretty_printer = NULL;
1150 else
1151 {
1152 pretty_printer = instantiate_pretty_printer (constructor,
1153 var->value.get ());
1154 if (! pretty_printer)
1155 {
1156 gdbpy_print_stack ();
1157 Py_DECREF (constructor);
1158 constructor = Py_None;
1159 Py_INCREF (constructor);
1160 }
1161
1162 if (pretty_printer == Py_None)
1163 {
1164 Py_DECREF (pretty_printer);
1165 pretty_printer = NULL;
1166 }
1167 }
1168
1169 install_visualizer (var->dynamic, constructor, pretty_printer);
1170 }
1171
1172 #endif /* HAVE_PYTHON */
1173
1174 /* A helper function for install_new_value. This creates and installs
1175 a visualizer for VAR, if appropriate. */
1176
1177 static void
1178 install_new_value_visualizer (struct varobj *var)
1179 {
1180 #if HAVE_PYTHON
1181 /* If the constructor is None, then we want the raw value. If VAR
1182 does not have a value, just skip this. */
1183 if (!gdb_python_initialized)
1184 return;
1185
1186 if (var->dynamic->constructor != Py_None && var->value != NULL)
1187 {
1188 gdbpy_enter_varobj enter_py (var);
1189
1190 if (var->dynamic->constructor == NULL)
1191 install_default_visualizer (var);
1192 else
1193 construct_visualizer (var, var->dynamic->constructor);
1194 }
1195 #else
1196 /* Do nothing. */
1197 #endif
1198 }
1199
1200 /* When using RTTI to determine variable type it may be changed in runtime when
1201 the variable value is changed. This function checks whether type of varobj
1202 VAR will change when a new value NEW_VALUE is assigned and if it is so
1203 updates the type of VAR. */
1204
1205 static bool
1206 update_type_if_necessary (struct varobj *var, struct value *new_value)
1207 {
1208 if (new_value)
1209 {
1210 struct value_print_options opts;
1211
1212 get_user_print_options (&opts);
1213 if (opts.objectprint)
1214 {
1215 struct type *new_type = value_actual_type (new_value, 0, 0);
1216 std::string new_type_str = type_to_string (new_type);
1217 std::string curr_type_str = varobj_get_type (var);
1218
1219 /* Did the type name change? */
1220 if (curr_type_str != new_type_str)
1221 {
1222 var->type = new_type;
1223
1224 /* This information may be not valid for a new type. */
1225 varobj_delete (var, 1);
1226 var->children.clear ();
1227 var->num_children = -1;
1228 return true;
1229 }
1230 }
1231 }
1232
1233 return false;
1234 }
1235
1236 /* Assign a new value to a variable object. If INITIAL is true,
1237 this is the first assignment after the variable object was just
1238 created, or changed type. In that case, just assign the value
1239 and return false.
1240 Otherwise, assign the new value, and return true if the value is
1241 different from the current one, false otherwise. The comparison is
1242 done on textual representation of value. Therefore, some types
1243 need not be compared. E.g. for structures the reported value is
1244 always "{...}", so no comparison is necessary here. If the old
1245 value was NULL and new one is not, or vice versa, we always return true.
1246
1247 The VALUE parameter should not be released -- the function will
1248 take care of releasing it when needed. */
1249 static bool
1250 install_new_value (struct varobj *var, struct value *value, bool initial)
1251 {
1252 bool changeable;
1253 bool need_to_fetch;
1254 bool changed = false;
1255 bool intentionally_not_fetched = false;
1256
1257 /* We need to know the varobj's type to decide if the value should
1258 be fetched or not. C++ fake children (public/protected/private)
1259 don't have a type. */
1260 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1261 changeable = varobj_value_is_changeable_p (var);
1262
1263 /* If the type has custom visualizer, we consider it to be always
1264 changeable. FIXME: need to make sure this behaviour will not
1265 mess up read-sensitive values. */
1266 if (var->dynamic->pretty_printer != NULL)
1267 changeable = true;
1268
1269 need_to_fetch = changeable;
1270
1271 /* We are not interested in the address of references, and given
1272 that in C++ a reference is not rebindable, it cannot
1273 meaningfully change. So, get hold of the real value. */
1274 if (value)
1275 value = coerce_ref (value);
1276
1277 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1278 /* For unions, we need to fetch the value implicitly because
1279 of implementation of union member fetch. When gdb
1280 creates a value for a field and the value of the enclosing
1281 structure is not lazy, it immediately copies the necessary
1282 bytes from the enclosing values. If the enclosing value is
1283 lazy, the call to value_fetch_lazy on the field will read
1284 the data from memory. For unions, that means we'll read the
1285 same memory more than once, which is not desirable. So
1286 fetch now. */
1287 need_to_fetch = true;
1288
1289 /* The new value might be lazy. If the type is changeable,
1290 that is we'll be comparing values of this type, fetch the
1291 value now. Otherwise, on the next update the old value
1292 will be lazy, which means we've lost that old value. */
1293 if (need_to_fetch && value && value_lazy (value))
1294 {
1295 const struct varobj *parent = var->parent;
1296 bool frozen = var->frozen;
1297
1298 for (; !frozen && parent; parent = parent->parent)
1299 frozen |= parent->frozen;
1300
1301 if (frozen && initial)
1302 {
1303 /* For variables that are frozen, or are children of frozen
1304 variables, we don't do fetch on initial assignment.
1305 For non-initial assignemnt we do the fetch, since it means we're
1306 explicitly asked to compare the new value with the old one. */
1307 intentionally_not_fetched = true;
1308 }
1309 else
1310 {
1311
1312 TRY
1313 {
1314 value_fetch_lazy (value);
1315 }
1316
1317 CATCH (except, RETURN_MASK_ERROR)
1318 {
1319 /* Set the value to NULL, so that for the next -var-update,
1320 we don't try to compare the new value with this value,
1321 that we couldn't even read. */
1322 value = NULL;
1323 }
1324 END_CATCH
1325 }
1326 }
1327
1328 /* Get a reference now, before possibly passing it to any Python
1329 code that might release it. */
1330 value_ref_ptr value_holder;
1331 if (value != NULL)
1332 value_holder = value_ref_ptr::new_reference (value);
1333
1334 /* Below, we'll be comparing string rendering of old and new
1335 values. Don't get string rendering if the value is
1336 lazy -- if it is, the code above has decided that the value
1337 should not be fetched. */
1338 std::string print_value;
1339 if (value != NULL && !value_lazy (value)
1340 && var->dynamic->pretty_printer == NULL)
1341 print_value = varobj_value_get_print_value (value, var->format, var);
1342
1343 /* If the type is changeable, compare the old and the new values.
1344 If this is the initial assignment, we don't have any old value
1345 to compare with. */
1346 if (!initial && changeable)
1347 {
1348 /* If the value of the varobj was changed by -var-set-value,
1349 then the value in the varobj and in the target is the same.
1350 However, that value is different from the value that the
1351 varobj had after the previous -var-update. So need to the
1352 varobj as changed. */
1353 if (var->updated)
1354 changed = true;
1355 else if (var->dynamic->pretty_printer == NULL)
1356 {
1357 /* Try to compare the values. That requires that both
1358 values are non-lazy. */
1359 if (var->not_fetched && value_lazy (var->value.get ()))
1360 {
1361 /* This is a frozen varobj and the value was never read.
1362 Presumably, UI shows some "never read" indicator.
1363 Now that we've fetched the real value, we need to report
1364 this varobj as changed so that UI can show the real
1365 value. */
1366 changed = true;
1367 }
1368 else if (var->value == NULL && value == NULL)
1369 /* Equal. */
1370 ;
1371 else if (var->value == NULL || value == NULL)
1372 {
1373 changed = true;
1374 }
1375 else
1376 {
1377 gdb_assert (!value_lazy (var->value.get ()));
1378 gdb_assert (!value_lazy (value));
1379
1380 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1381 if (var->print_value != print_value)
1382 changed = true;
1383 }
1384 }
1385 }
1386
1387 if (!initial && !changeable)
1388 {
1389 /* For values that are not changeable, we don't compare the values.
1390 However, we want to notice if a value was not NULL and now is NULL,
1391 or vise versa, so that we report when top-level varobjs come in scope
1392 and leave the scope. */
1393 changed = (var->value != NULL) != (value != NULL);
1394 }
1395
1396 /* We must always keep the new value, since children depend on it. */
1397 var->value = value_holder;
1398 if (value && value_lazy (value) && intentionally_not_fetched)
1399 var->not_fetched = true;
1400 else
1401 var->not_fetched = false;
1402 var->updated = false;
1403
1404 install_new_value_visualizer (var);
1405
1406 /* If we installed a pretty-printer, re-compare the printed version
1407 to see if the variable changed. */
1408 if (var->dynamic->pretty_printer != NULL)
1409 {
1410 print_value = varobj_value_get_print_value (var->value.get (),
1411 var->format, var);
1412 if ((var->print_value.empty () && !print_value.empty ())
1413 || (!var->print_value.empty () && print_value.empty ())
1414 || (!var->print_value.empty () && !print_value.empty ()
1415 && var->print_value != print_value))
1416 changed = true;
1417 }
1418 var->print_value = print_value;
1419
1420 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
1421
1422 return changed;
1423 }
1424
1425 /* Return the requested range for a varobj. VAR is the varobj. FROM
1426 and TO are out parameters; *FROM and *TO will be set to the
1427 selected sub-range of VAR. If no range was selected using
1428 -var-set-update-range, then both will be -1. */
1429 void
1430 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1431 {
1432 *from = var->from;
1433 *to = var->to;
1434 }
1435
1436 /* Set the selected sub-range of children of VAR to start at index
1437 FROM and end at index TO. If either FROM or TO is less than zero,
1438 this is interpreted as a request for all children. */
1439 void
1440 varobj_set_child_range (struct varobj *var, int from, int to)
1441 {
1442 var->from = from;
1443 var->to = to;
1444 }
1445
1446 void
1447 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1448 {
1449 #if HAVE_PYTHON
1450 PyObject *mainmod;
1451
1452 if (!gdb_python_initialized)
1453 return;
1454
1455 gdbpy_enter_varobj enter_py (var);
1456
1457 mainmod = PyImport_AddModule ("__main__");
1458 gdbpy_ref<> globals
1459 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
1460 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1461 globals.get (), globals.get ()));
1462
1463 if (constructor == NULL)
1464 {
1465 gdbpy_print_stack ();
1466 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1467 }
1468
1469 construct_visualizer (var, constructor.get ());
1470
1471 /* If there are any children now, wipe them. */
1472 varobj_delete (var, 1 /* children only */);
1473 var->num_children = -1;
1474 #else
1475 error (_("Python support required"));
1476 #endif
1477 }
1478
1479 /* If NEW_VALUE is the new value of the given varobj (var), return
1480 true if var has mutated. In other words, if the type of
1481 the new value is different from the type of the varobj's old
1482 value.
1483
1484 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1485
1486 static bool
1487 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1488 struct type *new_type)
1489 {
1490 /* If we haven't previously computed the number of children in var,
1491 it does not matter from the front-end's perspective whether
1492 the type has mutated or not. For all intents and purposes,
1493 it has not mutated. */
1494 if (var->num_children < 0)
1495 return false;
1496
1497 if (var->root->lang_ops->value_has_mutated != NULL)
1498 {
1499 /* The varobj module, when installing new values, explicitly strips
1500 references, saying that we're not interested in those addresses.
1501 But detection of mutation happens before installing the new
1502 value, so our value may be a reference that we need to strip
1503 in order to remain consistent. */
1504 if (new_value != NULL)
1505 new_value = coerce_ref (new_value);
1506 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1507 }
1508 else
1509 return false;
1510 }
1511
1512 /* Update the values for a variable and its children. This is a
1513 two-pronged attack. First, re-parse the value for the root's
1514 expression to see if it's changed. Then go all the way
1515 through its children, reconstructing them and noting if they've
1516 changed.
1517
1518 The IS_EXPLICIT parameter specifies if this call is result
1519 of MI request to update this specific variable, or
1520 result of implicit -var-update *. For implicit request, we don't
1521 update frozen variables.
1522
1523 NOTE: This function may delete the caller's varobj. If it
1524 returns TYPE_CHANGED, then it has done this and VARP will be modified
1525 to point to the new varobj. */
1526
1527 std::vector<varobj_update_result>
1528 varobj_update (struct varobj **varp, bool is_explicit)
1529 {
1530 bool type_changed = false;
1531 struct value *newobj;
1532 std::vector<varobj_update_result> stack;
1533 std::vector<varobj_update_result> result;
1534
1535 /* Frozen means frozen -- we don't check for any change in
1536 this varobj, including its going out of scope, or
1537 changing type. One use case for frozen varobjs is
1538 retaining previously evaluated expressions, and we don't
1539 want them to be reevaluated at all. */
1540 if (!is_explicit && (*varp)->frozen)
1541 return result;
1542
1543 if (!(*varp)->root->is_valid)
1544 {
1545 result.emplace_back (*varp, VAROBJ_INVALID);
1546 return result;
1547 }
1548
1549 if ((*varp)->root->rootvar == *varp)
1550 {
1551 varobj_update_result r (*varp);
1552
1553 /* Update the root variable. value_of_root can return NULL
1554 if the variable is no longer around, i.e. we stepped out of
1555 the frame in which a local existed. We are letting the
1556 value_of_root variable dispose of the varobj if the type
1557 has changed. */
1558 newobj = value_of_root (varp, &type_changed);
1559 if (update_type_if_necessary (*varp, newobj))
1560 type_changed = true;
1561 r.varobj = *varp;
1562 r.type_changed = type_changed;
1563 if (install_new_value ((*varp), newobj, type_changed))
1564 r.changed = true;
1565
1566 if (newobj == NULL)
1567 r.status = VAROBJ_NOT_IN_SCOPE;
1568 r.value_installed = true;
1569
1570 if (r.status == VAROBJ_NOT_IN_SCOPE)
1571 {
1572 if (r.type_changed || r.changed)
1573 result.push_back (std::move (r));
1574
1575 return result;
1576 }
1577
1578 stack.push_back (std::move (r));
1579 }
1580 else
1581 stack.emplace_back (*varp);
1582
1583 /* Walk through the children, reconstructing them all. */
1584 while (!stack.empty ())
1585 {
1586 varobj_update_result r = std::move (stack.back ());
1587 stack.pop_back ();
1588 struct varobj *v = r.varobj;
1589
1590 /* Update this variable, unless it's a root, which is already
1591 updated. */
1592 if (!r.value_installed)
1593 {
1594 struct type *new_type;
1595
1596 newobj = value_of_child (v->parent, v->index);
1597 if (update_type_if_necessary (v, newobj))
1598 r.type_changed = true;
1599 if (newobj)
1600 new_type = value_type (newobj);
1601 else
1602 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1603
1604 if (varobj_value_has_mutated (v, newobj, new_type))
1605 {
1606 /* The children are no longer valid; delete them now.
1607 Report the fact that its type changed as well. */
1608 varobj_delete (v, 1 /* only_children */);
1609 v->num_children = -1;
1610 v->to = -1;
1611 v->from = -1;
1612 v->type = new_type;
1613 r.type_changed = true;
1614 }
1615
1616 if (install_new_value (v, newobj, r.type_changed))
1617 {
1618 r.changed = true;
1619 v->updated = false;
1620 }
1621 }
1622
1623 /* We probably should not get children of a dynamic varobj, but
1624 for which -var-list-children was never invoked. */
1625 if (varobj_is_dynamic_p (v))
1626 {
1627 std::vector<varobj *> changed, type_changed, unchanged, newobj;
1628 bool children_changed = false;
1629
1630 if (v->frozen)
1631 continue;
1632
1633 if (!v->dynamic->children_requested)
1634 {
1635 bool dummy;
1636
1637 /* If we initially did not have potential children, but
1638 now we do, consider the varobj as changed.
1639 Otherwise, if children were never requested, consider
1640 it as unchanged -- presumably, such varobj is not yet
1641 expanded in the UI, so we need not bother getting
1642 it. */
1643 if (!varobj_has_more (v, 0))
1644 {
1645 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1646 &dummy, false, 0, 0);
1647 if (varobj_has_more (v, 0))
1648 r.changed = true;
1649 }
1650
1651 if (r.changed)
1652 result.push_back (std::move (r));
1653
1654 continue;
1655 }
1656
1657 /* If update_dynamic_varobj_children returns false, then we have
1658 a non-conforming pretty-printer, so we skip it. */
1659 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1660 &unchanged, &children_changed, true,
1661 v->from, v->to))
1662 {
1663 if (children_changed || !newobj.empty ())
1664 {
1665 r.children_changed = true;
1666 r.newobj = std::move (newobj);
1667 }
1668 /* Push in reverse order so that the first child is
1669 popped from the work stack first, and so will be
1670 added to result first. This does not affect
1671 correctness, just "nicer". */
1672 for (int i = type_changed.size () - 1; i >= 0; --i)
1673 {
1674 varobj_update_result r (type_changed[i]);
1675
1676 /* Type may change only if value was changed. */
1677 r.changed = true;
1678 r.type_changed = true;
1679 r.value_installed = true;
1680
1681 stack.push_back (std::move (r));
1682 }
1683 for (int i = changed.size () - 1; i >= 0; --i)
1684 {
1685 varobj_update_result r (changed[i]);
1686
1687 r.changed = true;
1688 r.value_installed = true;
1689
1690 stack.push_back (std::move (r));
1691 }
1692 for (int i = unchanged.size () - 1; i >= 0; --i)
1693 {
1694 if (!unchanged[i]->frozen)
1695 {
1696 varobj_update_result r (unchanged[i]);
1697
1698 r.value_installed = true;
1699
1700 stack.push_back (std::move (r));
1701 }
1702 }
1703 if (r.changed || r.children_changed)
1704 result.push_back (std::move (r));
1705
1706 continue;
1707 }
1708 }
1709
1710 /* Push any children. Use reverse order so that the first
1711 child is popped from the work stack first, and so
1712 will be added to result first. This does not
1713 affect correctness, just "nicer". */
1714 for (int i = v->children.size () - 1; i >= 0; --i)
1715 {
1716 varobj *c = v->children[i];
1717
1718 /* Child may be NULL if explicitly deleted by -var-delete. */
1719 if (c != NULL && !c->frozen)
1720 stack.emplace_back (c);
1721 }
1722
1723 if (r.changed || r.type_changed)
1724 result.push_back (std::move (r));
1725 }
1726
1727 return result;
1728 }
1729
1730 /* Helper functions */
1731
1732 /*
1733 * Variable object construction/destruction
1734 */
1735
1736 static int
1737 delete_variable (struct varobj *var, bool only_children_p)
1738 {
1739 int delcount = 0;
1740
1741 delete_variable_1 (&delcount, var, only_children_p,
1742 true /* remove_from_parent_p */ );
1743
1744 return delcount;
1745 }
1746
1747 /* Delete the variable object VAR and its children. */
1748 /* IMPORTANT NOTE: If we delete a variable which is a child
1749 and the parent is not removed we dump core. It must be always
1750 initially called with remove_from_parent_p set. */
1751 static void
1752 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1753 bool remove_from_parent_p)
1754 {
1755 /* Delete any children of this variable, too. */
1756 for (varobj *child : var->children)
1757 {
1758 if (!child)
1759 continue;
1760
1761 if (!remove_from_parent_p)
1762 child->parent = NULL;
1763
1764 delete_variable_1 (delcountp, child, false, only_children_p);
1765 }
1766 var->children.clear ();
1767
1768 /* if we were called to delete only the children we are done here. */
1769 if (only_children_p)
1770 return;
1771
1772 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1773 /* If the name is empty, this is a temporary variable, that has not
1774 yet been installed, don't report it, it belongs to the caller... */
1775 if (!var->obj_name.empty ())
1776 {
1777 *delcountp = *delcountp + 1;
1778 }
1779
1780 /* If this variable has a parent, remove it from its parent's list. */
1781 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1782 (as indicated by remove_from_parent_p) we don't bother doing an
1783 expensive list search to find the element to remove when we are
1784 discarding the list afterwards. */
1785 if ((remove_from_parent_p) && (var->parent != NULL))
1786 var->parent->children[var->index] = NULL;
1787
1788 if (!var->obj_name.empty ())
1789 uninstall_variable (var);
1790
1791 /* Free memory associated with this variable. */
1792 delete var;
1793 }
1794
1795 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1796 static bool
1797 install_variable (struct varobj *var)
1798 {
1799 struct vlist *cv;
1800 struct vlist *newvl;
1801 const char *chp;
1802 unsigned int index = 0;
1803 unsigned int i = 1;
1804
1805 for (chp = var->obj_name.c_str (); *chp; chp++)
1806 {
1807 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1808 }
1809
1810 cv = *(varobj_table + index);
1811 while (cv != NULL && cv->var->obj_name != var->obj_name)
1812 cv = cv->next;
1813
1814 if (cv != NULL)
1815 error (_("Duplicate variable object name"));
1816
1817 /* Add varobj to hash table. */
1818 newvl = XNEW (struct vlist);
1819 newvl->next = *(varobj_table + index);
1820 newvl->var = var;
1821 *(varobj_table + index) = newvl;
1822
1823 /* If root, add varobj to root list. */
1824 if (is_root_p (var))
1825 {
1826 /* Add to list of root variables. */
1827 if (rootlist == NULL)
1828 var->root->next = NULL;
1829 else
1830 var->root->next = rootlist;
1831 rootlist = var->root;
1832 }
1833
1834 return true; /* OK */
1835 }
1836
1837 /* Unistall the object VAR. */
1838 static void
1839 uninstall_variable (struct varobj *var)
1840 {
1841 struct vlist *cv;
1842 struct vlist *prev;
1843 struct varobj_root *cr;
1844 struct varobj_root *prer;
1845 const char *chp;
1846 unsigned int index = 0;
1847 unsigned int i = 1;
1848
1849 /* Remove varobj from hash table. */
1850 for (chp = var->obj_name.c_str (); *chp; chp++)
1851 {
1852 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1853 }
1854
1855 cv = *(varobj_table + index);
1856 prev = NULL;
1857 while (cv != NULL && cv->var->obj_name != var->obj_name)
1858 {
1859 prev = cv;
1860 cv = cv->next;
1861 }
1862
1863 if (varobjdebug)
1864 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1865
1866 if (cv == NULL)
1867 {
1868 warning
1869 ("Assertion failed: Could not find variable object \"%s\" to delete",
1870 var->obj_name.c_str ());
1871 return;
1872 }
1873
1874 if (prev == NULL)
1875 *(varobj_table + index) = cv->next;
1876 else
1877 prev->next = cv->next;
1878
1879 xfree (cv);
1880
1881 /* If root, remove varobj from root list. */
1882 if (is_root_p (var))
1883 {
1884 /* Remove from list of root variables. */
1885 if (rootlist == var->root)
1886 rootlist = var->root->next;
1887 else
1888 {
1889 prer = NULL;
1890 cr = rootlist;
1891 while ((cr != NULL) && (cr->rootvar != var))
1892 {
1893 prer = cr;
1894 cr = cr->next;
1895 }
1896 if (cr == NULL)
1897 {
1898 warning (_("Assertion failed: Could not find "
1899 "varobj \"%s\" in root list"),
1900 var->obj_name.c_str ());
1901 return;
1902 }
1903 if (prer == NULL)
1904 rootlist = NULL;
1905 else
1906 prer->next = cr->next;
1907 }
1908 }
1909
1910 }
1911
1912 /* Create and install a child of the parent of the given name.
1913
1914 The created VAROBJ takes ownership of the allocated NAME. */
1915
1916 static struct varobj *
1917 create_child (struct varobj *parent, int index, std::string &name)
1918 {
1919 struct varobj_item item;
1920
1921 std::swap (item.name, name);
1922 item.value = value_of_child (parent, index);
1923
1924 return create_child_with_value (parent, index, &item);
1925 }
1926
1927 static struct varobj *
1928 create_child_with_value (struct varobj *parent, int index,
1929 struct varobj_item *item)
1930 {
1931 varobj *child = new varobj (parent->root);
1932
1933 /* NAME is allocated by caller. */
1934 std::swap (child->name, item->name);
1935 child->index = index;
1936 child->parent = parent;
1937
1938 if (varobj_is_anonymous_child (child))
1939 child->obj_name = string_printf ("%s.%d_anonymous",
1940 parent->obj_name.c_str (), index);
1941 else
1942 child->obj_name = string_printf ("%s.%s",
1943 parent->obj_name.c_str (),
1944 child->name.c_str ());
1945
1946 install_variable (child);
1947
1948 /* Compute the type of the child. Must do this before
1949 calling install_new_value. */
1950 if (item->value != NULL)
1951 /* If the child had no evaluation errors, var->value
1952 will be non-NULL and contain a valid type. */
1953 child->type = value_actual_type (item->value, 0, NULL);
1954 else
1955 /* Otherwise, we must compute the type. */
1956 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1957 child->index);
1958 install_new_value (child, item->value, 1);
1959
1960 return child;
1961 }
1962 \f
1963
1964 /*
1965 * Miscellaneous utility functions.
1966 */
1967
1968 /* Allocate memory and initialize a new variable. */
1969 varobj::varobj (varobj_root *root_)
1970 : root (root_), dynamic (new varobj_dynamic)
1971 {
1972 }
1973
1974 /* Free any allocated memory associated with VAR. */
1975
1976 varobj::~varobj ()
1977 {
1978 varobj *var = this;
1979
1980 #if HAVE_PYTHON
1981 if (var->dynamic->pretty_printer != NULL)
1982 {
1983 gdbpy_enter_varobj enter_py (var);
1984
1985 Py_XDECREF (var->dynamic->constructor);
1986 Py_XDECREF (var->dynamic->pretty_printer);
1987 }
1988 #endif
1989
1990 varobj_iter_delete (var->dynamic->child_iter);
1991 varobj_clear_saved_item (var->dynamic);
1992
1993 if (is_root_p (var))
1994 delete var->root;
1995
1996 delete var->dynamic;
1997 }
1998
1999 /* Return the type of the value that's stored in VAR,
2000 or that would have being stored there if the
2001 value were accessible.
2002
2003 This differs from VAR->type in that VAR->type is always
2004 the true type of the expession in the source language.
2005 The return value of this function is the type we're
2006 actually storing in varobj, and using for displaying
2007 the values and for comparing previous and new values.
2008
2009 For example, top-level references are always stripped. */
2010 struct type *
2011 varobj_get_value_type (const struct varobj *var)
2012 {
2013 struct type *type;
2014
2015 if (var->value != nullptr)
2016 type = value_type (var->value.get ());
2017 else
2018 type = var->type;
2019
2020 type = check_typedef (type);
2021
2022 if (TYPE_IS_REFERENCE (type))
2023 type = get_target_type (type);
2024
2025 type = check_typedef (type);
2026
2027 return type;
2028 }
2029
2030 /* What is the default display for this variable? We assume that
2031 everything is "natural". Any exceptions? */
2032 static enum varobj_display_formats
2033 variable_default_display (struct varobj *var)
2034 {
2035 return FORMAT_NATURAL;
2036 }
2037
2038 /*
2039 * Language-dependencies
2040 */
2041
2042 /* Common entry points */
2043
2044 /* Return the number of children for a given variable.
2045 The result of this function is defined by the language
2046 implementation. The number of children returned by this function
2047 is the number of children that the user will see in the variable
2048 display. */
2049 static int
2050 number_of_children (const struct varobj *var)
2051 {
2052 return (*var->root->lang_ops->number_of_children) (var);
2053 }
2054
2055 /* What is the expression for the root varobj VAR? */
2056
2057 static std::string
2058 name_of_variable (const struct varobj *var)
2059 {
2060 return (*var->root->lang_ops->name_of_variable) (var);
2061 }
2062
2063 /* What is the name of the INDEX'th child of VAR? */
2064
2065 static std::string
2066 name_of_child (struct varobj *var, int index)
2067 {
2068 return (*var->root->lang_ops->name_of_child) (var, index);
2069 }
2070
2071 /* If frame associated with VAR can be found, switch
2072 to it and return true. Otherwise, return false. */
2073
2074 static bool
2075 check_scope (const struct varobj *var)
2076 {
2077 struct frame_info *fi;
2078 bool scope;
2079
2080 fi = frame_find_by_id (var->root->frame);
2081 scope = fi != NULL;
2082
2083 if (fi)
2084 {
2085 CORE_ADDR pc = get_frame_pc (fi);
2086
2087 if (pc < BLOCK_START (var->root->valid_block) ||
2088 pc >= BLOCK_END (var->root->valid_block))
2089 scope = false;
2090 else
2091 select_frame (fi);
2092 }
2093 return scope;
2094 }
2095
2096 /* Helper function to value_of_root. */
2097
2098 static struct value *
2099 value_of_root_1 (struct varobj **var_handle)
2100 {
2101 struct value *new_val = NULL;
2102 struct varobj *var = *var_handle;
2103 bool within_scope = false;
2104
2105 /* Only root variables can be updated... */
2106 if (!is_root_p (var))
2107 /* Not a root var. */
2108 return NULL;
2109
2110 scoped_restore_current_thread restore_thread;
2111
2112 /* Determine whether the variable is still around. */
2113 if (var->root->valid_block == NULL || var->root->floating)
2114 within_scope = true;
2115 else if (var->root->thread_id == 0)
2116 {
2117 /* The program was single-threaded when the variable object was
2118 created. Technically, it's possible that the program became
2119 multi-threaded since then, but we don't support such
2120 scenario yet. */
2121 within_scope = check_scope (var);
2122 }
2123 else
2124 {
2125 thread_info *thread = find_thread_global_id (var->root->thread_id);
2126
2127 if (thread != NULL)
2128 {
2129 switch_to_thread (thread);
2130 within_scope = check_scope (var);
2131 }
2132 }
2133
2134 if (within_scope)
2135 {
2136
2137 /* We need to catch errors here, because if evaluate
2138 expression fails we want to just return NULL. */
2139 TRY
2140 {
2141 new_val = evaluate_expression (var->root->exp.get ());
2142 }
2143 CATCH (except, RETURN_MASK_ERROR)
2144 {
2145 }
2146 END_CATCH
2147 }
2148
2149 return new_val;
2150 }
2151
2152 /* What is the ``struct value *'' of the root variable VAR?
2153 For floating variable object, evaluation can get us a value
2154 of different type from what is stored in varobj already. In
2155 that case:
2156 - *type_changed will be set to 1
2157 - old varobj will be freed, and new one will be
2158 created, with the same name.
2159 - *var_handle will be set to the new varobj
2160 Otherwise, *type_changed will be set to 0. */
2161 static struct value *
2162 value_of_root (struct varobj **var_handle, bool *type_changed)
2163 {
2164 struct varobj *var;
2165
2166 if (var_handle == NULL)
2167 return NULL;
2168
2169 var = *var_handle;
2170
2171 /* This should really be an exception, since this should
2172 only get called with a root variable. */
2173
2174 if (!is_root_p (var))
2175 return NULL;
2176
2177 if (var->root->floating)
2178 {
2179 struct varobj *tmp_var;
2180
2181 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2182 USE_SELECTED_FRAME);
2183 if (tmp_var == NULL)
2184 {
2185 return NULL;
2186 }
2187 std::string old_type = varobj_get_type (var);
2188 std::string new_type = varobj_get_type (tmp_var);
2189 if (old_type == new_type)
2190 {
2191 /* The expression presently stored inside var->root->exp
2192 remembers the locations of local variables relatively to
2193 the frame where the expression was created (in DWARF location
2194 button, for example). Naturally, those locations are not
2195 correct in other frames, so update the expression. */
2196
2197 std::swap (var->root->exp, tmp_var->root->exp);
2198
2199 varobj_delete (tmp_var, 0);
2200 *type_changed = 0;
2201 }
2202 else
2203 {
2204 tmp_var->obj_name = var->obj_name;
2205 tmp_var->from = var->from;
2206 tmp_var->to = var->to;
2207 varobj_delete (var, 0);
2208
2209 install_variable (tmp_var);
2210 *var_handle = tmp_var;
2211 var = *var_handle;
2212 *type_changed = true;
2213 }
2214 }
2215 else
2216 {
2217 *type_changed = 0;
2218 }
2219
2220 {
2221 struct value *value;
2222
2223 value = value_of_root_1 (var_handle);
2224 if (var->value == NULL || value == NULL)
2225 {
2226 /* For root varobj-s, a NULL value indicates a scoping issue.
2227 So, nothing to do in terms of checking for mutations. */
2228 }
2229 else if (varobj_value_has_mutated (var, value, value_type (value)))
2230 {
2231 /* The type has mutated, so the children are no longer valid.
2232 Just delete them, and tell our caller that the type has
2233 changed. */
2234 varobj_delete (var, 1 /* only_children */);
2235 var->num_children = -1;
2236 var->to = -1;
2237 var->from = -1;
2238 *type_changed = true;
2239 }
2240 return value;
2241 }
2242 }
2243
2244 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2245 static struct value *
2246 value_of_child (const struct varobj *parent, int index)
2247 {
2248 struct value *value;
2249
2250 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2251
2252 return value;
2253 }
2254
2255 /* GDB already has a command called "value_of_variable". Sigh. */
2256 static std::string
2257 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2258 {
2259 if (var->root->is_valid)
2260 {
2261 if (var->dynamic->pretty_printer != NULL)
2262 return varobj_value_get_print_value (var->value.get (), var->format,
2263 var);
2264 return (*var->root->lang_ops->value_of_variable) (var, format);
2265 }
2266 else
2267 return std::string ();
2268 }
2269
2270 void
2271 varobj_formatted_print_options (struct value_print_options *opts,
2272 enum varobj_display_formats format)
2273 {
2274 get_formatted_print_options (opts, format_code[(int) format]);
2275 opts->deref_ref = 0;
2276 opts->raw = !pretty_printing;
2277 }
2278
2279 std::string
2280 varobj_value_get_print_value (struct value *value,
2281 enum varobj_display_formats format,
2282 const struct varobj *var)
2283 {
2284 struct value_print_options opts;
2285 struct type *type = NULL;
2286 long len = 0;
2287 gdb::unique_xmalloc_ptr<char> encoding;
2288 /* Initialize it just to avoid a GCC false warning. */
2289 CORE_ADDR str_addr = 0;
2290 bool string_print = false;
2291
2292 if (value == NULL)
2293 return std::string ();
2294
2295 string_file stb;
2296 std::string thevalue;
2297
2298 #if HAVE_PYTHON
2299 if (gdb_python_initialized)
2300 {
2301 PyObject *value_formatter = var->dynamic->pretty_printer;
2302
2303 gdbpy_enter_varobj enter_py (var);
2304
2305 if (value_formatter)
2306 {
2307 /* First check to see if we have any children at all. If so,
2308 we simply return {...}. */
2309 if (dynamic_varobj_has_child_method (var))
2310 return "{...}";
2311
2312 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2313 {
2314 struct value *replacement;
2315
2316 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2317 &replacement,
2318 &stb));
2319
2320 /* If we have string like output ... */
2321 if (output != NULL)
2322 {
2323 /* If this is a lazy string, extract it. For lazy
2324 strings we always print as a string, so set
2325 string_print. */
2326 if (gdbpy_is_lazy_string (output.get ()))
2327 {
2328 gdbpy_extract_lazy_string (output.get (), &str_addr,
2329 &type, &len, &encoding);
2330 string_print = true;
2331 }
2332 else
2333 {
2334 /* If it is a regular (non-lazy) string, extract
2335 it and copy the contents into THEVALUE. If the
2336 hint says to print it as a string, set
2337 string_print. Otherwise just return the extracted
2338 string as a value. */
2339
2340 gdb::unique_xmalloc_ptr<char> s
2341 = python_string_to_target_string (output.get ());
2342
2343 if (s)
2344 {
2345 struct gdbarch *gdbarch;
2346
2347 gdb::unique_xmalloc_ptr<char> hint
2348 = gdbpy_get_display_hint (value_formatter);
2349 if (hint)
2350 {
2351 if (!strcmp (hint.get (), "string"))
2352 string_print = true;
2353 }
2354
2355 thevalue = std::string (s.get ());
2356 len = thevalue.size ();
2357 gdbarch = get_type_arch (value_type (value));
2358 type = builtin_type (gdbarch)->builtin_char;
2359
2360 if (!string_print)
2361 return thevalue;
2362 }
2363 else
2364 gdbpy_print_stack ();
2365 }
2366 }
2367 /* If the printer returned a replacement value, set VALUE
2368 to REPLACEMENT. If there is not a replacement value,
2369 just use the value passed to this function. */
2370 if (replacement)
2371 value = replacement;
2372 }
2373 }
2374 }
2375 #endif
2376
2377 varobj_formatted_print_options (&opts, format);
2378
2379 /* If the THEVALUE has contents, it is a regular string. */
2380 if (!thevalue.empty ())
2381 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2382 len, encoding.get (), 0, &opts);
2383 else if (string_print)
2384 /* Otherwise, if string_print is set, and it is not a regular
2385 string, it is a lazy string. */
2386 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2387 else
2388 /* All other cases. */
2389 common_val_print (value, &stb, 0, &opts, current_language);
2390
2391 return std::move (stb.string ());
2392 }
2393
2394 bool
2395 varobj_editable_p (const struct varobj *var)
2396 {
2397 struct type *type;
2398
2399 if (!(var->root->is_valid && var->value != nullptr
2400 && VALUE_LVAL (var->value.get ())))
2401 return false;
2402
2403 type = varobj_get_value_type (var);
2404
2405 switch (TYPE_CODE (type))
2406 {
2407 case TYPE_CODE_STRUCT:
2408 case TYPE_CODE_UNION:
2409 case TYPE_CODE_ARRAY:
2410 case TYPE_CODE_FUNC:
2411 case TYPE_CODE_METHOD:
2412 return false;
2413 break;
2414
2415 default:
2416 return true;
2417 break;
2418 }
2419 }
2420
2421 /* Call VAR's value_is_changeable_p language-specific callback. */
2422
2423 bool
2424 varobj_value_is_changeable_p (const struct varobj *var)
2425 {
2426 return var->root->lang_ops->value_is_changeable_p (var);
2427 }
2428
2429 /* Return true if that varobj is floating, that is is always evaluated in the
2430 selected frame, and not bound to thread/frame. Such variable objects
2431 are created using '@' as frame specifier to -var-create. */
2432 bool
2433 varobj_floating_p (const struct varobj *var)
2434 {
2435 return var->root->floating;
2436 }
2437
2438 /* Implement the "value_is_changeable_p" varobj callback for most
2439 languages. */
2440
2441 bool
2442 varobj_default_value_is_changeable_p (const struct varobj *var)
2443 {
2444 bool r;
2445 struct type *type;
2446
2447 if (CPLUS_FAKE_CHILD (var))
2448 return false;
2449
2450 type = varobj_get_value_type (var);
2451
2452 switch (TYPE_CODE (type))
2453 {
2454 case TYPE_CODE_STRUCT:
2455 case TYPE_CODE_UNION:
2456 case TYPE_CODE_ARRAY:
2457 r = false;
2458 break;
2459
2460 default:
2461 r = true;
2462 }
2463
2464 return r;
2465 }
2466
2467 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2468 with an arbitrary caller supplied DATA pointer. */
2469
2470 void
2471 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2472 {
2473 struct varobj_root *var_root, *var_root_next;
2474
2475 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2476
2477 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2478 {
2479 var_root_next = var_root->next;
2480
2481 (*func) (var_root->rootvar, data);
2482 }
2483 }
2484
2485 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2486 defined on globals. It is a helper for varobj_invalidate.
2487
2488 This function is called after changing the symbol file, in this case the
2489 pointers to "struct type" stored by the varobj are no longer valid. All
2490 varobj must be either re-evaluated, or marked as invalid here. */
2491
2492 static void
2493 varobj_invalidate_iter (struct varobj *var, void *unused)
2494 {
2495 /* global and floating var must be re-evaluated. */
2496 if (var->root->floating || var->root->valid_block == NULL)
2497 {
2498 struct varobj *tmp_var;
2499
2500 /* Try to create a varobj with same expression. If we succeed
2501 replace the old varobj, otherwise invalidate it. */
2502 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2503 USE_CURRENT_FRAME);
2504 if (tmp_var != NULL)
2505 {
2506 tmp_var->obj_name = var->obj_name;
2507 varobj_delete (var, 0);
2508 install_variable (tmp_var);
2509 }
2510 else
2511 var->root->is_valid = false;
2512 }
2513 else /* locals must be invalidated. */
2514 var->root->is_valid = false;
2515 }
2516
2517 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2518 are defined on globals.
2519 Invalidated varobjs will be always printed in_scope="invalid". */
2520
2521 void
2522 varobj_invalidate (void)
2523 {
2524 all_root_varobjs (varobj_invalidate_iter, NULL);
2525 }
2526
2527 void
2528 _initialize_varobj (void)
2529 {
2530 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2531
2532 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2533 &varobjdebug,
2534 _("Set varobj debugging."),
2535 _("Show varobj debugging."),
2536 _("When non-zero, varobj debugging is enabled."),
2537 NULL, show_varobjdebug,
2538 &setdebuglist, &showdebuglist);
2539 }
This page took 0.086202 seconds and 4 git commands to generate.