10ef5b7406250f30b87fcaafab5b851cb39aa1ac
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "exceptions.h"
20 #include "value.h"
21 #include "expression.h"
22 #include "frame.h"
23 #include "language.h"
24 #include "gdbcmd.h"
25 #include "block.h"
26 #include "valprint.h"
27
28 #include "gdb_assert.h"
29 #include <string.h>
30 #include "gdb_regex.h"
31
32 #include "varobj.h"
33 #include "vec.h"
34 #include "gdbthread.h"
35 #include "inferior.h"
36
37 #if HAVE_PYTHON
38 #include "python/python.h"
39 #include "python/python-internal.h"
40 #else
41 typedef int PyObject;
42 #endif
43
44 /* Non-zero if we want to see trace of varobj level stuff. */
45
46 unsigned int varobjdebug = 0;
47 static void
48 show_varobjdebug (struct ui_file *file, int from_tty,
49 struct cmd_list_element *c, const char *value)
50 {
51 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
52 }
53
54 /* String representations of gdb's format codes. */
55 char *varobj_format_string[] =
56 { "natural", "binary", "decimal", "hexadecimal", "octal" };
57
58 /* True if we want to allow Python-based pretty-printing. */
59 static int pretty_printing = 0;
60
61 void
62 varobj_enable_pretty_printing (void)
63 {
64 pretty_printing = 1;
65 }
66
67 /* Data structures */
68
69 /* Every root variable has one of these structures saved in its
70 varobj. Members which must be free'd are noted. */
71 struct varobj_root
72 {
73
74 /* Alloc'd expression for this parent. */
75 struct expression *exp;
76
77 /* Block for which this expression is valid. */
78 const struct block *valid_block;
79
80 /* The frame for this expression. This field is set iff valid_block is
81 not NULL. */
82 struct frame_id frame;
83
84 /* The thread ID that this varobj_root belong to. This field
85 is only valid if valid_block is not NULL.
86 When not 0, indicates which thread 'frame' belongs to.
87 When 0, indicates that the thread list was empty when the varobj_root
88 was created. */
89 int thread_id;
90
91 /* If 1, the -var-update always recomputes the value in the
92 current thread and frame. Otherwise, variable object is
93 always updated in the specific scope/thread/frame. */
94 int floating;
95
96 /* Flag that indicates validity: set to 0 when this varobj_root refers
97 to symbols that do not exist anymore. */
98 int is_valid;
99
100 /* Language-related operations for this variable and its
101 children. */
102 const struct lang_varobj_ops *lang_ops;
103
104 /* The varobj for this root node. */
105 struct varobj *rootvar;
106
107 /* Next root variable */
108 struct varobj_root *next;
109 };
110
111 /* Dynamic part of varobj. */
112
113 struct varobj_dynamic
114 {
115 /* Whether the children of this varobj were requested. This field is
116 used to decide if dynamic varobj should recompute their children.
117 In the event that the frontend never asked for the children, we
118 can avoid that. */
119 int children_requested;
120
121 /* The pretty-printer constructor. If NULL, then the default
122 pretty-printer will be looked up. If None, then no
123 pretty-printer will be installed. */
124 PyObject *constructor;
125
126 /* The pretty-printer that has been constructed. If NULL, then a
127 new printer object is needed, and one will be constructed. */
128 PyObject *pretty_printer;
129
130 /* The iterator returned by the printer's 'children' method, or NULL
131 if not available. */
132 PyObject *child_iter;
133
134 /* We request one extra item from the iterator, so that we can
135 report to the caller whether there are more items than we have
136 already reported. However, we don't want to install this value
137 when we read it, because that will mess up future updates. So,
138 we stash it here instead. */
139 PyObject *saved_item;
140 };
141
142 struct cpstack
143 {
144 char *name;
145 struct cpstack *next;
146 };
147
148 /* A list of varobjs */
149
150 struct vlist
151 {
152 struct varobj *var;
153 struct vlist *next;
154 };
155
156 /* Private function prototypes */
157
158 /* Helper functions for the above subcommands. */
159
160 static int delete_variable (struct cpstack **, struct varobj *, int);
161
162 static void delete_variable_1 (struct cpstack **, int *,
163 struct varobj *, int, int);
164
165 static int install_variable (struct varobj *);
166
167 static void uninstall_variable (struct varobj *);
168
169 static struct varobj *create_child (struct varobj *, int, char *);
170
171 static struct varobj *
172 create_child_with_value (struct varobj *parent, int index, char *name,
173 struct value *value);
174
175 /* Utility routines */
176
177 static struct varobj *new_variable (void);
178
179 static struct varobj *new_root_variable (void);
180
181 static void free_variable (struct varobj *var);
182
183 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
184
185 static enum varobj_display_formats variable_default_display (struct varobj *);
186
187 static void cppush (struct cpstack **pstack, char *name);
188
189 static char *cppop (struct cpstack **pstack);
190
191 static int update_type_if_necessary (struct varobj *var,
192 struct value *new_value);
193
194 static int install_new_value (struct varobj *var, struct value *value,
195 int initial);
196
197 /* Language-specific routines. */
198
199 static int number_of_children (struct varobj *);
200
201 static char *name_of_variable (struct varobj *);
202
203 static char *name_of_child (struct varobj *, int);
204
205 static struct value *value_of_root (struct varobj **var_handle, int *);
206
207 static struct value *value_of_child (struct varobj *parent, int index);
208
209 static char *my_value_of_variable (struct varobj *var,
210 enum varobj_display_formats format);
211
212 static int is_root_p (struct varobj *var);
213
214 #if HAVE_PYTHON
215
216 static struct varobj *varobj_add_child (struct varobj *var,
217 char *name,
218 struct value *value);
219
220 #endif /* HAVE_PYTHON */
221
222 /* Private data */
223
224 /* Mappings of varobj_display_formats enums to gdb's format codes. */
225 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
226
227 /* Header of the list of root variable objects. */
228 static struct varobj_root *rootlist;
229
230 /* Prime number indicating the number of buckets in the hash table. */
231 /* A prime large enough to avoid too many colisions. */
232 #define VAROBJ_TABLE_SIZE 227
233
234 /* Pointer to the varobj hash table (built at run time). */
235 static struct vlist **varobj_table;
236
237 \f
238
239 /* API Implementation */
240 static int
241 is_root_p (struct varobj *var)
242 {
243 return (var->root->rootvar == var);
244 }
245
246 #ifdef HAVE_PYTHON
247 /* Helper function to install a Python environment suitable for
248 use during operations on VAR. */
249 static struct cleanup *
250 varobj_ensure_python_env (struct varobj *var)
251 {
252 return ensure_python_env (var->root->exp->gdbarch,
253 var->root->exp->language_defn);
254 }
255 #endif
256
257 /* Creates a varobj (not its children). */
258
259 /* Return the full FRAME which corresponds to the given CORE_ADDR
260 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
261
262 static struct frame_info *
263 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
264 {
265 struct frame_info *frame = NULL;
266
267 if (frame_addr == (CORE_ADDR) 0)
268 return NULL;
269
270 for (frame = get_current_frame ();
271 frame != NULL;
272 frame = get_prev_frame (frame))
273 {
274 /* The CORE_ADDR we get as argument was parsed from a string GDB
275 output as $fp. This output got truncated to gdbarch_addr_bit.
276 Truncate the frame base address in the same manner before
277 comparing it against our argument. */
278 CORE_ADDR frame_base = get_frame_base_address (frame);
279 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
280
281 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
282 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
283
284 if (frame_base == frame_addr)
285 return frame;
286 }
287
288 return NULL;
289 }
290
291 struct varobj *
292 varobj_create (char *objname,
293 char *expression, CORE_ADDR frame, enum varobj_type type)
294 {
295 struct varobj *var;
296 struct cleanup *old_chain;
297
298 /* Fill out a varobj structure for the (root) variable being constructed. */
299 var = new_root_variable ();
300 old_chain = make_cleanup_free_variable (var);
301
302 if (expression != NULL)
303 {
304 struct frame_info *fi;
305 struct frame_id old_id = null_frame_id;
306 struct block *block;
307 const char *p;
308 struct value *value = NULL;
309 volatile struct gdb_exception except;
310 CORE_ADDR pc;
311
312 /* Parse and evaluate the expression, filling in as much of the
313 variable's data as possible. */
314
315 if (has_stack_frames ())
316 {
317 /* Allow creator to specify context of variable. */
318 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
319 fi = get_selected_frame (NULL);
320 else
321 /* FIXME: cagney/2002-11-23: This code should be doing a
322 lookup using the frame ID and not just the frame's
323 ``address''. This, of course, means an interface
324 change. However, with out that interface change ISAs,
325 such as the ia64 with its two stacks, won't work.
326 Similar goes for the case where there is a frameless
327 function. */
328 fi = find_frame_addr_in_frame_chain (frame);
329 }
330 else
331 fi = NULL;
332
333 /* frame = -2 means always use selected frame. */
334 if (type == USE_SELECTED_FRAME)
335 var->root->floating = 1;
336
337 pc = 0;
338 block = NULL;
339 if (fi != NULL)
340 {
341 block = get_frame_block (fi, 0);
342 pc = get_frame_pc (fi);
343 }
344
345 p = expression;
346 innermost_block = NULL;
347 /* Wrap the call to parse expression, so we can
348 return a sensible error. */
349 TRY_CATCH (except, RETURN_MASK_ERROR)
350 {
351 var->root->exp = parse_exp_1 (&p, pc, block, 0);
352 }
353
354 if (except.reason < 0)
355 {
356 do_cleanups (old_chain);
357 return NULL;
358 }
359
360 /* Don't allow variables to be created for types. */
361 if (var->root->exp->elts[0].opcode == OP_TYPE
362 || var->root->exp->elts[0].opcode == OP_TYPEOF
363 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
364 {
365 do_cleanups (old_chain);
366 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
367 " as an expression.\n");
368 return NULL;
369 }
370
371 var->format = variable_default_display (var);
372 var->root->valid_block = innermost_block;
373 var->name = xstrdup (expression);
374 /* For a root var, the name and the expr are the same. */
375 var->path_expr = xstrdup (expression);
376
377 /* When the frame is different from the current frame,
378 we must select the appropriate frame before parsing
379 the expression, otherwise the value will not be current.
380 Since select_frame is so benign, just call it for all cases. */
381 if (innermost_block)
382 {
383 /* User could specify explicit FRAME-ADDR which was not found but
384 EXPRESSION is frame specific and we would not be able to evaluate
385 it correctly next time. With VALID_BLOCK set we must also set
386 FRAME and THREAD_ID. */
387 if (fi == NULL)
388 error (_("Failed to find the specified frame"));
389
390 var->root->frame = get_frame_id (fi);
391 var->root->thread_id = pid_to_thread_id (inferior_ptid);
392 old_id = get_frame_id (get_selected_frame (NULL));
393 select_frame (fi);
394 }
395
396 /* We definitely need to catch errors here.
397 If evaluate_expression succeeds we got the value we wanted.
398 But if it fails, we still go on with a call to evaluate_type(). */
399 TRY_CATCH (except, RETURN_MASK_ERROR)
400 {
401 value = evaluate_expression (var->root->exp);
402 }
403
404 if (except.reason < 0)
405 {
406 /* Error getting the value. Try to at least get the
407 right type. */
408 struct value *type_only_value = evaluate_type (var->root->exp);
409
410 var->type = value_type (type_only_value);
411 }
412 else
413 {
414 int real_type_found = 0;
415
416 var->type = value_actual_type (value, 0, &real_type_found);
417 if (real_type_found)
418 value = value_cast (var->type, value);
419 }
420
421 /* Set language info */
422 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
423
424 install_new_value (var, value, 1 /* Initial assignment */);
425
426 /* Set ourselves as our root. */
427 var->root->rootvar = var;
428
429 /* Reset the selected frame. */
430 if (frame_id_p (old_id))
431 select_frame (frame_find_by_id (old_id));
432 }
433
434 /* If the variable object name is null, that means this
435 is a temporary variable, so don't install it. */
436
437 if ((var != NULL) && (objname != NULL))
438 {
439 var->obj_name = xstrdup (objname);
440
441 /* If a varobj name is duplicated, the install will fail so
442 we must cleanup. */
443 if (!install_variable (var))
444 {
445 do_cleanups (old_chain);
446 return NULL;
447 }
448 }
449
450 discard_cleanups (old_chain);
451 return var;
452 }
453
454 /* Generates an unique name that can be used for a varobj. */
455
456 char *
457 varobj_gen_name (void)
458 {
459 static int id = 0;
460 char *obj_name;
461
462 /* Generate a name for this object. */
463 id++;
464 obj_name = xstrprintf ("var%d", id);
465
466 return obj_name;
467 }
468
469 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
470 error if OBJNAME cannot be found. */
471
472 struct varobj *
473 varobj_get_handle (char *objname)
474 {
475 struct vlist *cv;
476 const char *chp;
477 unsigned int index = 0;
478 unsigned int i = 1;
479
480 for (chp = objname; *chp; chp++)
481 {
482 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
483 }
484
485 cv = *(varobj_table + index);
486 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
487 cv = cv->next;
488
489 if (cv == NULL)
490 error (_("Variable object not found"));
491
492 return cv->var;
493 }
494
495 /* Given the handle, return the name of the object. */
496
497 char *
498 varobj_get_objname (struct varobj *var)
499 {
500 return var->obj_name;
501 }
502
503 /* Given the handle, return the expression represented by the object. */
504
505 char *
506 varobj_get_expression (struct varobj *var)
507 {
508 return name_of_variable (var);
509 }
510
511 /* Deletes a varobj and all its children if only_children == 0,
512 otherwise deletes only the children; returns a malloc'ed list of
513 all the (malloc'ed) names of the variables that have been deleted
514 (NULL terminated). */
515
516 int
517 varobj_delete (struct varobj *var, char ***dellist, int only_children)
518 {
519 int delcount;
520 int mycount;
521 struct cpstack *result = NULL;
522 char **cp;
523
524 /* Initialize a stack for temporary results. */
525 cppush (&result, NULL);
526
527 if (only_children)
528 /* Delete only the variable children. */
529 delcount = delete_variable (&result, var, 1 /* only the children */ );
530 else
531 /* Delete the variable and all its children. */
532 delcount = delete_variable (&result, var, 0 /* parent+children */ );
533
534 /* We may have been asked to return a list of what has been deleted. */
535 if (dellist != NULL)
536 {
537 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
538
539 cp = *dellist;
540 mycount = delcount;
541 *cp = cppop (&result);
542 while ((*cp != NULL) && (mycount > 0))
543 {
544 mycount--;
545 cp++;
546 *cp = cppop (&result);
547 }
548
549 if (mycount || (*cp != NULL))
550 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
551 mycount);
552 }
553
554 return delcount;
555 }
556
557 #if HAVE_PYTHON
558
559 /* Convenience function for varobj_set_visualizer. Instantiate a
560 pretty-printer for a given value. */
561 static PyObject *
562 instantiate_pretty_printer (PyObject *constructor, struct value *value)
563 {
564 PyObject *val_obj = NULL;
565 PyObject *printer;
566
567 val_obj = value_to_value_object (value);
568 if (! val_obj)
569 return NULL;
570
571 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
572 Py_DECREF (val_obj);
573 return printer;
574 }
575
576 #endif
577
578 /* Set/Get variable object display format. */
579
580 enum varobj_display_formats
581 varobj_set_display_format (struct varobj *var,
582 enum varobj_display_formats format)
583 {
584 switch (format)
585 {
586 case FORMAT_NATURAL:
587 case FORMAT_BINARY:
588 case FORMAT_DECIMAL:
589 case FORMAT_HEXADECIMAL:
590 case FORMAT_OCTAL:
591 var->format = format;
592 break;
593
594 default:
595 var->format = variable_default_display (var);
596 }
597
598 if (varobj_value_is_changeable_p (var)
599 && var->value && !value_lazy (var->value))
600 {
601 xfree (var->print_value);
602 var->print_value = varobj_value_get_print_value (var->value,
603 var->format, var);
604 }
605
606 return var->format;
607 }
608
609 enum varobj_display_formats
610 varobj_get_display_format (struct varobj *var)
611 {
612 return var->format;
613 }
614
615 char *
616 varobj_get_display_hint (struct varobj *var)
617 {
618 char *result = NULL;
619
620 #if HAVE_PYTHON
621 struct cleanup *back_to;
622
623 if (!gdb_python_initialized)
624 return NULL;
625
626 back_to = varobj_ensure_python_env (var);
627
628 if (var->dynamic->pretty_printer != NULL)
629 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
630
631 do_cleanups (back_to);
632 #endif
633
634 return result;
635 }
636
637 /* Return true if the varobj has items after TO, false otherwise. */
638
639 int
640 varobj_has_more (struct varobj *var, int to)
641 {
642 if (VEC_length (varobj_p, var->children) > to)
643 return 1;
644 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
645 && (var->dynamic->saved_item != NULL));
646 }
647
648 /* If the variable object is bound to a specific thread, that
649 is its evaluation can always be done in context of a frame
650 inside that thread, returns GDB id of the thread -- which
651 is always positive. Otherwise, returns -1. */
652 int
653 varobj_get_thread_id (struct varobj *var)
654 {
655 if (var->root->valid_block && var->root->thread_id > 0)
656 return var->root->thread_id;
657 else
658 return -1;
659 }
660
661 void
662 varobj_set_frozen (struct varobj *var, int frozen)
663 {
664 /* When a variable is unfrozen, we don't fetch its value.
665 The 'not_fetched' flag remains set, so next -var-update
666 won't complain.
667
668 We don't fetch the value, because for structures the client
669 should do -var-update anyway. It would be bad to have different
670 client-size logic for structure and other types. */
671 var->frozen = frozen;
672 }
673
674 int
675 varobj_get_frozen (struct varobj *var)
676 {
677 return var->frozen;
678 }
679
680 /* A helper function that restricts a range to what is actually
681 available in a VEC. This follows the usual rules for the meaning
682 of FROM and TO -- if either is negative, the entire range is
683 used. */
684
685 void
686 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
687 {
688 if (*from < 0 || *to < 0)
689 {
690 *from = 0;
691 *to = VEC_length (varobj_p, children);
692 }
693 else
694 {
695 if (*from > VEC_length (varobj_p, children))
696 *from = VEC_length (varobj_p, children);
697 if (*to > VEC_length (varobj_p, children))
698 *to = VEC_length (varobj_p, children);
699 if (*from > *to)
700 *from = *to;
701 }
702 }
703
704 #if HAVE_PYTHON
705
706 /* A helper for update_dynamic_varobj_children that installs a new
707 child when needed. */
708
709 static void
710 install_dynamic_child (struct varobj *var,
711 VEC (varobj_p) **changed,
712 VEC (varobj_p) **type_changed,
713 VEC (varobj_p) **new,
714 VEC (varobj_p) **unchanged,
715 int *cchanged,
716 int index,
717 char *name,
718 struct value *value)
719 {
720 if (VEC_length (varobj_p, var->children) < index + 1)
721 {
722 /* There's no child yet. */
723 struct varobj *child = varobj_add_child (var, name, value);
724
725 if (new)
726 {
727 VEC_safe_push (varobj_p, *new, child);
728 *cchanged = 1;
729 }
730 }
731 else
732 {
733 varobj_p existing = VEC_index (varobj_p, var->children, index);
734 int type_updated = update_type_if_necessary (existing, value);
735
736 if (type_updated)
737 {
738 if (type_changed)
739 VEC_safe_push (varobj_p, *type_changed, existing);
740 }
741 if (install_new_value (existing, value, 0))
742 {
743 if (!type_updated && changed)
744 VEC_safe_push (varobj_p, *changed, existing);
745 }
746 else if (!type_updated && unchanged)
747 VEC_safe_push (varobj_p, *unchanged, existing);
748 }
749 }
750
751 static int
752 dynamic_varobj_has_child_method (struct varobj *var)
753 {
754 struct cleanup *back_to;
755 PyObject *printer = var->dynamic->pretty_printer;
756 int result;
757
758 if (!gdb_python_initialized)
759 return 0;
760
761 back_to = varobj_ensure_python_env (var);
762 result = PyObject_HasAttr (printer, gdbpy_children_cst);
763 do_cleanups (back_to);
764 return result;
765 }
766
767 #endif
768
769 static int
770 update_dynamic_varobj_children (struct varobj *var,
771 VEC (varobj_p) **changed,
772 VEC (varobj_p) **type_changed,
773 VEC (varobj_p) **new,
774 VEC (varobj_p) **unchanged,
775 int *cchanged,
776 int update_children,
777 int from,
778 int to)
779 {
780 #if HAVE_PYTHON
781 struct cleanup *back_to;
782 PyObject *children;
783 int i;
784 PyObject *printer = var->dynamic->pretty_printer;
785
786 if (!gdb_python_initialized)
787 return 0;
788
789 back_to = varobj_ensure_python_env (var);
790
791 *cchanged = 0;
792 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
793 {
794 do_cleanups (back_to);
795 return 0;
796 }
797
798 if (update_children || var->dynamic->child_iter == NULL)
799 {
800 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
801 NULL);
802
803 if (!children)
804 {
805 gdbpy_print_stack ();
806 error (_("Null value returned for children"));
807 }
808
809 make_cleanup_py_decref (children);
810
811 Py_XDECREF (var->dynamic->child_iter);
812 var->dynamic->child_iter = PyObject_GetIter (children);
813 if (var->dynamic->child_iter == NULL)
814 {
815 gdbpy_print_stack ();
816 error (_("Could not get children iterator"));
817 }
818
819 Py_XDECREF (var->dynamic->saved_item);
820 var->dynamic->saved_item = NULL;
821
822 i = 0;
823 }
824 else
825 i = VEC_length (varobj_p, var->children);
826
827 /* We ask for one extra child, so that MI can report whether there
828 are more children. */
829 for (; to < 0 || i < to + 1; ++i)
830 {
831 PyObject *item;
832 int force_done = 0;
833
834 /* See if there was a leftover from last time. */
835 if (var->dynamic->saved_item)
836 {
837 item = var->dynamic->saved_item;
838 var->dynamic->saved_item = NULL;
839 }
840 else
841 item = PyIter_Next (var->dynamic->child_iter);
842
843 if (!item)
844 {
845 /* Normal end of iteration. */
846 if (!PyErr_Occurred ())
847 break;
848
849 /* If we got a memory error, just use the text as the
850 item. */
851 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
852 {
853 PyObject *type, *value, *trace;
854 char *name_str, *value_str;
855
856 PyErr_Fetch (&type, &value, &trace);
857 value_str = gdbpy_exception_to_string (type, value);
858 Py_XDECREF (type);
859 Py_XDECREF (value);
860 Py_XDECREF (trace);
861 if (!value_str)
862 {
863 gdbpy_print_stack ();
864 break;
865 }
866
867 name_str = xstrprintf ("<error at %d>", i);
868 item = Py_BuildValue ("(ss)", name_str, value_str);
869 xfree (name_str);
870 xfree (value_str);
871 if (!item)
872 {
873 gdbpy_print_stack ();
874 break;
875 }
876
877 force_done = 1;
878 }
879 else
880 {
881 /* Any other kind of error. */
882 gdbpy_print_stack ();
883 break;
884 }
885 }
886
887 /* We don't want to push the extra child on any report list. */
888 if (to < 0 || i < to)
889 {
890 PyObject *py_v;
891 const char *name;
892 struct value *v;
893 struct cleanup *inner;
894 int can_mention = from < 0 || i >= from;
895
896 inner = make_cleanup_py_decref (item);
897
898 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
899 {
900 gdbpy_print_stack ();
901 error (_("Invalid item from the child list"));
902 }
903
904 v = convert_value_from_python (py_v);
905 if (v == NULL)
906 gdbpy_print_stack ();
907 install_dynamic_child (var, can_mention ? changed : NULL,
908 can_mention ? type_changed : NULL,
909 can_mention ? new : NULL,
910 can_mention ? unchanged : NULL,
911 can_mention ? cchanged : NULL, i,
912 xstrdup (name), v);
913 do_cleanups (inner);
914 }
915 else
916 {
917 Py_XDECREF (var->dynamic->saved_item);
918 var->dynamic->saved_item = item;
919
920 /* We want to truncate the child list just before this
921 element. */
922 break;
923 }
924
925 if (force_done)
926 break;
927 }
928
929 if (i < VEC_length (varobj_p, var->children))
930 {
931 int j;
932
933 *cchanged = 1;
934 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
935 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
936 VEC_truncate (varobj_p, var->children, i);
937 }
938
939 /* If there are fewer children than requested, note that the list of
940 children changed. */
941 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
942 *cchanged = 1;
943
944 var->num_children = VEC_length (varobj_p, var->children);
945
946 do_cleanups (back_to);
947
948 return 1;
949 #else
950 gdb_assert_not_reached ("should never be called if Python is not enabled");
951 #endif
952 }
953
954 int
955 varobj_get_num_children (struct varobj *var)
956 {
957 if (var->num_children == -1)
958 {
959 if (var->dynamic->pretty_printer != NULL)
960 {
961 int dummy;
962
963 /* If we have a dynamic varobj, don't report -1 children.
964 So, try to fetch some children first. */
965 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
966 0, 0, 0);
967 }
968 else
969 var->num_children = number_of_children (var);
970 }
971
972 return var->num_children >= 0 ? var->num_children : 0;
973 }
974
975 /* Creates a list of the immediate children of a variable object;
976 the return code is the number of such children or -1 on error. */
977
978 VEC (varobj_p)*
979 varobj_list_children (struct varobj *var, int *from, int *to)
980 {
981 char *name;
982 int i, children_changed;
983
984 var->dynamic->children_requested = 1;
985
986 if (var->dynamic->pretty_printer != NULL)
987 {
988 /* This, in theory, can result in the number of children changing without
989 frontend noticing. But well, calling -var-list-children on the same
990 varobj twice is not something a sane frontend would do. */
991 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
992 &children_changed, 0, 0, *to);
993 varobj_restrict_range (var->children, from, to);
994 return var->children;
995 }
996
997 if (var->num_children == -1)
998 var->num_children = number_of_children (var);
999
1000 /* If that failed, give up. */
1001 if (var->num_children == -1)
1002 return var->children;
1003
1004 /* If we're called when the list of children is not yet initialized,
1005 allocate enough elements in it. */
1006 while (VEC_length (varobj_p, var->children) < var->num_children)
1007 VEC_safe_push (varobj_p, var->children, NULL);
1008
1009 for (i = 0; i < var->num_children; i++)
1010 {
1011 varobj_p existing = VEC_index (varobj_p, var->children, i);
1012
1013 if (existing == NULL)
1014 {
1015 /* Either it's the first call to varobj_list_children for
1016 this variable object, and the child was never created,
1017 or it was explicitly deleted by the client. */
1018 name = name_of_child (var, i);
1019 existing = create_child (var, i, name);
1020 VEC_replace (varobj_p, var->children, i, existing);
1021 }
1022 }
1023
1024 varobj_restrict_range (var->children, from, to);
1025 return var->children;
1026 }
1027
1028 #if HAVE_PYTHON
1029
1030 static struct varobj *
1031 varobj_add_child (struct varobj *var, char *name, struct value *value)
1032 {
1033 varobj_p v = create_child_with_value (var,
1034 VEC_length (varobj_p, var->children),
1035 name, value);
1036
1037 VEC_safe_push (varobj_p, var->children, v);
1038 return v;
1039 }
1040
1041 #endif /* HAVE_PYTHON */
1042
1043 /* Obtain the type of an object Variable as a string similar to the one gdb
1044 prints on the console. */
1045
1046 char *
1047 varobj_get_type (struct varobj *var)
1048 {
1049 /* For the "fake" variables, do not return a type. (Its type is
1050 NULL, too.)
1051 Do not return a type for invalid variables as well. */
1052 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1053 return NULL;
1054
1055 return type_to_string (var->type);
1056 }
1057
1058 /* Obtain the type of an object variable. */
1059
1060 struct type *
1061 varobj_get_gdb_type (struct varobj *var)
1062 {
1063 return var->type;
1064 }
1065
1066 /* Is VAR a path expression parent, i.e., can it be used to construct
1067 a valid path expression? */
1068
1069 static int
1070 is_path_expr_parent (struct varobj *var)
1071 {
1072 struct type *type;
1073
1074 /* "Fake" children are not path_expr parents. */
1075 if (CPLUS_FAKE_CHILD (var))
1076 return 0;
1077
1078 type = varobj_get_value_type (var);
1079
1080 /* Anonymous unions and structs are also not path_expr parents. */
1081 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1082 || TYPE_CODE (type) == TYPE_CODE_UNION)
1083 && TYPE_NAME (type) == NULL);
1084 }
1085
1086 /* Return the path expression parent for VAR. */
1087
1088 struct varobj *
1089 varobj_get_path_expr_parent (struct varobj *var)
1090 {
1091 struct varobj *parent = var;
1092
1093 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1094 parent = parent->parent;
1095
1096 return parent;
1097 }
1098
1099 /* Return a pointer to the full rooted expression of varobj VAR.
1100 If it has not been computed yet, compute it. */
1101 char *
1102 varobj_get_path_expr (struct varobj *var)
1103 {
1104 if (var->path_expr != NULL)
1105 return var->path_expr;
1106 else
1107 {
1108 /* For root varobjs, we initialize path_expr
1109 when creating varobj, so here it should be
1110 child varobj. */
1111 gdb_assert (!is_root_p (var));
1112 return (*var->root->lang_ops->path_expr_of_child) (var);
1113 }
1114 }
1115
1116 const struct language_defn *
1117 varobj_get_language (struct varobj *var)
1118 {
1119 return var->root->exp->language_defn;
1120 }
1121
1122 int
1123 varobj_get_attributes (struct varobj *var)
1124 {
1125 int attributes = 0;
1126
1127 if (varobj_editable_p (var))
1128 /* FIXME: define masks for attributes. */
1129 attributes |= 0x00000001; /* Editable */
1130
1131 return attributes;
1132 }
1133
1134 int
1135 varobj_pretty_printed_p (struct varobj *var)
1136 {
1137 return var->dynamic->pretty_printer != NULL;
1138 }
1139
1140 char *
1141 varobj_get_formatted_value (struct varobj *var,
1142 enum varobj_display_formats format)
1143 {
1144 return my_value_of_variable (var, format);
1145 }
1146
1147 char *
1148 varobj_get_value (struct varobj *var)
1149 {
1150 return my_value_of_variable (var, var->format);
1151 }
1152
1153 /* Set the value of an object variable (if it is editable) to the
1154 value of the given expression. */
1155 /* Note: Invokes functions that can call error(). */
1156
1157 int
1158 varobj_set_value (struct varobj *var, char *expression)
1159 {
1160 struct value *val = NULL; /* Initialize to keep gcc happy. */
1161 /* The argument "expression" contains the variable's new value.
1162 We need to first construct a legal expression for this -- ugh! */
1163 /* Does this cover all the bases? */
1164 struct expression *exp;
1165 struct value *value = NULL; /* Initialize to keep gcc happy. */
1166 int saved_input_radix = input_radix;
1167 const char *s = expression;
1168 volatile struct gdb_exception except;
1169
1170 gdb_assert (varobj_editable_p (var));
1171
1172 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1173 exp = parse_exp_1 (&s, 0, 0, 0);
1174 TRY_CATCH (except, RETURN_MASK_ERROR)
1175 {
1176 value = evaluate_expression (exp);
1177 }
1178
1179 if (except.reason < 0)
1180 {
1181 /* We cannot proceed without a valid expression. */
1182 xfree (exp);
1183 return 0;
1184 }
1185
1186 /* All types that are editable must also be changeable. */
1187 gdb_assert (varobj_value_is_changeable_p (var));
1188
1189 /* The value of a changeable variable object must not be lazy. */
1190 gdb_assert (!value_lazy (var->value));
1191
1192 /* Need to coerce the input. We want to check if the
1193 value of the variable object will be different
1194 after assignment, and the first thing value_assign
1195 does is coerce the input.
1196 For example, if we are assigning an array to a pointer variable we
1197 should compare the pointer with the array's address, not with the
1198 array's content. */
1199 value = coerce_array (value);
1200
1201 /* The new value may be lazy. value_assign, or
1202 rather value_contents, will take care of this. */
1203 TRY_CATCH (except, RETURN_MASK_ERROR)
1204 {
1205 val = value_assign (var->value, value);
1206 }
1207
1208 if (except.reason < 0)
1209 return 0;
1210
1211 /* If the value has changed, record it, so that next -var-update can
1212 report this change. If a variable had a value of '1', we've set it
1213 to '333' and then set again to '1', when -var-update will report this
1214 variable as changed -- because the first assignment has set the
1215 'updated' flag. There's no need to optimize that, because return value
1216 of -var-update should be considered an approximation. */
1217 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1218 input_radix = saved_input_radix;
1219 return 1;
1220 }
1221
1222 #if HAVE_PYTHON
1223
1224 /* A helper function to install a constructor function and visualizer
1225 in a varobj_dynamic. */
1226
1227 static void
1228 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1229 PyObject *visualizer)
1230 {
1231 Py_XDECREF (var->constructor);
1232 var->constructor = constructor;
1233
1234 Py_XDECREF (var->pretty_printer);
1235 var->pretty_printer = visualizer;
1236
1237 Py_XDECREF (var->child_iter);
1238 var->child_iter = NULL;
1239 }
1240
1241 /* Install the default visualizer for VAR. */
1242
1243 static void
1244 install_default_visualizer (struct varobj *var)
1245 {
1246 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1247 if (CPLUS_FAKE_CHILD (var))
1248 return;
1249
1250 if (pretty_printing)
1251 {
1252 PyObject *pretty_printer = NULL;
1253
1254 if (var->value)
1255 {
1256 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1257 if (! pretty_printer)
1258 {
1259 gdbpy_print_stack ();
1260 error (_("Cannot instantiate printer for default visualizer"));
1261 }
1262 }
1263
1264 if (pretty_printer == Py_None)
1265 {
1266 Py_DECREF (pretty_printer);
1267 pretty_printer = NULL;
1268 }
1269
1270 install_visualizer (var->dynamic, NULL, pretty_printer);
1271 }
1272 }
1273
1274 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1275 make a new object. */
1276
1277 static void
1278 construct_visualizer (struct varobj *var, PyObject *constructor)
1279 {
1280 PyObject *pretty_printer;
1281
1282 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1283 if (CPLUS_FAKE_CHILD (var))
1284 return;
1285
1286 Py_INCREF (constructor);
1287 if (constructor == Py_None)
1288 pretty_printer = NULL;
1289 else
1290 {
1291 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1292 if (! pretty_printer)
1293 {
1294 gdbpy_print_stack ();
1295 Py_DECREF (constructor);
1296 constructor = Py_None;
1297 Py_INCREF (constructor);
1298 }
1299
1300 if (pretty_printer == Py_None)
1301 {
1302 Py_DECREF (pretty_printer);
1303 pretty_printer = NULL;
1304 }
1305 }
1306
1307 install_visualizer (var->dynamic, constructor, pretty_printer);
1308 }
1309
1310 #endif /* HAVE_PYTHON */
1311
1312 /* A helper function for install_new_value. This creates and installs
1313 a visualizer for VAR, if appropriate. */
1314
1315 static void
1316 install_new_value_visualizer (struct varobj *var)
1317 {
1318 #if HAVE_PYTHON
1319 /* If the constructor is None, then we want the raw value. If VAR
1320 does not have a value, just skip this. */
1321 if (!gdb_python_initialized)
1322 return;
1323
1324 if (var->dynamic->constructor != Py_None && var->value != NULL)
1325 {
1326 struct cleanup *cleanup;
1327
1328 cleanup = varobj_ensure_python_env (var);
1329
1330 if (var->dynamic->constructor == NULL)
1331 install_default_visualizer (var);
1332 else
1333 construct_visualizer (var, var->dynamic->constructor);
1334
1335 do_cleanups (cleanup);
1336 }
1337 #else
1338 /* Do nothing. */
1339 #endif
1340 }
1341
1342 /* When using RTTI to determine variable type it may be changed in runtime when
1343 the variable value is changed. This function checks whether type of varobj
1344 VAR will change when a new value NEW_VALUE is assigned and if it is so
1345 updates the type of VAR. */
1346
1347 static int
1348 update_type_if_necessary (struct varobj *var, struct value *new_value)
1349 {
1350 if (new_value)
1351 {
1352 struct value_print_options opts;
1353
1354 get_user_print_options (&opts);
1355 if (opts.objectprint)
1356 {
1357 struct type *new_type;
1358 char *curr_type_str, *new_type_str;
1359
1360 new_type = value_actual_type (new_value, 0, 0);
1361 new_type_str = type_to_string (new_type);
1362 curr_type_str = varobj_get_type (var);
1363 if (strcmp (curr_type_str, new_type_str) != 0)
1364 {
1365 var->type = new_type;
1366
1367 /* This information may be not valid for a new type. */
1368 varobj_delete (var, NULL, 1);
1369 VEC_free (varobj_p, var->children);
1370 var->num_children = -1;
1371 return 1;
1372 }
1373 }
1374 }
1375
1376 return 0;
1377 }
1378
1379 /* Assign a new value to a variable object. If INITIAL is non-zero,
1380 this is the first assignement after the variable object was just
1381 created, or changed type. In that case, just assign the value
1382 and return 0.
1383 Otherwise, assign the new value, and return 1 if the value is
1384 different from the current one, 0 otherwise. The comparison is
1385 done on textual representation of value. Therefore, some types
1386 need not be compared. E.g. for structures the reported value is
1387 always "{...}", so no comparison is necessary here. If the old
1388 value was NULL and new one is not, or vice versa, we always return 1.
1389
1390 The VALUE parameter should not be released -- the function will
1391 take care of releasing it when needed. */
1392 static int
1393 install_new_value (struct varobj *var, struct value *value, int initial)
1394 {
1395 int changeable;
1396 int need_to_fetch;
1397 int changed = 0;
1398 int intentionally_not_fetched = 0;
1399 char *print_value = NULL;
1400
1401 /* We need to know the varobj's type to decide if the value should
1402 be fetched or not. C++ fake children (public/protected/private)
1403 don't have a type. */
1404 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1405 changeable = varobj_value_is_changeable_p (var);
1406
1407 /* If the type has custom visualizer, we consider it to be always
1408 changeable. FIXME: need to make sure this behaviour will not
1409 mess up read-sensitive values. */
1410 if (var->dynamic->pretty_printer != NULL)
1411 changeable = 1;
1412
1413 need_to_fetch = changeable;
1414
1415 /* We are not interested in the address of references, and given
1416 that in C++ a reference is not rebindable, it cannot
1417 meaningfully change. So, get hold of the real value. */
1418 if (value)
1419 value = coerce_ref (value);
1420
1421 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1422 /* For unions, we need to fetch the value implicitly because
1423 of implementation of union member fetch. When gdb
1424 creates a value for a field and the value of the enclosing
1425 structure is not lazy, it immediately copies the necessary
1426 bytes from the enclosing values. If the enclosing value is
1427 lazy, the call to value_fetch_lazy on the field will read
1428 the data from memory. For unions, that means we'll read the
1429 same memory more than once, which is not desirable. So
1430 fetch now. */
1431 need_to_fetch = 1;
1432
1433 /* The new value might be lazy. If the type is changeable,
1434 that is we'll be comparing values of this type, fetch the
1435 value now. Otherwise, on the next update the old value
1436 will be lazy, which means we've lost that old value. */
1437 if (need_to_fetch && value && value_lazy (value))
1438 {
1439 struct varobj *parent = var->parent;
1440 int frozen = var->frozen;
1441
1442 for (; !frozen && parent; parent = parent->parent)
1443 frozen |= parent->frozen;
1444
1445 if (frozen && initial)
1446 {
1447 /* For variables that are frozen, or are children of frozen
1448 variables, we don't do fetch on initial assignment.
1449 For non-initial assignemnt we do the fetch, since it means we're
1450 explicitly asked to compare the new value with the old one. */
1451 intentionally_not_fetched = 1;
1452 }
1453 else
1454 {
1455 volatile struct gdb_exception except;
1456
1457 TRY_CATCH (except, RETURN_MASK_ERROR)
1458 {
1459 value_fetch_lazy (value);
1460 }
1461
1462 if (except.reason < 0)
1463 {
1464 /* Set the value to NULL, so that for the next -var-update,
1465 we don't try to compare the new value with this value,
1466 that we couldn't even read. */
1467 value = NULL;
1468 }
1469 }
1470 }
1471
1472 /* Get a reference now, before possibly passing it to any Python
1473 code that might release it. */
1474 if (value != NULL)
1475 value_incref (value);
1476
1477 /* Below, we'll be comparing string rendering of old and new
1478 values. Don't get string rendering if the value is
1479 lazy -- if it is, the code above has decided that the value
1480 should not be fetched. */
1481 if (value != NULL && !value_lazy (value)
1482 && var->dynamic->pretty_printer == NULL)
1483 print_value = varobj_value_get_print_value (value, var->format, var);
1484
1485 /* If the type is changeable, compare the old and the new values.
1486 If this is the initial assignment, we don't have any old value
1487 to compare with. */
1488 if (!initial && changeable)
1489 {
1490 /* If the value of the varobj was changed by -var-set-value,
1491 then the value in the varobj and in the target is the same.
1492 However, that value is different from the value that the
1493 varobj had after the previous -var-update. So need to the
1494 varobj as changed. */
1495 if (var->updated)
1496 {
1497 changed = 1;
1498 }
1499 else if (var->dynamic->pretty_printer == NULL)
1500 {
1501 /* Try to compare the values. That requires that both
1502 values are non-lazy. */
1503 if (var->not_fetched && value_lazy (var->value))
1504 {
1505 /* This is a frozen varobj and the value was never read.
1506 Presumably, UI shows some "never read" indicator.
1507 Now that we've fetched the real value, we need to report
1508 this varobj as changed so that UI can show the real
1509 value. */
1510 changed = 1;
1511 }
1512 else if (var->value == NULL && value == NULL)
1513 /* Equal. */
1514 ;
1515 else if (var->value == NULL || value == NULL)
1516 {
1517 changed = 1;
1518 }
1519 else
1520 {
1521 gdb_assert (!value_lazy (var->value));
1522 gdb_assert (!value_lazy (value));
1523
1524 gdb_assert (var->print_value != NULL && print_value != NULL);
1525 if (strcmp (var->print_value, print_value) != 0)
1526 changed = 1;
1527 }
1528 }
1529 }
1530
1531 if (!initial && !changeable)
1532 {
1533 /* For values that are not changeable, we don't compare the values.
1534 However, we want to notice if a value was not NULL and now is NULL,
1535 or vise versa, so that we report when top-level varobjs come in scope
1536 and leave the scope. */
1537 changed = (var->value != NULL) != (value != NULL);
1538 }
1539
1540 /* We must always keep the new value, since children depend on it. */
1541 if (var->value != NULL && var->value != value)
1542 value_free (var->value);
1543 var->value = value;
1544 if (value && value_lazy (value) && intentionally_not_fetched)
1545 var->not_fetched = 1;
1546 else
1547 var->not_fetched = 0;
1548 var->updated = 0;
1549
1550 install_new_value_visualizer (var);
1551
1552 /* If we installed a pretty-printer, re-compare the printed version
1553 to see if the variable changed. */
1554 if (var->dynamic->pretty_printer != NULL)
1555 {
1556 xfree (print_value);
1557 print_value = varobj_value_get_print_value (var->value, var->format,
1558 var);
1559 if ((var->print_value == NULL && print_value != NULL)
1560 || (var->print_value != NULL && print_value == NULL)
1561 || (var->print_value != NULL && print_value != NULL
1562 && strcmp (var->print_value, print_value) != 0))
1563 changed = 1;
1564 }
1565 if (var->print_value)
1566 xfree (var->print_value);
1567 var->print_value = print_value;
1568
1569 gdb_assert (!var->value || value_type (var->value));
1570
1571 return changed;
1572 }
1573
1574 /* Return the requested range for a varobj. VAR is the varobj. FROM
1575 and TO are out parameters; *FROM and *TO will be set to the
1576 selected sub-range of VAR. If no range was selected using
1577 -var-set-update-range, then both will be -1. */
1578 void
1579 varobj_get_child_range (struct varobj *var, int *from, int *to)
1580 {
1581 *from = var->from;
1582 *to = var->to;
1583 }
1584
1585 /* Set the selected sub-range of children of VAR to start at index
1586 FROM and end at index TO. If either FROM or TO is less than zero,
1587 this is interpreted as a request for all children. */
1588 void
1589 varobj_set_child_range (struct varobj *var, int from, int to)
1590 {
1591 var->from = from;
1592 var->to = to;
1593 }
1594
1595 void
1596 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1597 {
1598 #if HAVE_PYTHON
1599 PyObject *mainmod, *globals, *constructor;
1600 struct cleanup *back_to;
1601
1602 if (!gdb_python_initialized)
1603 return;
1604
1605 back_to = varobj_ensure_python_env (var);
1606
1607 mainmod = PyImport_AddModule ("__main__");
1608 globals = PyModule_GetDict (mainmod);
1609 Py_INCREF (globals);
1610 make_cleanup_py_decref (globals);
1611
1612 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1613
1614 if (! constructor)
1615 {
1616 gdbpy_print_stack ();
1617 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1618 }
1619
1620 construct_visualizer (var, constructor);
1621 Py_XDECREF (constructor);
1622
1623 /* If there are any children now, wipe them. */
1624 varobj_delete (var, NULL, 1 /* children only */);
1625 var->num_children = -1;
1626
1627 do_cleanups (back_to);
1628 #else
1629 error (_("Python support required"));
1630 #endif
1631 }
1632
1633 /* If NEW_VALUE is the new value of the given varobj (var), return
1634 non-zero if var has mutated. In other words, if the type of
1635 the new value is different from the type of the varobj's old
1636 value.
1637
1638 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1639
1640 static int
1641 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1642 struct type *new_type)
1643 {
1644 /* If we haven't previously computed the number of children in var,
1645 it does not matter from the front-end's perspective whether
1646 the type has mutated or not. For all intents and purposes,
1647 it has not mutated. */
1648 if (var->num_children < 0)
1649 return 0;
1650
1651 if (var->root->lang_ops->value_has_mutated)
1652 {
1653 /* The varobj module, when installing new values, explicitly strips
1654 references, saying that we're not interested in those addresses.
1655 But detection of mutation happens before installing the new
1656 value, so our value may be a reference that we need to strip
1657 in order to remain consistent. */
1658 if (new_value != NULL)
1659 new_value = coerce_ref (new_value);
1660 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1661 }
1662 else
1663 return 0;
1664 }
1665
1666 /* Update the values for a variable and its children. This is a
1667 two-pronged attack. First, re-parse the value for the root's
1668 expression to see if it's changed. Then go all the way
1669 through its children, reconstructing them and noting if they've
1670 changed.
1671
1672 The EXPLICIT parameter specifies if this call is result
1673 of MI request to update this specific variable, or
1674 result of implicit -var-update *. For implicit request, we don't
1675 update frozen variables.
1676
1677 NOTE: This function may delete the caller's varobj. If it
1678 returns TYPE_CHANGED, then it has done this and VARP will be modified
1679 to point to the new varobj. */
1680
1681 VEC(varobj_update_result) *
1682 varobj_update (struct varobj **varp, int explicit)
1683 {
1684 int type_changed = 0;
1685 int i;
1686 struct value *new;
1687 VEC (varobj_update_result) *stack = NULL;
1688 VEC (varobj_update_result) *result = NULL;
1689
1690 /* Frozen means frozen -- we don't check for any change in
1691 this varobj, including its going out of scope, or
1692 changing type. One use case for frozen varobjs is
1693 retaining previously evaluated expressions, and we don't
1694 want them to be reevaluated at all. */
1695 if (!explicit && (*varp)->frozen)
1696 return result;
1697
1698 if (!(*varp)->root->is_valid)
1699 {
1700 varobj_update_result r = {0};
1701
1702 r.varobj = *varp;
1703 r.status = VAROBJ_INVALID;
1704 VEC_safe_push (varobj_update_result, result, &r);
1705 return result;
1706 }
1707
1708 if ((*varp)->root->rootvar == *varp)
1709 {
1710 varobj_update_result r = {0};
1711
1712 r.varobj = *varp;
1713 r.status = VAROBJ_IN_SCOPE;
1714
1715 /* Update the root variable. value_of_root can return NULL
1716 if the variable is no longer around, i.e. we stepped out of
1717 the frame in which a local existed. We are letting the
1718 value_of_root variable dispose of the varobj if the type
1719 has changed. */
1720 new = value_of_root (varp, &type_changed);
1721 if (update_type_if_necessary(*varp, new))
1722 type_changed = 1;
1723 r.varobj = *varp;
1724 r.type_changed = type_changed;
1725 if (install_new_value ((*varp), new, type_changed))
1726 r.changed = 1;
1727
1728 if (new == NULL)
1729 r.status = VAROBJ_NOT_IN_SCOPE;
1730 r.value_installed = 1;
1731
1732 if (r.status == VAROBJ_NOT_IN_SCOPE)
1733 {
1734 if (r.type_changed || r.changed)
1735 VEC_safe_push (varobj_update_result, result, &r);
1736 return result;
1737 }
1738
1739 VEC_safe_push (varobj_update_result, stack, &r);
1740 }
1741 else
1742 {
1743 varobj_update_result r = {0};
1744
1745 r.varobj = *varp;
1746 VEC_safe_push (varobj_update_result, stack, &r);
1747 }
1748
1749 /* Walk through the children, reconstructing them all. */
1750 while (!VEC_empty (varobj_update_result, stack))
1751 {
1752 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1753 struct varobj *v = r.varobj;
1754
1755 VEC_pop (varobj_update_result, stack);
1756
1757 /* Update this variable, unless it's a root, which is already
1758 updated. */
1759 if (!r.value_installed)
1760 {
1761 struct type *new_type;
1762
1763 new = value_of_child (v->parent, v->index);
1764 if (update_type_if_necessary(v, new))
1765 r.type_changed = 1;
1766 if (new)
1767 new_type = value_type (new);
1768 else
1769 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1770
1771 if (varobj_value_has_mutated (v, new, new_type))
1772 {
1773 /* The children are no longer valid; delete them now.
1774 Report the fact that its type changed as well. */
1775 varobj_delete (v, NULL, 1 /* only_children */);
1776 v->num_children = -1;
1777 v->to = -1;
1778 v->from = -1;
1779 v->type = new_type;
1780 r.type_changed = 1;
1781 }
1782
1783 if (install_new_value (v, new, r.type_changed))
1784 {
1785 r.changed = 1;
1786 v->updated = 0;
1787 }
1788 }
1789
1790 /* We probably should not get children of a varobj that has a
1791 pretty-printer, but for which -var-list-children was never
1792 invoked. */
1793 if (v->dynamic->pretty_printer != NULL)
1794 {
1795 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1796 VEC (varobj_p) *new = 0;
1797 int i, children_changed = 0;
1798
1799 if (v->frozen)
1800 continue;
1801
1802 if (!v->dynamic->children_requested)
1803 {
1804 int dummy;
1805
1806 /* If we initially did not have potential children, but
1807 now we do, consider the varobj as changed.
1808 Otherwise, if children were never requested, consider
1809 it as unchanged -- presumably, such varobj is not yet
1810 expanded in the UI, so we need not bother getting
1811 it. */
1812 if (!varobj_has_more (v, 0))
1813 {
1814 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1815 &dummy, 0, 0, 0);
1816 if (varobj_has_more (v, 0))
1817 r.changed = 1;
1818 }
1819
1820 if (r.changed)
1821 VEC_safe_push (varobj_update_result, result, &r);
1822
1823 continue;
1824 }
1825
1826 /* If update_dynamic_varobj_children returns 0, then we have
1827 a non-conforming pretty-printer, so we skip it. */
1828 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1829 &unchanged, &children_changed, 1,
1830 v->from, v->to))
1831 {
1832 if (children_changed || new)
1833 {
1834 r.children_changed = 1;
1835 r.new = new;
1836 }
1837 /* Push in reverse order so that the first child is
1838 popped from the work stack first, and so will be
1839 added to result first. This does not affect
1840 correctness, just "nicer". */
1841 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1842 {
1843 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1844 varobj_update_result r = {0};
1845
1846 /* Type may change only if value was changed. */
1847 r.varobj = tmp;
1848 r.changed = 1;
1849 r.type_changed = 1;
1850 r.value_installed = 1;
1851 VEC_safe_push (varobj_update_result, stack, &r);
1852 }
1853 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1854 {
1855 varobj_p tmp = VEC_index (varobj_p, changed, i);
1856 varobj_update_result r = {0};
1857
1858 r.varobj = tmp;
1859 r.changed = 1;
1860 r.value_installed = 1;
1861 VEC_safe_push (varobj_update_result, stack, &r);
1862 }
1863 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1864 {
1865 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1866
1867 if (!tmp->frozen)
1868 {
1869 varobj_update_result r = {0};
1870
1871 r.varobj = tmp;
1872 r.value_installed = 1;
1873 VEC_safe_push (varobj_update_result, stack, &r);
1874 }
1875 }
1876 if (r.changed || r.children_changed)
1877 VEC_safe_push (varobj_update_result, result, &r);
1878
1879 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1880 because NEW has been put into the result vector. */
1881 VEC_free (varobj_p, changed);
1882 VEC_free (varobj_p, type_changed);
1883 VEC_free (varobj_p, unchanged);
1884
1885 continue;
1886 }
1887 }
1888
1889 /* Push any children. Use reverse order so that the first
1890 child is popped from the work stack first, and so
1891 will be added to result first. This does not
1892 affect correctness, just "nicer". */
1893 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1894 {
1895 varobj_p c = VEC_index (varobj_p, v->children, i);
1896
1897 /* Child may be NULL if explicitly deleted by -var-delete. */
1898 if (c != NULL && !c->frozen)
1899 {
1900 varobj_update_result r = {0};
1901
1902 r.varobj = c;
1903 VEC_safe_push (varobj_update_result, stack, &r);
1904 }
1905 }
1906
1907 if (r.changed || r.type_changed)
1908 VEC_safe_push (varobj_update_result, result, &r);
1909 }
1910
1911 VEC_free (varobj_update_result, stack);
1912
1913 return result;
1914 }
1915 \f
1916
1917 /* Helper functions */
1918
1919 /*
1920 * Variable object construction/destruction
1921 */
1922
1923 static int
1924 delete_variable (struct cpstack **resultp, struct varobj *var,
1925 int only_children_p)
1926 {
1927 int delcount = 0;
1928
1929 delete_variable_1 (resultp, &delcount, var,
1930 only_children_p, 1 /* remove_from_parent_p */ );
1931
1932 return delcount;
1933 }
1934
1935 /* Delete the variable object VAR and its children. */
1936 /* IMPORTANT NOTE: If we delete a variable which is a child
1937 and the parent is not removed we dump core. It must be always
1938 initially called with remove_from_parent_p set. */
1939 static void
1940 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1941 struct varobj *var, int only_children_p,
1942 int remove_from_parent_p)
1943 {
1944 int i;
1945
1946 /* Delete any children of this variable, too. */
1947 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1948 {
1949 varobj_p child = VEC_index (varobj_p, var->children, i);
1950
1951 if (!child)
1952 continue;
1953 if (!remove_from_parent_p)
1954 child->parent = NULL;
1955 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1956 }
1957 VEC_free (varobj_p, var->children);
1958
1959 /* if we were called to delete only the children we are done here. */
1960 if (only_children_p)
1961 return;
1962
1963 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1964 /* If the name is null, this is a temporary variable, that has not
1965 yet been installed, don't report it, it belongs to the caller... */
1966 if (var->obj_name != NULL)
1967 {
1968 cppush (resultp, xstrdup (var->obj_name));
1969 *delcountp = *delcountp + 1;
1970 }
1971
1972 /* If this variable has a parent, remove it from its parent's list. */
1973 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1974 (as indicated by remove_from_parent_p) we don't bother doing an
1975 expensive list search to find the element to remove when we are
1976 discarding the list afterwards. */
1977 if ((remove_from_parent_p) && (var->parent != NULL))
1978 {
1979 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1980 }
1981
1982 if (var->obj_name != NULL)
1983 uninstall_variable (var);
1984
1985 /* Free memory associated with this variable. */
1986 free_variable (var);
1987 }
1988
1989 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1990 static int
1991 install_variable (struct varobj *var)
1992 {
1993 struct vlist *cv;
1994 struct vlist *newvl;
1995 const char *chp;
1996 unsigned int index = 0;
1997 unsigned int i = 1;
1998
1999 for (chp = var->obj_name; *chp; chp++)
2000 {
2001 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2002 }
2003
2004 cv = *(varobj_table + index);
2005 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2006 cv = cv->next;
2007
2008 if (cv != NULL)
2009 error (_("Duplicate variable object name"));
2010
2011 /* Add varobj to hash table. */
2012 newvl = xmalloc (sizeof (struct vlist));
2013 newvl->next = *(varobj_table + index);
2014 newvl->var = var;
2015 *(varobj_table + index) = newvl;
2016
2017 /* If root, add varobj to root list. */
2018 if (is_root_p (var))
2019 {
2020 /* Add to list of root variables. */
2021 if (rootlist == NULL)
2022 var->root->next = NULL;
2023 else
2024 var->root->next = rootlist;
2025 rootlist = var->root;
2026 }
2027
2028 return 1; /* OK */
2029 }
2030
2031 /* Unistall the object VAR. */
2032 static void
2033 uninstall_variable (struct varobj *var)
2034 {
2035 struct vlist *cv;
2036 struct vlist *prev;
2037 struct varobj_root *cr;
2038 struct varobj_root *prer;
2039 const char *chp;
2040 unsigned int index = 0;
2041 unsigned int i = 1;
2042
2043 /* Remove varobj from hash table. */
2044 for (chp = var->obj_name; *chp; chp++)
2045 {
2046 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2047 }
2048
2049 cv = *(varobj_table + index);
2050 prev = NULL;
2051 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2052 {
2053 prev = cv;
2054 cv = cv->next;
2055 }
2056
2057 if (varobjdebug)
2058 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2059
2060 if (cv == NULL)
2061 {
2062 warning
2063 ("Assertion failed: Could not find variable object \"%s\" to delete",
2064 var->obj_name);
2065 return;
2066 }
2067
2068 if (prev == NULL)
2069 *(varobj_table + index) = cv->next;
2070 else
2071 prev->next = cv->next;
2072
2073 xfree (cv);
2074
2075 /* If root, remove varobj from root list. */
2076 if (is_root_p (var))
2077 {
2078 /* Remove from list of root variables. */
2079 if (rootlist == var->root)
2080 rootlist = var->root->next;
2081 else
2082 {
2083 prer = NULL;
2084 cr = rootlist;
2085 while ((cr != NULL) && (cr->rootvar != var))
2086 {
2087 prer = cr;
2088 cr = cr->next;
2089 }
2090 if (cr == NULL)
2091 {
2092 warning (_("Assertion failed: Could not find "
2093 "varobj \"%s\" in root list"),
2094 var->obj_name);
2095 return;
2096 }
2097 if (prer == NULL)
2098 rootlist = NULL;
2099 else
2100 prer->next = cr->next;
2101 }
2102 }
2103
2104 }
2105
2106 /* Create and install a child of the parent of the given name. */
2107 static struct varobj *
2108 create_child (struct varobj *parent, int index, char *name)
2109 {
2110 return create_child_with_value (parent, index, name,
2111 value_of_child (parent, index));
2112 }
2113
2114 static struct varobj *
2115 create_child_with_value (struct varobj *parent, int index, char *name,
2116 struct value *value)
2117 {
2118 struct varobj *child;
2119 char *childs_name;
2120
2121 child = new_variable ();
2122
2123 /* NAME is allocated by caller. */
2124 child->name = name;
2125 child->index = index;
2126 child->parent = parent;
2127 child->root = parent->root;
2128
2129 if (varobj_is_anonymous_child (child))
2130 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2131 else
2132 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2133 child->obj_name = childs_name;
2134
2135 install_variable (child);
2136
2137 /* Compute the type of the child. Must do this before
2138 calling install_new_value. */
2139 if (value != NULL)
2140 /* If the child had no evaluation errors, var->value
2141 will be non-NULL and contain a valid type. */
2142 child->type = value_actual_type (value, 0, NULL);
2143 else
2144 /* Otherwise, we must compute the type. */
2145 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2146 child->index);
2147 install_new_value (child, value, 1);
2148
2149 return child;
2150 }
2151 \f
2152
2153 /*
2154 * Miscellaneous utility functions.
2155 */
2156
2157 /* Allocate memory and initialize a new variable. */
2158 static struct varobj *
2159 new_variable (void)
2160 {
2161 struct varobj *var;
2162
2163 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2164 var->name = NULL;
2165 var->path_expr = NULL;
2166 var->obj_name = NULL;
2167 var->index = -1;
2168 var->type = NULL;
2169 var->value = NULL;
2170 var->num_children = -1;
2171 var->parent = NULL;
2172 var->children = NULL;
2173 var->format = 0;
2174 var->root = NULL;
2175 var->updated = 0;
2176 var->print_value = NULL;
2177 var->frozen = 0;
2178 var->not_fetched = 0;
2179 var->dynamic
2180 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2181 var->dynamic->children_requested = 0;
2182 var->from = -1;
2183 var->to = -1;
2184 var->dynamic->constructor = 0;
2185 var->dynamic->pretty_printer = 0;
2186 var->dynamic->child_iter = 0;
2187 var->dynamic->saved_item = 0;
2188
2189 return var;
2190 }
2191
2192 /* Allocate memory and initialize a new root variable. */
2193 static struct varobj *
2194 new_root_variable (void)
2195 {
2196 struct varobj *var = new_variable ();
2197
2198 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2199 var->root->lang_ops = NULL;
2200 var->root->exp = NULL;
2201 var->root->valid_block = NULL;
2202 var->root->frame = null_frame_id;
2203 var->root->floating = 0;
2204 var->root->rootvar = NULL;
2205 var->root->is_valid = 1;
2206
2207 return var;
2208 }
2209
2210 /* Free any allocated memory associated with VAR. */
2211 static void
2212 free_variable (struct varobj *var)
2213 {
2214 #if HAVE_PYTHON
2215 if (var->dynamic->pretty_printer != NULL)
2216 {
2217 struct cleanup *cleanup = varobj_ensure_python_env (var);
2218
2219 Py_XDECREF (var->dynamic->constructor);
2220 Py_XDECREF (var->dynamic->pretty_printer);
2221 Py_XDECREF (var->dynamic->child_iter);
2222 Py_XDECREF (var->dynamic->saved_item);
2223 do_cleanups (cleanup);
2224 }
2225 #endif
2226
2227 value_free (var->value);
2228
2229 /* Free the expression if this is a root variable. */
2230 if (is_root_p (var))
2231 {
2232 xfree (var->root->exp);
2233 xfree (var->root);
2234 }
2235
2236 xfree (var->name);
2237 xfree (var->obj_name);
2238 xfree (var->print_value);
2239 xfree (var->path_expr);
2240 xfree (var->dynamic);
2241 xfree (var);
2242 }
2243
2244 static void
2245 do_free_variable_cleanup (void *var)
2246 {
2247 free_variable (var);
2248 }
2249
2250 static struct cleanup *
2251 make_cleanup_free_variable (struct varobj *var)
2252 {
2253 return make_cleanup (do_free_variable_cleanup, var);
2254 }
2255
2256 /* Return the type of the value that's stored in VAR,
2257 or that would have being stored there if the
2258 value were accessible.
2259
2260 This differs from VAR->type in that VAR->type is always
2261 the true type of the expession in the source language.
2262 The return value of this function is the type we're
2263 actually storing in varobj, and using for displaying
2264 the values and for comparing previous and new values.
2265
2266 For example, top-level references are always stripped. */
2267 struct type *
2268 varobj_get_value_type (struct varobj *var)
2269 {
2270 struct type *type;
2271
2272 if (var->value)
2273 type = value_type (var->value);
2274 else
2275 type = var->type;
2276
2277 type = check_typedef (type);
2278
2279 if (TYPE_CODE (type) == TYPE_CODE_REF)
2280 type = get_target_type (type);
2281
2282 type = check_typedef (type);
2283
2284 return type;
2285 }
2286
2287 /* What is the default display for this variable? We assume that
2288 everything is "natural". Any exceptions? */
2289 static enum varobj_display_formats
2290 variable_default_display (struct varobj *var)
2291 {
2292 return FORMAT_NATURAL;
2293 }
2294
2295 /* FIXME: The following should be generic for any pointer. */
2296 static void
2297 cppush (struct cpstack **pstack, char *name)
2298 {
2299 struct cpstack *s;
2300
2301 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2302 s->name = name;
2303 s->next = *pstack;
2304 *pstack = s;
2305 }
2306
2307 /* FIXME: The following should be generic for any pointer. */
2308 static char *
2309 cppop (struct cpstack **pstack)
2310 {
2311 struct cpstack *s;
2312 char *v;
2313
2314 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2315 return NULL;
2316
2317 s = *pstack;
2318 v = s->name;
2319 *pstack = (*pstack)->next;
2320 xfree (s);
2321
2322 return v;
2323 }
2324 \f
2325 /*
2326 * Language-dependencies
2327 */
2328
2329 /* Common entry points */
2330
2331 /* Return the number of children for a given variable.
2332 The result of this function is defined by the language
2333 implementation. The number of children returned by this function
2334 is the number of children that the user will see in the variable
2335 display. */
2336 static int
2337 number_of_children (struct varobj *var)
2338 {
2339 return (*var->root->lang_ops->number_of_children) (var);
2340 }
2341
2342 /* What is the expression for the root varobj VAR? Returns a malloc'd
2343 string. */
2344 static char *
2345 name_of_variable (struct varobj *var)
2346 {
2347 return (*var->root->lang_ops->name_of_variable) (var);
2348 }
2349
2350 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2351 string. */
2352 static char *
2353 name_of_child (struct varobj *var, int index)
2354 {
2355 return (*var->root->lang_ops->name_of_child) (var, index);
2356 }
2357
2358 /* If frame associated with VAR can be found, switch
2359 to it and return 1. Otherwise, return 0. */
2360
2361 static int
2362 check_scope (struct varobj *var)
2363 {
2364 struct frame_info *fi;
2365 int scope;
2366
2367 fi = frame_find_by_id (var->root->frame);
2368 scope = fi != NULL;
2369
2370 if (fi)
2371 {
2372 CORE_ADDR pc = get_frame_pc (fi);
2373
2374 if (pc < BLOCK_START (var->root->valid_block) ||
2375 pc >= BLOCK_END (var->root->valid_block))
2376 scope = 0;
2377 else
2378 select_frame (fi);
2379 }
2380 return scope;
2381 }
2382
2383 /* Helper function to value_of_root. */
2384
2385 static struct value *
2386 value_of_root_1 (struct varobj **var_handle)
2387 {
2388 struct value *new_val = NULL;
2389 struct varobj *var = *var_handle;
2390 int within_scope = 0;
2391 struct cleanup *back_to;
2392
2393 /* Only root variables can be updated... */
2394 if (!is_root_p (var))
2395 /* Not a root var. */
2396 return NULL;
2397
2398 back_to = make_cleanup_restore_current_thread ();
2399
2400 /* Determine whether the variable is still around. */
2401 if (var->root->valid_block == NULL || var->root->floating)
2402 within_scope = 1;
2403 else if (var->root->thread_id == 0)
2404 {
2405 /* The program was single-threaded when the variable object was
2406 created. Technically, it's possible that the program became
2407 multi-threaded since then, but we don't support such
2408 scenario yet. */
2409 within_scope = check_scope (var);
2410 }
2411 else
2412 {
2413 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2414 if (in_thread_list (ptid))
2415 {
2416 switch_to_thread (ptid);
2417 within_scope = check_scope (var);
2418 }
2419 }
2420
2421 if (within_scope)
2422 {
2423 volatile struct gdb_exception except;
2424
2425 /* We need to catch errors here, because if evaluate
2426 expression fails we want to just return NULL. */
2427 TRY_CATCH (except, RETURN_MASK_ERROR)
2428 {
2429 new_val = evaluate_expression (var->root->exp);
2430 }
2431 }
2432
2433 do_cleanups (back_to);
2434
2435 return new_val;
2436 }
2437
2438 /* What is the ``struct value *'' of the root variable VAR?
2439 For floating variable object, evaluation can get us a value
2440 of different type from what is stored in varobj already. In
2441 that case:
2442 - *type_changed will be set to 1
2443 - old varobj will be freed, and new one will be
2444 created, with the same name.
2445 - *var_handle will be set to the new varobj
2446 Otherwise, *type_changed will be set to 0. */
2447 static struct value *
2448 value_of_root (struct varobj **var_handle, int *type_changed)
2449 {
2450 struct varobj *var;
2451
2452 if (var_handle == NULL)
2453 return NULL;
2454
2455 var = *var_handle;
2456
2457 /* This should really be an exception, since this should
2458 only get called with a root variable. */
2459
2460 if (!is_root_p (var))
2461 return NULL;
2462
2463 if (var->root->floating)
2464 {
2465 struct varobj *tmp_var;
2466 char *old_type, *new_type;
2467
2468 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2469 USE_SELECTED_FRAME);
2470 if (tmp_var == NULL)
2471 {
2472 return NULL;
2473 }
2474 old_type = varobj_get_type (var);
2475 new_type = varobj_get_type (tmp_var);
2476 if (strcmp (old_type, new_type) == 0)
2477 {
2478 /* The expression presently stored inside var->root->exp
2479 remembers the locations of local variables relatively to
2480 the frame where the expression was created (in DWARF location
2481 button, for example). Naturally, those locations are not
2482 correct in other frames, so update the expression. */
2483
2484 struct expression *tmp_exp = var->root->exp;
2485
2486 var->root->exp = tmp_var->root->exp;
2487 tmp_var->root->exp = tmp_exp;
2488
2489 varobj_delete (tmp_var, NULL, 0);
2490 *type_changed = 0;
2491 }
2492 else
2493 {
2494 tmp_var->obj_name = xstrdup (var->obj_name);
2495 tmp_var->from = var->from;
2496 tmp_var->to = var->to;
2497 varobj_delete (var, NULL, 0);
2498
2499 install_variable (tmp_var);
2500 *var_handle = tmp_var;
2501 var = *var_handle;
2502 *type_changed = 1;
2503 }
2504 xfree (old_type);
2505 xfree (new_type);
2506 }
2507 else
2508 {
2509 *type_changed = 0;
2510 }
2511
2512 {
2513 struct value *value;
2514
2515 value = value_of_root_1 (var_handle);
2516 if (var->value == NULL || value == NULL)
2517 {
2518 /* For root varobj-s, a NULL value indicates a scoping issue.
2519 So, nothing to do in terms of checking for mutations. */
2520 }
2521 else if (varobj_value_has_mutated (var, value, value_type (value)))
2522 {
2523 /* The type has mutated, so the children are no longer valid.
2524 Just delete them, and tell our caller that the type has
2525 changed. */
2526 varobj_delete (var, NULL, 1 /* only_children */);
2527 var->num_children = -1;
2528 var->to = -1;
2529 var->from = -1;
2530 *type_changed = 1;
2531 }
2532 return value;
2533 }
2534 }
2535
2536 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2537 static struct value *
2538 value_of_child (struct varobj *parent, int index)
2539 {
2540 struct value *value;
2541
2542 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2543
2544 return value;
2545 }
2546
2547 /* GDB already has a command called "value_of_variable". Sigh. */
2548 static char *
2549 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2550 {
2551 if (var->root->is_valid)
2552 {
2553 if (var->dynamic->pretty_printer != NULL)
2554 return varobj_value_get_print_value (var->value, var->format, var);
2555 return (*var->root->lang_ops->value_of_variable) (var, format);
2556 }
2557 else
2558 return NULL;
2559 }
2560
2561 void
2562 varobj_formatted_print_options (struct value_print_options *opts,
2563 enum varobj_display_formats format)
2564 {
2565 get_formatted_print_options (opts, format_code[(int) format]);
2566 opts->deref_ref = 0;
2567 opts->raw = 1;
2568 }
2569
2570 char *
2571 varobj_value_get_print_value (struct value *value,
2572 enum varobj_display_formats format,
2573 struct varobj *var)
2574 {
2575 struct ui_file *stb;
2576 struct cleanup *old_chain;
2577 char *thevalue = NULL;
2578 struct value_print_options opts;
2579 struct type *type = NULL;
2580 long len = 0;
2581 char *encoding = NULL;
2582 struct gdbarch *gdbarch = NULL;
2583 /* Initialize it just to avoid a GCC false warning. */
2584 CORE_ADDR str_addr = 0;
2585 int string_print = 0;
2586
2587 if (value == NULL)
2588 return NULL;
2589
2590 stb = mem_fileopen ();
2591 old_chain = make_cleanup_ui_file_delete (stb);
2592
2593 gdbarch = get_type_arch (value_type (value));
2594 #if HAVE_PYTHON
2595 if (gdb_python_initialized)
2596 {
2597 PyObject *value_formatter = var->dynamic->pretty_printer;
2598
2599 varobj_ensure_python_env (var);
2600
2601 if (value_formatter)
2602 {
2603 /* First check to see if we have any children at all. If so,
2604 we simply return {...}. */
2605 if (dynamic_varobj_has_child_method (var))
2606 {
2607 do_cleanups (old_chain);
2608 return xstrdup ("{...}");
2609 }
2610
2611 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2612 {
2613 struct value *replacement;
2614 PyObject *output = NULL;
2615
2616 output = apply_varobj_pretty_printer (value_formatter,
2617 &replacement,
2618 stb);
2619
2620 /* If we have string like output ... */
2621 if (output)
2622 {
2623 make_cleanup_py_decref (output);
2624
2625 /* If this is a lazy string, extract it. For lazy
2626 strings we always print as a string, so set
2627 string_print. */
2628 if (gdbpy_is_lazy_string (output))
2629 {
2630 gdbpy_extract_lazy_string (output, &str_addr, &type,
2631 &len, &encoding);
2632 make_cleanup (free_current_contents, &encoding);
2633 string_print = 1;
2634 }
2635 else
2636 {
2637 /* If it is a regular (non-lazy) string, extract
2638 it and copy the contents into THEVALUE. If the
2639 hint says to print it as a string, set
2640 string_print. Otherwise just return the extracted
2641 string as a value. */
2642
2643 char *s = python_string_to_target_string (output);
2644
2645 if (s)
2646 {
2647 char *hint;
2648
2649 hint = gdbpy_get_display_hint (value_formatter);
2650 if (hint)
2651 {
2652 if (!strcmp (hint, "string"))
2653 string_print = 1;
2654 xfree (hint);
2655 }
2656
2657 len = strlen (s);
2658 thevalue = xmemdup (s, len + 1, len + 1);
2659 type = builtin_type (gdbarch)->builtin_char;
2660 xfree (s);
2661
2662 if (!string_print)
2663 {
2664 do_cleanups (old_chain);
2665 return thevalue;
2666 }
2667
2668 make_cleanup (xfree, thevalue);
2669 }
2670 else
2671 gdbpy_print_stack ();
2672 }
2673 }
2674 /* If the printer returned a replacement value, set VALUE
2675 to REPLACEMENT. If there is not a replacement value,
2676 just use the value passed to this function. */
2677 if (replacement)
2678 value = replacement;
2679 }
2680 }
2681 }
2682 #endif
2683
2684 varobj_formatted_print_options (&opts, format);
2685
2686 /* If the THEVALUE has contents, it is a regular string. */
2687 if (thevalue)
2688 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2689 else if (string_print)
2690 /* Otherwise, if string_print is set, and it is not a regular
2691 string, it is a lazy string. */
2692 val_print_string (type, encoding, str_addr, len, stb, &opts);
2693 else
2694 /* All other cases. */
2695 common_val_print (value, stb, 0, &opts, current_language);
2696
2697 thevalue = ui_file_xstrdup (stb, NULL);
2698
2699 do_cleanups (old_chain);
2700 return thevalue;
2701 }
2702
2703 int
2704 varobj_editable_p (struct varobj *var)
2705 {
2706 struct type *type;
2707
2708 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2709 return 0;
2710
2711 type = varobj_get_value_type (var);
2712
2713 switch (TYPE_CODE (type))
2714 {
2715 case TYPE_CODE_STRUCT:
2716 case TYPE_CODE_UNION:
2717 case TYPE_CODE_ARRAY:
2718 case TYPE_CODE_FUNC:
2719 case TYPE_CODE_METHOD:
2720 return 0;
2721 break;
2722
2723 default:
2724 return 1;
2725 break;
2726 }
2727 }
2728
2729 /* Call VAR's value_is_changeable_p language-specific callback. */
2730
2731 int
2732 varobj_value_is_changeable_p (struct varobj *var)
2733 {
2734 return var->root->lang_ops->value_is_changeable_p (var);
2735 }
2736
2737 /* Return 1 if that varobj is floating, that is is always evaluated in the
2738 selected frame, and not bound to thread/frame. Such variable objects
2739 are created using '@' as frame specifier to -var-create. */
2740 int
2741 varobj_floating_p (struct varobj *var)
2742 {
2743 return var->root->floating;
2744 }
2745
2746 /* Implement the "value_is_changeable_p" varobj callback for most
2747 languages. */
2748
2749 int
2750 varobj_default_value_is_changeable_p (struct varobj *var)
2751 {
2752 int r;
2753 struct type *type;
2754
2755 if (CPLUS_FAKE_CHILD (var))
2756 return 0;
2757
2758 type = varobj_get_value_type (var);
2759
2760 switch (TYPE_CODE (type))
2761 {
2762 case TYPE_CODE_STRUCT:
2763 case TYPE_CODE_UNION:
2764 case TYPE_CODE_ARRAY:
2765 r = 0;
2766 break;
2767
2768 default:
2769 r = 1;
2770 }
2771
2772 return r;
2773 }
2774
2775 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2776 with an arbitrary caller supplied DATA pointer. */
2777
2778 void
2779 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2780 {
2781 struct varobj_root *var_root, *var_root_next;
2782
2783 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2784
2785 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2786 {
2787 var_root_next = var_root->next;
2788
2789 (*func) (var_root->rootvar, data);
2790 }
2791 }
2792 \f
2793 extern void _initialize_varobj (void);
2794 void
2795 _initialize_varobj (void)
2796 {
2797 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2798
2799 varobj_table = xmalloc (sizeof_table);
2800 memset (varobj_table, 0, sizeof_table);
2801
2802 add_setshow_zuinteger_cmd ("debugvarobj", class_maintenance,
2803 &varobjdebug,
2804 _("Set varobj debugging."),
2805 _("Show varobj debugging."),
2806 _("When non-zero, varobj debugging is enabled."),
2807 NULL, show_varobjdebug,
2808 &setlist, &showlist);
2809 }
2810
2811 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2812 defined on globals. It is a helper for varobj_invalidate.
2813
2814 This function is called after changing the symbol file, in this case the
2815 pointers to "struct type" stored by the varobj are no longer valid. All
2816 varobj must be either re-evaluated, or marked as invalid here. */
2817
2818 static void
2819 varobj_invalidate_iter (struct varobj *var, void *unused)
2820 {
2821 /* global and floating var must be re-evaluated. */
2822 if (var->root->floating || var->root->valid_block == NULL)
2823 {
2824 struct varobj *tmp_var;
2825
2826 /* Try to create a varobj with same expression. If we succeed
2827 replace the old varobj, otherwise invalidate it. */
2828 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2829 USE_CURRENT_FRAME);
2830 if (tmp_var != NULL)
2831 {
2832 tmp_var->obj_name = xstrdup (var->obj_name);
2833 varobj_delete (var, NULL, 0);
2834 install_variable (tmp_var);
2835 }
2836 else
2837 var->root->is_valid = 0;
2838 }
2839 else /* locals must be invalidated. */
2840 var->root->is_valid = 0;
2841 }
2842
2843 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2844 are defined on globals.
2845 Invalidated varobjs will be always printed in_scope="invalid". */
2846
2847 void
2848 varobj_invalidate (void)
2849 {
2850 all_root_varobjs (varobj_invalidate_iter, NULL);
2851 }
This page took 0.137139 seconds and 3 git commands to generate.