gdb/
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
33
34 #include "varobj.h"
35 #include "vec.h"
36 #include "gdbthread.h"
37 #include "inferior.h"
38
39 #if HAVE_PYTHON
40 #include "python/python.h"
41 #include "python/python-internal.h"
42 #endif
43
44 /* Non-zero if we want to see trace of varobj level stuff. */
45
46 int varobjdebug = 0;
47 static void
48 show_varobjdebug (struct ui_file *file, int from_tty,
49 struct cmd_list_element *c, const char *value)
50 {
51 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
52 }
53
54 /* String representations of gdb's format codes */
55 char *varobj_format_string[] =
56 { "natural", "binary", "decimal", "hexadecimal", "octal" };
57
58 /* String representations of gdb's known languages */
59 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
60
61 /* True if we want to allow Python-based pretty-printing. */
62 static int pretty_printing = 0;
63
64 void
65 varobj_enable_pretty_printing (void)
66 {
67 pretty_printing = 1;
68 }
69
70 /* Data structures */
71
72 /* Every root variable has one of these structures saved in its
73 varobj. Members which must be free'd are noted. */
74 struct varobj_root
75 {
76
77 /* Alloc'd expression for this parent. */
78 struct expression *exp;
79
80 /* Block for which this expression is valid */
81 struct block *valid_block;
82
83 /* The frame for this expression. This field is set iff valid_block is
84 not NULL. */
85 struct frame_id frame;
86
87 /* The thread ID that this varobj_root belong to. This field
88 is only valid if valid_block is not NULL.
89 When not 0, indicates which thread 'frame' belongs to.
90 When 0, indicates that the thread list was empty when the varobj_root
91 was created. */
92 int thread_id;
93
94 /* If 1, the -var-update always recomputes the value in the
95 current thread and frame. Otherwise, variable object is
96 always updated in the specific scope/thread/frame */
97 int floating;
98
99 /* Flag that indicates validity: set to 0 when this varobj_root refers
100 to symbols that do not exist anymore. */
101 int is_valid;
102
103 /* Language info for this variable and its children */
104 struct language_specific *lang;
105
106 /* The varobj for this root node. */
107 struct varobj *rootvar;
108
109 /* Next root variable */
110 struct varobj_root *next;
111 };
112
113 /* Every variable in the system has a structure of this type defined
114 for it. This structure holds all information necessary to manipulate
115 a particular object variable. Members which must be freed are noted. */
116 struct varobj
117 {
118
119 /* Alloc'd name of the variable for this object.. If this variable is a
120 child, then this name will be the child's source name.
121 (bar, not foo.bar) */
122 /* NOTE: This is the "expression" */
123 char *name;
124
125 /* Alloc'd expression for this child. Can be used to create a
126 root variable corresponding to this child. */
127 char *path_expr;
128
129 /* The alloc'd name for this variable's object. This is here for
130 convenience when constructing this object's children. */
131 char *obj_name;
132
133 /* Index of this variable in its parent or -1 */
134 int index;
135
136 /* The type of this variable. This can be NULL
137 for artifial variable objects -- currently, the "accessibility"
138 variable objects in C++. */
139 struct type *type;
140
141 /* The value of this expression or subexpression. A NULL value
142 indicates there was an error getting this value.
143 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
144 the value is either NULL, or not lazy. */
145 struct value *value;
146
147 /* The number of (immediate) children this variable has */
148 int num_children;
149
150 /* If this object is a child, this points to its immediate parent. */
151 struct varobj *parent;
152
153 /* Children of this object. */
154 VEC (varobj_p) *children;
155
156 /* Whether the children of this varobj were requested. This field is
157 used to decide if dynamic varobj should recompute their children.
158 In the event that the frontend never asked for the children, we
159 can avoid that. */
160 int children_requested;
161
162 /* Description of the root variable. Points to root variable for children. */
163 struct varobj_root *root;
164
165 /* The format of the output for this object */
166 enum varobj_display_formats format;
167
168 /* Was this variable updated via a varobj_set_value operation */
169 int updated;
170
171 /* Last print value. */
172 char *print_value;
173
174 /* Is this variable frozen. Frozen variables are never implicitly
175 updated by -var-update *
176 or -var-update <direct-or-indirect-parent>. */
177 int frozen;
178
179 /* Is the value of this variable intentionally not fetched? It is
180 not fetched if either the variable is frozen, or any parents is
181 frozen. */
182 int not_fetched;
183
184 /* Sub-range of children which the MI consumer has requested. If
185 FROM < 0 or TO < 0, means that all children have been
186 requested. */
187 int from;
188 int to;
189
190 /* The pretty-printer constructor. If NULL, then the default
191 pretty-printer will be looked up. If None, then no
192 pretty-printer will be installed. */
193 PyObject *constructor;
194
195 /* The pretty-printer that has been constructed. If NULL, then a
196 new printer object is needed, and one will be constructed. */
197 PyObject *pretty_printer;
198
199 /* The iterator returned by the printer's 'children' method, or NULL
200 if not available. */
201 PyObject *child_iter;
202
203 /* We request one extra item from the iterator, so that we can
204 report to the caller whether there are more items than we have
205 already reported. However, we don't want to install this value
206 when we read it, because that will mess up future updates. So,
207 we stash it here instead. */
208 PyObject *saved_item;
209 };
210
211 struct cpstack
212 {
213 char *name;
214 struct cpstack *next;
215 };
216
217 /* A list of varobjs */
218
219 struct vlist
220 {
221 struct varobj *var;
222 struct vlist *next;
223 };
224
225 /* Private function prototypes */
226
227 /* Helper functions for the above subcommands. */
228
229 static int delete_variable (struct cpstack **, struct varobj *, int);
230
231 static void delete_variable_1 (struct cpstack **, int *,
232 struct varobj *, int, int);
233
234 static int install_variable (struct varobj *);
235
236 static void uninstall_variable (struct varobj *);
237
238 static struct varobj *create_child (struct varobj *, int, char *);
239
240 static struct varobj *
241 create_child_with_value (struct varobj *parent, int index, const char *name,
242 struct value *value);
243
244 /* Utility routines */
245
246 static struct varobj *new_variable (void);
247
248 static struct varobj *new_root_variable (void);
249
250 static void free_variable (struct varobj *var);
251
252 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
253
254 static struct type *get_type (struct varobj *var);
255
256 static struct type *get_value_type (struct varobj *var);
257
258 static struct type *get_target_type (struct type *);
259
260 static enum varobj_display_formats variable_default_display (struct varobj *);
261
262 static void cppush (struct cpstack **pstack, char *name);
263
264 static char *cppop (struct cpstack **pstack);
265
266 static int install_new_value (struct varobj *var, struct value *value,
267 int initial);
268
269 /* Language-specific routines. */
270
271 static enum varobj_languages variable_language (struct varobj *var);
272
273 static int number_of_children (struct varobj *);
274
275 static char *name_of_variable (struct varobj *);
276
277 static char *name_of_child (struct varobj *, int);
278
279 static struct value *value_of_root (struct varobj **var_handle, int *);
280
281 static struct value *value_of_child (struct varobj *parent, int index);
282
283 static char *my_value_of_variable (struct varobj *var,
284 enum varobj_display_formats format);
285
286 static char *value_get_print_value (struct value *value,
287 enum varobj_display_formats format,
288 struct varobj *var);
289
290 static int varobj_value_is_changeable_p (struct varobj *var);
291
292 static int is_root_p (struct varobj *var);
293
294 #if HAVE_PYTHON
295
296 static struct varobj *
297 varobj_add_child (struct varobj *var, const char *name, struct value *value);
298
299 #endif /* HAVE_PYTHON */
300
301 /* C implementation */
302
303 static int c_number_of_children (struct varobj *var);
304
305 static char *c_name_of_variable (struct varobj *parent);
306
307 static char *c_name_of_child (struct varobj *parent, int index);
308
309 static char *c_path_expr_of_child (struct varobj *child);
310
311 static struct value *c_value_of_root (struct varobj **var_handle);
312
313 static struct value *c_value_of_child (struct varobj *parent, int index);
314
315 static struct type *c_type_of_child (struct varobj *parent, int index);
316
317 static char *c_value_of_variable (struct varobj *var,
318 enum varobj_display_formats format);
319
320 /* C++ implementation */
321
322 static int cplus_number_of_children (struct varobj *var);
323
324 static void cplus_class_num_children (struct type *type, int children[3]);
325
326 static char *cplus_name_of_variable (struct varobj *parent);
327
328 static char *cplus_name_of_child (struct varobj *parent, int index);
329
330 static char *cplus_path_expr_of_child (struct varobj *child);
331
332 static struct value *cplus_value_of_root (struct varobj **var_handle);
333
334 static struct value *cplus_value_of_child (struct varobj *parent, int index);
335
336 static struct type *cplus_type_of_child (struct varobj *parent, int index);
337
338 static char *cplus_value_of_variable (struct varobj *var,
339 enum varobj_display_formats format);
340
341 /* Java implementation */
342
343 static int java_number_of_children (struct varobj *var);
344
345 static char *java_name_of_variable (struct varobj *parent);
346
347 static char *java_name_of_child (struct varobj *parent, int index);
348
349 static char *java_path_expr_of_child (struct varobj *child);
350
351 static struct value *java_value_of_root (struct varobj **var_handle);
352
353 static struct value *java_value_of_child (struct varobj *parent, int index);
354
355 static struct type *java_type_of_child (struct varobj *parent, int index);
356
357 static char *java_value_of_variable (struct varobj *var,
358 enum varobj_display_formats format);
359
360 /* The language specific vector */
361
362 struct language_specific
363 {
364
365 /* The language of this variable */
366 enum varobj_languages language;
367
368 /* The number of children of PARENT. */
369 int (*number_of_children) (struct varobj * parent);
370
371 /* The name (expression) of a root varobj. */
372 char *(*name_of_variable) (struct varobj * parent);
373
374 /* The name of the INDEX'th child of PARENT. */
375 char *(*name_of_child) (struct varobj * parent, int index);
376
377 /* Returns the rooted expression of CHILD, which is a variable
378 obtain that has some parent. */
379 char *(*path_expr_of_child) (struct varobj * child);
380
381 /* The ``struct value *'' of the root variable ROOT. */
382 struct value *(*value_of_root) (struct varobj ** root_handle);
383
384 /* The ``struct value *'' of the INDEX'th child of PARENT. */
385 struct value *(*value_of_child) (struct varobj * parent, int index);
386
387 /* The type of the INDEX'th child of PARENT. */
388 struct type *(*type_of_child) (struct varobj * parent, int index);
389
390 /* The current value of VAR. */
391 char *(*value_of_variable) (struct varobj * var,
392 enum varobj_display_formats format);
393 };
394
395 /* Array of known source language routines. */
396 static struct language_specific languages[vlang_end] = {
397 /* Unknown (try treating as C */
398 {
399 vlang_unknown,
400 c_number_of_children,
401 c_name_of_variable,
402 c_name_of_child,
403 c_path_expr_of_child,
404 c_value_of_root,
405 c_value_of_child,
406 c_type_of_child,
407 c_value_of_variable}
408 ,
409 /* C */
410 {
411 vlang_c,
412 c_number_of_children,
413 c_name_of_variable,
414 c_name_of_child,
415 c_path_expr_of_child,
416 c_value_of_root,
417 c_value_of_child,
418 c_type_of_child,
419 c_value_of_variable}
420 ,
421 /* C++ */
422 {
423 vlang_cplus,
424 cplus_number_of_children,
425 cplus_name_of_variable,
426 cplus_name_of_child,
427 cplus_path_expr_of_child,
428 cplus_value_of_root,
429 cplus_value_of_child,
430 cplus_type_of_child,
431 cplus_value_of_variable}
432 ,
433 /* Java */
434 {
435 vlang_java,
436 java_number_of_children,
437 java_name_of_variable,
438 java_name_of_child,
439 java_path_expr_of_child,
440 java_value_of_root,
441 java_value_of_child,
442 java_type_of_child,
443 java_value_of_variable}
444 };
445
446 /* A little convenience enum for dealing with C++/Java */
447 enum vsections
448 {
449 v_public = 0, v_private, v_protected
450 };
451
452 /* Private data */
453
454 /* Mappings of varobj_display_formats enums to gdb's format codes */
455 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
456
457 /* Header of the list of root variable objects */
458 static struct varobj_root *rootlist;
459
460 /* Prime number indicating the number of buckets in the hash table */
461 /* A prime large enough to avoid too many colisions */
462 #define VAROBJ_TABLE_SIZE 227
463
464 /* Pointer to the varobj hash table (built at run time) */
465 static struct vlist **varobj_table;
466
467 /* Is the variable X one of our "fake" children? */
468 #define CPLUS_FAKE_CHILD(x) \
469 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
470 \f
471
472 /* API Implementation */
473 static int
474 is_root_p (struct varobj *var)
475 {
476 return (var->root->rootvar == var);
477 }
478
479 #ifdef HAVE_PYTHON
480 /* Helper function to install a Python environment suitable for
481 use during operations on VAR. */
482 struct cleanup *
483 varobj_ensure_python_env (struct varobj *var)
484 {
485 return ensure_python_env (var->root->exp->gdbarch,
486 var->root->exp->language_defn);
487 }
488 #endif
489
490 /* Creates a varobj (not its children) */
491
492 /* Return the full FRAME which corresponds to the given CORE_ADDR
493 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
494
495 static struct frame_info *
496 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
497 {
498 struct frame_info *frame = NULL;
499
500 if (frame_addr == (CORE_ADDR) 0)
501 return NULL;
502
503 for (frame = get_current_frame ();
504 frame != NULL;
505 frame = get_prev_frame (frame))
506 {
507 /* The CORE_ADDR we get as argument was parsed from a string GDB
508 output as $fp. This output got truncated to gdbarch_addr_bit.
509 Truncate the frame base address in the same manner before
510 comparing it against our argument. */
511 CORE_ADDR frame_base = get_frame_base_address (frame);
512 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
513
514 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
515 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
516
517 if (frame_base == frame_addr)
518 return frame;
519 }
520
521 return NULL;
522 }
523
524 struct varobj *
525 varobj_create (char *objname,
526 char *expression, CORE_ADDR frame, enum varobj_type type)
527 {
528 struct varobj *var;
529 struct cleanup *old_chain;
530
531 /* Fill out a varobj structure for the (root) variable being constructed. */
532 var = new_root_variable ();
533 old_chain = make_cleanup_free_variable (var);
534
535 if (expression != NULL)
536 {
537 struct frame_info *fi;
538 struct frame_id old_id = null_frame_id;
539 struct block *block;
540 char *p;
541 enum varobj_languages lang;
542 struct value *value = NULL;
543
544 /* Parse and evaluate the expression, filling in as much of the
545 variable's data as possible. */
546
547 if (has_stack_frames ())
548 {
549 /* Allow creator to specify context of variable */
550 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
551 fi = get_selected_frame (NULL);
552 else
553 /* FIXME: cagney/2002-11-23: This code should be doing a
554 lookup using the frame ID and not just the frame's
555 ``address''. This, of course, means an interface
556 change. However, with out that interface change ISAs,
557 such as the ia64 with its two stacks, won't work.
558 Similar goes for the case where there is a frameless
559 function. */
560 fi = find_frame_addr_in_frame_chain (frame);
561 }
562 else
563 fi = NULL;
564
565 /* frame = -2 means always use selected frame */
566 if (type == USE_SELECTED_FRAME)
567 var->root->floating = 1;
568
569 block = NULL;
570 if (fi != NULL)
571 block = get_frame_block (fi, 0);
572
573 p = expression;
574 innermost_block = NULL;
575 /* Wrap the call to parse expression, so we can
576 return a sensible error. */
577 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
578 {
579 return NULL;
580 }
581
582 /* Don't allow variables to be created for types. */
583 if (var->root->exp->elts[0].opcode == OP_TYPE)
584 {
585 do_cleanups (old_chain);
586 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
587 " as an expression.\n");
588 return NULL;
589 }
590
591 var->format = variable_default_display (var);
592 var->root->valid_block = innermost_block;
593 var->name = xstrdup (expression);
594 /* For a root var, the name and the expr are the same. */
595 var->path_expr = xstrdup (expression);
596
597 /* When the frame is different from the current frame,
598 we must select the appropriate frame before parsing
599 the expression, otherwise the value will not be current.
600 Since select_frame is so benign, just call it for all cases. */
601 if (innermost_block)
602 {
603 /* User could specify explicit FRAME-ADDR which was not found but
604 EXPRESSION is frame specific and we would not be able to evaluate
605 it correctly next time. With VALID_BLOCK set we must also set
606 FRAME and THREAD_ID. */
607 if (fi == NULL)
608 error (_("Failed to find the specified frame"));
609
610 var->root->frame = get_frame_id (fi);
611 var->root->thread_id = pid_to_thread_id (inferior_ptid);
612 old_id = get_frame_id (get_selected_frame (NULL));
613 select_frame (fi);
614 }
615
616 /* We definitely need to catch errors here.
617 If evaluate_expression succeeds we got the value we wanted.
618 But if it fails, we still go on with a call to evaluate_type() */
619 if (!gdb_evaluate_expression (var->root->exp, &value))
620 {
621 /* Error getting the value. Try to at least get the
622 right type. */
623 struct value *type_only_value = evaluate_type (var->root->exp);
624
625 var->type = value_type (type_only_value);
626 }
627 else
628 var->type = value_type (value);
629
630 install_new_value (var, value, 1 /* Initial assignment */);
631
632 /* Set language info */
633 lang = variable_language (var);
634 var->root->lang = &languages[lang];
635
636 /* Set ourselves as our root */
637 var->root->rootvar = var;
638
639 /* Reset the selected frame */
640 if (frame_id_p (old_id))
641 select_frame (frame_find_by_id (old_id));
642 }
643
644 /* If the variable object name is null, that means this
645 is a temporary variable, so don't install it. */
646
647 if ((var != NULL) && (objname != NULL))
648 {
649 var->obj_name = xstrdup (objname);
650
651 /* If a varobj name is duplicated, the install will fail so
652 we must clenup */
653 if (!install_variable (var))
654 {
655 do_cleanups (old_chain);
656 return NULL;
657 }
658 }
659
660 discard_cleanups (old_chain);
661 return var;
662 }
663
664 /* Generates an unique name that can be used for a varobj */
665
666 char *
667 varobj_gen_name (void)
668 {
669 static int id = 0;
670 char *obj_name;
671
672 /* generate a name for this object */
673 id++;
674 obj_name = xstrprintf ("var%d", id);
675
676 return obj_name;
677 }
678
679 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
680 error if OBJNAME cannot be found. */
681
682 struct varobj *
683 varobj_get_handle (char *objname)
684 {
685 struct vlist *cv;
686 const char *chp;
687 unsigned int index = 0;
688 unsigned int i = 1;
689
690 for (chp = objname; *chp; chp++)
691 {
692 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
693 }
694
695 cv = *(varobj_table + index);
696 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
697 cv = cv->next;
698
699 if (cv == NULL)
700 error (_("Variable object not found"));
701
702 return cv->var;
703 }
704
705 /* Given the handle, return the name of the object */
706
707 char *
708 varobj_get_objname (struct varobj *var)
709 {
710 return var->obj_name;
711 }
712
713 /* Given the handle, return the expression represented by the object */
714
715 char *
716 varobj_get_expression (struct varobj *var)
717 {
718 return name_of_variable (var);
719 }
720
721 /* Deletes a varobj and all its children if only_children == 0,
722 otherwise deletes only the children; returns a malloc'ed list of all the
723 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
724
725 int
726 varobj_delete (struct varobj *var, char ***dellist, int only_children)
727 {
728 int delcount;
729 int mycount;
730 struct cpstack *result = NULL;
731 char **cp;
732
733 /* Initialize a stack for temporary results */
734 cppush (&result, NULL);
735
736 if (only_children)
737 /* Delete only the variable children */
738 delcount = delete_variable (&result, var, 1 /* only the children */ );
739 else
740 /* Delete the variable and all its children */
741 delcount = delete_variable (&result, var, 0 /* parent+children */ );
742
743 /* We may have been asked to return a list of what has been deleted */
744 if (dellist != NULL)
745 {
746 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
747
748 cp = *dellist;
749 mycount = delcount;
750 *cp = cppop (&result);
751 while ((*cp != NULL) && (mycount > 0))
752 {
753 mycount--;
754 cp++;
755 *cp = cppop (&result);
756 }
757
758 if (mycount || (*cp != NULL))
759 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
760 mycount);
761 }
762
763 return delcount;
764 }
765
766 #if HAVE_PYTHON
767
768 /* Convenience function for varobj_set_visualizer. Instantiate a
769 pretty-printer for a given value. */
770 static PyObject *
771 instantiate_pretty_printer (PyObject *constructor, struct value *value)
772 {
773 PyObject *val_obj = NULL;
774 PyObject *printer;
775
776 val_obj = value_to_value_object (value);
777 if (! val_obj)
778 return NULL;
779
780 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
781 Py_DECREF (val_obj);
782 return printer;
783 return NULL;
784 }
785
786 #endif
787
788 /* Set/Get variable object display format */
789
790 enum varobj_display_formats
791 varobj_set_display_format (struct varobj *var,
792 enum varobj_display_formats format)
793 {
794 switch (format)
795 {
796 case FORMAT_NATURAL:
797 case FORMAT_BINARY:
798 case FORMAT_DECIMAL:
799 case FORMAT_HEXADECIMAL:
800 case FORMAT_OCTAL:
801 var->format = format;
802 break;
803
804 default:
805 var->format = variable_default_display (var);
806 }
807
808 if (varobj_value_is_changeable_p (var)
809 && var->value && !value_lazy (var->value))
810 {
811 xfree (var->print_value);
812 var->print_value = value_get_print_value (var->value, var->format, var);
813 }
814
815 return var->format;
816 }
817
818 enum varobj_display_formats
819 varobj_get_display_format (struct varobj *var)
820 {
821 return var->format;
822 }
823
824 char *
825 varobj_get_display_hint (struct varobj *var)
826 {
827 char *result = NULL;
828
829 #if HAVE_PYTHON
830 struct cleanup *back_to = varobj_ensure_python_env (var);
831
832 if (var->pretty_printer)
833 result = gdbpy_get_display_hint (var->pretty_printer);
834
835 do_cleanups (back_to);
836 #endif
837
838 return result;
839 }
840
841 /* Return true if the varobj has items after TO, false otherwise. */
842
843 int
844 varobj_has_more (struct varobj *var, int to)
845 {
846 if (VEC_length (varobj_p, var->children) > to)
847 return 1;
848 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
849 && var->saved_item != NULL);
850 }
851
852 /* If the variable object is bound to a specific thread, that
853 is its evaluation can always be done in context of a frame
854 inside that thread, returns GDB id of the thread -- which
855 is always positive. Otherwise, returns -1. */
856 int
857 varobj_get_thread_id (struct varobj *var)
858 {
859 if (var->root->valid_block && var->root->thread_id > 0)
860 return var->root->thread_id;
861 else
862 return -1;
863 }
864
865 void
866 varobj_set_frozen (struct varobj *var, int frozen)
867 {
868 /* When a variable is unfrozen, we don't fetch its value.
869 The 'not_fetched' flag remains set, so next -var-update
870 won't complain.
871
872 We don't fetch the value, because for structures the client
873 should do -var-update anyway. It would be bad to have different
874 client-size logic for structure and other types. */
875 var->frozen = frozen;
876 }
877
878 int
879 varobj_get_frozen (struct varobj *var)
880 {
881 return var->frozen;
882 }
883
884 /* A helper function that restricts a range to what is actually
885 available in a VEC. This follows the usual rules for the meaning
886 of FROM and TO -- if either is negative, the entire range is
887 used. */
888
889 static void
890 restrict_range (VEC (varobj_p) *children, int *from, int *to)
891 {
892 if (*from < 0 || *to < 0)
893 {
894 *from = 0;
895 *to = VEC_length (varobj_p, children);
896 }
897 else
898 {
899 if (*from > VEC_length (varobj_p, children))
900 *from = VEC_length (varobj_p, children);
901 if (*to > VEC_length (varobj_p, children))
902 *to = VEC_length (varobj_p, children);
903 if (*from > *to)
904 *from = *to;
905 }
906 }
907
908 #if HAVE_PYTHON
909
910 /* A helper for update_dynamic_varobj_children that installs a new
911 child when needed. */
912
913 static void
914 install_dynamic_child (struct varobj *var,
915 VEC (varobj_p) **changed,
916 VEC (varobj_p) **new,
917 VEC (varobj_p) **unchanged,
918 int *cchanged,
919 int index,
920 const char *name,
921 struct value *value)
922 {
923 if (VEC_length (varobj_p, var->children) < index + 1)
924 {
925 /* There's no child yet. */
926 struct varobj *child = varobj_add_child (var, name, value);
927
928 if (new)
929 {
930 VEC_safe_push (varobj_p, *new, child);
931 *cchanged = 1;
932 }
933 }
934 else
935 {
936 varobj_p existing = VEC_index (varobj_p, var->children, index);
937
938 if (install_new_value (existing, value, 0))
939 {
940 if (changed)
941 VEC_safe_push (varobj_p, *changed, existing);
942 }
943 else if (unchanged)
944 VEC_safe_push (varobj_p, *unchanged, existing);
945 }
946 }
947
948 static int
949 dynamic_varobj_has_child_method (struct varobj *var)
950 {
951 struct cleanup *back_to;
952 PyObject *printer = var->pretty_printer;
953 int result;
954
955 back_to = varobj_ensure_python_env (var);
956 result = PyObject_HasAttr (printer, gdbpy_children_cst);
957 do_cleanups (back_to);
958 return result;
959 }
960
961 #endif
962
963 static int
964 update_dynamic_varobj_children (struct varobj *var,
965 VEC (varobj_p) **changed,
966 VEC (varobj_p) **new,
967 VEC (varobj_p) **unchanged,
968 int *cchanged,
969 int update_children,
970 int from,
971 int to)
972 {
973 #if HAVE_PYTHON
974 struct cleanup *back_to;
975 PyObject *children;
976 int i;
977 PyObject *printer = var->pretty_printer;
978
979 back_to = varobj_ensure_python_env (var);
980
981 *cchanged = 0;
982 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
983 {
984 do_cleanups (back_to);
985 return 0;
986 }
987
988 if (update_children || !var->child_iter)
989 {
990 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
991 NULL);
992
993 if (!children)
994 {
995 gdbpy_print_stack ();
996 error (_("Null value returned for children"));
997 }
998
999 make_cleanup_py_decref (children);
1000
1001 if (!PyIter_Check (children))
1002 error (_("Returned value is not iterable"));
1003
1004 Py_XDECREF (var->child_iter);
1005 var->child_iter = PyObject_GetIter (children);
1006 if (!var->child_iter)
1007 {
1008 gdbpy_print_stack ();
1009 error (_("Could not get children iterator"));
1010 }
1011
1012 Py_XDECREF (var->saved_item);
1013 var->saved_item = NULL;
1014
1015 i = 0;
1016 }
1017 else
1018 i = VEC_length (varobj_p, var->children);
1019
1020 /* We ask for one extra child, so that MI can report whether there
1021 are more children. */
1022 for (; to < 0 || i < to + 1; ++i)
1023 {
1024 PyObject *item;
1025
1026 /* See if there was a leftover from last time. */
1027 if (var->saved_item)
1028 {
1029 item = var->saved_item;
1030 var->saved_item = NULL;
1031 }
1032 else
1033 item = PyIter_Next (var->child_iter);
1034
1035 if (!item)
1036 break;
1037
1038 /* We don't want to push the extra child on any report list. */
1039 if (to < 0 || i < to)
1040 {
1041 PyObject *py_v;
1042 char *name;
1043 struct value *v;
1044 struct cleanup *inner;
1045 int can_mention = from < 0 || i >= from;
1046
1047 inner = make_cleanup_py_decref (item);
1048
1049 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1050 error (_("Invalid item from the child list"));
1051
1052 v = convert_value_from_python (py_v);
1053 if (v == NULL)
1054 gdbpy_print_stack ();
1055 install_dynamic_child (var, can_mention ? changed : NULL,
1056 can_mention ? new : NULL,
1057 can_mention ? unchanged : NULL,
1058 can_mention ? cchanged : NULL, i, name, v);
1059 do_cleanups (inner);
1060 }
1061 else
1062 {
1063 Py_XDECREF (var->saved_item);
1064 var->saved_item = item;
1065
1066 /* We want to truncate the child list just before this
1067 element. */
1068 break;
1069 }
1070 }
1071
1072 if (i < VEC_length (varobj_p, var->children))
1073 {
1074 int j;
1075
1076 *cchanged = 1;
1077 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1078 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1079 VEC_truncate (varobj_p, var->children, i);
1080 }
1081
1082 /* If there are fewer children than requested, note that the list of
1083 children changed. */
1084 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1085 *cchanged = 1;
1086
1087 var->num_children = VEC_length (varobj_p, var->children);
1088
1089 do_cleanups (back_to);
1090
1091 return 1;
1092 #else
1093 gdb_assert (0 && "should never be called if Python is not enabled");
1094 #endif
1095 }
1096
1097 int
1098 varobj_get_num_children (struct varobj *var)
1099 {
1100 if (var->num_children == -1)
1101 {
1102 if (var->pretty_printer)
1103 {
1104 int dummy;
1105
1106 /* If we have a dynamic varobj, don't report -1 children.
1107 So, try to fetch some children first. */
1108 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1109 0, 0, 0);
1110 }
1111 else
1112 var->num_children = number_of_children (var);
1113 }
1114
1115 return var->num_children >= 0 ? var->num_children : 0;
1116 }
1117
1118 /* Creates a list of the immediate children of a variable object;
1119 the return code is the number of such children or -1 on error */
1120
1121 VEC (varobj_p)*
1122 varobj_list_children (struct varobj *var, int *from, int *to)
1123 {
1124 char *name;
1125 int i, children_changed;
1126
1127 var->children_requested = 1;
1128
1129 if (var->pretty_printer)
1130 {
1131 /* This, in theory, can result in the number of children changing without
1132 frontend noticing. But well, calling -var-list-children on the same
1133 varobj twice is not something a sane frontend would do. */
1134 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1135 0, 0, *to);
1136 restrict_range (var->children, from, to);
1137 return var->children;
1138 }
1139
1140 if (var->num_children == -1)
1141 var->num_children = number_of_children (var);
1142
1143 /* If that failed, give up. */
1144 if (var->num_children == -1)
1145 return var->children;
1146
1147 /* If we're called when the list of children is not yet initialized,
1148 allocate enough elements in it. */
1149 while (VEC_length (varobj_p, var->children) < var->num_children)
1150 VEC_safe_push (varobj_p, var->children, NULL);
1151
1152 for (i = 0; i < var->num_children; i++)
1153 {
1154 varobj_p existing = VEC_index (varobj_p, var->children, i);
1155
1156 if (existing == NULL)
1157 {
1158 /* Either it's the first call to varobj_list_children for
1159 this variable object, and the child was never created,
1160 or it was explicitly deleted by the client. */
1161 name = name_of_child (var, i);
1162 existing = create_child (var, i, name);
1163 VEC_replace (varobj_p, var->children, i, existing);
1164 }
1165 }
1166
1167 restrict_range (var->children, from, to);
1168 return var->children;
1169 }
1170
1171 #if HAVE_PYTHON
1172
1173 static struct varobj *
1174 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1175 {
1176 varobj_p v = create_child_with_value (var,
1177 VEC_length (varobj_p, var->children),
1178 name, value);
1179
1180 VEC_safe_push (varobj_p, var->children, v);
1181 return v;
1182 }
1183
1184 #endif /* HAVE_PYTHON */
1185
1186 /* Obtain the type of an object Variable as a string similar to the one gdb
1187 prints on the console */
1188
1189 char *
1190 varobj_get_type (struct varobj *var)
1191 {
1192 /* For the "fake" variables, do not return a type. (It's type is
1193 NULL, too.)
1194 Do not return a type for invalid variables as well. */
1195 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1196 return NULL;
1197
1198 return type_to_string (var->type);
1199 }
1200
1201 /* Obtain the type of an object variable. */
1202
1203 struct type *
1204 varobj_get_gdb_type (struct varobj *var)
1205 {
1206 return var->type;
1207 }
1208
1209 /* Return a pointer to the full rooted expression of varobj VAR.
1210 If it has not been computed yet, compute it. */
1211 char *
1212 varobj_get_path_expr (struct varobj *var)
1213 {
1214 if (var->path_expr != NULL)
1215 return var->path_expr;
1216 else
1217 {
1218 /* For root varobjs, we initialize path_expr
1219 when creating varobj, so here it should be
1220 child varobj. */
1221 gdb_assert (!is_root_p (var));
1222 return (*var->root->lang->path_expr_of_child) (var);
1223 }
1224 }
1225
1226 enum varobj_languages
1227 varobj_get_language (struct varobj *var)
1228 {
1229 return variable_language (var);
1230 }
1231
1232 int
1233 varobj_get_attributes (struct varobj *var)
1234 {
1235 int attributes = 0;
1236
1237 if (varobj_editable_p (var))
1238 /* FIXME: define masks for attributes */
1239 attributes |= 0x00000001; /* Editable */
1240
1241 return attributes;
1242 }
1243
1244 int
1245 varobj_pretty_printed_p (struct varobj *var)
1246 {
1247 return var->pretty_printer != NULL;
1248 }
1249
1250 char *
1251 varobj_get_formatted_value (struct varobj *var,
1252 enum varobj_display_formats format)
1253 {
1254 return my_value_of_variable (var, format);
1255 }
1256
1257 char *
1258 varobj_get_value (struct varobj *var)
1259 {
1260 return my_value_of_variable (var, var->format);
1261 }
1262
1263 /* Set the value of an object variable (if it is editable) to the
1264 value of the given expression */
1265 /* Note: Invokes functions that can call error() */
1266
1267 int
1268 varobj_set_value (struct varobj *var, char *expression)
1269 {
1270 struct value *val;
1271
1272 /* The argument "expression" contains the variable's new value.
1273 We need to first construct a legal expression for this -- ugh! */
1274 /* Does this cover all the bases? */
1275 struct expression *exp;
1276 struct value *value;
1277 int saved_input_radix = input_radix;
1278 char *s = expression;
1279
1280 gdb_assert (varobj_editable_p (var));
1281
1282 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1283 exp = parse_exp_1 (&s, 0, 0);
1284 if (!gdb_evaluate_expression (exp, &value))
1285 {
1286 /* We cannot proceed without a valid expression. */
1287 xfree (exp);
1288 return 0;
1289 }
1290
1291 /* All types that are editable must also be changeable. */
1292 gdb_assert (varobj_value_is_changeable_p (var));
1293
1294 /* The value of a changeable variable object must not be lazy. */
1295 gdb_assert (!value_lazy (var->value));
1296
1297 /* Need to coerce the input. We want to check if the
1298 value of the variable object will be different
1299 after assignment, and the first thing value_assign
1300 does is coerce the input.
1301 For example, if we are assigning an array to a pointer variable we
1302 should compare the pointer with the the array's address, not with the
1303 array's content. */
1304 value = coerce_array (value);
1305
1306 /* The new value may be lazy. gdb_value_assign, or
1307 rather value_contents, will take care of this.
1308 If fetching of the new value will fail, gdb_value_assign
1309 with catch the exception. */
1310 if (!gdb_value_assign (var->value, value, &val))
1311 return 0;
1312
1313 /* If the value has changed, record it, so that next -var-update can
1314 report this change. If a variable had a value of '1', we've set it
1315 to '333' and then set again to '1', when -var-update will report this
1316 variable as changed -- because the first assignment has set the
1317 'updated' flag. There's no need to optimize that, because return value
1318 of -var-update should be considered an approximation. */
1319 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1320 input_radix = saved_input_radix;
1321 return 1;
1322 }
1323
1324 #if HAVE_PYTHON
1325
1326 /* A helper function to install a constructor function and visualizer
1327 in a varobj. */
1328
1329 static void
1330 install_visualizer (struct varobj *var, PyObject *constructor,
1331 PyObject *visualizer)
1332 {
1333 Py_XDECREF (var->constructor);
1334 var->constructor = constructor;
1335
1336 Py_XDECREF (var->pretty_printer);
1337 var->pretty_printer = visualizer;
1338
1339 Py_XDECREF (var->child_iter);
1340 var->child_iter = NULL;
1341 }
1342
1343 /* Install the default visualizer for VAR. */
1344
1345 static void
1346 install_default_visualizer (struct varobj *var)
1347 {
1348 if (pretty_printing)
1349 {
1350 PyObject *pretty_printer = NULL;
1351
1352 if (var->value)
1353 {
1354 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1355 if (! pretty_printer)
1356 {
1357 gdbpy_print_stack ();
1358 error (_("Cannot instantiate printer for default visualizer"));
1359 }
1360 }
1361
1362 if (pretty_printer == Py_None)
1363 {
1364 Py_DECREF (pretty_printer);
1365 pretty_printer = NULL;
1366 }
1367
1368 install_visualizer (var, NULL, pretty_printer);
1369 }
1370 }
1371
1372 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1373 make a new object. */
1374
1375 static void
1376 construct_visualizer (struct varobj *var, PyObject *constructor)
1377 {
1378 PyObject *pretty_printer;
1379
1380 Py_INCREF (constructor);
1381 if (constructor == Py_None)
1382 pretty_printer = NULL;
1383 else
1384 {
1385 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1386 if (! pretty_printer)
1387 {
1388 gdbpy_print_stack ();
1389 Py_DECREF (constructor);
1390 constructor = Py_None;
1391 Py_INCREF (constructor);
1392 }
1393
1394 if (pretty_printer == Py_None)
1395 {
1396 Py_DECREF (pretty_printer);
1397 pretty_printer = NULL;
1398 }
1399 }
1400
1401 install_visualizer (var, constructor, pretty_printer);
1402 }
1403
1404 #endif /* HAVE_PYTHON */
1405
1406 /* A helper function for install_new_value. This creates and installs
1407 a visualizer for VAR, if appropriate. */
1408
1409 static void
1410 install_new_value_visualizer (struct varobj *var)
1411 {
1412 #if HAVE_PYTHON
1413 /* If the constructor is None, then we want the raw value. If VAR
1414 does not have a value, just skip this. */
1415 if (var->constructor != Py_None && var->value)
1416 {
1417 struct cleanup *cleanup;
1418
1419 cleanup = varobj_ensure_python_env (var);
1420
1421 if (!var->constructor)
1422 install_default_visualizer (var);
1423 else
1424 construct_visualizer (var, var->constructor);
1425
1426 do_cleanups (cleanup);
1427 }
1428 #else
1429 /* Do nothing. */
1430 #endif
1431 }
1432
1433 /* Assign a new value to a variable object. If INITIAL is non-zero,
1434 this is the first assignement after the variable object was just
1435 created, or changed type. In that case, just assign the value
1436 and return 0.
1437 Otherwise, assign the new value, and return 1 if the value is different
1438 from the current one, 0 otherwise. The comparison is done on textual
1439 representation of value. Therefore, some types need not be compared. E.g.
1440 for structures the reported value is always "{...}", so no comparison is
1441 necessary here. If the old value was NULL and new one is not, or vice versa,
1442 we always return 1.
1443
1444 The VALUE parameter should not be released -- the function will
1445 take care of releasing it when needed. */
1446 static int
1447 install_new_value (struct varobj *var, struct value *value, int initial)
1448 {
1449 int changeable;
1450 int need_to_fetch;
1451 int changed = 0;
1452 int intentionally_not_fetched = 0;
1453 char *print_value = NULL;
1454
1455 /* We need to know the varobj's type to decide if the value should
1456 be fetched or not. C++ fake children (public/protected/private) don't have
1457 a type. */
1458 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1459 changeable = varobj_value_is_changeable_p (var);
1460
1461 /* If the type has custom visualizer, we consider it to be always
1462 changeable. FIXME: need to make sure this behaviour will not
1463 mess up read-sensitive values. */
1464 if (var->pretty_printer)
1465 changeable = 1;
1466
1467 need_to_fetch = changeable;
1468
1469 /* We are not interested in the address of references, and given
1470 that in C++ a reference is not rebindable, it cannot
1471 meaningfully change. So, get hold of the real value. */
1472 if (value)
1473 value = coerce_ref (value);
1474
1475 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1476 /* For unions, we need to fetch the value implicitly because
1477 of implementation of union member fetch. When gdb
1478 creates a value for a field and the value of the enclosing
1479 structure is not lazy, it immediately copies the necessary
1480 bytes from the enclosing values. If the enclosing value is
1481 lazy, the call to value_fetch_lazy on the field will read
1482 the data from memory. For unions, that means we'll read the
1483 same memory more than once, which is not desirable. So
1484 fetch now. */
1485 need_to_fetch = 1;
1486
1487 /* The new value might be lazy. If the type is changeable,
1488 that is we'll be comparing values of this type, fetch the
1489 value now. Otherwise, on the next update the old value
1490 will be lazy, which means we've lost that old value. */
1491 if (need_to_fetch && value && value_lazy (value))
1492 {
1493 struct varobj *parent = var->parent;
1494 int frozen = var->frozen;
1495
1496 for (; !frozen && parent; parent = parent->parent)
1497 frozen |= parent->frozen;
1498
1499 if (frozen && initial)
1500 {
1501 /* For variables that are frozen, or are children of frozen
1502 variables, we don't do fetch on initial assignment.
1503 For non-initial assignemnt we do the fetch, since it means we're
1504 explicitly asked to compare the new value with the old one. */
1505 intentionally_not_fetched = 1;
1506 }
1507 else if (!gdb_value_fetch_lazy (value))
1508 {
1509 /* Set the value to NULL, so that for the next -var-update,
1510 we don't try to compare the new value with this value,
1511 that we couldn't even read. */
1512 value = NULL;
1513 }
1514 }
1515
1516
1517 /* Below, we'll be comparing string rendering of old and new
1518 values. Don't get string rendering if the value is
1519 lazy -- if it is, the code above has decided that the value
1520 should not be fetched. */
1521 if (value && !value_lazy (value) && !var->pretty_printer)
1522 print_value = value_get_print_value (value, var->format, var);
1523
1524 /* If the type is changeable, compare the old and the new values.
1525 If this is the initial assignment, we don't have any old value
1526 to compare with. */
1527 if (!initial && changeable)
1528 {
1529 /* If the value of the varobj was changed by -var-set-value, then the
1530 value in the varobj and in the target is the same. However, that value
1531 is different from the value that the varobj had after the previous
1532 -var-update. So need to the varobj as changed. */
1533 if (var->updated)
1534 {
1535 changed = 1;
1536 }
1537 else if (! var->pretty_printer)
1538 {
1539 /* Try to compare the values. That requires that both
1540 values are non-lazy. */
1541 if (var->not_fetched && value_lazy (var->value))
1542 {
1543 /* This is a frozen varobj and the value was never read.
1544 Presumably, UI shows some "never read" indicator.
1545 Now that we've fetched the real value, we need to report
1546 this varobj as changed so that UI can show the real
1547 value. */
1548 changed = 1;
1549 }
1550 else if (var->value == NULL && value == NULL)
1551 /* Equal. */
1552 ;
1553 else if (var->value == NULL || value == NULL)
1554 {
1555 changed = 1;
1556 }
1557 else
1558 {
1559 gdb_assert (!value_lazy (var->value));
1560 gdb_assert (!value_lazy (value));
1561
1562 gdb_assert (var->print_value != NULL && print_value != NULL);
1563 if (strcmp (var->print_value, print_value) != 0)
1564 changed = 1;
1565 }
1566 }
1567 }
1568
1569 if (!initial && !changeable)
1570 {
1571 /* For values that are not changeable, we don't compare the values.
1572 However, we want to notice if a value was not NULL and now is NULL,
1573 or vise versa, so that we report when top-level varobjs come in scope
1574 and leave the scope. */
1575 changed = (var->value != NULL) != (value != NULL);
1576 }
1577
1578 /* We must always keep the new value, since children depend on it. */
1579 if (var->value != NULL && var->value != value)
1580 value_free (var->value);
1581 var->value = value;
1582 if (value != NULL)
1583 value_incref (value);
1584 if (value && value_lazy (value) && intentionally_not_fetched)
1585 var->not_fetched = 1;
1586 else
1587 var->not_fetched = 0;
1588 var->updated = 0;
1589
1590 install_new_value_visualizer (var);
1591
1592 /* If we installed a pretty-printer, re-compare the printed version
1593 to see if the variable changed. */
1594 if (var->pretty_printer)
1595 {
1596 xfree (print_value);
1597 print_value = value_get_print_value (var->value, var->format, var);
1598 if ((var->print_value == NULL && print_value != NULL)
1599 || (var->print_value != NULL && print_value == NULL)
1600 || (var->print_value != NULL && print_value != NULL
1601 && strcmp (var->print_value, print_value) != 0))
1602 changed = 1;
1603 }
1604 if (var->print_value)
1605 xfree (var->print_value);
1606 var->print_value = print_value;
1607
1608 gdb_assert (!var->value || value_type (var->value));
1609
1610 return changed;
1611 }
1612
1613 /* Return the requested range for a varobj. VAR is the varobj. FROM
1614 and TO are out parameters; *FROM and *TO will be set to the
1615 selected sub-range of VAR. If no range was selected using
1616 -var-set-update-range, then both will be -1. */
1617 void
1618 varobj_get_child_range (struct varobj *var, int *from, int *to)
1619 {
1620 *from = var->from;
1621 *to = var->to;
1622 }
1623
1624 /* Set the selected sub-range of children of VAR to start at index
1625 FROM and end at index TO. If either FROM or TO is less than zero,
1626 this is interpreted as a request for all children. */
1627 void
1628 varobj_set_child_range (struct varobj *var, int from, int to)
1629 {
1630 var->from = from;
1631 var->to = to;
1632 }
1633
1634 void
1635 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1636 {
1637 #if HAVE_PYTHON
1638 PyObject *mainmod, *globals, *constructor;
1639 struct cleanup *back_to;
1640
1641 back_to = varobj_ensure_python_env (var);
1642
1643 mainmod = PyImport_AddModule ("__main__");
1644 globals = PyModule_GetDict (mainmod);
1645 Py_INCREF (globals);
1646 make_cleanup_py_decref (globals);
1647
1648 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1649
1650 if (! constructor)
1651 {
1652 gdbpy_print_stack ();
1653 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1654 }
1655
1656 construct_visualizer (var, constructor);
1657 Py_XDECREF (constructor);
1658
1659 /* If there are any children now, wipe them. */
1660 varobj_delete (var, NULL, 1 /* children only */);
1661 var->num_children = -1;
1662
1663 do_cleanups (back_to);
1664 #else
1665 error (_("Python support required"));
1666 #endif
1667 }
1668
1669 /* Update the values for a variable and its children. This is a
1670 two-pronged attack. First, re-parse the value for the root's
1671 expression to see if it's changed. Then go all the way
1672 through its children, reconstructing them and noting if they've
1673 changed.
1674
1675 The EXPLICIT parameter specifies if this call is result
1676 of MI request to update this specific variable, or
1677 result of implicit -var-update *. For implicit request, we don't
1678 update frozen variables.
1679
1680 NOTE: This function may delete the caller's varobj. If it
1681 returns TYPE_CHANGED, then it has done this and VARP will be modified
1682 to point to the new varobj. */
1683
1684 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1685 {
1686 int changed = 0;
1687 int type_changed = 0;
1688 int i;
1689 struct value *new;
1690 VEC (varobj_update_result) *stack = NULL;
1691 VEC (varobj_update_result) *result = NULL;
1692
1693 /* Frozen means frozen -- we don't check for any change in
1694 this varobj, including its going out of scope, or
1695 changing type. One use case for frozen varobjs is
1696 retaining previously evaluated expressions, and we don't
1697 want them to be reevaluated at all. */
1698 if (!explicit && (*varp)->frozen)
1699 return result;
1700
1701 if (!(*varp)->root->is_valid)
1702 {
1703 varobj_update_result r = {0};
1704
1705 r.varobj = *varp;
1706 r.status = VAROBJ_INVALID;
1707 VEC_safe_push (varobj_update_result, result, &r);
1708 return result;
1709 }
1710
1711 if ((*varp)->root->rootvar == *varp)
1712 {
1713 varobj_update_result r = {0};
1714
1715 r.varobj = *varp;
1716 r.status = VAROBJ_IN_SCOPE;
1717
1718 /* Update the root variable. value_of_root can return NULL
1719 if the variable is no longer around, i.e. we stepped out of
1720 the frame in which a local existed. We are letting the
1721 value_of_root variable dispose of the varobj if the type
1722 has changed. */
1723 new = value_of_root (varp, &type_changed);
1724 r.varobj = *varp;
1725
1726 r.type_changed = type_changed;
1727 if (install_new_value ((*varp), new, type_changed))
1728 r.changed = 1;
1729
1730 if (new == NULL)
1731 r.status = VAROBJ_NOT_IN_SCOPE;
1732 r.value_installed = 1;
1733
1734 if (r.status == VAROBJ_NOT_IN_SCOPE)
1735 {
1736 if (r.type_changed || r.changed)
1737 VEC_safe_push (varobj_update_result, result, &r);
1738 return result;
1739 }
1740
1741 VEC_safe_push (varobj_update_result, stack, &r);
1742 }
1743 else
1744 {
1745 varobj_update_result r = {0};
1746
1747 r.varobj = *varp;
1748 VEC_safe_push (varobj_update_result, stack, &r);
1749 }
1750
1751 /* Walk through the children, reconstructing them all. */
1752 while (!VEC_empty (varobj_update_result, stack))
1753 {
1754 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1755 struct varobj *v = r.varobj;
1756
1757 VEC_pop (varobj_update_result, stack);
1758
1759 /* Update this variable, unless it's a root, which is already
1760 updated. */
1761 if (!r.value_installed)
1762 {
1763 new = value_of_child (v->parent, v->index);
1764 if (install_new_value (v, new, 0 /* type not changed */))
1765 {
1766 r.changed = 1;
1767 v->updated = 0;
1768 }
1769 }
1770
1771 /* We probably should not get children of a varobj that has a
1772 pretty-printer, but for which -var-list-children was never
1773 invoked. */
1774 if (v->pretty_printer)
1775 {
1776 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1777 int i, children_changed = 0;
1778
1779 if (v->frozen)
1780 continue;
1781
1782 if (!v->children_requested)
1783 {
1784 int dummy;
1785
1786 /* If we initially did not have potential children, but
1787 now we do, consider the varobj as changed.
1788 Otherwise, if children were never requested, consider
1789 it as unchanged -- presumably, such varobj is not yet
1790 expanded in the UI, so we need not bother getting
1791 it. */
1792 if (!varobj_has_more (v, 0))
1793 {
1794 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1795 &dummy, 0, 0, 0);
1796 if (varobj_has_more (v, 0))
1797 r.changed = 1;
1798 }
1799
1800 if (r.changed)
1801 VEC_safe_push (varobj_update_result, result, &r);
1802
1803 continue;
1804 }
1805
1806 /* If update_dynamic_varobj_children returns 0, then we have
1807 a non-conforming pretty-printer, so we skip it. */
1808 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1809 &children_changed, 1,
1810 v->from, v->to))
1811 {
1812 if (children_changed || new)
1813 {
1814 r.children_changed = 1;
1815 r.new = new;
1816 }
1817 /* Push in reverse order so that the first child is
1818 popped from the work stack first, and so will be
1819 added to result first. This does not affect
1820 correctness, just "nicer". */
1821 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1822 {
1823 varobj_p tmp = VEC_index (varobj_p, changed, i);
1824 varobj_update_result r = {0};
1825
1826 r.varobj = tmp;
1827 r.changed = 1;
1828 r.value_installed = 1;
1829 VEC_safe_push (varobj_update_result, stack, &r);
1830 }
1831 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1832 {
1833 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1834
1835 if (!tmp->frozen)
1836 {
1837 varobj_update_result r = {0};
1838
1839 r.varobj = tmp;
1840 r.value_installed = 1;
1841 VEC_safe_push (varobj_update_result, stack, &r);
1842 }
1843 }
1844 if (r.changed || r.children_changed)
1845 VEC_safe_push (varobj_update_result, result, &r);
1846
1847 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1848 has been put into the result vector. */
1849 VEC_free (varobj_p, changed);
1850 VEC_free (varobj_p, unchanged);
1851
1852 continue;
1853 }
1854 }
1855
1856 /* Push any children. Use reverse order so that the first
1857 child is popped from the work stack first, and so
1858 will be added to result first. This does not
1859 affect correctness, just "nicer". */
1860 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1861 {
1862 varobj_p c = VEC_index (varobj_p, v->children, i);
1863
1864 /* Child may be NULL if explicitly deleted by -var-delete. */
1865 if (c != NULL && !c->frozen)
1866 {
1867 varobj_update_result r = {0};
1868
1869 r.varobj = c;
1870 VEC_safe_push (varobj_update_result, stack, &r);
1871 }
1872 }
1873
1874 if (r.changed || r.type_changed)
1875 VEC_safe_push (varobj_update_result, result, &r);
1876 }
1877
1878 VEC_free (varobj_update_result, stack);
1879
1880 return result;
1881 }
1882 \f
1883
1884 /* Helper functions */
1885
1886 /*
1887 * Variable object construction/destruction
1888 */
1889
1890 static int
1891 delete_variable (struct cpstack **resultp, struct varobj *var,
1892 int only_children_p)
1893 {
1894 int delcount = 0;
1895
1896 delete_variable_1 (resultp, &delcount, var,
1897 only_children_p, 1 /* remove_from_parent_p */ );
1898
1899 return delcount;
1900 }
1901
1902 /* Delete the variable object VAR and its children */
1903 /* IMPORTANT NOTE: If we delete a variable which is a child
1904 and the parent is not removed we dump core. It must be always
1905 initially called with remove_from_parent_p set */
1906 static void
1907 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1908 struct varobj *var, int only_children_p,
1909 int remove_from_parent_p)
1910 {
1911 int i;
1912
1913 /* Delete any children of this variable, too. */
1914 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1915 {
1916 varobj_p child = VEC_index (varobj_p, var->children, i);
1917
1918 if (!child)
1919 continue;
1920 if (!remove_from_parent_p)
1921 child->parent = NULL;
1922 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1923 }
1924 VEC_free (varobj_p, var->children);
1925
1926 /* if we were called to delete only the children we are done here */
1927 if (only_children_p)
1928 return;
1929
1930 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1931 /* If the name is null, this is a temporary variable, that has not
1932 yet been installed, don't report it, it belongs to the caller... */
1933 if (var->obj_name != NULL)
1934 {
1935 cppush (resultp, xstrdup (var->obj_name));
1936 *delcountp = *delcountp + 1;
1937 }
1938
1939 /* If this variable has a parent, remove it from its parent's list */
1940 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1941 (as indicated by remove_from_parent_p) we don't bother doing an
1942 expensive list search to find the element to remove when we are
1943 discarding the list afterwards */
1944 if ((remove_from_parent_p) && (var->parent != NULL))
1945 {
1946 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1947 }
1948
1949 if (var->obj_name != NULL)
1950 uninstall_variable (var);
1951
1952 /* Free memory associated with this variable */
1953 free_variable (var);
1954 }
1955
1956 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1957 static int
1958 install_variable (struct varobj *var)
1959 {
1960 struct vlist *cv;
1961 struct vlist *newvl;
1962 const char *chp;
1963 unsigned int index = 0;
1964 unsigned int i = 1;
1965
1966 for (chp = var->obj_name; *chp; chp++)
1967 {
1968 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1969 }
1970
1971 cv = *(varobj_table + index);
1972 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1973 cv = cv->next;
1974
1975 if (cv != NULL)
1976 error (_("Duplicate variable object name"));
1977
1978 /* Add varobj to hash table */
1979 newvl = xmalloc (sizeof (struct vlist));
1980 newvl->next = *(varobj_table + index);
1981 newvl->var = var;
1982 *(varobj_table + index) = newvl;
1983
1984 /* If root, add varobj to root list */
1985 if (is_root_p (var))
1986 {
1987 /* Add to list of root variables */
1988 if (rootlist == NULL)
1989 var->root->next = NULL;
1990 else
1991 var->root->next = rootlist;
1992 rootlist = var->root;
1993 }
1994
1995 return 1; /* OK */
1996 }
1997
1998 /* Unistall the object VAR. */
1999 static void
2000 uninstall_variable (struct varobj *var)
2001 {
2002 struct vlist *cv;
2003 struct vlist *prev;
2004 struct varobj_root *cr;
2005 struct varobj_root *prer;
2006 const char *chp;
2007 unsigned int index = 0;
2008 unsigned int i = 1;
2009
2010 /* Remove varobj from hash table */
2011 for (chp = var->obj_name; *chp; chp++)
2012 {
2013 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2014 }
2015
2016 cv = *(varobj_table + index);
2017 prev = NULL;
2018 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2019 {
2020 prev = cv;
2021 cv = cv->next;
2022 }
2023
2024 if (varobjdebug)
2025 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2026
2027 if (cv == NULL)
2028 {
2029 warning
2030 ("Assertion failed: Could not find variable object \"%s\" to delete",
2031 var->obj_name);
2032 return;
2033 }
2034
2035 if (prev == NULL)
2036 *(varobj_table + index) = cv->next;
2037 else
2038 prev->next = cv->next;
2039
2040 xfree (cv);
2041
2042 /* If root, remove varobj from root list */
2043 if (is_root_p (var))
2044 {
2045 /* Remove from list of root variables */
2046 if (rootlist == var->root)
2047 rootlist = var->root->next;
2048 else
2049 {
2050 prer = NULL;
2051 cr = rootlist;
2052 while ((cr != NULL) && (cr->rootvar != var))
2053 {
2054 prer = cr;
2055 cr = cr->next;
2056 }
2057 if (cr == NULL)
2058 {
2059 warning
2060 ("Assertion failed: Could not find varobj \"%s\" in root list",
2061 var->obj_name);
2062 return;
2063 }
2064 if (prer == NULL)
2065 rootlist = NULL;
2066 else
2067 prer->next = cr->next;
2068 }
2069 }
2070
2071 }
2072
2073 /* Create and install a child of the parent of the given name */
2074 static struct varobj *
2075 create_child (struct varobj *parent, int index, char *name)
2076 {
2077 return create_child_with_value (parent, index, name,
2078 value_of_child (parent, index));
2079 }
2080
2081 static struct varobj *
2082 create_child_with_value (struct varobj *parent, int index, const char *name,
2083 struct value *value)
2084 {
2085 struct varobj *child;
2086 char *childs_name;
2087
2088 child = new_variable ();
2089
2090 /* name is allocated by name_of_child */
2091 /* FIXME: xstrdup should not be here. */
2092 child->name = xstrdup (name);
2093 child->index = index;
2094 child->parent = parent;
2095 child->root = parent->root;
2096 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2097 child->obj_name = childs_name;
2098 install_variable (child);
2099
2100 /* Compute the type of the child. Must do this before
2101 calling install_new_value. */
2102 if (value != NULL)
2103 /* If the child had no evaluation errors, var->value
2104 will be non-NULL and contain a valid type. */
2105 child->type = value_type (value);
2106 else
2107 /* Otherwise, we must compute the type. */
2108 child->type = (*child->root->lang->type_of_child) (child->parent,
2109 child->index);
2110 install_new_value (child, value, 1);
2111
2112 return child;
2113 }
2114 \f
2115
2116 /*
2117 * Miscellaneous utility functions.
2118 */
2119
2120 /* Allocate memory and initialize a new variable */
2121 static struct varobj *
2122 new_variable (void)
2123 {
2124 struct varobj *var;
2125
2126 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2127 var->name = NULL;
2128 var->path_expr = NULL;
2129 var->obj_name = NULL;
2130 var->index = -1;
2131 var->type = NULL;
2132 var->value = NULL;
2133 var->num_children = -1;
2134 var->parent = NULL;
2135 var->children = NULL;
2136 var->format = 0;
2137 var->root = NULL;
2138 var->updated = 0;
2139 var->print_value = NULL;
2140 var->frozen = 0;
2141 var->not_fetched = 0;
2142 var->children_requested = 0;
2143 var->from = -1;
2144 var->to = -1;
2145 var->constructor = 0;
2146 var->pretty_printer = 0;
2147 var->child_iter = 0;
2148 var->saved_item = 0;
2149
2150 return var;
2151 }
2152
2153 /* Allocate memory and initialize a new root variable */
2154 static struct varobj *
2155 new_root_variable (void)
2156 {
2157 struct varobj *var = new_variable ();
2158
2159 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2160 var->root->lang = NULL;
2161 var->root->exp = NULL;
2162 var->root->valid_block = NULL;
2163 var->root->frame = null_frame_id;
2164 var->root->floating = 0;
2165 var->root->rootvar = NULL;
2166 var->root->is_valid = 1;
2167
2168 return var;
2169 }
2170
2171 /* Free any allocated memory associated with VAR. */
2172 static void
2173 free_variable (struct varobj *var)
2174 {
2175 #if HAVE_PYTHON
2176 if (var->pretty_printer)
2177 {
2178 struct cleanup *cleanup = varobj_ensure_python_env (var);
2179 Py_XDECREF (var->constructor);
2180 Py_XDECREF (var->pretty_printer);
2181 Py_XDECREF (var->child_iter);
2182 Py_XDECREF (var->saved_item);
2183 do_cleanups (cleanup);
2184 }
2185 #endif
2186
2187 value_free (var->value);
2188
2189 /* Free the expression if this is a root variable. */
2190 if (is_root_p (var))
2191 {
2192 xfree (var->root->exp);
2193 xfree (var->root);
2194 }
2195
2196 xfree (var->name);
2197 xfree (var->obj_name);
2198 xfree (var->print_value);
2199 xfree (var->path_expr);
2200 xfree (var);
2201 }
2202
2203 static void
2204 do_free_variable_cleanup (void *var)
2205 {
2206 free_variable (var);
2207 }
2208
2209 static struct cleanup *
2210 make_cleanup_free_variable (struct varobj *var)
2211 {
2212 return make_cleanup (do_free_variable_cleanup, var);
2213 }
2214
2215 /* This returns the type of the variable. It also skips past typedefs
2216 to return the real type of the variable.
2217
2218 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2219 except within get_target_type and get_type. */
2220 static struct type *
2221 get_type (struct varobj *var)
2222 {
2223 struct type *type;
2224
2225 type = var->type;
2226 if (type != NULL)
2227 type = check_typedef (type);
2228
2229 return type;
2230 }
2231
2232 /* Return the type of the value that's stored in VAR,
2233 or that would have being stored there if the
2234 value were accessible.
2235
2236 This differs from VAR->type in that VAR->type is always
2237 the true type of the expession in the source language.
2238 The return value of this function is the type we're
2239 actually storing in varobj, and using for displaying
2240 the values and for comparing previous and new values.
2241
2242 For example, top-level references are always stripped. */
2243 static struct type *
2244 get_value_type (struct varobj *var)
2245 {
2246 struct type *type;
2247
2248 if (var->value)
2249 type = value_type (var->value);
2250 else
2251 type = var->type;
2252
2253 type = check_typedef (type);
2254
2255 if (TYPE_CODE (type) == TYPE_CODE_REF)
2256 type = get_target_type (type);
2257
2258 type = check_typedef (type);
2259
2260 return type;
2261 }
2262
2263 /* This returns the target type (or NULL) of TYPE, also skipping
2264 past typedefs, just like get_type ().
2265
2266 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2267 except within get_target_type and get_type. */
2268 static struct type *
2269 get_target_type (struct type *type)
2270 {
2271 if (type != NULL)
2272 {
2273 type = TYPE_TARGET_TYPE (type);
2274 if (type != NULL)
2275 type = check_typedef (type);
2276 }
2277
2278 return type;
2279 }
2280
2281 /* What is the default display for this variable? We assume that
2282 everything is "natural". Any exceptions? */
2283 static enum varobj_display_formats
2284 variable_default_display (struct varobj *var)
2285 {
2286 return FORMAT_NATURAL;
2287 }
2288
2289 /* FIXME: The following should be generic for any pointer */
2290 static void
2291 cppush (struct cpstack **pstack, char *name)
2292 {
2293 struct cpstack *s;
2294
2295 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2296 s->name = name;
2297 s->next = *pstack;
2298 *pstack = s;
2299 }
2300
2301 /* FIXME: The following should be generic for any pointer */
2302 static char *
2303 cppop (struct cpstack **pstack)
2304 {
2305 struct cpstack *s;
2306 char *v;
2307
2308 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2309 return NULL;
2310
2311 s = *pstack;
2312 v = s->name;
2313 *pstack = (*pstack)->next;
2314 xfree (s);
2315
2316 return v;
2317 }
2318 \f
2319 /*
2320 * Language-dependencies
2321 */
2322
2323 /* Common entry points */
2324
2325 /* Get the language of variable VAR. */
2326 static enum varobj_languages
2327 variable_language (struct varobj *var)
2328 {
2329 enum varobj_languages lang;
2330
2331 switch (var->root->exp->language_defn->la_language)
2332 {
2333 default:
2334 case language_c:
2335 lang = vlang_c;
2336 break;
2337 case language_cplus:
2338 lang = vlang_cplus;
2339 break;
2340 case language_java:
2341 lang = vlang_java;
2342 break;
2343 }
2344
2345 return lang;
2346 }
2347
2348 /* Return the number of children for a given variable.
2349 The result of this function is defined by the language
2350 implementation. The number of children returned by this function
2351 is the number of children that the user will see in the variable
2352 display. */
2353 static int
2354 number_of_children (struct varobj *var)
2355 {
2356 return (*var->root->lang->number_of_children) (var);;
2357 }
2358
2359 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2360 static char *
2361 name_of_variable (struct varobj *var)
2362 {
2363 return (*var->root->lang->name_of_variable) (var);
2364 }
2365
2366 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2367 static char *
2368 name_of_child (struct varobj *var, int index)
2369 {
2370 return (*var->root->lang->name_of_child) (var, index);
2371 }
2372
2373 /* What is the ``struct value *'' of the root variable VAR?
2374 For floating variable object, evaluation can get us a value
2375 of different type from what is stored in varobj already. In
2376 that case:
2377 - *type_changed will be set to 1
2378 - old varobj will be freed, and new one will be
2379 created, with the same name.
2380 - *var_handle will be set to the new varobj
2381 Otherwise, *type_changed will be set to 0. */
2382 static struct value *
2383 value_of_root (struct varobj **var_handle, int *type_changed)
2384 {
2385 struct varobj *var;
2386
2387 if (var_handle == NULL)
2388 return NULL;
2389
2390 var = *var_handle;
2391
2392 /* This should really be an exception, since this should
2393 only get called with a root variable. */
2394
2395 if (!is_root_p (var))
2396 return NULL;
2397
2398 if (var->root->floating)
2399 {
2400 struct varobj *tmp_var;
2401 char *old_type, *new_type;
2402
2403 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2404 USE_SELECTED_FRAME);
2405 if (tmp_var == NULL)
2406 {
2407 return NULL;
2408 }
2409 old_type = varobj_get_type (var);
2410 new_type = varobj_get_type (tmp_var);
2411 if (strcmp (old_type, new_type) == 0)
2412 {
2413 /* The expression presently stored inside var->root->exp
2414 remembers the locations of local variables relatively to
2415 the frame where the expression was created (in DWARF location
2416 button, for example). Naturally, those locations are not
2417 correct in other frames, so update the expression. */
2418
2419 struct expression *tmp_exp = var->root->exp;
2420
2421 var->root->exp = tmp_var->root->exp;
2422 tmp_var->root->exp = tmp_exp;
2423
2424 varobj_delete (tmp_var, NULL, 0);
2425 *type_changed = 0;
2426 }
2427 else
2428 {
2429 tmp_var->obj_name = xstrdup (var->obj_name);
2430 tmp_var->from = var->from;
2431 tmp_var->to = var->to;
2432 varobj_delete (var, NULL, 0);
2433
2434 install_variable (tmp_var);
2435 *var_handle = tmp_var;
2436 var = *var_handle;
2437 *type_changed = 1;
2438 }
2439 xfree (old_type);
2440 xfree (new_type);
2441 }
2442 else
2443 {
2444 *type_changed = 0;
2445 }
2446
2447 return (*var->root->lang->value_of_root) (var_handle);
2448 }
2449
2450 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2451 static struct value *
2452 value_of_child (struct varobj *parent, int index)
2453 {
2454 struct value *value;
2455
2456 value = (*parent->root->lang->value_of_child) (parent, index);
2457
2458 return value;
2459 }
2460
2461 /* GDB already has a command called "value_of_variable". Sigh. */
2462 static char *
2463 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2464 {
2465 if (var->root->is_valid)
2466 {
2467 if (var->pretty_printer)
2468 return value_get_print_value (var->value, var->format, var);
2469 return (*var->root->lang->value_of_variable) (var, format);
2470 }
2471 else
2472 return NULL;
2473 }
2474
2475 static char *
2476 value_get_print_value (struct value *value, enum varobj_display_formats format,
2477 struct varobj *var)
2478 {
2479 struct ui_file *stb;
2480 struct cleanup *old_chain;
2481 gdb_byte *thevalue = NULL;
2482 struct value_print_options opts;
2483 struct type *type = NULL;
2484 long len = 0;
2485 char *encoding = NULL;
2486 struct gdbarch *gdbarch = NULL;
2487 /* Initialize it just to avoid a GCC false warning. */
2488 CORE_ADDR str_addr = 0;
2489 int string_print = 0;
2490
2491 if (value == NULL)
2492 return NULL;
2493
2494 stb = mem_fileopen ();
2495 old_chain = make_cleanup_ui_file_delete (stb);
2496
2497 gdbarch = get_type_arch (value_type (value));
2498 #if HAVE_PYTHON
2499 {
2500 PyObject *value_formatter = var->pretty_printer;
2501
2502 varobj_ensure_python_env (var);
2503
2504 if (value_formatter)
2505 {
2506 /* First check to see if we have any children at all. If so,
2507 we simply return {...}. */
2508 if (dynamic_varobj_has_child_method (var))
2509 {
2510 do_cleanups (old_chain);
2511 return xstrdup ("{...}");
2512 }
2513
2514 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2515 {
2516 char *hint;
2517 struct value *replacement;
2518 PyObject *output = NULL;
2519
2520 hint = gdbpy_get_display_hint (value_formatter);
2521 if (hint)
2522 {
2523 if (!strcmp (hint, "string"))
2524 string_print = 1;
2525 xfree (hint);
2526 }
2527
2528 output = apply_varobj_pretty_printer (value_formatter,
2529 &replacement,
2530 stb);
2531 if (output)
2532 {
2533 make_cleanup_py_decref (output);
2534
2535 if (gdbpy_is_lazy_string (output))
2536 {
2537 gdbpy_extract_lazy_string (output, &str_addr, &type,
2538 &len, &encoding);
2539 make_cleanup (free_current_contents, &encoding);
2540 string_print = 1;
2541 }
2542 else
2543 {
2544 PyObject *py_str
2545 = python_string_to_target_python_string (output);
2546
2547 if (py_str)
2548 {
2549 char *s = PyString_AsString (py_str);
2550
2551 len = PyString_Size (py_str);
2552 thevalue = xmemdup (s, len + 1, len + 1);
2553 type = builtin_type (gdbarch)->builtin_char;
2554 Py_DECREF (py_str);
2555
2556 if (!string_print)
2557 {
2558 do_cleanups (old_chain);
2559 return thevalue;
2560 }
2561
2562 make_cleanup (xfree, thevalue);
2563 }
2564 else
2565 gdbpy_print_stack ();
2566 }
2567 }
2568 if (replacement)
2569 value = replacement;
2570 }
2571 }
2572 }
2573 #endif
2574
2575 get_formatted_print_options (&opts, format_code[(int) format]);
2576 opts.deref_ref = 0;
2577 opts.raw = 1;
2578 if (thevalue)
2579 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2580 else if (string_print)
2581 val_print_string (type, encoding, str_addr, len, stb, &opts);
2582 else
2583 common_val_print (value, stb, 0, &opts, current_language);
2584 thevalue = ui_file_xstrdup (stb, NULL);
2585
2586 do_cleanups (old_chain);
2587 return thevalue;
2588 }
2589
2590 int
2591 varobj_editable_p (struct varobj *var)
2592 {
2593 struct type *type;
2594
2595 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2596 return 0;
2597
2598 type = get_value_type (var);
2599
2600 switch (TYPE_CODE (type))
2601 {
2602 case TYPE_CODE_STRUCT:
2603 case TYPE_CODE_UNION:
2604 case TYPE_CODE_ARRAY:
2605 case TYPE_CODE_FUNC:
2606 case TYPE_CODE_METHOD:
2607 return 0;
2608 break;
2609
2610 default:
2611 return 1;
2612 break;
2613 }
2614 }
2615
2616 /* Return non-zero if changes in value of VAR
2617 must be detected and reported by -var-update.
2618 Return zero is -var-update should never report
2619 changes of such values. This makes sense for structures
2620 (since the changes in children values will be reported separately),
2621 or for artifical objects (like 'public' pseudo-field in C++).
2622
2623 Return value of 0 means that gdb need not call value_fetch_lazy
2624 for the value of this variable object. */
2625 static int
2626 varobj_value_is_changeable_p (struct varobj *var)
2627 {
2628 int r;
2629 struct type *type;
2630
2631 if (CPLUS_FAKE_CHILD (var))
2632 return 0;
2633
2634 type = get_value_type (var);
2635
2636 switch (TYPE_CODE (type))
2637 {
2638 case TYPE_CODE_STRUCT:
2639 case TYPE_CODE_UNION:
2640 case TYPE_CODE_ARRAY:
2641 r = 0;
2642 break;
2643
2644 default:
2645 r = 1;
2646 }
2647
2648 return r;
2649 }
2650
2651 /* Return 1 if that varobj is floating, that is is always evaluated in the
2652 selected frame, and not bound to thread/frame. Such variable objects
2653 are created using '@' as frame specifier to -var-create. */
2654 int
2655 varobj_floating_p (struct varobj *var)
2656 {
2657 return var->root->floating;
2658 }
2659
2660 /* Given the value and the type of a variable object,
2661 adjust the value and type to those necessary
2662 for getting children of the variable object.
2663 This includes dereferencing top-level references
2664 to all types and dereferencing pointers to
2665 structures.
2666
2667 Both TYPE and *TYPE should be non-null. VALUE
2668 can be null if we want to only translate type.
2669 *VALUE can be null as well -- if the parent
2670 value is not known.
2671
2672 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2673 depending on whether pointer was dereferenced
2674 in this function. */
2675 static void
2676 adjust_value_for_child_access (struct value **value,
2677 struct type **type,
2678 int *was_ptr)
2679 {
2680 gdb_assert (type && *type);
2681
2682 if (was_ptr)
2683 *was_ptr = 0;
2684
2685 *type = check_typedef (*type);
2686
2687 /* The type of value stored in varobj, that is passed
2688 to us, is already supposed to be
2689 reference-stripped. */
2690
2691 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2692
2693 /* Pointers to structures are treated just like
2694 structures when accessing children. Don't
2695 dererences pointers to other types. */
2696 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2697 {
2698 struct type *target_type = get_target_type (*type);
2699 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2700 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2701 {
2702 if (value && *value)
2703 {
2704 int success = gdb_value_ind (*value, value);
2705
2706 if (!success)
2707 *value = NULL;
2708 }
2709 *type = target_type;
2710 if (was_ptr)
2711 *was_ptr = 1;
2712 }
2713 }
2714
2715 /* The 'get_target_type' function calls check_typedef on
2716 result, so we can immediately check type code. No
2717 need to call check_typedef here. */
2718 }
2719
2720 /* C */
2721 static int
2722 c_number_of_children (struct varobj *var)
2723 {
2724 struct type *type = get_value_type (var);
2725 int children = 0;
2726 struct type *target;
2727
2728 adjust_value_for_child_access (NULL, &type, NULL);
2729 target = get_target_type (type);
2730
2731 switch (TYPE_CODE (type))
2732 {
2733 case TYPE_CODE_ARRAY:
2734 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2735 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2736 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2737 else
2738 /* If we don't know how many elements there are, don't display
2739 any. */
2740 children = 0;
2741 break;
2742
2743 case TYPE_CODE_STRUCT:
2744 case TYPE_CODE_UNION:
2745 children = TYPE_NFIELDS (type);
2746 break;
2747
2748 case TYPE_CODE_PTR:
2749 /* The type here is a pointer to non-struct. Typically, pointers
2750 have one child, except for function ptrs, which have no children,
2751 and except for void*, as we don't know what to show.
2752
2753 We can show char* so we allow it to be dereferenced. If you decide
2754 to test for it, please mind that a little magic is necessary to
2755 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2756 TYPE_NAME == "char" */
2757 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2758 || TYPE_CODE (target) == TYPE_CODE_VOID)
2759 children = 0;
2760 else
2761 children = 1;
2762 break;
2763
2764 default:
2765 /* Other types have no children */
2766 break;
2767 }
2768
2769 return children;
2770 }
2771
2772 static char *
2773 c_name_of_variable (struct varobj *parent)
2774 {
2775 return xstrdup (parent->name);
2776 }
2777
2778 /* Return the value of element TYPE_INDEX of a structure
2779 value VALUE. VALUE's type should be a structure,
2780 or union, or a typedef to struct/union.
2781
2782 Returns NULL if getting the value fails. Never throws. */
2783 static struct value *
2784 value_struct_element_index (struct value *value, int type_index)
2785 {
2786 struct value *result = NULL;
2787 volatile struct gdb_exception e;
2788 struct type *type = value_type (value);
2789
2790 type = check_typedef (type);
2791
2792 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2793 || TYPE_CODE (type) == TYPE_CODE_UNION);
2794
2795 TRY_CATCH (e, RETURN_MASK_ERROR)
2796 {
2797 if (field_is_static (&TYPE_FIELD (type, type_index)))
2798 result = value_static_field (type, type_index);
2799 else
2800 result = value_primitive_field (value, 0, type_index, type);
2801 }
2802 if (e.reason < 0)
2803 {
2804 return NULL;
2805 }
2806 else
2807 {
2808 return result;
2809 }
2810 }
2811
2812 /* Obtain the information about child INDEX of the variable
2813 object PARENT.
2814 If CNAME is not null, sets *CNAME to the name of the child relative
2815 to the parent.
2816 If CVALUE is not null, sets *CVALUE to the value of the child.
2817 If CTYPE is not null, sets *CTYPE to the type of the child.
2818
2819 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2820 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2821 to NULL. */
2822 static void
2823 c_describe_child (struct varobj *parent, int index,
2824 char **cname, struct value **cvalue, struct type **ctype,
2825 char **cfull_expression)
2826 {
2827 struct value *value = parent->value;
2828 struct type *type = get_value_type (parent);
2829 char *parent_expression = NULL;
2830 int was_ptr;
2831
2832 if (cname)
2833 *cname = NULL;
2834 if (cvalue)
2835 *cvalue = NULL;
2836 if (ctype)
2837 *ctype = NULL;
2838 if (cfull_expression)
2839 {
2840 *cfull_expression = NULL;
2841 parent_expression = varobj_get_path_expr (parent);
2842 }
2843 adjust_value_for_child_access (&value, &type, &was_ptr);
2844
2845 switch (TYPE_CODE (type))
2846 {
2847 case TYPE_CODE_ARRAY:
2848 if (cname)
2849 *cname = xstrdup (int_string (index
2850 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2851 10, 1, 0, 0));
2852
2853 if (cvalue && value)
2854 {
2855 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2856
2857 gdb_value_subscript (value, real_index, cvalue);
2858 }
2859
2860 if (ctype)
2861 *ctype = get_target_type (type);
2862
2863 if (cfull_expression)
2864 *cfull_expression =
2865 xstrprintf ("(%s)[%s]", parent_expression,
2866 int_string (index
2867 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2868 10, 1, 0, 0));
2869
2870
2871 break;
2872
2873 case TYPE_CODE_STRUCT:
2874 case TYPE_CODE_UNION:
2875 if (cname)
2876 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2877
2878 if (cvalue && value)
2879 {
2880 /* For C, varobj index is the same as type index. */
2881 *cvalue = value_struct_element_index (value, index);
2882 }
2883
2884 if (ctype)
2885 *ctype = TYPE_FIELD_TYPE (type, index);
2886
2887 if (cfull_expression)
2888 {
2889 char *join = was_ptr ? "->" : ".";
2890
2891 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2892 TYPE_FIELD_NAME (type, index));
2893 }
2894
2895 break;
2896
2897 case TYPE_CODE_PTR:
2898 if (cname)
2899 *cname = xstrprintf ("*%s", parent->name);
2900
2901 if (cvalue && value)
2902 {
2903 int success = gdb_value_ind (value, cvalue);
2904
2905 if (!success)
2906 *cvalue = NULL;
2907 }
2908
2909 /* Don't use get_target_type because it calls
2910 check_typedef and here, we want to show the true
2911 declared type of the variable. */
2912 if (ctype)
2913 *ctype = TYPE_TARGET_TYPE (type);
2914
2915 if (cfull_expression)
2916 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2917
2918 break;
2919
2920 default:
2921 /* This should not happen */
2922 if (cname)
2923 *cname = xstrdup ("???");
2924 if (cfull_expression)
2925 *cfull_expression = xstrdup ("???");
2926 /* Don't set value and type, we don't know then. */
2927 }
2928 }
2929
2930 static char *
2931 c_name_of_child (struct varobj *parent, int index)
2932 {
2933 char *name;
2934
2935 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2936 return name;
2937 }
2938
2939 static char *
2940 c_path_expr_of_child (struct varobj *child)
2941 {
2942 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2943 &child->path_expr);
2944 return child->path_expr;
2945 }
2946
2947 /* If frame associated with VAR can be found, switch
2948 to it and return 1. Otherwise, return 0. */
2949 static int
2950 check_scope (struct varobj *var)
2951 {
2952 struct frame_info *fi;
2953 int scope;
2954
2955 fi = frame_find_by_id (var->root->frame);
2956 scope = fi != NULL;
2957
2958 if (fi)
2959 {
2960 CORE_ADDR pc = get_frame_pc (fi);
2961
2962 if (pc < BLOCK_START (var->root->valid_block) ||
2963 pc >= BLOCK_END (var->root->valid_block))
2964 scope = 0;
2965 else
2966 select_frame (fi);
2967 }
2968 return scope;
2969 }
2970
2971 static struct value *
2972 c_value_of_root (struct varobj **var_handle)
2973 {
2974 struct value *new_val = NULL;
2975 struct varobj *var = *var_handle;
2976 int within_scope = 0;
2977 struct cleanup *back_to;
2978
2979 /* Only root variables can be updated... */
2980 if (!is_root_p (var))
2981 /* Not a root var */
2982 return NULL;
2983
2984 back_to = make_cleanup_restore_current_thread ();
2985
2986 /* Determine whether the variable is still around. */
2987 if (var->root->valid_block == NULL || var->root->floating)
2988 within_scope = 1;
2989 else if (var->root->thread_id == 0)
2990 {
2991 /* The program was single-threaded when the variable object was
2992 created. Technically, it's possible that the program became
2993 multi-threaded since then, but we don't support such
2994 scenario yet. */
2995 within_scope = check_scope (var);
2996 }
2997 else
2998 {
2999 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3000 if (in_thread_list (ptid))
3001 {
3002 switch_to_thread (ptid);
3003 within_scope = check_scope (var);
3004 }
3005 }
3006
3007 if (within_scope)
3008 {
3009 /* We need to catch errors here, because if evaluate
3010 expression fails we want to just return NULL. */
3011 gdb_evaluate_expression (var->root->exp, &new_val);
3012 return new_val;
3013 }
3014
3015 do_cleanups (back_to);
3016
3017 return NULL;
3018 }
3019
3020 static struct value *
3021 c_value_of_child (struct varobj *parent, int index)
3022 {
3023 struct value *value = NULL;
3024
3025 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3026 return value;
3027 }
3028
3029 static struct type *
3030 c_type_of_child (struct varobj *parent, int index)
3031 {
3032 struct type *type = NULL;
3033
3034 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3035 return type;
3036 }
3037
3038 static char *
3039 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3040 {
3041 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3042 it will print out its children instead of "{...}". So we need to
3043 catch that case explicitly. */
3044 struct type *type = get_type (var);
3045
3046 /* If we have a custom formatter, return whatever string it has
3047 produced. */
3048 if (var->pretty_printer && var->print_value)
3049 return xstrdup (var->print_value);
3050
3051 /* Strip top-level references. */
3052 while (TYPE_CODE (type) == TYPE_CODE_REF)
3053 type = check_typedef (TYPE_TARGET_TYPE (type));
3054
3055 switch (TYPE_CODE (type))
3056 {
3057 case TYPE_CODE_STRUCT:
3058 case TYPE_CODE_UNION:
3059 return xstrdup ("{...}");
3060 /* break; */
3061
3062 case TYPE_CODE_ARRAY:
3063 {
3064 char *number;
3065
3066 number = xstrprintf ("[%d]", var->num_children);
3067 return (number);
3068 }
3069 /* break; */
3070
3071 default:
3072 {
3073 if (var->value == NULL)
3074 {
3075 /* This can happen if we attempt to get the value of a struct
3076 member when the parent is an invalid pointer. This is an
3077 error condition, so we should tell the caller. */
3078 return NULL;
3079 }
3080 else
3081 {
3082 if (var->not_fetched && value_lazy (var->value))
3083 /* Frozen variable and no value yet. We don't
3084 implicitly fetch the value. MI response will
3085 use empty string for the value, which is OK. */
3086 return NULL;
3087
3088 gdb_assert (varobj_value_is_changeable_p (var));
3089 gdb_assert (!value_lazy (var->value));
3090
3091 /* If the specified format is the current one,
3092 we can reuse print_value */
3093 if (format == var->format)
3094 return xstrdup (var->print_value);
3095 else
3096 return value_get_print_value (var->value, format, var);
3097 }
3098 }
3099 }
3100 }
3101 \f
3102
3103 /* C++ */
3104
3105 static int
3106 cplus_number_of_children (struct varobj *var)
3107 {
3108 struct type *type;
3109 int children, dont_know;
3110
3111 dont_know = 1;
3112 children = 0;
3113
3114 if (!CPLUS_FAKE_CHILD (var))
3115 {
3116 type = get_value_type (var);
3117 adjust_value_for_child_access (NULL, &type, NULL);
3118
3119 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3120 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3121 {
3122 int kids[3];
3123
3124 cplus_class_num_children (type, kids);
3125 if (kids[v_public] != 0)
3126 children++;
3127 if (kids[v_private] != 0)
3128 children++;
3129 if (kids[v_protected] != 0)
3130 children++;
3131
3132 /* Add any baseclasses */
3133 children += TYPE_N_BASECLASSES (type);
3134 dont_know = 0;
3135
3136 /* FIXME: save children in var */
3137 }
3138 }
3139 else
3140 {
3141 int kids[3];
3142
3143 type = get_value_type (var->parent);
3144 adjust_value_for_child_access (NULL, &type, NULL);
3145
3146 cplus_class_num_children (type, kids);
3147 if (strcmp (var->name, "public") == 0)
3148 children = kids[v_public];
3149 else if (strcmp (var->name, "private") == 0)
3150 children = kids[v_private];
3151 else
3152 children = kids[v_protected];
3153 dont_know = 0;
3154 }
3155
3156 if (dont_know)
3157 children = c_number_of_children (var);
3158
3159 return children;
3160 }
3161
3162 /* Compute # of public, private, and protected variables in this class.
3163 That means we need to descend into all baseclasses and find out
3164 how many are there, too. */
3165 static void
3166 cplus_class_num_children (struct type *type, int children[3])
3167 {
3168 int i, vptr_fieldno;
3169 struct type *basetype = NULL;
3170
3171 children[v_public] = 0;
3172 children[v_private] = 0;
3173 children[v_protected] = 0;
3174
3175 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3176 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3177 {
3178 /* If we have a virtual table pointer, omit it. Even if virtual
3179 table pointers are not specifically marked in the debug info,
3180 they should be artificial. */
3181 if ((type == basetype && i == vptr_fieldno)
3182 || TYPE_FIELD_ARTIFICIAL (type, i))
3183 continue;
3184
3185 if (TYPE_FIELD_PROTECTED (type, i))
3186 children[v_protected]++;
3187 else if (TYPE_FIELD_PRIVATE (type, i))
3188 children[v_private]++;
3189 else
3190 children[v_public]++;
3191 }
3192 }
3193
3194 static char *
3195 cplus_name_of_variable (struct varobj *parent)
3196 {
3197 return c_name_of_variable (parent);
3198 }
3199
3200 enum accessibility { private_field, protected_field, public_field };
3201
3202 /* Check if field INDEX of TYPE has the specified accessibility.
3203 Return 0 if so and 1 otherwise. */
3204 static int
3205 match_accessibility (struct type *type, int index, enum accessibility acc)
3206 {
3207 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3208 return 1;
3209 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3210 return 1;
3211 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3212 && !TYPE_FIELD_PROTECTED (type, index))
3213 return 1;
3214 else
3215 return 0;
3216 }
3217
3218 static void
3219 cplus_describe_child (struct varobj *parent, int index,
3220 char **cname, struct value **cvalue, struct type **ctype,
3221 char **cfull_expression)
3222 {
3223 struct value *value;
3224 struct type *type;
3225 int was_ptr;
3226 char *parent_expression = NULL;
3227
3228 if (cname)
3229 *cname = NULL;
3230 if (cvalue)
3231 *cvalue = NULL;
3232 if (ctype)
3233 *ctype = NULL;
3234 if (cfull_expression)
3235 *cfull_expression = NULL;
3236
3237 if (CPLUS_FAKE_CHILD (parent))
3238 {
3239 value = parent->parent->value;
3240 type = get_value_type (parent->parent);
3241 if (cfull_expression)
3242 parent_expression = varobj_get_path_expr (parent->parent);
3243 }
3244 else
3245 {
3246 value = parent->value;
3247 type = get_value_type (parent);
3248 if (cfull_expression)
3249 parent_expression = varobj_get_path_expr (parent);
3250 }
3251
3252 adjust_value_for_child_access (&value, &type, &was_ptr);
3253
3254 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3255 || TYPE_CODE (type) == TYPE_CODE_UNION)
3256 {
3257 char *join = was_ptr ? "->" : ".";
3258
3259 if (CPLUS_FAKE_CHILD (parent))
3260 {
3261 /* The fields of the class type are ordered as they
3262 appear in the class. We are given an index for a
3263 particular access control type ("public","protected",
3264 or "private"). We must skip over fields that don't
3265 have the access control we are looking for to properly
3266 find the indexed field. */
3267 int type_index = TYPE_N_BASECLASSES (type);
3268 enum accessibility acc = public_field;
3269 int vptr_fieldno;
3270 struct type *basetype = NULL;
3271
3272 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3273 if (strcmp (parent->name, "private") == 0)
3274 acc = private_field;
3275 else if (strcmp (parent->name, "protected") == 0)
3276 acc = protected_field;
3277
3278 while (index >= 0)
3279 {
3280 if ((type == basetype && type_index == vptr_fieldno)
3281 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3282 ; /* ignore vptr */
3283 else if (match_accessibility (type, type_index, acc))
3284 --index;
3285 ++type_index;
3286 }
3287 --type_index;
3288
3289 if (cname)
3290 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3291
3292 if (cvalue && value)
3293 *cvalue = value_struct_element_index (value, type_index);
3294
3295 if (ctype)
3296 *ctype = TYPE_FIELD_TYPE (type, type_index);
3297
3298 if (cfull_expression)
3299 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3300 join,
3301 TYPE_FIELD_NAME (type, type_index));
3302 }
3303 else if (index < TYPE_N_BASECLASSES (type))
3304 {
3305 /* This is a baseclass. */
3306 if (cname)
3307 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3308
3309 if (cvalue && value)
3310 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3311
3312 if (ctype)
3313 {
3314 *ctype = TYPE_FIELD_TYPE (type, index);
3315 }
3316
3317 if (cfull_expression)
3318 {
3319 char *ptr = was_ptr ? "*" : "";
3320
3321 /* Cast the parent to the base' type. Note that in gdb,
3322 expression like
3323 (Base1)d
3324 will create an lvalue, for all appearences, so we don't
3325 need to use more fancy:
3326 *(Base1*)(&d)
3327 construct. */
3328 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3329 ptr,
3330 TYPE_FIELD_NAME (type, index),
3331 ptr,
3332 parent_expression);
3333 }
3334 }
3335 else
3336 {
3337 char *access = NULL;
3338 int children[3];
3339
3340 cplus_class_num_children (type, children);
3341
3342 /* Everything beyond the baseclasses can
3343 only be "public", "private", or "protected"
3344
3345 The special "fake" children are always output by varobj in
3346 this order. So if INDEX == 2, it MUST be "protected". */
3347 index -= TYPE_N_BASECLASSES (type);
3348 switch (index)
3349 {
3350 case 0:
3351 if (children[v_public] > 0)
3352 access = "public";
3353 else if (children[v_private] > 0)
3354 access = "private";
3355 else
3356 access = "protected";
3357 break;
3358 case 1:
3359 if (children[v_public] > 0)
3360 {
3361 if (children[v_private] > 0)
3362 access = "private";
3363 else
3364 access = "protected";
3365 }
3366 else if (children[v_private] > 0)
3367 access = "protected";
3368 break;
3369 case 2:
3370 /* Must be protected */
3371 access = "protected";
3372 break;
3373 default:
3374 /* error! */
3375 break;
3376 }
3377
3378 gdb_assert (access);
3379 if (cname)
3380 *cname = xstrdup (access);
3381
3382 /* Value and type and full expression are null here. */
3383 }
3384 }
3385 else
3386 {
3387 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3388 }
3389 }
3390
3391 static char *
3392 cplus_name_of_child (struct varobj *parent, int index)
3393 {
3394 char *name = NULL;
3395
3396 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3397 return name;
3398 }
3399
3400 static char *
3401 cplus_path_expr_of_child (struct varobj *child)
3402 {
3403 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3404 &child->path_expr);
3405 return child->path_expr;
3406 }
3407
3408 static struct value *
3409 cplus_value_of_root (struct varobj **var_handle)
3410 {
3411 return c_value_of_root (var_handle);
3412 }
3413
3414 static struct value *
3415 cplus_value_of_child (struct varobj *parent, int index)
3416 {
3417 struct value *value = NULL;
3418
3419 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3420 return value;
3421 }
3422
3423 static struct type *
3424 cplus_type_of_child (struct varobj *parent, int index)
3425 {
3426 struct type *type = NULL;
3427
3428 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3429 return type;
3430 }
3431
3432 static char *
3433 cplus_value_of_variable (struct varobj *var,
3434 enum varobj_display_formats format)
3435 {
3436
3437 /* If we have one of our special types, don't print out
3438 any value. */
3439 if (CPLUS_FAKE_CHILD (var))
3440 return xstrdup ("");
3441
3442 return c_value_of_variable (var, format);
3443 }
3444 \f
3445 /* Java */
3446
3447 static int
3448 java_number_of_children (struct varobj *var)
3449 {
3450 return cplus_number_of_children (var);
3451 }
3452
3453 static char *
3454 java_name_of_variable (struct varobj *parent)
3455 {
3456 char *p, *name;
3457
3458 name = cplus_name_of_variable (parent);
3459 /* If the name has "-" in it, it is because we
3460 needed to escape periods in the name... */
3461 p = name;
3462
3463 while (*p != '\000')
3464 {
3465 if (*p == '-')
3466 *p = '.';
3467 p++;
3468 }
3469
3470 return name;
3471 }
3472
3473 static char *
3474 java_name_of_child (struct varobj *parent, int index)
3475 {
3476 char *name, *p;
3477
3478 name = cplus_name_of_child (parent, index);
3479 /* Escape any periods in the name... */
3480 p = name;
3481
3482 while (*p != '\000')
3483 {
3484 if (*p == '.')
3485 *p = '-';
3486 p++;
3487 }
3488
3489 return name;
3490 }
3491
3492 static char *
3493 java_path_expr_of_child (struct varobj *child)
3494 {
3495 return NULL;
3496 }
3497
3498 static struct value *
3499 java_value_of_root (struct varobj **var_handle)
3500 {
3501 return cplus_value_of_root (var_handle);
3502 }
3503
3504 static struct value *
3505 java_value_of_child (struct varobj *parent, int index)
3506 {
3507 return cplus_value_of_child (parent, index);
3508 }
3509
3510 static struct type *
3511 java_type_of_child (struct varobj *parent, int index)
3512 {
3513 return cplus_type_of_child (parent, index);
3514 }
3515
3516 static char *
3517 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3518 {
3519 return cplus_value_of_variable (var, format);
3520 }
3521
3522 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3523 with an arbitrary caller supplied DATA pointer. */
3524
3525 void
3526 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3527 {
3528 struct varobj_root *var_root, *var_root_next;
3529
3530 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3531
3532 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3533 {
3534 var_root_next = var_root->next;
3535
3536 (*func) (var_root->rootvar, data);
3537 }
3538 }
3539 \f
3540 extern void _initialize_varobj (void);
3541 void
3542 _initialize_varobj (void)
3543 {
3544 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3545
3546 varobj_table = xmalloc (sizeof_table);
3547 memset (varobj_table, 0, sizeof_table);
3548
3549 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3550 &varobjdebug, _("\
3551 Set varobj debugging."), _("\
3552 Show varobj debugging."), _("\
3553 When non-zero, varobj debugging is enabled."),
3554 NULL,
3555 show_varobjdebug,
3556 &setlist, &showlist);
3557 }
3558
3559 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3560 defined on globals. It is a helper for varobj_invalidate. */
3561
3562 static void
3563 varobj_invalidate_iter (struct varobj *var, void *unused)
3564 {
3565 /* Floating varobjs are reparsed on each stop, so we don't care if the
3566 presently parsed expression refers to something that's gone. */
3567 if (var->root->floating)
3568 return;
3569
3570 /* global var must be re-evaluated. */
3571 if (var->root->valid_block == NULL)
3572 {
3573 struct varobj *tmp_var;
3574
3575 /* Try to create a varobj with same expression. If we succeed
3576 replace the old varobj, otherwise invalidate it. */
3577 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3578 USE_CURRENT_FRAME);
3579 if (tmp_var != NULL)
3580 {
3581 tmp_var->obj_name = xstrdup (var->obj_name);
3582 varobj_delete (var, NULL, 0);
3583 install_variable (tmp_var);
3584 }
3585 else
3586 var->root->is_valid = 0;
3587 }
3588 else /* locals must be invalidated. */
3589 var->root->is_valid = 0;
3590 }
3591
3592 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3593 are defined on globals.
3594 Invalidated varobjs will be always printed in_scope="invalid". */
3595
3596 void
3597 varobj_invalidate (void)
3598 {
3599 all_root_varobjs (varobj_invalidate_iter, NULL);
3600 }
This page took 0.125567 seconds and 4 git commands to generate.