28d388e735503167ce850e6300aac6768c2c9f91
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2015 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33
34 #if HAVE_PYTHON
35 #include "python/python.h"
36 #include "python/python-internal.h"
37 #else
38 typedef int PyObject;
39 #endif
40
41 /* Non-zero if we want to see trace of varobj level stuff. */
42
43 unsigned int varobjdebug = 0;
44 static void
45 show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47 {
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49 }
50
51 /* String representations of gdb's format codes. */
52 char *varobj_format_string[] =
53 { "natural", "binary", "decimal", "hexadecimal", "octal" };
54
55 /* True if we want to allow Python-based pretty-printing. */
56 static int pretty_printing = 0;
57
58 void
59 varobj_enable_pretty_printing (void)
60 {
61 pretty_printing = 1;
62 }
63
64 /* Data structures */
65
66 /* Every root variable has one of these structures saved in its
67 varobj. Members which must be free'd are noted. */
68 struct varobj_root
69 {
70
71 /* Alloc'd expression for this parent. */
72 struct expression *exp;
73
74 /* Block for which this expression is valid. */
75 const struct block *valid_block;
76
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
79 struct frame_id frame;
80
81 /* The thread ID that this varobj_root belong to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
91 int floating;
92
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
97 /* Language-related operations for this variable and its
98 children. */
99 const struct lang_varobj_ops *lang_ops;
100
101 /* The varobj for this root node. */
102 struct varobj *rootvar;
103
104 /* Next root variable */
105 struct varobj_root *next;
106 };
107
108 /* Dynamic part of varobj. */
109
110 struct varobj_dynamic
111 {
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
129 struct varobj_iter *child_iter;
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item;
137 };
138
139 struct cpstack
140 {
141 char *name;
142 struct cpstack *next;
143 };
144
145 /* A list of varobjs */
146
147 struct vlist
148 {
149 struct varobj *var;
150 struct vlist *next;
151 };
152
153 /* Private function prototypes */
154
155 /* Helper functions for the above subcommands. */
156
157 static int delete_variable (struct cpstack **, struct varobj *, int);
158
159 static void delete_variable_1 (struct cpstack **, int *,
160 struct varobj *, int, int);
161
162 static int install_variable (struct varobj *);
163
164 static void uninstall_variable (struct varobj *);
165
166 static struct varobj *create_child (struct varobj *, int, char *);
167
168 static struct varobj *
169 create_child_with_value (struct varobj *parent, int index,
170 struct varobj_item *item);
171
172 /* Utility routines */
173
174 static struct varobj *new_variable (void);
175
176 static struct varobj *new_root_variable (void);
177
178 static void free_variable (struct varobj *var);
179
180 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
181
182 static enum varobj_display_formats variable_default_display (struct varobj *);
183
184 static void cppush (struct cpstack **pstack, char *name);
185
186 static char *cppop (struct cpstack **pstack);
187
188 static int update_type_if_necessary (struct varobj *var,
189 struct value *new_value);
190
191 static int install_new_value (struct varobj *var, struct value *value,
192 int initial);
193
194 /* Language-specific routines. */
195
196 static int number_of_children (struct varobj *);
197
198 static char *name_of_variable (struct varobj *);
199
200 static char *name_of_child (struct varobj *, int);
201
202 static struct value *value_of_root (struct varobj **var_handle, int *);
203
204 static struct value *value_of_child (struct varobj *parent, int index);
205
206 static char *my_value_of_variable (struct varobj *var,
207 enum varobj_display_formats format);
208
209 static int is_root_p (struct varobj *var);
210
211 static struct varobj *varobj_add_child (struct varobj *var,
212 struct varobj_item *item);
213
214 /* Private data */
215
216 /* Mappings of varobj_display_formats enums to gdb's format codes. */
217 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
218
219 /* Header of the list of root variable objects. */
220 static struct varobj_root *rootlist;
221
222 /* Prime number indicating the number of buckets in the hash table. */
223 /* A prime large enough to avoid too many colisions. */
224 #define VAROBJ_TABLE_SIZE 227
225
226 /* Pointer to the varobj hash table (built at run time). */
227 static struct vlist **varobj_table;
228
229 \f
230
231 /* API Implementation */
232 static int
233 is_root_p (struct varobj *var)
234 {
235 return (var->root->rootvar == var);
236 }
237
238 #ifdef HAVE_PYTHON
239 /* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
241 struct cleanup *
242 varobj_ensure_python_env (struct varobj *var)
243 {
244 return ensure_python_env (var->root->exp->gdbarch,
245 var->root->exp->language_defn);
246 }
247 #endif
248
249 /* Creates a varobj (not its children). */
250
251 /* Return the full FRAME which corresponds to the given CORE_ADDR
252 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
253
254 static struct frame_info *
255 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
256 {
257 struct frame_info *frame = NULL;
258
259 if (frame_addr == (CORE_ADDR) 0)
260 return NULL;
261
262 for (frame = get_current_frame ();
263 frame != NULL;
264 frame = get_prev_frame (frame))
265 {
266 /* The CORE_ADDR we get as argument was parsed from a string GDB
267 output as $fp. This output got truncated to gdbarch_addr_bit.
268 Truncate the frame base address in the same manner before
269 comparing it against our argument. */
270 CORE_ADDR frame_base = get_frame_base_address (frame);
271 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
272
273 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
274 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
275
276 if (frame_base == frame_addr)
277 return frame;
278 }
279
280 return NULL;
281 }
282
283 struct varobj *
284 varobj_create (char *objname,
285 char *expression, CORE_ADDR frame, enum varobj_type type)
286 {
287 struct varobj *var;
288 struct cleanup *old_chain;
289
290 /* Fill out a varobj structure for the (root) variable being constructed. */
291 var = new_root_variable ();
292 old_chain = make_cleanup_free_variable (var);
293
294 if (expression != NULL)
295 {
296 struct frame_info *fi;
297 struct frame_id old_id = null_frame_id;
298 const struct block *block;
299 const char *p;
300 struct value *value = NULL;
301 volatile struct gdb_exception except;
302 CORE_ADDR pc;
303
304 /* Parse and evaluate the expression, filling in as much of the
305 variable's data as possible. */
306
307 if (has_stack_frames ())
308 {
309 /* Allow creator to specify context of variable. */
310 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
311 fi = get_selected_frame (NULL);
312 else
313 /* FIXME: cagney/2002-11-23: This code should be doing a
314 lookup using the frame ID and not just the frame's
315 ``address''. This, of course, means an interface
316 change. However, with out that interface change ISAs,
317 such as the ia64 with its two stacks, won't work.
318 Similar goes for the case where there is a frameless
319 function. */
320 fi = find_frame_addr_in_frame_chain (frame);
321 }
322 else
323 fi = NULL;
324
325 /* frame = -2 means always use selected frame. */
326 if (type == USE_SELECTED_FRAME)
327 var->root->floating = 1;
328
329 pc = 0;
330 block = NULL;
331 if (fi != NULL)
332 {
333 block = get_frame_block (fi, 0);
334 pc = get_frame_pc (fi);
335 }
336
337 p = expression;
338 innermost_block = NULL;
339 /* Wrap the call to parse expression, so we can
340 return a sensible error. */
341 TRY_CATCH (except, RETURN_MASK_ERROR)
342 {
343 var->root->exp = parse_exp_1 (&p, pc, block, 0);
344 }
345
346 if (except.reason < 0)
347 {
348 do_cleanups (old_chain);
349 return NULL;
350 }
351
352 /* Don't allow variables to be created for types. */
353 if (var->root->exp->elts[0].opcode == OP_TYPE
354 || var->root->exp->elts[0].opcode == OP_TYPEOF
355 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
356 {
357 do_cleanups (old_chain);
358 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
359 " as an expression.\n");
360 return NULL;
361 }
362
363 var->format = variable_default_display (var);
364 var->root->valid_block = innermost_block;
365 var->name = xstrdup (expression);
366 /* For a root var, the name and the expr are the same. */
367 var->path_expr = xstrdup (expression);
368
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
372 Since select_frame is so benign, just call it for all cases. */
373 if (innermost_block)
374 {
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
379 if (fi == NULL)
380 error (_("Failed to find the specified frame"));
381
382 var->root->frame = get_frame_id (fi);
383 var->root->thread_id = pid_to_thread_id (inferior_ptid);
384 old_id = get_frame_id (get_selected_frame (NULL));
385 select_frame (fi);
386 }
387
388 /* We definitely need to catch errors here.
389 If evaluate_expression succeeds we got the value we wanted.
390 But if it fails, we still go on with a call to evaluate_type(). */
391 TRY_CATCH (except, RETURN_MASK_ERROR)
392 {
393 value = evaluate_expression (var->root->exp);
394 }
395
396 if (except.reason < 0)
397 {
398 /* Error getting the value. Try to at least get the
399 right type. */
400 struct value *type_only_value = evaluate_type (var->root->exp);
401
402 var->type = value_type (type_only_value);
403 }
404 else
405 {
406 int real_type_found = 0;
407
408 var->type = value_actual_type (value, 0, &real_type_found);
409 if (real_type_found)
410 value = value_cast (var->type, value);
411 }
412
413 /* Set language info */
414 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
415
416 install_new_value (var, value, 1 /* Initial assignment */);
417
418 /* Set ourselves as our root. */
419 var->root->rootvar = var;
420
421 /* Reset the selected frame. */
422 if (frame_id_p (old_id))
423 select_frame (frame_find_by_id (old_id));
424 }
425
426 /* If the variable object name is null, that means this
427 is a temporary variable, so don't install it. */
428
429 if ((var != NULL) && (objname != NULL))
430 {
431 var->obj_name = xstrdup (objname);
432
433 /* If a varobj name is duplicated, the install will fail so
434 we must cleanup. */
435 if (!install_variable (var))
436 {
437 do_cleanups (old_chain);
438 return NULL;
439 }
440 }
441
442 discard_cleanups (old_chain);
443 return var;
444 }
445
446 /* Generates an unique name that can be used for a varobj. */
447
448 char *
449 varobj_gen_name (void)
450 {
451 static int id = 0;
452 char *obj_name;
453
454 /* Generate a name for this object. */
455 id++;
456 obj_name = xstrprintf ("var%d", id);
457
458 return obj_name;
459 }
460
461 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
462 error if OBJNAME cannot be found. */
463
464 struct varobj *
465 varobj_get_handle (char *objname)
466 {
467 struct vlist *cv;
468 const char *chp;
469 unsigned int index = 0;
470 unsigned int i = 1;
471
472 for (chp = objname; *chp; chp++)
473 {
474 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
475 }
476
477 cv = *(varobj_table + index);
478 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
479 cv = cv->next;
480
481 if (cv == NULL)
482 error (_("Variable object not found"));
483
484 return cv->var;
485 }
486
487 /* Given the handle, return the name of the object. */
488
489 char *
490 varobj_get_objname (struct varobj *var)
491 {
492 return var->obj_name;
493 }
494
495 /* Given the handle, return the expression represented by the object. The
496 result must be freed by the caller. */
497
498 char *
499 varobj_get_expression (struct varobj *var)
500 {
501 return name_of_variable (var);
502 }
503
504 /* Deletes a varobj and all its children if only_children == 0,
505 otherwise deletes only the children; returns a malloc'ed list of
506 all the (malloc'ed) names of the variables that have been deleted
507 (NULL terminated). */
508
509 int
510 varobj_delete (struct varobj *var, char ***dellist, int only_children)
511 {
512 int delcount;
513 int mycount;
514 struct cpstack *result = NULL;
515 char **cp;
516
517 /* Initialize a stack for temporary results. */
518 cppush (&result, NULL);
519
520 if (only_children)
521 /* Delete only the variable children. */
522 delcount = delete_variable (&result, var, 1 /* only the children */ );
523 else
524 /* Delete the variable and all its children. */
525 delcount = delete_variable (&result, var, 0 /* parent+children */ );
526
527 /* We may have been asked to return a list of what has been deleted. */
528 if (dellist != NULL)
529 {
530 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
531
532 cp = *dellist;
533 mycount = delcount;
534 *cp = cppop (&result);
535 while ((*cp != NULL) && (mycount > 0))
536 {
537 mycount--;
538 cp++;
539 *cp = cppop (&result);
540 }
541
542 if (mycount || (*cp != NULL))
543 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
544 mycount);
545 }
546
547 return delcount;
548 }
549
550 #if HAVE_PYTHON
551
552 /* Convenience function for varobj_set_visualizer. Instantiate a
553 pretty-printer for a given value. */
554 static PyObject *
555 instantiate_pretty_printer (PyObject *constructor, struct value *value)
556 {
557 PyObject *val_obj = NULL;
558 PyObject *printer;
559
560 val_obj = value_to_value_object (value);
561 if (! val_obj)
562 return NULL;
563
564 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
565 Py_DECREF (val_obj);
566 return printer;
567 }
568
569 #endif
570
571 /* Set/Get variable object display format. */
572
573 enum varobj_display_formats
574 varobj_set_display_format (struct varobj *var,
575 enum varobj_display_formats format)
576 {
577 switch (format)
578 {
579 case FORMAT_NATURAL:
580 case FORMAT_BINARY:
581 case FORMAT_DECIMAL:
582 case FORMAT_HEXADECIMAL:
583 case FORMAT_OCTAL:
584 var->format = format;
585 break;
586
587 default:
588 var->format = variable_default_display (var);
589 }
590
591 if (varobj_value_is_changeable_p (var)
592 && var->value && !value_lazy (var->value))
593 {
594 xfree (var->print_value);
595 var->print_value = varobj_value_get_print_value (var->value,
596 var->format, var);
597 }
598
599 return var->format;
600 }
601
602 enum varobj_display_formats
603 varobj_get_display_format (struct varobj *var)
604 {
605 return var->format;
606 }
607
608 char *
609 varobj_get_display_hint (struct varobj *var)
610 {
611 char *result = NULL;
612
613 #if HAVE_PYTHON
614 struct cleanup *back_to;
615
616 if (!gdb_python_initialized)
617 return NULL;
618
619 back_to = varobj_ensure_python_env (var);
620
621 if (var->dynamic->pretty_printer != NULL)
622 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
623
624 do_cleanups (back_to);
625 #endif
626
627 return result;
628 }
629
630 /* Return true if the varobj has items after TO, false otherwise. */
631
632 int
633 varobj_has_more (struct varobj *var, int to)
634 {
635 if (VEC_length (varobj_p, var->children) > to)
636 return 1;
637 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
638 && (var->dynamic->saved_item != NULL));
639 }
640
641 /* If the variable object is bound to a specific thread, that
642 is its evaluation can always be done in context of a frame
643 inside that thread, returns GDB id of the thread -- which
644 is always positive. Otherwise, returns -1. */
645 int
646 varobj_get_thread_id (struct varobj *var)
647 {
648 if (var->root->valid_block && var->root->thread_id > 0)
649 return var->root->thread_id;
650 else
651 return -1;
652 }
653
654 void
655 varobj_set_frozen (struct varobj *var, int frozen)
656 {
657 /* When a variable is unfrozen, we don't fetch its value.
658 The 'not_fetched' flag remains set, so next -var-update
659 won't complain.
660
661 We don't fetch the value, because for structures the client
662 should do -var-update anyway. It would be bad to have different
663 client-size logic for structure and other types. */
664 var->frozen = frozen;
665 }
666
667 int
668 varobj_get_frozen (struct varobj *var)
669 {
670 return var->frozen;
671 }
672
673 /* A helper function that restricts a range to what is actually
674 available in a VEC. This follows the usual rules for the meaning
675 of FROM and TO -- if either is negative, the entire range is
676 used. */
677
678 void
679 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
680 {
681 if (*from < 0 || *to < 0)
682 {
683 *from = 0;
684 *to = VEC_length (varobj_p, children);
685 }
686 else
687 {
688 if (*from > VEC_length (varobj_p, children))
689 *from = VEC_length (varobj_p, children);
690 if (*to > VEC_length (varobj_p, children))
691 *to = VEC_length (varobj_p, children);
692 if (*from > *to)
693 *from = *to;
694 }
695 }
696
697 /* A helper for update_dynamic_varobj_children that installs a new
698 child when needed. */
699
700 static void
701 install_dynamic_child (struct varobj *var,
702 VEC (varobj_p) **changed,
703 VEC (varobj_p) **type_changed,
704 VEC (varobj_p) **new,
705 VEC (varobj_p) **unchanged,
706 int *cchanged,
707 int index,
708 struct varobj_item *item)
709 {
710 if (VEC_length (varobj_p, var->children) < index + 1)
711 {
712 /* There's no child yet. */
713 struct varobj *child = varobj_add_child (var, item);
714
715 if (new)
716 {
717 VEC_safe_push (varobj_p, *new, child);
718 *cchanged = 1;
719 }
720 }
721 else
722 {
723 varobj_p existing = VEC_index (varobj_p, var->children, index);
724 int type_updated = update_type_if_necessary (existing, item->value);
725
726 if (type_updated)
727 {
728 if (type_changed)
729 VEC_safe_push (varobj_p, *type_changed, existing);
730 }
731 if (install_new_value (existing, item->value, 0))
732 {
733 if (!type_updated && changed)
734 VEC_safe_push (varobj_p, *changed, existing);
735 }
736 else if (!type_updated && unchanged)
737 VEC_safe_push (varobj_p, *unchanged, existing);
738 }
739 }
740
741 #if HAVE_PYTHON
742
743 static int
744 dynamic_varobj_has_child_method (struct varobj *var)
745 {
746 struct cleanup *back_to;
747 PyObject *printer = var->dynamic->pretty_printer;
748 int result;
749
750 if (!gdb_python_initialized)
751 return 0;
752
753 back_to = varobj_ensure_python_env (var);
754 result = PyObject_HasAttr (printer, gdbpy_children_cst);
755 do_cleanups (back_to);
756 return result;
757 }
758 #endif
759
760 /* A factory for creating dynamic varobj's iterators. Returns an
761 iterator object suitable for iterating over VAR's children. */
762
763 static struct varobj_iter *
764 varobj_get_iterator (struct varobj *var)
765 {
766 #if HAVE_PYTHON
767 if (var->dynamic->pretty_printer)
768 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
769 #endif
770
771 gdb_assert_not_reached (_("\
772 requested an iterator from a non-dynamic varobj"));
773 }
774
775 /* Release and clear VAR's saved item, if any. */
776
777 static void
778 varobj_clear_saved_item (struct varobj_dynamic *var)
779 {
780 if (var->saved_item != NULL)
781 {
782 value_free (var->saved_item->value);
783 xfree (var->saved_item);
784 var->saved_item = NULL;
785 }
786 }
787
788 static int
789 update_dynamic_varobj_children (struct varobj *var,
790 VEC (varobj_p) **changed,
791 VEC (varobj_p) **type_changed,
792 VEC (varobj_p) **new,
793 VEC (varobj_p) **unchanged,
794 int *cchanged,
795 int update_children,
796 int from,
797 int to)
798 {
799 int i;
800
801 *cchanged = 0;
802
803 if (update_children || var->dynamic->child_iter == NULL)
804 {
805 varobj_iter_delete (var->dynamic->child_iter);
806 var->dynamic->child_iter = varobj_get_iterator (var);
807
808 varobj_clear_saved_item (var->dynamic);
809
810 i = 0;
811
812 if (var->dynamic->child_iter == NULL)
813 return 0;
814 }
815 else
816 i = VEC_length (varobj_p, var->children);
817
818 /* We ask for one extra child, so that MI can report whether there
819 are more children. */
820 for (; to < 0 || i < to + 1; ++i)
821 {
822 varobj_item *item;
823
824 /* See if there was a leftover from last time. */
825 if (var->dynamic->saved_item != NULL)
826 {
827 item = var->dynamic->saved_item;
828 var->dynamic->saved_item = NULL;
829 }
830 else
831 {
832 item = varobj_iter_next (var->dynamic->child_iter);
833 /* Release vitem->value so its lifetime is not bound to the
834 execution of a command. */
835 if (item != NULL && item->value != NULL)
836 release_value_or_incref (item->value);
837 }
838
839 if (item == NULL)
840 {
841 /* Iteration is done. Remove iterator from VAR. */
842 varobj_iter_delete (var->dynamic->child_iter);
843 var->dynamic->child_iter = NULL;
844 break;
845 }
846 /* We don't want to push the extra child on any report list. */
847 if (to < 0 || i < to)
848 {
849 int can_mention = from < 0 || i >= from;
850
851 install_dynamic_child (var, can_mention ? changed : NULL,
852 can_mention ? type_changed : NULL,
853 can_mention ? new : NULL,
854 can_mention ? unchanged : NULL,
855 can_mention ? cchanged : NULL, i,
856 item);
857
858 xfree (item);
859 }
860 else
861 {
862 var->dynamic->saved_item = item;
863
864 /* We want to truncate the child list just before this
865 element. */
866 break;
867 }
868 }
869
870 if (i < VEC_length (varobj_p, var->children))
871 {
872 int j;
873
874 *cchanged = 1;
875 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
876 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
877 VEC_truncate (varobj_p, var->children, i);
878 }
879
880 /* If there are fewer children than requested, note that the list of
881 children changed. */
882 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
883 *cchanged = 1;
884
885 var->num_children = VEC_length (varobj_p, var->children);
886
887 return 1;
888 }
889
890 int
891 varobj_get_num_children (struct varobj *var)
892 {
893 if (var->num_children == -1)
894 {
895 if (varobj_is_dynamic_p (var))
896 {
897 int dummy;
898
899 /* If we have a dynamic varobj, don't report -1 children.
900 So, try to fetch some children first. */
901 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
902 0, 0, 0);
903 }
904 else
905 var->num_children = number_of_children (var);
906 }
907
908 return var->num_children >= 0 ? var->num_children : 0;
909 }
910
911 /* Creates a list of the immediate children of a variable object;
912 the return code is the number of such children or -1 on error. */
913
914 VEC (varobj_p)*
915 varobj_list_children (struct varobj *var, int *from, int *to)
916 {
917 char *name;
918 int i, children_changed;
919
920 var->dynamic->children_requested = 1;
921
922 if (varobj_is_dynamic_p (var))
923 {
924 /* This, in theory, can result in the number of children changing without
925 frontend noticing. But well, calling -var-list-children on the same
926 varobj twice is not something a sane frontend would do. */
927 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
928 &children_changed, 0, 0, *to);
929 varobj_restrict_range (var->children, from, to);
930 return var->children;
931 }
932
933 if (var->num_children == -1)
934 var->num_children = number_of_children (var);
935
936 /* If that failed, give up. */
937 if (var->num_children == -1)
938 return var->children;
939
940 /* If we're called when the list of children is not yet initialized,
941 allocate enough elements in it. */
942 while (VEC_length (varobj_p, var->children) < var->num_children)
943 VEC_safe_push (varobj_p, var->children, NULL);
944
945 for (i = 0; i < var->num_children; i++)
946 {
947 varobj_p existing = VEC_index (varobj_p, var->children, i);
948
949 if (existing == NULL)
950 {
951 /* Either it's the first call to varobj_list_children for
952 this variable object, and the child was never created,
953 or it was explicitly deleted by the client. */
954 name = name_of_child (var, i);
955 existing = create_child (var, i, name);
956 VEC_replace (varobj_p, var->children, i, existing);
957 }
958 }
959
960 varobj_restrict_range (var->children, from, to);
961 return var->children;
962 }
963
964 static struct varobj *
965 varobj_add_child (struct varobj *var, struct varobj_item *item)
966 {
967 varobj_p v = create_child_with_value (var,
968 VEC_length (varobj_p, var->children),
969 item);
970
971 VEC_safe_push (varobj_p, var->children, v);
972 return v;
973 }
974
975 /* Obtain the type of an object Variable as a string similar to the one gdb
976 prints on the console. The caller is responsible for freeing the string.
977 */
978
979 char *
980 varobj_get_type (struct varobj *var)
981 {
982 /* For the "fake" variables, do not return a type. (Its type is
983 NULL, too.)
984 Do not return a type for invalid variables as well. */
985 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
986 return NULL;
987
988 return type_to_string (var->type);
989 }
990
991 /* Obtain the type of an object variable. */
992
993 struct type *
994 varobj_get_gdb_type (struct varobj *var)
995 {
996 return var->type;
997 }
998
999 /* Is VAR a path expression parent, i.e., can it be used to construct
1000 a valid path expression? */
1001
1002 static int
1003 is_path_expr_parent (struct varobj *var)
1004 {
1005 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1006 return var->root->lang_ops->is_path_expr_parent (var);
1007 }
1008
1009 /* Is VAR a path expression parent, i.e., can it be used to construct
1010 a valid path expression? By default we assume any VAR can be a path
1011 parent. */
1012
1013 int
1014 varobj_default_is_path_expr_parent (struct varobj *var)
1015 {
1016 return 1;
1017 }
1018
1019 /* Return the path expression parent for VAR. */
1020
1021 struct varobj *
1022 varobj_get_path_expr_parent (struct varobj *var)
1023 {
1024 struct varobj *parent = var;
1025
1026 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1027 parent = parent->parent;
1028
1029 return parent;
1030 }
1031
1032 /* Return a pointer to the full rooted expression of varobj VAR.
1033 If it has not been computed yet, compute it. */
1034 char *
1035 varobj_get_path_expr (struct varobj *var)
1036 {
1037 if (var->path_expr == NULL)
1038 {
1039 /* For root varobjs, we initialize path_expr
1040 when creating varobj, so here it should be
1041 child varobj. */
1042 gdb_assert (!is_root_p (var));
1043
1044 var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
1045 }
1046
1047 return var->path_expr;
1048 }
1049
1050 const struct language_defn *
1051 varobj_get_language (struct varobj *var)
1052 {
1053 return var->root->exp->language_defn;
1054 }
1055
1056 int
1057 varobj_get_attributes (struct varobj *var)
1058 {
1059 int attributes = 0;
1060
1061 if (varobj_editable_p (var))
1062 /* FIXME: define masks for attributes. */
1063 attributes |= 0x00000001; /* Editable */
1064
1065 return attributes;
1066 }
1067
1068 /* Return true if VAR is a dynamic varobj. */
1069
1070 int
1071 varobj_is_dynamic_p (struct varobj *var)
1072 {
1073 return var->dynamic->pretty_printer != NULL;
1074 }
1075
1076 char *
1077 varobj_get_formatted_value (struct varobj *var,
1078 enum varobj_display_formats format)
1079 {
1080 return my_value_of_variable (var, format);
1081 }
1082
1083 char *
1084 varobj_get_value (struct varobj *var)
1085 {
1086 return my_value_of_variable (var, var->format);
1087 }
1088
1089 /* Set the value of an object variable (if it is editable) to the
1090 value of the given expression. */
1091 /* Note: Invokes functions that can call error(). */
1092
1093 int
1094 varobj_set_value (struct varobj *var, char *expression)
1095 {
1096 struct value *val = NULL; /* Initialize to keep gcc happy. */
1097 /* The argument "expression" contains the variable's new value.
1098 We need to first construct a legal expression for this -- ugh! */
1099 /* Does this cover all the bases? */
1100 struct expression *exp;
1101 struct value *value = NULL; /* Initialize to keep gcc happy. */
1102 int saved_input_radix = input_radix;
1103 const char *s = expression;
1104 volatile struct gdb_exception except;
1105
1106 gdb_assert (varobj_editable_p (var));
1107
1108 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1109 exp = parse_exp_1 (&s, 0, 0, 0);
1110 TRY_CATCH (except, RETURN_MASK_ERROR)
1111 {
1112 value = evaluate_expression (exp);
1113 }
1114
1115 if (except.reason < 0)
1116 {
1117 /* We cannot proceed without a valid expression. */
1118 xfree (exp);
1119 return 0;
1120 }
1121
1122 /* All types that are editable must also be changeable. */
1123 gdb_assert (varobj_value_is_changeable_p (var));
1124
1125 /* The value of a changeable variable object must not be lazy. */
1126 gdb_assert (!value_lazy (var->value));
1127
1128 /* Need to coerce the input. We want to check if the
1129 value of the variable object will be different
1130 after assignment, and the first thing value_assign
1131 does is coerce the input.
1132 For example, if we are assigning an array to a pointer variable we
1133 should compare the pointer with the array's address, not with the
1134 array's content. */
1135 value = coerce_array (value);
1136
1137 /* The new value may be lazy. value_assign, or
1138 rather value_contents, will take care of this. */
1139 TRY_CATCH (except, RETURN_MASK_ERROR)
1140 {
1141 val = value_assign (var->value, value);
1142 }
1143
1144 if (except.reason < 0)
1145 return 0;
1146
1147 /* If the value has changed, record it, so that next -var-update can
1148 report this change. If a variable had a value of '1', we've set it
1149 to '333' and then set again to '1', when -var-update will report this
1150 variable as changed -- because the first assignment has set the
1151 'updated' flag. There's no need to optimize that, because return value
1152 of -var-update should be considered an approximation. */
1153 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1154 input_radix = saved_input_radix;
1155 return 1;
1156 }
1157
1158 #if HAVE_PYTHON
1159
1160 /* A helper function to install a constructor function and visualizer
1161 in a varobj_dynamic. */
1162
1163 static void
1164 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1165 PyObject *visualizer)
1166 {
1167 Py_XDECREF (var->constructor);
1168 var->constructor = constructor;
1169
1170 Py_XDECREF (var->pretty_printer);
1171 var->pretty_printer = visualizer;
1172
1173 varobj_iter_delete (var->child_iter);
1174 var->child_iter = NULL;
1175 }
1176
1177 /* Install the default visualizer for VAR. */
1178
1179 static void
1180 install_default_visualizer (struct varobj *var)
1181 {
1182 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1183 if (CPLUS_FAKE_CHILD (var))
1184 return;
1185
1186 if (pretty_printing)
1187 {
1188 PyObject *pretty_printer = NULL;
1189
1190 if (var->value)
1191 {
1192 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1193 if (! pretty_printer)
1194 {
1195 gdbpy_print_stack ();
1196 error (_("Cannot instantiate printer for default visualizer"));
1197 }
1198 }
1199
1200 if (pretty_printer == Py_None)
1201 {
1202 Py_DECREF (pretty_printer);
1203 pretty_printer = NULL;
1204 }
1205
1206 install_visualizer (var->dynamic, NULL, pretty_printer);
1207 }
1208 }
1209
1210 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1211 make a new object. */
1212
1213 static void
1214 construct_visualizer (struct varobj *var, PyObject *constructor)
1215 {
1216 PyObject *pretty_printer;
1217
1218 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1219 if (CPLUS_FAKE_CHILD (var))
1220 return;
1221
1222 Py_INCREF (constructor);
1223 if (constructor == Py_None)
1224 pretty_printer = NULL;
1225 else
1226 {
1227 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1228 if (! pretty_printer)
1229 {
1230 gdbpy_print_stack ();
1231 Py_DECREF (constructor);
1232 constructor = Py_None;
1233 Py_INCREF (constructor);
1234 }
1235
1236 if (pretty_printer == Py_None)
1237 {
1238 Py_DECREF (pretty_printer);
1239 pretty_printer = NULL;
1240 }
1241 }
1242
1243 install_visualizer (var->dynamic, constructor, pretty_printer);
1244 }
1245
1246 #endif /* HAVE_PYTHON */
1247
1248 /* A helper function for install_new_value. This creates and installs
1249 a visualizer for VAR, if appropriate. */
1250
1251 static void
1252 install_new_value_visualizer (struct varobj *var)
1253 {
1254 #if HAVE_PYTHON
1255 /* If the constructor is None, then we want the raw value. If VAR
1256 does not have a value, just skip this. */
1257 if (!gdb_python_initialized)
1258 return;
1259
1260 if (var->dynamic->constructor != Py_None && var->value != NULL)
1261 {
1262 struct cleanup *cleanup;
1263
1264 cleanup = varobj_ensure_python_env (var);
1265
1266 if (var->dynamic->constructor == NULL)
1267 install_default_visualizer (var);
1268 else
1269 construct_visualizer (var, var->dynamic->constructor);
1270
1271 do_cleanups (cleanup);
1272 }
1273 #else
1274 /* Do nothing. */
1275 #endif
1276 }
1277
1278 /* When using RTTI to determine variable type it may be changed in runtime when
1279 the variable value is changed. This function checks whether type of varobj
1280 VAR will change when a new value NEW_VALUE is assigned and if it is so
1281 updates the type of VAR. */
1282
1283 static int
1284 update_type_if_necessary (struct varobj *var, struct value *new_value)
1285 {
1286 if (new_value)
1287 {
1288 struct value_print_options opts;
1289
1290 get_user_print_options (&opts);
1291 if (opts.objectprint)
1292 {
1293 struct type *new_type;
1294 char *curr_type_str, *new_type_str;
1295 int type_name_changed;
1296
1297 new_type = value_actual_type (new_value, 0, 0);
1298 new_type_str = type_to_string (new_type);
1299 curr_type_str = varobj_get_type (var);
1300 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1301 xfree (curr_type_str);
1302 xfree (new_type_str);
1303
1304 if (type_name_changed)
1305 {
1306 var->type = new_type;
1307
1308 /* This information may be not valid for a new type. */
1309 varobj_delete (var, NULL, 1);
1310 VEC_free (varobj_p, var->children);
1311 var->num_children = -1;
1312 return 1;
1313 }
1314 }
1315 }
1316
1317 return 0;
1318 }
1319
1320 /* Assign a new value to a variable object. If INITIAL is non-zero,
1321 this is the first assignement after the variable object was just
1322 created, or changed type. In that case, just assign the value
1323 and return 0.
1324 Otherwise, assign the new value, and return 1 if the value is
1325 different from the current one, 0 otherwise. The comparison is
1326 done on textual representation of value. Therefore, some types
1327 need not be compared. E.g. for structures the reported value is
1328 always "{...}", so no comparison is necessary here. If the old
1329 value was NULL and new one is not, or vice versa, we always return 1.
1330
1331 The VALUE parameter should not be released -- the function will
1332 take care of releasing it when needed. */
1333 static int
1334 install_new_value (struct varobj *var, struct value *value, int initial)
1335 {
1336 int changeable;
1337 int need_to_fetch;
1338 int changed = 0;
1339 int intentionally_not_fetched = 0;
1340 char *print_value = NULL;
1341
1342 /* We need to know the varobj's type to decide if the value should
1343 be fetched or not. C++ fake children (public/protected/private)
1344 don't have a type. */
1345 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1346 changeable = varobj_value_is_changeable_p (var);
1347
1348 /* If the type has custom visualizer, we consider it to be always
1349 changeable. FIXME: need to make sure this behaviour will not
1350 mess up read-sensitive values. */
1351 if (var->dynamic->pretty_printer != NULL)
1352 changeable = 1;
1353
1354 need_to_fetch = changeable;
1355
1356 /* We are not interested in the address of references, and given
1357 that in C++ a reference is not rebindable, it cannot
1358 meaningfully change. So, get hold of the real value. */
1359 if (value)
1360 value = coerce_ref (value);
1361
1362 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1363 /* For unions, we need to fetch the value implicitly because
1364 of implementation of union member fetch. When gdb
1365 creates a value for a field and the value of the enclosing
1366 structure is not lazy, it immediately copies the necessary
1367 bytes from the enclosing values. If the enclosing value is
1368 lazy, the call to value_fetch_lazy on the field will read
1369 the data from memory. For unions, that means we'll read the
1370 same memory more than once, which is not desirable. So
1371 fetch now. */
1372 need_to_fetch = 1;
1373
1374 /* The new value might be lazy. If the type is changeable,
1375 that is we'll be comparing values of this type, fetch the
1376 value now. Otherwise, on the next update the old value
1377 will be lazy, which means we've lost that old value. */
1378 if (need_to_fetch && value && value_lazy (value))
1379 {
1380 struct varobj *parent = var->parent;
1381 int frozen = var->frozen;
1382
1383 for (; !frozen && parent; parent = parent->parent)
1384 frozen |= parent->frozen;
1385
1386 if (frozen && initial)
1387 {
1388 /* For variables that are frozen, or are children of frozen
1389 variables, we don't do fetch on initial assignment.
1390 For non-initial assignemnt we do the fetch, since it means we're
1391 explicitly asked to compare the new value with the old one. */
1392 intentionally_not_fetched = 1;
1393 }
1394 else
1395 {
1396 volatile struct gdb_exception except;
1397
1398 TRY_CATCH (except, RETURN_MASK_ERROR)
1399 {
1400 value_fetch_lazy (value);
1401 }
1402
1403 if (except.reason < 0)
1404 {
1405 /* Set the value to NULL, so that for the next -var-update,
1406 we don't try to compare the new value with this value,
1407 that we couldn't even read. */
1408 value = NULL;
1409 }
1410 }
1411 }
1412
1413 /* Get a reference now, before possibly passing it to any Python
1414 code that might release it. */
1415 if (value != NULL)
1416 value_incref (value);
1417
1418 /* Below, we'll be comparing string rendering of old and new
1419 values. Don't get string rendering if the value is
1420 lazy -- if it is, the code above has decided that the value
1421 should not be fetched. */
1422 if (value != NULL && !value_lazy (value)
1423 && var->dynamic->pretty_printer == NULL)
1424 print_value = varobj_value_get_print_value (value, var->format, var);
1425
1426 /* If the type is changeable, compare the old and the new values.
1427 If this is the initial assignment, we don't have any old value
1428 to compare with. */
1429 if (!initial && changeable)
1430 {
1431 /* If the value of the varobj was changed by -var-set-value,
1432 then the value in the varobj and in the target is the same.
1433 However, that value is different from the value that the
1434 varobj had after the previous -var-update. So need to the
1435 varobj as changed. */
1436 if (var->updated)
1437 {
1438 changed = 1;
1439 }
1440 else if (var->dynamic->pretty_printer == NULL)
1441 {
1442 /* Try to compare the values. That requires that both
1443 values are non-lazy. */
1444 if (var->not_fetched && value_lazy (var->value))
1445 {
1446 /* This is a frozen varobj and the value was never read.
1447 Presumably, UI shows some "never read" indicator.
1448 Now that we've fetched the real value, we need to report
1449 this varobj as changed so that UI can show the real
1450 value. */
1451 changed = 1;
1452 }
1453 else if (var->value == NULL && value == NULL)
1454 /* Equal. */
1455 ;
1456 else if (var->value == NULL || value == NULL)
1457 {
1458 changed = 1;
1459 }
1460 else
1461 {
1462 gdb_assert (!value_lazy (var->value));
1463 gdb_assert (!value_lazy (value));
1464
1465 gdb_assert (var->print_value != NULL && print_value != NULL);
1466 if (strcmp (var->print_value, print_value) != 0)
1467 changed = 1;
1468 }
1469 }
1470 }
1471
1472 if (!initial && !changeable)
1473 {
1474 /* For values that are not changeable, we don't compare the values.
1475 However, we want to notice if a value was not NULL and now is NULL,
1476 or vise versa, so that we report when top-level varobjs come in scope
1477 and leave the scope. */
1478 changed = (var->value != NULL) != (value != NULL);
1479 }
1480
1481 /* We must always keep the new value, since children depend on it. */
1482 if (var->value != NULL && var->value != value)
1483 value_free (var->value);
1484 var->value = value;
1485 if (value && value_lazy (value) && intentionally_not_fetched)
1486 var->not_fetched = 1;
1487 else
1488 var->not_fetched = 0;
1489 var->updated = 0;
1490
1491 install_new_value_visualizer (var);
1492
1493 /* If we installed a pretty-printer, re-compare the printed version
1494 to see if the variable changed. */
1495 if (var->dynamic->pretty_printer != NULL)
1496 {
1497 xfree (print_value);
1498 print_value = varobj_value_get_print_value (var->value, var->format,
1499 var);
1500 if ((var->print_value == NULL && print_value != NULL)
1501 || (var->print_value != NULL && print_value == NULL)
1502 || (var->print_value != NULL && print_value != NULL
1503 && strcmp (var->print_value, print_value) != 0))
1504 changed = 1;
1505 }
1506 if (var->print_value)
1507 xfree (var->print_value);
1508 var->print_value = print_value;
1509
1510 gdb_assert (!var->value || value_type (var->value));
1511
1512 return changed;
1513 }
1514
1515 /* Return the requested range for a varobj. VAR is the varobj. FROM
1516 and TO are out parameters; *FROM and *TO will be set to the
1517 selected sub-range of VAR. If no range was selected using
1518 -var-set-update-range, then both will be -1. */
1519 void
1520 varobj_get_child_range (struct varobj *var, int *from, int *to)
1521 {
1522 *from = var->from;
1523 *to = var->to;
1524 }
1525
1526 /* Set the selected sub-range of children of VAR to start at index
1527 FROM and end at index TO. If either FROM or TO is less than zero,
1528 this is interpreted as a request for all children. */
1529 void
1530 varobj_set_child_range (struct varobj *var, int from, int to)
1531 {
1532 var->from = from;
1533 var->to = to;
1534 }
1535
1536 void
1537 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1538 {
1539 #if HAVE_PYTHON
1540 PyObject *mainmod, *globals, *constructor;
1541 struct cleanup *back_to;
1542
1543 if (!gdb_python_initialized)
1544 return;
1545
1546 back_to = varobj_ensure_python_env (var);
1547
1548 mainmod = PyImport_AddModule ("__main__");
1549 globals = PyModule_GetDict (mainmod);
1550 Py_INCREF (globals);
1551 make_cleanup_py_decref (globals);
1552
1553 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1554
1555 if (! constructor)
1556 {
1557 gdbpy_print_stack ();
1558 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1559 }
1560
1561 construct_visualizer (var, constructor);
1562 Py_XDECREF (constructor);
1563
1564 /* If there are any children now, wipe them. */
1565 varobj_delete (var, NULL, 1 /* children only */);
1566 var->num_children = -1;
1567
1568 do_cleanups (back_to);
1569 #else
1570 error (_("Python support required"));
1571 #endif
1572 }
1573
1574 /* If NEW_VALUE is the new value of the given varobj (var), return
1575 non-zero if var has mutated. In other words, if the type of
1576 the new value is different from the type of the varobj's old
1577 value.
1578
1579 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1580
1581 static int
1582 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1583 struct type *new_type)
1584 {
1585 /* If we haven't previously computed the number of children in var,
1586 it does not matter from the front-end's perspective whether
1587 the type has mutated or not. For all intents and purposes,
1588 it has not mutated. */
1589 if (var->num_children < 0)
1590 return 0;
1591
1592 if (var->root->lang_ops->value_has_mutated)
1593 {
1594 /* The varobj module, when installing new values, explicitly strips
1595 references, saying that we're not interested in those addresses.
1596 But detection of mutation happens before installing the new
1597 value, so our value may be a reference that we need to strip
1598 in order to remain consistent. */
1599 if (new_value != NULL)
1600 new_value = coerce_ref (new_value);
1601 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1602 }
1603 else
1604 return 0;
1605 }
1606
1607 /* Update the values for a variable and its children. This is a
1608 two-pronged attack. First, re-parse the value for the root's
1609 expression to see if it's changed. Then go all the way
1610 through its children, reconstructing them and noting if they've
1611 changed.
1612
1613 The EXPLICIT parameter specifies if this call is result
1614 of MI request to update this specific variable, or
1615 result of implicit -var-update *. For implicit request, we don't
1616 update frozen variables.
1617
1618 NOTE: This function may delete the caller's varobj. If it
1619 returns TYPE_CHANGED, then it has done this and VARP will be modified
1620 to point to the new varobj. */
1621
1622 VEC(varobj_update_result) *
1623 varobj_update (struct varobj **varp, int explicit)
1624 {
1625 int type_changed = 0;
1626 int i;
1627 struct value *new;
1628 VEC (varobj_update_result) *stack = NULL;
1629 VEC (varobj_update_result) *result = NULL;
1630
1631 /* Frozen means frozen -- we don't check for any change in
1632 this varobj, including its going out of scope, or
1633 changing type. One use case for frozen varobjs is
1634 retaining previously evaluated expressions, and we don't
1635 want them to be reevaluated at all. */
1636 if (!explicit && (*varp)->frozen)
1637 return result;
1638
1639 if (!(*varp)->root->is_valid)
1640 {
1641 varobj_update_result r = {0};
1642
1643 r.varobj = *varp;
1644 r.status = VAROBJ_INVALID;
1645 VEC_safe_push (varobj_update_result, result, &r);
1646 return result;
1647 }
1648
1649 if ((*varp)->root->rootvar == *varp)
1650 {
1651 varobj_update_result r = {0};
1652
1653 r.varobj = *varp;
1654 r.status = VAROBJ_IN_SCOPE;
1655
1656 /* Update the root variable. value_of_root can return NULL
1657 if the variable is no longer around, i.e. we stepped out of
1658 the frame in which a local existed. We are letting the
1659 value_of_root variable dispose of the varobj if the type
1660 has changed. */
1661 new = value_of_root (varp, &type_changed);
1662 if (update_type_if_necessary(*varp, new))
1663 type_changed = 1;
1664 r.varobj = *varp;
1665 r.type_changed = type_changed;
1666 if (install_new_value ((*varp), new, type_changed))
1667 r.changed = 1;
1668
1669 if (new == NULL)
1670 r.status = VAROBJ_NOT_IN_SCOPE;
1671 r.value_installed = 1;
1672
1673 if (r.status == VAROBJ_NOT_IN_SCOPE)
1674 {
1675 if (r.type_changed || r.changed)
1676 VEC_safe_push (varobj_update_result, result, &r);
1677 return result;
1678 }
1679
1680 VEC_safe_push (varobj_update_result, stack, &r);
1681 }
1682 else
1683 {
1684 varobj_update_result r = {0};
1685
1686 r.varobj = *varp;
1687 VEC_safe_push (varobj_update_result, stack, &r);
1688 }
1689
1690 /* Walk through the children, reconstructing them all. */
1691 while (!VEC_empty (varobj_update_result, stack))
1692 {
1693 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1694 struct varobj *v = r.varobj;
1695
1696 VEC_pop (varobj_update_result, stack);
1697
1698 /* Update this variable, unless it's a root, which is already
1699 updated. */
1700 if (!r.value_installed)
1701 {
1702 struct type *new_type;
1703
1704 new = value_of_child (v->parent, v->index);
1705 if (update_type_if_necessary(v, new))
1706 r.type_changed = 1;
1707 if (new)
1708 new_type = value_type (new);
1709 else
1710 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1711
1712 if (varobj_value_has_mutated (v, new, new_type))
1713 {
1714 /* The children are no longer valid; delete them now.
1715 Report the fact that its type changed as well. */
1716 varobj_delete (v, NULL, 1 /* only_children */);
1717 v->num_children = -1;
1718 v->to = -1;
1719 v->from = -1;
1720 v->type = new_type;
1721 r.type_changed = 1;
1722 }
1723
1724 if (install_new_value (v, new, r.type_changed))
1725 {
1726 r.changed = 1;
1727 v->updated = 0;
1728 }
1729 }
1730
1731 /* We probably should not get children of a dynamic varobj, but
1732 for which -var-list-children was never invoked. */
1733 if (varobj_is_dynamic_p (v))
1734 {
1735 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1736 VEC (varobj_p) *new = 0;
1737 int i, children_changed = 0;
1738
1739 if (v->frozen)
1740 continue;
1741
1742 if (!v->dynamic->children_requested)
1743 {
1744 int dummy;
1745
1746 /* If we initially did not have potential children, but
1747 now we do, consider the varobj as changed.
1748 Otherwise, if children were never requested, consider
1749 it as unchanged -- presumably, such varobj is not yet
1750 expanded in the UI, so we need not bother getting
1751 it. */
1752 if (!varobj_has_more (v, 0))
1753 {
1754 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1755 &dummy, 0, 0, 0);
1756 if (varobj_has_more (v, 0))
1757 r.changed = 1;
1758 }
1759
1760 if (r.changed)
1761 VEC_safe_push (varobj_update_result, result, &r);
1762
1763 continue;
1764 }
1765
1766 /* If update_dynamic_varobj_children returns 0, then we have
1767 a non-conforming pretty-printer, so we skip it. */
1768 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1769 &unchanged, &children_changed, 1,
1770 v->from, v->to))
1771 {
1772 if (children_changed || new)
1773 {
1774 r.children_changed = 1;
1775 r.new = new;
1776 }
1777 /* Push in reverse order so that the first child is
1778 popped from the work stack first, and so will be
1779 added to result first. This does not affect
1780 correctness, just "nicer". */
1781 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1782 {
1783 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1784 varobj_update_result r = {0};
1785
1786 /* Type may change only if value was changed. */
1787 r.varobj = tmp;
1788 r.changed = 1;
1789 r.type_changed = 1;
1790 r.value_installed = 1;
1791 VEC_safe_push (varobj_update_result, stack, &r);
1792 }
1793 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1794 {
1795 varobj_p tmp = VEC_index (varobj_p, changed, i);
1796 varobj_update_result r = {0};
1797
1798 r.varobj = tmp;
1799 r.changed = 1;
1800 r.value_installed = 1;
1801 VEC_safe_push (varobj_update_result, stack, &r);
1802 }
1803 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1804 {
1805 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1806
1807 if (!tmp->frozen)
1808 {
1809 varobj_update_result r = {0};
1810
1811 r.varobj = tmp;
1812 r.value_installed = 1;
1813 VEC_safe_push (varobj_update_result, stack, &r);
1814 }
1815 }
1816 if (r.changed || r.children_changed)
1817 VEC_safe_push (varobj_update_result, result, &r);
1818
1819 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1820 because NEW has been put into the result vector. */
1821 VEC_free (varobj_p, changed);
1822 VEC_free (varobj_p, type_changed);
1823 VEC_free (varobj_p, unchanged);
1824
1825 continue;
1826 }
1827 }
1828
1829 /* Push any children. Use reverse order so that the first
1830 child is popped from the work stack first, and so
1831 will be added to result first. This does not
1832 affect correctness, just "nicer". */
1833 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1834 {
1835 varobj_p c = VEC_index (varobj_p, v->children, i);
1836
1837 /* Child may be NULL if explicitly deleted by -var-delete. */
1838 if (c != NULL && !c->frozen)
1839 {
1840 varobj_update_result r = {0};
1841
1842 r.varobj = c;
1843 VEC_safe_push (varobj_update_result, stack, &r);
1844 }
1845 }
1846
1847 if (r.changed || r.type_changed)
1848 VEC_safe_push (varobj_update_result, result, &r);
1849 }
1850
1851 VEC_free (varobj_update_result, stack);
1852
1853 return result;
1854 }
1855 \f
1856
1857 /* Helper functions */
1858
1859 /*
1860 * Variable object construction/destruction
1861 */
1862
1863 static int
1864 delete_variable (struct cpstack **resultp, struct varobj *var,
1865 int only_children_p)
1866 {
1867 int delcount = 0;
1868
1869 delete_variable_1 (resultp, &delcount, var,
1870 only_children_p, 1 /* remove_from_parent_p */ );
1871
1872 return delcount;
1873 }
1874
1875 /* Delete the variable object VAR and its children. */
1876 /* IMPORTANT NOTE: If we delete a variable which is a child
1877 and the parent is not removed we dump core. It must be always
1878 initially called with remove_from_parent_p set. */
1879 static void
1880 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1881 struct varobj *var, int only_children_p,
1882 int remove_from_parent_p)
1883 {
1884 int i;
1885
1886 /* Delete any children of this variable, too. */
1887 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1888 {
1889 varobj_p child = VEC_index (varobj_p, var->children, i);
1890
1891 if (!child)
1892 continue;
1893 if (!remove_from_parent_p)
1894 child->parent = NULL;
1895 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1896 }
1897 VEC_free (varobj_p, var->children);
1898
1899 /* if we were called to delete only the children we are done here. */
1900 if (only_children_p)
1901 return;
1902
1903 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1904 /* If the name is null, this is a temporary variable, that has not
1905 yet been installed, don't report it, it belongs to the caller... */
1906 if (var->obj_name != NULL)
1907 {
1908 cppush (resultp, xstrdup (var->obj_name));
1909 *delcountp = *delcountp + 1;
1910 }
1911
1912 /* If this variable has a parent, remove it from its parent's list. */
1913 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1914 (as indicated by remove_from_parent_p) we don't bother doing an
1915 expensive list search to find the element to remove when we are
1916 discarding the list afterwards. */
1917 if ((remove_from_parent_p) && (var->parent != NULL))
1918 {
1919 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1920 }
1921
1922 if (var->obj_name != NULL)
1923 uninstall_variable (var);
1924
1925 /* Free memory associated with this variable. */
1926 free_variable (var);
1927 }
1928
1929 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1930 static int
1931 install_variable (struct varobj *var)
1932 {
1933 struct vlist *cv;
1934 struct vlist *newvl;
1935 const char *chp;
1936 unsigned int index = 0;
1937 unsigned int i = 1;
1938
1939 for (chp = var->obj_name; *chp; chp++)
1940 {
1941 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1942 }
1943
1944 cv = *(varobj_table + index);
1945 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1946 cv = cv->next;
1947
1948 if (cv != NULL)
1949 error (_("Duplicate variable object name"));
1950
1951 /* Add varobj to hash table. */
1952 newvl = xmalloc (sizeof (struct vlist));
1953 newvl->next = *(varobj_table + index);
1954 newvl->var = var;
1955 *(varobj_table + index) = newvl;
1956
1957 /* If root, add varobj to root list. */
1958 if (is_root_p (var))
1959 {
1960 /* Add to list of root variables. */
1961 if (rootlist == NULL)
1962 var->root->next = NULL;
1963 else
1964 var->root->next = rootlist;
1965 rootlist = var->root;
1966 }
1967
1968 return 1; /* OK */
1969 }
1970
1971 /* Unistall the object VAR. */
1972 static void
1973 uninstall_variable (struct varobj *var)
1974 {
1975 struct vlist *cv;
1976 struct vlist *prev;
1977 struct varobj_root *cr;
1978 struct varobj_root *prer;
1979 const char *chp;
1980 unsigned int index = 0;
1981 unsigned int i = 1;
1982
1983 /* Remove varobj from hash table. */
1984 for (chp = var->obj_name; *chp; chp++)
1985 {
1986 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1987 }
1988
1989 cv = *(varobj_table + index);
1990 prev = NULL;
1991 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1992 {
1993 prev = cv;
1994 cv = cv->next;
1995 }
1996
1997 if (varobjdebug)
1998 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1999
2000 if (cv == NULL)
2001 {
2002 warning
2003 ("Assertion failed: Could not find variable object \"%s\" to delete",
2004 var->obj_name);
2005 return;
2006 }
2007
2008 if (prev == NULL)
2009 *(varobj_table + index) = cv->next;
2010 else
2011 prev->next = cv->next;
2012
2013 xfree (cv);
2014
2015 /* If root, remove varobj from root list. */
2016 if (is_root_p (var))
2017 {
2018 /* Remove from list of root variables. */
2019 if (rootlist == var->root)
2020 rootlist = var->root->next;
2021 else
2022 {
2023 prer = NULL;
2024 cr = rootlist;
2025 while ((cr != NULL) && (cr->rootvar != var))
2026 {
2027 prer = cr;
2028 cr = cr->next;
2029 }
2030 if (cr == NULL)
2031 {
2032 warning (_("Assertion failed: Could not find "
2033 "varobj \"%s\" in root list"),
2034 var->obj_name);
2035 return;
2036 }
2037 if (prer == NULL)
2038 rootlist = NULL;
2039 else
2040 prer->next = cr->next;
2041 }
2042 }
2043
2044 }
2045
2046 /* Create and install a child of the parent of the given name. */
2047 static struct varobj *
2048 create_child (struct varobj *parent, int index, char *name)
2049 {
2050 struct varobj_item item;
2051
2052 item.name = name;
2053 item.value = value_of_child (parent, index);
2054
2055 return create_child_with_value (parent, index, &item);
2056 }
2057
2058 static struct varobj *
2059 create_child_with_value (struct varobj *parent, int index,
2060 struct varobj_item *item)
2061 {
2062 struct varobj *child;
2063 char *childs_name;
2064
2065 child = new_variable ();
2066
2067 /* NAME is allocated by caller. */
2068 child->name = item->name;
2069 child->index = index;
2070 child->parent = parent;
2071 child->root = parent->root;
2072
2073 if (varobj_is_anonymous_child (child))
2074 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2075 else
2076 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2077 child->obj_name = childs_name;
2078
2079 install_variable (child);
2080
2081 /* Compute the type of the child. Must do this before
2082 calling install_new_value. */
2083 if (item->value != NULL)
2084 /* If the child had no evaluation errors, var->value
2085 will be non-NULL and contain a valid type. */
2086 child->type = value_actual_type (item->value, 0, NULL);
2087 else
2088 /* Otherwise, we must compute the type. */
2089 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2090 child->index);
2091 install_new_value (child, item->value, 1);
2092
2093 return child;
2094 }
2095 \f
2096
2097 /*
2098 * Miscellaneous utility functions.
2099 */
2100
2101 /* Allocate memory and initialize a new variable. */
2102 static struct varobj *
2103 new_variable (void)
2104 {
2105 struct varobj *var;
2106
2107 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2108 var->name = NULL;
2109 var->path_expr = NULL;
2110 var->obj_name = NULL;
2111 var->index = -1;
2112 var->type = NULL;
2113 var->value = NULL;
2114 var->num_children = -1;
2115 var->parent = NULL;
2116 var->children = NULL;
2117 var->format = 0;
2118 var->root = NULL;
2119 var->updated = 0;
2120 var->print_value = NULL;
2121 var->frozen = 0;
2122 var->not_fetched = 0;
2123 var->dynamic
2124 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2125 var->dynamic->children_requested = 0;
2126 var->from = -1;
2127 var->to = -1;
2128 var->dynamic->constructor = 0;
2129 var->dynamic->pretty_printer = 0;
2130 var->dynamic->child_iter = 0;
2131 var->dynamic->saved_item = 0;
2132
2133 return var;
2134 }
2135
2136 /* Allocate memory and initialize a new root variable. */
2137 static struct varobj *
2138 new_root_variable (void)
2139 {
2140 struct varobj *var = new_variable ();
2141
2142 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2143 var->root->lang_ops = NULL;
2144 var->root->exp = NULL;
2145 var->root->valid_block = NULL;
2146 var->root->frame = null_frame_id;
2147 var->root->floating = 0;
2148 var->root->rootvar = NULL;
2149 var->root->is_valid = 1;
2150
2151 return var;
2152 }
2153
2154 /* Free any allocated memory associated with VAR. */
2155 static void
2156 free_variable (struct varobj *var)
2157 {
2158 #if HAVE_PYTHON
2159 if (var->dynamic->pretty_printer != NULL)
2160 {
2161 struct cleanup *cleanup = varobj_ensure_python_env (var);
2162
2163 Py_XDECREF (var->dynamic->constructor);
2164 Py_XDECREF (var->dynamic->pretty_printer);
2165 do_cleanups (cleanup);
2166 }
2167 #endif
2168
2169 varobj_iter_delete (var->dynamic->child_iter);
2170 varobj_clear_saved_item (var->dynamic);
2171 value_free (var->value);
2172
2173 /* Free the expression if this is a root variable. */
2174 if (is_root_p (var))
2175 {
2176 xfree (var->root->exp);
2177 xfree (var->root);
2178 }
2179
2180 xfree (var->name);
2181 xfree (var->obj_name);
2182 xfree (var->print_value);
2183 xfree (var->path_expr);
2184 xfree (var->dynamic);
2185 xfree (var);
2186 }
2187
2188 static void
2189 do_free_variable_cleanup (void *var)
2190 {
2191 free_variable (var);
2192 }
2193
2194 static struct cleanup *
2195 make_cleanup_free_variable (struct varobj *var)
2196 {
2197 return make_cleanup (do_free_variable_cleanup, var);
2198 }
2199
2200 /* Return the type of the value that's stored in VAR,
2201 or that would have being stored there if the
2202 value were accessible.
2203
2204 This differs from VAR->type in that VAR->type is always
2205 the true type of the expession in the source language.
2206 The return value of this function is the type we're
2207 actually storing in varobj, and using for displaying
2208 the values and for comparing previous and new values.
2209
2210 For example, top-level references are always stripped. */
2211 struct type *
2212 varobj_get_value_type (struct varobj *var)
2213 {
2214 struct type *type;
2215
2216 if (var->value)
2217 type = value_type (var->value);
2218 else
2219 type = var->type;
2220
2221 type = check_typedef (type);
2222
2223 if (TYPE_CODE (type) == TYPE_CODE_REF)
2224 type = get_target_type (type);
2225
2226 type = check_typedef (type);
2227
2228 return type;
2229 }
2230
2231 /* What is the default display for this variable? We assume that
2232 everything is "natural". Any exceptions? */
2233 static enum varobj_display_formats
2234 variable_default_display (struct varobj *var)
2235 {
2236 return FORMAT_NATURAL;
2237 }
2238
2239 /* FIXME: The following should be generic for any pointer. */
2240 static void
2241 cppush (struct cpstack **pstack, char *name)
2242 {
2243 struct cpstack *s;
2244
2245 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2246 s->name = name;
2247 s->next = *pstack;
2248 *pstack = s;
2249 }
2250
2251 /* FIXME: The following should be generic for any pointer. */
2252 static char *
2253 cppop (struct cpstack **pstack)
2254 {
2255 struct cpstack *s;
2256 char *v;
2257
2258 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2259 return NULL;
2260
2261 s = *pstack;
2262 v = s->name;
2263 *pstack = (*pstack)->next;
2264 xfree (s);
2265
2266 return v;
2267 }
2268 \f
2269 /*
2270 * Language-dependencies
2271 */
2272
2273 /* Common entry points */
2274
2275 /* Return the number of children for a given variable.
2276 The result of this function is defined by the language
2277 implementation. The number of children returned by this function
2278 is the number of children that the user will see in the variable
2279 display. */
2280 static int
2281 number_of_children (struct varobj *var)
2282 {
2283 return (*var->root->lang_ops->number_of_children) (var);
2284 }
2285
2286 /* What is the expression for the root varobj VAR? Returns a malloc'd
2287 string. */
2288 static char *
2289 name_of_variable (struct varobj *var)
2290 {
2291 return (*var->root->lang_ops->name_of_variable) (var);
2292 }
2293
2294 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2295 string. */
2296 static char *
2297 name_of_child (struct varobj *var, int index)
2298 {
2299 return (*var->root->lang_ops->name_of_child) (var, index);
2300 }
2301
2302 /* If frame associated with VAR can be found, switch
2303 to it and return 1. Otherwise, return 0. */
2304
2305 static int
2306 check_scope (struct varobj *var)
2307 {
2308 struct frame_info *fi;
2309 int scope;
2310
2311 fi = frame_find_by_id (var->root->frame);
2312 scope = fi != NULL;
2313
2314 if (fi)
2315 {
2316 CORE_ADDR pc = get_frame_pc (fi);
2317
2318 if (pc < BLOCK_START (var->root->valid_block) ||
2319 pc >= BLOCK_END (var->root->valid_block))
2320 scope = 0;
2321 else
2322 select_frame (fi);
2323 }
2324 return scope;
2325 }
2326
2327 /* Helper function to value_of_root. */
2328
2329 static struct value *
2330 value_of_root_1 (struct varobj **var_handle)
2331 {
2332 struct value *new_val = NULL;
2333 struct varobj *var = *var_handle;
2334 int within_scope = 0;
2335 struct cleanup *back_to;
2336
2337 /* Only root variables can be updated... */
2338 if (!is_root_p (var))
2339 /* Not a root var. */
2340 return NULL;
2341
2342 back_to = make_cleanup_restore_current_thread ();
2343
2344 /* Determine whether the variable is still around. */
2345 if (var->root->valid_block == NULL || var->root->floating)
2346 within_scope = 1;
2347 else if (var->root->thread_id == 0)
2348 {
2349 /* The program was single-threaded when the variable object was
2350 created. Technically, it's possible that the program became
2351 multi-threaded since then, but we don't support such
2352 scenario yet. */
2353 within_scope = check_scope (var);
2354 }
2355 else
2356 {
2357 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2358 if (in_thread_list (ptid))
2359 {
2360 switch_to_thread (ptid);
2361 within_scope = check_scope (var);
2362 }
2363 }
2364
2365 if (within_scope)
2366 {
2367 volatile struct gdb_exception except;
2368
2369 /* We need to catch errors here, because if evaluate
2370 expression fails we want to just return NULL. */
2371 TRY_CATCH (except, RETURN_MASK_ERROR)
2372 {
2373 new_val = evaluate_expression (var->root->exp);
2374 }
2375 }
2376
2377 do_cleanups (back_to);
2378
2379 return new_val;
2380 }
2381
2382 /* What is the ``struct value *'' of the root variable VAR?
2383 For floating variable object, evaluation can get us a value
2384 of different type from what is stored in varobj already. In
2385 that case:
2386 - *type_changed will be set to 1
2387 - old varobj will be freed, and new one will be
2388 created, with the same name.
2389 - *var_handle will be set to the new varobj
2390 Otherwise, *type_changed will be set to 0. */
2391 static struct value *
2392 value_of_root (struct varobj **var_handle, int *type_changed)
2393 {
2394 struct varobj *var;
2395
2396 if (var_handle == NULL)
2397 return NULL;
2398
2399 var = *var_handle;
2400
2401 /* This should really be an exception, since this should
2402 only get called with a root variable. */
2403
2404 if (!is_root_p (var))
2405 return NULL;
2406
2407 if (var->root->floating)
2408 {
2409 struct varobj *tmp_var;
2410 char *old_type, *new_type;
2411
2412 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2413 USE_SELECTED_FRAME);
2414 if (tmp_var == NULL)
2415 {
2416 return NULL;
2417 }
2418 old_type = varobj_get_type (var);
2419 new_type = varobj_get_type (tmp_var);
2420 if (strcmp (old_type, new_type) == 0)
2421 {
2422 /* The expression presently stored inside var->root->exp
2423 remembers the locations of local variables relatively to
2424 the frame where the expression was created (in DWARF location
2425 button, for example). Naturally, those locations are not
2426 correct in other frames, so update the expression. */
2427
2428 struct expression *tmp_exp = var->root->exp;
2429
2430 var->root->exp = tmp_var->root->exp;
2431 tmp_var->root->exp = tmp_exp;
2432
2433 varobj_delete (tmp_var, NULL, 0);
2434 *type_changed = 0;
2435 }
2436 else
2437 {
2438 tmp_var->obj_name = xstrdup (var->obj_name);
2439 tmp_var->from = var->from;
2440 tmp_var->to = var->to;
2441 varobj_delete (var, NULL, 0);
2442
2443 install_variable (tmp_var);
2444 *var_handle = tmp_var;
2445 var = *var_handle;
2446 *type_changed = 1;
2447 }
2448 xfree (old_type);
2449 xfree (new_type);
2450 }
2451 else
2452 {
2453 *type_changed = 0;
2454 }
2455
2456 {
2457 struct value *value;
2458
2459 value = value_of_root_1 (var_handle);
2460 if (var->value == NULL || value == NULL)
2461 {
2462 /* For root varobj-s, a NULL value indicates a scoping issue.
2463 So, nothing to do in terms of checking for mutations. */
2464 }
2465 else if (varobj_value_has_mutated (var, value, value_type (value)))
2466 {
2467 /* The type has mutated, so the children are no longer valid.
2468 Just delete them, and tell our caller that the type has
2469 changed. */
2470 varobj_delete (var, NULL, 1 /* only_children */);
2471 var->num_children = -1;
2472 var->to = -1;
2473 var->from = -1;
2474 *type_changed = 1;
2475 }
2476 return value;
2477 }
2478 }
2479
2480 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2481 static struct value *
2482 value_of_child (struct varobj *parent, int index)
2483 {
2484 struct value *value;
2485
2486 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2487
2488 return value;
2489 }
2490
2491 /* GDB already has a command called "value_of_variable". Sigh. */
2492 static char *
2493 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2494 {
2495 if (var->root->is_valid)
2496 {
2497 if (var->dynamic->pretty_printer != NULL)
2498 return varobj_value_get_print_value (var->value, var->format, var);
2499 return (*var->root->lang_ops->value_of_variable) (var, format);
2500 }
2501 else
2502 return NULL;
2503 }
2504
2505 void
2506 varobj_formatted_print_options (struct value_print_options *opts,
2507 enum varobj_display_formats format)
2508 {
2509 get_formatted_print_options (opts, format_code[(int) format]);
2510 opts->deref_ref = 0;
2511 opts->raw = 1;
2512 }
2513
2514 char *
2515 varobj_value_get_print_value (struct value *value,
2516 enum varobj_display_formats format,
2517 struct varobj *var)
2518 {
2519 struct ui_file *stb;
2520 struct cleanup *old_chain;
2521 char *thevalue = NULL;
2522 struct value_print_options opts;
2523 struct type *type = NULL;
2524 long len = 0;
2525 char *encoding = NULL;
2526 struct gdbarch *gdbarch = NULL;
2527 /* Initialize it just to avoid a GCC false warning. */
2528 CORE_ADDR str_addr = 0;
2529 int string_print = 0;
2530
2531 if (value == NULL)
2532 return NULL;
2533
2534 stb = mem_fileopen ();
2535 old_chain = make_cleanup_ui_file_delete (stb);
2536
2537 gdbarch = get_type_arch (value_type (value));
2538 #if HAVE_PYTHON
2539 if (gdb_python_initialized)
2540 {
2541 PyObject *value_formatter = var->dynamic->pretty_printer;
2542
2543 varobj_ensure_python_env (var);
2544
2545 if (value_formatter)
2546 {
2547 /* First check to see if we have any children at all. If so,
2548 we simply return {...}. */
2549 if (dynamic_varobj_has_child_method (var))
2550 {
2551 do_cleanups (old_chain);
2552 return xstrdup ("{...}");
2553 }
2554
2555 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2556 {
2557 struct value *replacement;
2558 PyObject *output = NULL;
2559
2560 output = apply_varobj_pretty_printer (value_formatter,
2561 &replacement,
2562 stb);
2563
2564 /* If we have string like output ... */
2565 if (output)
2566 {
2567 make_cleanup_py_decref (output);
2568
2569 /* If this is a lazy string, extract it. For lazy
2570 strings we always print as a string, so set
2571 string_print. */
2572 if (gdbpy_is_lazy_string (output))
2573 {
2574 gdbpy_extract_lazy_string (output, &str_addr, &type,
2575 &len, &encoding);
2576 make_cleanup (free_current_contents, &encoding);
2577 string_print = 1;
2578 }
2579 else
2580 {
2581 /* If it is a regular (non-lazy) string, extract
2582 it and copy the contents into THEVALUE. If the
2583 hint says to print it as a string, set
2584 string_print. Otherwise just return the extracted
2585 string as a value. */
2586
2587 char *s = python_string_to_target_string (output);
2588
2589 if (s)
2590 {
2591 char *hint;
2592
2593 hint = gdbpy_get_display_hint (value_formatter);
2594 if (hint)
2595 {
2596 if (!strcmp (hint, "string"))
2597 string_print = 1;
2598 xfree (hint);
2599 }
2600
2601 len = strlen (s);
2602 thevalue = xmemdup (s, len + 1, len + 1);
2603 type = builtin_type (gdbarch)->builtin_char;
2604 xfree (s);
2605
2606 if (!string_print)
2607 {
2608 do_cleanups (old_chain);
2609 return thevalue;
2610 }
2611
2612 make_cleanup (xfree, thevalue);
2613 }
2614 else
2615 gdbpy_print_stack ();
2616 }
2617 }
2618 /* If the printer returned a replacement value, set VALUE
2619 to REPLACEMENT. If there is not a replacement value,
2620 just use the value passed to this function. */
2621 if (replacement)
2622 value = replacement;
2623 }
2624 }
2625 }
2626 #endif
2627
2628 varobj_formatted_print_options (&opts, format);
2629
2630 /* If the THEVALUE has contents, it is a regular string. */
2631 if (thevalue)
2632 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2633 else if (string_print)
2634 /* Otherwise, if string_print is set, and it is not a regular
2635 string, it is a lazy string. */
2636 val_print_string (type, encoding, str_addr, len, stb, &opts);
2637 else
2638 /* All other cases. */
2639 common_val_print (value, stb, 0, &opts, current_language);
2640
2641 thevalue = ui_file_xstrdup (stb, NULL);
2642
2643 do_cleanups (old_chain);
2644 return thevalue;
2645 }
2646
2647 int
2648 varobj_editable_p (struct varobj *var)
2649 {
2650 struct type *type;
2651
2652 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2653 return 0;
2654
2655 type = varobj_get_value_type (var);
2656
2657 switch (TYPE_CODE (type))
2658 {
2659 case TYPE_CODE_STRUCT:
2660 case TYPE_CODE_UNION:
2661 case TYPE_CODE_ARRAY:
2662 case TYPE_CODE_FUNC:
2663 case TYPE_CODE_METHOD:
2664 return 0;
2665 break;
2666
2667 default:
2668 return 1;
2669 break;
2670 }
2671 }
2672
2673 /* Call VAR's value_is_changeable_p language-specific callback. */
2674
2675 int
2676 varobj_value_is_changeable_p (struct varobj *var)
2677 {
2678 return var->root->lang_ops->value_is_changeable_p (var);
2679 }
2680
2681 /* Return 1 if that varobj is floating, that is is always evaluated in the
2682 selected frame, and not bound to thread/frame. Such variable objects
2683 are created using '@' as frame specifier to -var-create. */
2684 int
2685 varobj_floating_p (struct varobj *var)
2686 {
2687 return var->root->floating;
2688 }
2689
2690 /* Implement the "value_is_changeable_p" varobj callback for most
2691 languages. */
2692
2693 int
2694 varobj_default_value_is_changeable_p (struct varobj *var)
2695 {
2696 int r;
2697 struct type *type;
2698
2699 if (CPLUS_FAKE_CHILD (var))
2700 return 0;
2701
2702 type = varobj_get_value_type (var);
2703
2704 switch (TYPE_CODE (type))
2705 {
2706 case TYPE_CODE_STRUCT:
2707 case TYPE_CODE_UNION:
2708 case TYPE_CODE_ARRAY:
2709 r = 0;
2710 break;
2711
2712 default:
2713 r = 1;
2714 }
2715
2716 return r;
2717 }
2718
2719 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2720 with an arbitrary caller supplied DATA pointer. */
2721
2722 void
2723 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2724 {
2725 struct varobj_root *var_root, *var_root_next;
2726
2727 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2728
2729 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2730 {
2731 var_root_next = var_root->next;
2732
2733 (*func) (var_root->rootvar, data);
2734 }
2735 }
2736
2737 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2738 defined on globals. It is a helper for varobj_invalidate.
2739
2740 This function is called after changing the symbol file, in this case the
2741 pointers to "struct type" stored by the varobj are no longer valid. All
2742 varobj must be either re-evaluated, or marked as invalid here. */
2743
2744 static void
2745 varobj_invalidate_iter (struct varobj *var, void *unused)
2746 {
2747 /* global and floating var must be re-evaluated. */
2748 if (var->root->floating || var->root->valid_block == NULL)
2749 {
2750 struct varobj *tmp_var;
2751
2752 /* Try to create a varobj with same expression. If we succeed
2753 replace the old varobj, otherwise invalidate it. */
2754 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2755 USE_CURRENT_FRAME);
2756 if (tmp_var != NULL)
2757 {
2758 tmp_var->obj_name = xstrdup (var->obj_name);
2759 varobj_delete (var, NULL, 0);
2760 install_variable (tmp_var);
2761 }
2762 else
2763 var->root->is_valid = 0;
2764 }
2765 else /* locals must be invalidated. */
2766 var->root->is_valid = 0;
2767 }
2768
2769 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2770 are defined on globals.
2771 Invalidated varobjs will be always printed in_scope="invalid". */
2772
2773 void
2774 varobj_invalidate (void)
2775 {
2776 all_root_varobjs (varobj_invalidate_iter, NULL);
2777 }
2778 \f
2779 extern void _initialize_varobj (void);
2780 void
2781 _initialize_varobj (void)
2782 {
2783 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2784
2785 varobj_table = xmalloc (sizeof_table);
2786 memset (varobj_table, 0, sizeof_table);
2787
2788 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2789 &varobjdebug,
2790 _("Set varobj debugging."),
2791 _("Show varobj debugging."),
2792 _("When non-zero, varobj debugging is enabled."),
2793 NULL, show_varobjdebug,
2794 &setdebuglist, &showdebuglist);
2795 }
This page took 0.104192 seconds and 3 git commands to generate.